
 UCI ZEEMAN EFFECT

OBJECTIVES  

Observe the fine structure lines of mercury and the Zeeman splitting of one or more of 
these lines as a function of magnetic field.

Compare the observed splitting with theoretical splitting.  

REFERENCES  

Tipler, section on Zeeman effect.
Melissinos, sections on Mercury in Chap. 2 and Chap. 7.
Vaughn, "The Fabry Perot Interferometer".
Born and Wolf, "Principles of Optics". 
Hernandez, "Fabry-Perot Interferometers"
(The last four may be checked out from Jim Kelley)

ZEEMAN EFFECT

The observation of spectral line splitting when an atom is placed in an external magnetic 
field --known as the Zeeman effect--was first explored by Faraday.  However, because of 
the low resolution of his instrument, he was unable to detect any spectral line splitting.  It 
was later successfully observed by Zeeman, for whom the effect was named.

This advanced laboratory employs a Fabry-Perot interferometer, a high-resolution spec-
troscopic instrument.  It produces a fringe pattern when a light beam hits and transmits 
through and/or reflects off its mirrors causing interference.  Use the refrence texts listed 
above to understand interferometer basics.  It can be seen that when a discharge lamp is 
placed in a magnetic field, each interference fringe is split into two or more fringes.  One 
can analyze such an effect in light of quantum mechanics as well as classical mechanics.  

GENERAL ARRANGEMENT

The apparatus, as shown in Fig. 1, consists of six main parts:  (1)  a laser and a beam 
steering mirror for rough adjustments, (2) a discharge lamp placed in an electrically pow-
ered magnet, (3)  a condensing lens assembly, (4) a collimating lens assembly, (5) a lin-
ear polarizer, (6) a Fabry-Perot interferometer, and (7) a photomultiplier (PMT) detector 
unit.  Students are expected to be able to set up the apparatus by following the proce-
dures below and by experimenting with other arrangements.



ALIGNMENT OBJECTIVES - GENERAL

1. Insure that angle of incidence of light is completely normal to the front surfaces of the 
interferometer mirrors,

2. incident light is perfectly collimated (parallel), and

3. interferometer mirrors are perfectly parallel.

The procedures outlined below are suggested methods to help you achieve these objec-
tives.  You will probably discover better ways. 

Laser Alignment

The laser is used in this experiment simply as an alignment tool to aid in the adjustment 
of your optical components.  First, adjust the height of the laser so that the beam is at the 
same height as the center of the interferometer mirrors (it should also pass directly 
through the center of the magnet pole pieces).  Place the laser straight to the beam 

steering mirror, which faces the laser at 450 in order to project the laser beam along the 
length of the table.  Adjust the two knobs of the mirror so that the laser beam is parallel to 
the table top (height adjustment) and aligned with a line of screw holes (side adjustment) 
all the way along the top of the table.  Use the glass rulers to measure the horizontal and 
vertical displacement of the laser path.  One knob of the mirror controls the deflection 
horizontally and the other vertically.  Concentrate at first on making the beam parallel to 
one of the rows of screw holes, because once it is straightened horizontally, the whole 
path can be shifted laterally by adjusting the translator stand of the mirror (not the angle 
of the mirror). 

About Lenses

Referring to the figure, there are two lenses, 1 and 2, in the condensing unit and one, 
lens 3, in the collimating unit.  Light rays from the light source are divergent.  When Lens 
1 is focussed on the light source, it generates nearly parallel light for better focusing by 
lens 2.  Besides making light nearly parallel, lens 1 can provide fine adjustments of the 
light path along the x- and y- directions.  Assumptions here are (1), that light between 
lens 1 and lens 2 does not have to be parallel for the rays emerging out of lens 3 to be 
parallel and (2), that the x- and y-adjustments of lens 1 do not prevent the final rays from 
being parallel.  What is meant by x- and y-adjustments is that as you move lens 1 around 
using the two thumb screws on the condensor, the image of light projected on the pinhole 
aperture of the collimating unit also moves around.  Next, focusing of light on the aper-
ture is done by lens 2.  The aperture acts as a point source.  Lens 3 is focussed on the 
light rays from the point source and is adjustable along the z-axis to make them parallel.  



Positioning Elements

Place all the elements (condenser, collimator, etc.) one at a time, so that their optical axis 
is at the same height as the interferometer.  Start with the condensing lens.  The focal 
length of lens 1 in the condensing unit is 12.5cm, so the discharge lamp should be posi-
tioned so that it is 12.5cm from the condensing lens.  Remove the filter from the con-
densing unit, and make sure the shutter is open.   Adjust the position of the holder and 
the lens so that beam is directed along the optical axis (parallel to the table top, and 
directly above the holes). 

Now put the collimating lens assembly unit in place, and adjust its height and angle so 
that the laser beam passes through the pinhole aperture and emerges from the colli-
mater lens without diverging from the optical axis (this can be tedious!).   

Next, check the alignment of the Fabry-Perot interferometer.  Set the spearation between 
plates to .5 cm.  To make sure the beam incident on the interferometer is perpendicular 
to its mirrors, insert a microscope slide into the light path between the collimating unit 
and the interferometer.  Adjust the tilt and azimuth angle of the interferometer baseplate 
so that the incident and reflected beams coincide on the same spot.  Look at the projec-
tion of the interferometer on the wall.  If you see a series of red dots trailing off one way 
or another, use the micrometer adjustments on the interferometer to bring them into coin-
cidence.  

You should now be able to produce interference fringes.  In order to see them more eas-
ily, put a piece of frosted glass in front of the interferometer, and project the output onto a 
piece of white paper.  Carefully make fine micrometer adjustments to center the bullseye 
pattern.  Try to get just a few broad fringes rather than many narrow fringes.  The fewer 
you have, the more parallel the interferometer plates.  

Parallelism will be observed by positioning the center of the fringe pattern bull's 
eye in the center of the field of view.  Slowly move the micrometer adjustments, alternat-
ing from one to the other, causing the fringes to become farther and farther apart until a 
bull's eye emerges.  This will take time.  To make sure it is the bull's eye, turn on the high 
voltage supply which is 
connected to the interferometer.  The high voltage controls the length of the piezoelectric 
material on which one of the mirrors is mounted.  This effectively adjusts the separation 
between the two mirrors on the order of wavelengths.  You should be able to see the 
fringes move as you adjust the high voltage.  CAUTION:  Do not exceed 400V on the 
high voltage. When you are satisfied with your alignment, turn off the laser and place the 
mercury lamp between the poles of the magnet.  Install the large plano-convex lens at 
the output side of the interferometer, 125mm from the PMT translating stage assembly.  
(The curved side of the lens should face toward the interferometer.)  



From now on you will use the discharge lamp as the light source.  Use the clamp to posi-
tion the light source between the poles of the magnet, and turn on the light.  (It will take a 
few minutes before the light intensity reaches maximum.)  Turn off the lights and you will 
see the image of the light on the pinhole aperture plate.  Adjust the focus of lens 2 by 
moving the focus pin of the condensing unit back and forth until the image is sharpest.  
Project the light from the collimator onto a piece of white paper.  Make fine adjustments 
to the position of the lamp until you can see a nice round blue spot on the paper.  Adjust 
the position of the lens 3 focus pin so that the size of the aperture image remains the 
same all the way along the optical path.  

Insert the green interference filter into the condensing unit.  Get a flashlight, and turn off 
the room lights.  Locate the image with your eye (the light will be too dim to project).  It 
will appear as a green spot or band.  Use the H.V. supply to move the interferometer 
plate and verify that you are observing fringes.    Repeat the procedure above by making 
fine adjustments to the micrometers.  You must have no more than one fringe in the field 
of view at a time.  The other two channels of the H.V. supply can be used to fine adjust 
mirror tilt.  This is highly recommended!  Your objective is to zero in on the bullseye of the 
concentric ring pattern.  As you sweep to voltage to the piezo you will see a single fringe 
emerge from the center, expand outward, and then disappear before the next fringe 
emerges.

Our detector (a photo-multiplier tube) integrates all the light picked up by it's photocath-
ode, but cannot resolve the spacial features of a concentric ring pattern.  In this case, 
with 1.) perfectly parallel light impinging upon 2.) perfectly parallel mirrors at 3.) an angle 
precisely normal to the surface, the path length for every reflection of light across the sur-
face of the interferometer mirrors is identical.  Instead of generating a pattern of concen-
tric rings, the entire field of view is uniformly illuminated with either constructive or 
destructive interference.  Each "fringe" is then easily discernable by the PMT.   With dili-
gence and attention to the three conditions outlined above, this circumstance is 
approachable.  

EXPERIMENTAL PROCEDURES

Every time you come into the lab, probably the first thing you want to do is check the 
interference pattern, assuming that everything else remains properly set up.  Once the 
bull's eye is obtained, place the photomultiplier tube (PMT) behind lens 4 in such a way 
that light focuses a little in front of the PMT aperture plate.  The image should be some-
what larger than the PMT aperture.  You do not want the image too small because the 
PMT will not be able to resolve individual fringes.  Remove the filter from the condensing 
unit, get a flashlight, and turn off the room lights.  You will just barely be able to see the 
image of light (a tiny spot) on the aperture plate of the PMT.  Adjust the vertical and hori-
zontal position of the PMT so that the spot falls into the aperture of the PMT.  To make 



certain that light is going into the PMT, turn on the discriminator and the photon counter.  
Adjust the high voltage to the interferometer through a range of about 50 volts and find 
the fringe peak by watching the count rate.  The schematic diagram of the detector unit is 
as shown in Fig. 2. 

The high voltage  power supply for the PMT is in the photon counter.  Note:  Do not turn 
on the Photon Counter (and PMT) when the room lights are on.  Use the single counter 
mode on the discriminator, and set the discriminator level high enough to avoid an exces-
sive count rate which would overload the discriminator.  While moving the PMT slowly, 
maximize the counter rates to locate the optimum position of PMT.  Find the maximum 
for both x and y axes.  Insert the filter back into the condensing unit.  Place the polarizer 

angle at 00.  (Verify its orientation.)  Now the experiment is ready to start.  Lower the dis-
criminator level and adjust the integration time interval until you have a count rate with a 
good signal to background ratio.  Turn on the interferometer high voltage ramp generator.  
Set the duration to 10 sec, and adjust the amplitude to a level of about 500 Volts.  The 
interferometer will sweep through about 4 peaks corresponding to 4 orders.  Important:  
Do not exceed the maximum rating for the Burleigh piezo elements.  Refer to the Bur-
leigh manual.

For each trial you should always start taking data with the X-Y plotter at the beginning of 
a ramp cycle.  Continue the plot until the beginning of the next ramp cycle.  First, with the 
magnetic field off, take data for one sweep.  Then open the water line of the magnet, and 
turn on its DC power supply.  Up to a limit, the magnetic field strength is directly propor-
tional to the DC current, as shown in the graph on the DC power supply.    For more 
accurate current readings use a DMM in series with the power supply and magnet, and 
calibrate B vs. I using the gaussmeter.  

Do trials for different field strengths.  Change the polarizer angle (to say 900) and repeat.  
          
After you are done, make sure that the following items are turned off.  
  1) water   5) frequency generator
  2) DC power supply (magnet) 6) photon counting electronics
  3) light source 7) X-Y plotter
  4) high voltage power supply

Zeeman Effect Data Analysis



References: Max Born and Emil Wolf, Principles of Optics (Pergamon Press, Oxford, 
1984)
JM Vaughan, The Fabry-Perot Interferometer (Adam Hilger, Bristol and Philadelphia, 
1989)
G. Hernandez, Fabry-Perot Interferometers (Cambridge University Press, 1986)

This experiment studies the effect of a magnetic field on the green light emitted by hot Hg 
atoms. In the absence of a magnetic field the green light comes out in a narrow range of 
wavelengths centered at 546.1 nm. A narrow band of wavelengths emitted by an atom is 
called a spectral line. When the same atom is placed in a magnetic field the situation 
changes. Instead of consisting of one spectral line, the green light from the atom is made 
up of several spectral lines with wavelengths that depend on the size of the field. The 
object of the experiment is to measure the differences between each spectral line in the 
field and the single spectral line in zero field. These differences in wavelength are called 
Zeeman splittings. The tool in the Advanced Lab that allows the Zeeman splittings to be 
measured is a Fabry-Perot interferometer, or F-P for short. The polarization of the spec-
tral lines in the field are also studied.

The F-P consists of two partially reflecting parallel mirrors separated by a distance d. The 
mirrors are on the two inside surfaces of the substantial looking glass plates you can just 
barely see when you look into the F-P from the top. (You must be careful to never touch 
those surfaces or allow them to touch each other. Nasty chemicals on your skin or 
mechanical abrasion will ruin the reflectivity of the mirrors.) The layer of air between the 
mirrors acts like a thin film interference medium. Most of the alignment procedure in the 
earlier part of this manual is designed to turn light from the Hg lamp into plane waves 
incident normally on the mirrors and air gap. Please refer to your P7E textbook to review 
thin film interference at normal incidence if you don’t remember how all of that goes. 
Imagine monochromatic, plane wave light with wavelength  at normal incidence on the 
reflecting surfaces. You may recall, or your P7E text will tell you, that the transmitted 
intensity will be a maximum when

The formula in your text book will have an n in the numerator of the middle expression. 
Because our film is made of air, n = 1 in this experiment.  is the phase difference 
between light that goes directly through both mirrors and light that goes through the first 
mirror, reflects from the second mirror, reflects again from the first mirror, and finally goes 
through the second mirror. In Eq. (1) m is a positive integer. This equation can be simpli-
fied to

In Eq. (2) d is something you measure and  you already know. In the experiment d will 
be about 0.5 cm, so when bright green light is coming through the F-P, m will be about 
20,000. Please notice that if d is set so that the light transmitted through the F-P is a 
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maximum, it will be a maximum again when d changes (either way) by . When Eq. 

(2) is obeyed the transmitted intensity is said to be at an mth order transmission maxi-
mum.

Now suppose that d is set so that Eq. (2) is obeyed, but light with a wavelength of  
is sent through the interferometer.  is small. How must d change so that the transmit-

ted intensity is again at an mth order maximum? Call the new mirror spacing  and 
use Eq. (2) to get,

Using Eq. (2) once more to cancel 2d and m , and yet again to eliminate m, Eq. (3) 
becomes

Eq. (4) implies that if the wavelength of 500 nm light changes by 0.1 nm,  will be 1 , 
a distance that can be controllably moved with the piezoelectric devices on the F-P that 
move one of the mirrors. 

In your experiment, you will want to measure  for the lines in the field from the 
 spectral line. So you will want to rewrite Eq. (4) as 

Eq. (5) is the key to extracting wavelength shifts from your data. Please note that  is 
varied by applying a voltage to piezoelectric elements in the F-P that move one of the 
mirrors. You must measure the dependence of  on . Bear in mind that the trans-

mitted intensity moves from maximum to maximum every time d increases by . To 

zeroth order  is linear in . But be careful. Nothing is linear forever and piezos 

can be hysteretic. Arrange your data so that measuring  allows you to extract val-

ues of  to use in Eq. (5).

You must bear in mind that in your experiment you will have several spectral lines shifted 
by different amounts from the zero field line, not just one line as discussed above. You 
must use your head to keep straight which line is which. If you watch what happens as 
you increase the field in reasonably sized steps, you’ll be able to do this and apply Eq. 
(5) to each line.

Some fine points you should pay attention to if you are actually a Physics Major:
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At first sight Eq. (5) implies that to get the best resolution you should make d (and there-
fore m) as big as possible. But there is another consideration. Things get ambiguous if 

 gets too large. The problem is that if  gets big enough, the (m - 1)th order trans-

mission maximum for wavelength  has the same d as the mth order maximum for 
wavelength . The value of  that does this is called the “free spectral range.” It can be 
calculated from Eq. (2) and the result is 

Of course if  is even bigger than , the (m-1)th order transmission maximum for 

 will be at a bigger d than the mth order maximum of wavelength . When this 
happens you can no longer be sure which maximum of the  wavelength light is the 

mth order maximum. Then you won’t be able to figure out what to use for  in Eq. (5) 
and you’ve had it as far as measuring  goes. So in most circumstances, the range of 
wavelength shifts that can be unambiguously measured is a free spectral range. Making 
d large increases the resolution according to Eq.(5), but only at the cost of restricting the 
range of shifts that can be measured, according to Eq. (6). Fortunately, this is not too big 
a problem in the Zeeman experiment because the shifts are not large and the lines can 
be followed as the field is gradually increased. 

Finally, how can you estimate how much wavelength resolution to expect from the F-P? 
The intensity maximums that are described by Eqs. (1) and (2) are not infinitely narrow. 
The transmitted intensity as a function of d is a series of symmetrical peaks with finite 
widths. Eqs. (1) and (2) locate the central, highest point on each peak. Obviously the 
success you will have using the equations in this section to find  will be limited by how 
well you can experimentally determine the values of  (or really its surrogate, Vpiezo) at 
which the peaks occur. You can do a better job finding the highest point of a skinny nee-
dle-like peak than you can the center of a broad, haystack of a peak. This is particularly 
true in the inevitable presence of noise. So F-P’s are made to give narrow peaks. This is 
done by making the reflectivity of the mirrors large. (Obviously you can’t make it infinite 
or no light ever gets into the air gap. In that case nothing interferes and the game is 
over.) The details are given in Section 7.6 of the book by Born and Wolf. It’s well worth 
reading. 

The high points of that discussion are as follows. It turns out that the intensity pattern is 
given as a function of  by 
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where  is defined in Eq. (1) and  is the intensity of the plane waves incident on the 

first mirror. In Eq. (7) F is defined by

In Eq. (8) R is the intensity reflection coefficient (not the amplitude reflection coefficient) 
of the mirrors. Both mirrors have the same R. According to Eq. (7) if F is large (which 
according to Eq. (8) happens when R is large) I will be small except when . 
When , the transmission , a maximum consistent with Eq. (1). 

To illustrate the effect of the reflectivity, Fig. 1 shows the result of using Eq. (7) to calcu-
late the transmitted intensity through the F-P as a function of the phase difference for two 
different reflectivities of the mirrors. The upper, smooth curve is for 4% reflectivity (F = 
0.174), which is typical of a glass-air interface. The curve with the sharp peaks is for 80% 
reflective surfaces (F = 80).:

It is obviously going to be easier to find the peaks for an F-P with 80% reflective sur-
faces, especially in the presence of noise.

How wide are the transmission peaks of the F-P? If you go back to Eq. (7) and assume 
that F is large compared to 1, you can calculate how far the phase,  must be shifted 
from  to make the relative intensity 1/2. Calling this additional phase shift , Eq. (7) 
leads to
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Figure 1. The relative intensity 
transmitted through an F-P as a 
function of the phase for two 
different mirror reflectivities. 
The upper curve is for R = 0.04 
and the lower for R = 0.80.
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Solving Eq. (9) for  gives

So the width, in phase, of the whole peak is just twice this, or . 

A common sense estimate of the precision achievable in measuring  with the F-P can 
be made based on . The significance of  is that it is roughly the smallest phase shift 
that can be resolved.(If a peak shifts by a tiny fraction of its width, no one can tell it 
moved at all.) Because of Eq. (1) a smallest measurable phase shift implies that there is 
a smallest  you can hope to measure given by 

This of course leads to 

From this, Eq. (5) says that the minimum  that the F-P can resolve must be

Eqs. (1) and (12) and the result at the top of the page ( ) have also gotten into 
the act in the string of substitutions in Eq. (13). Finally the sensitivity of an interferometer 
or spectrometer is usually parameterized by its resolving power. The resolving power is 
the ratio of the wavelength to the smallest shift in that wavelength that can be detected,

, which is defined implicitly by Eq. (14) as , is called the “finesse” of the interfer-
ometer.Since F is determined by R, the resolving power is determined by the reflectivity 
of the mirrors and the order, m, in which the instrument is used.

A fancier calculation (See Born & Wolf’s Section 7.6, again.) of the resolving power 
based on Rayleigh’s criterion, which is probably defined in your good old P7E text, leads 
to 
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Of course the results for  given here assume that the light hitting the F-P is absolutely 

monchromatic. Due to isotope effects, inhomogeneous  fields, thermal and pressure 
broadening in the lamp, etc., the light in your experiment is not absolutely monochro-
matic. So Eqs. (14) and (15) are a upper bound on how well you can do with the equip-
ment in the lab.

Also note that all of the equations derived here are good for light near the center of the 
usual F-P “bulls-eye”, even if the collimation is imperfect. 
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