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Intermediate valence metals: 

The Anderson lattice model applicable to these compounds, capturing: 

Physical properties reveal the effects of the lattice coherence.
However……..

• Fermi Liquid ground state that evolves towards a high-T
local moment regime.

• band-like coherent character in the low-T limit, and
• local moment character at high-T

Introduction

Other properties, depending on spin fluctuations, are better described 
by the Anderson impurity model, despite the magnetic moments sit 
on a lattice. 
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Anderson Impurity Model (AIM)

Non-crossing approx. (NCA) 
C. Booth, private communication
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Pauli Paramagnet :
finite χ(T→0) 

Curie-Weiss: 
χ(T) = CJ / (T + θ)

Good semi-quantitative agreement with AIM
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• Inter-band transitions: The high energy peak is maximum for q at zone 
boundary. It shifts to high E with decreasing q. 

• Intra-band transitions: The low energy peak moves to high E as q 
increases towards zone boundary.  

Anderson Lattice Model
Spectrum of S(Q, E) for different values of momentum transfer q
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Motivation

Only four compounds studied by INS 
on single crystals

Most of INS performed on 
polycrystalline samples. This Q-dependence has 

remained an open question

• spectral response 

•dependence over the 
reciprocal space

character of the spin 
fluctuations:

Local / coherent ?

magnetic scattering elucidate
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Magnetic and non-magnetic Scattering
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and
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MAPS spectrometer
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Non-magnetic Scattering Difference should 
account for  
magnetic 

contribution to 
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(50-70) meV

T = 7 K

T = 300 K

(50-70) meV

Distribution of the intensity over 
momentum transfer space:

• Relatively uniform at room 
temperature 

• Variation of intensity ~ 25 -30% 
at low temperatures 

maxima at
Brillouin boundary zone points 
(0, ± 0.5), (± 0.5, 0)

Inelastic Neutron Scattering on CePd3

To explore the Q-dependence

Look at different 
regions in Q-space
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• Quasi-elastic Lorentzian

• Q-independent

Magnetic component of the scattering
T = 300 K

Q-independence implies a local character for spin fluctuations 
as expected for 

high-T uncorrelated local moment limit

with Γ = 27 meV

CePd3 at 300 K (~ ½ TK )



Slide 9

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

T = 7 K

In TOF: 
component h 
varies with E

Q-dependence not as drastic as expected by Anderson Lattice model 
(NO shift of spectral weight) 
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• Variations of intensity ~ 25%
• Similar Inelastic Lorentzians

Magnetic scattering of CePd3 at four regions in the (k,l) plane
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Constant-Q  scans:
• at the Brillouin zone boundary (2.5, 1.5, 0)
• at the Brillouin zone center (2, 2, 0)

Again:

Difference between ZB and ZC is 
NOT at all as  the pronounced 
variation predicted by the ALM

CePd3 (Low-T)                           
Triple-axis spectrometer
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Discussion / Conclusions
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Conclusions (i)
1)  High-temperature magnetic scattering:

Q-independent, quasi-elastic  spectrum
proving

Local character of uncorrelated magnetic moments

2)  Low-temperature magnetic scattering:
• Broad Inelastic Lorentzian + weak Q-dependence
• Qualitatively different from ALM predictions

YbAl3 ,(Christianson, PRL,2006) YbInCu4 (Lawrence, PRB 1997), 
CeInSn2 , (Murani, PRL 2008) 

Similar “Kondo-like”
spectral response: 

Much more like the predictions of the AIM
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a)  Band structure more complex
than just two hybridized bands. 
These bands remain to be calculated.

Possible reasons for the failure of ALM predictions 
for spin dynamics of IV comp. 

b) There may be significant overlap of the intra-band
Fermi Liquid excitations with the inter-band transitions. 
We are uncertain about the energy 
scale of the former (above 10 meV?)

c) ALM approximations may require improvements. Some are versions of mean 
field (MF) approx.  which do not necessarily get the excitation energies 
away from the εF correctly. 

intra-bandIn
te

ns
ity

Energy transfer

inter-band

Conclusions (ii)
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[1] Cox, Bickers, Wilkins, J. Appl. Phys.57, 1 (1985)

[2] Galera, et al., J. Magn. Magn. Mat. 47-48, 139 (1985).

3) Evolution with temperature: Agreement with AIM calculations 
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Conclusions (iii)

Excitations in the Anderson lattice are much more like 
those of an Anderson impurity than has been previously 

recognized  
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Thank you!
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Supporting Slides
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Anderson Impurity Model (AIM)

Non-crossing approx. (NCA) 
C. Booth, private communication
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Even though RE’s ions sit on a lattice, good semi-
quantitative agreement with AIM
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(50-70) meV

T = 7 K

Smaller Q-Regions
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Conclusions (i)

1)  High-temperature magnetic scattering:
Q-independent quasi-elastic Lorentzian spectrum

proving
Local character of spin fluctuations for 

uncorrelated magnetic moments

2)  Low-temperature magnetic scattering:
(inelastic Lorentzian + weak Q-dependence)

YbAl3 ,Christianson, et al, Phys. Lett.96,117206 (2006)

YbInCu4 , Lawrence, et al, Phys. Rev. B 55, 14467 (1997)

CeInSn2 , Murani, et al, Phys. Rev. Lett. 101, 206405 (2008) 

CePd3

YbAl3
Similar “Kondo-like” spectral response: 

Much more like the predictions of the AIM than the ALM.
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3) Low-T magnetic scattering qualitatively different from 
ALM predictions

CePd3 at low-T, for different Q’s
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Conclusions (iii)

“Lattice” predictions

Peak-position 
decreases with q

Aligia, et al., J. Mag. Mag. 
Mat. 46, 321 (1985).

Band structure more complex
than just two hybridized bands. 

These bands remain to be calculated.

• Q-dependence not at all as severe as ALM prediction
• No gap in the scattering 
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Values for CePd3 using big Q-regions
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“Lattice” predictions   
S(Q,E) for different Q’s

Magnetic Intensity spectra:
CePd3 at low-T, for different Q’s

Peak-position 
increases with q

Peak-position 
decreases with q

zoom

Aligia, et al., J. Mag. Mag. 
Mat. 46, 321 (1985).

Low-T magnetic scattering differs from the predictions of the ALM.
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• Q-dependence not at all as severe as ALM 
prediction

• No gap in the scattering 
(Overlap of intra- and inter-band transitions? )

Conclusions (iii)
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Basic Phenomenological Description

• Non-integral valence (nf <1)

• Pauli Paramagnet 

finite χ(0) ~ μB
2 N(εF) 

• Linear Specific Heat  

C ( T ) ~ γT 

γ = 1/3 π2 N(εF) kB
2  

• Integral valence (nf→1)  

• Curie-Weiss: χ = CJ / (T + θ)

• Entropy: Sm → R ln(2J+1)

High –T
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Cornelius, et al. Phys. Rev. Lett. 88, 117201 (2002)

Tmax
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Thermodynamic properties are universal 
function of a scaled temperature Tmax
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• Scaling

1/χ0, 1/γ, Γ, E0 ∝ kBTmax

Basic Phenomenological Description

• Onset of coherence

i) Bloch’s law 

ii) ρ ∝ T 2
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Anderson Impurity Model (AIM)

Even though RE’s sit on a lattice, and are 
not “impurities”, good agreement with AIM

YbAgCu4

YbAgCu4

Calculation: C. Booth, 
private communication

Non-crossing approx.
(NCA)

• Qualitative agreement

• Some quantitative agreement

• Slower crossover than AIM 
prediction
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Lawrence et al, Phys. Rev. B 
63, 054427 (2001).
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Single-crystalline samples

CePd3 (18 g) LaPd3 (11 g)
Grown by Czochralski method 
Annealed at 950°C (6 days)

LaPd3

LaPd3 

CePd3 
CePd3 

Scale: cm

YbAl3 (≈ 5 g)* 
Grown by self-flux method 

E. D. Bauer, 
C. H. Wang,
K. J. McClellan

A. D. Christianson,
E. D. Bauer

* In the pictures: not the actual 
set-up used in the experiments 
reported in this work Scale: cm

YbAl3
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Time – of - flight 
Spectrometer

Triple - axis 
Spectrometer
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Inelastic Neutron Scattering
Measuring spin dynamics
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Inelastic Neutron 
Scattering on YbAl3

Measurements at 300 K, 100 K and 8 K
on time – of – flight spectrometer

(no non-magnetic analog compound)
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YbAl3 Magnetic scattering
at 300 K

Regions in Q- space

Intensity = (Magn. Comp.) + (Non-magn. Comp)

Assuming:       (Non-magn) = 3 Gaussian peaks + elastic peak

we obtain:
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INS on a non-magnetic 
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Q-indep, Quasi-elastic Lorentzian Γ = 35 meV
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f 2(Q) for Ce3+

Polycrystalline average (i)

• Plot intensity I vs.Q for different ranges 
of energy transfer

• Analyze Intensity as composed by 3 
contributions for the scattering:

I = MS + BQ2 + M f 2(Q)

Assumption: 
MS and M are Q-independent

Single phonon 
scattering

Magnetic 
scattering

Multiple 
scattering

• Integrate on a large portion of the reciprocal space 

f 2(Q) : magnetic form factor for 
Ce 4f orbital
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Polycrystalline average (ii)
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Magnetic scattering
I=MS + BQ2 + M f 2(Q)

BQ2 dominant  < 30 meV
Mf 2(Q) dominant above 

phonon cutoff

Obtain MObtain MS, B
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ff.
 M

Energy transfer E (meV)

T = 300 K

(b)

Polycrystalline average (iii)

maximum between 50 and 60 meV, (same 
scale of TK~(500-600) K. 

T = 8 K:  Inelastic Kondo-like magnetic 
scattering: 

As temperature increases, it evolves 
towards a quasielastic Lorentzian

Scattering cross sections
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The magnetic intensity from TOF measurements (green line) is 
also included for comparison. 

HB3 Triple axis spectrometer T = 12 K,  Ef=14.7 meV

Constant Q- scans:

(a) Energy-scan at the Brillouin zone boundary , and (b) at the 
Brillouin zone center 

TAS has higher 
background, and lesser 
statistics:
• Maxwell profile of the 
reactor (~ 70 meV )
• Larger amount of 
aluminum “in the beam”

Measuring on Triple-axis 
spectrometer
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Alternative Method to 
Obtain the Non-
magnetic Scattering 
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LIII X-ray absorption spectrum

Spectra correspondent to 
divalent and trivalent Yb
absorptions

Bauer, et al., Phys. Rev. B 69, 
125102 (2004)
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 conduction band E(k) ∝ k2
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Spectra for intraband (lines) and interband
(circles) excitations for momentum transfer 
in the range between 0 and Q=QZB.

Estimation for the spectrum of particle-hole 
excitations for a basic scheme of hybridized bands
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Oscillation of Magnetic Intensity

T = 7 K
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