- •Voltage (V) depends on the distance between charges.
- **Current** (C) depends on the number of moving charges.
- *Resistance (R) depends on how much moving charges are slowed down

•Voltage (V) depends on the distance between charges.

- •Voltage (V) depends on the distance between charges.
- **Current** (C) depends on the number of moving charges.

Small Current

Large Current

- •Voltage (V) depends on the distance between charges.
- **Current** (C) depends on the number of moving charges.
- *Resistance (R) depends on how much moving charges are slowed down

- •Voltage (V) depends on the distance between charges.
- **Current** (C) depends on the number of moving charges.
- *Resistance (R) depends on how much moving charges are slowed down.
- A formula which describes how voltage, current and resistance depend on each other is:

$$V = C \times R$$

or
$$C = V / R$$

- •Voltage (V) depends on the distance between charges.
- **Current** (C) depends on the number of moving charges.
- *Resistance (R) depends on how much moving charges are slowed down.
- A formula which describes how **voltage**, **current** and **resistance** depend on each other is:

$$V = C \times R$$
 or $C = V / R$

- •Example:
 - If the current is C = 2 and the resistance is R = 100, how large is the voltage (V)?

- •Voltage (V) depends on the distance between charges.
- **Current** (C) depends on the number of moving charges.
- *Resistance (R) depends on how much moving charges are slowed down.
- A formula which describes how **voltage**, **current** and **resistance** depend on each other is:

$$V = C \times R$$
 or $C = V / R$

- •Example:
 - If the current is C = 2 and the resistance is R = 100, how large is the voltage (V)?

Simple circuit to show how current depends on voltage

Resistance -- tries to stop current!

Current -- charges flowing through wire

Voltage – separates charges

•Simple circuit to show how current depends on voltage:

Table

Voltage Current

•Simple circuit to show how current depends on voltage:

Table

Voltage Current

0. 0.

•Simple circuit to show how current depends on voltage:

Table

Voltage Current

0. 0.

Simple circuit to show how current depends on voltage:

Table

Voltage Current

0. 0.

40. 185.

•Simple circuit to show how current depends on voltage:

Table

Voltage	Current

0. 0.

40. 185.

80. 260.

•Simple circuit to show how current depends on voltage:

Table

Voltage	Curren
0.	0.
40.	185.
80.	260.
120.	317.

*Simple circuit to show how current depends on voltage:

Table

Voltage	Current
0.	0.
40.	182.
80.	254.
120.	315.

•Simple circuit to show how current depends on voltage:

Table

Voltage	Current
0.	0.
40.	182.
80.	254.
120.	315.

•Series circuit of three light bulbs:

- •Will bulbs be brighter or dimmer?
- •What will happen if we remove one bulb?

Voltage – Pushes charges (current) through wires

Current – charges flowing through wire

Resistance tries to stop current!

•Parallel circuit of three light bulbs:

- Will bulbs be brighter or dimmer?
- •What will happen if we remove one bulb?

Voltage – Pushes charges (current) through wires

Current – charges flowing through wire

Resistance tries to stop current!

*Combination circuit of three light bulbs:

- •Which bulb will shine the brightest?
- What will happen if we remove bulb A?
- •What will happen if we remove bulb C?

Voltage – Pushes charges (current) through wires

Current – charges flowing through wire

Resistance tries to stop current!

Van De Graaff Generator

How charge is carried up to top

Capacitor Boom

Circuit

Capacitor

LN2 Jumping Ring

*Summary:

• Voltage (V) depends on the distance between charges.

• Current (C) depends on the number of moving charges.

• Resistance (R) depends on how much moving charges are slowed down

