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Prompt

Explain the role of instantons in particle physics

1. As a warm-up explain how instantons describe tunneling amplitudes in quantum mechanics

2. Explain the vacuum structure of gauge theories. In particular explain what the winding number
is and how the |n〉 vacua appear, and show how instantons describe tunneling between these vacua.
Explain what the θ vacuum is.

3. As an application, explain the U(1) problem (“η problem”) of QCD and how instantons it. Do not
simply say that U(1)A is anomalous and broken by instantons; explain the Kogut-Susskind mechanism.

4. Explain the emergence of the ’t Hooft operator. Explain the relation between anomalies and
instantons, focusing on the index theorem, and also show how the ’t Hooft operator encodes the
breaking of the anomalous symmetries. As an example show how the ’t Hooft operator can lead to
baryon and lepton number violation in the SM. As another example of the ’t Hooft operator consider
N = 1 SUSY QCD withF = N − 1 flavors (for and SU(N) gauge group). Write down the ’t Hooft
operator for that theory, and explain how that could actually come from a term in the superpotential,
and why F = N − 1 is special.
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1 Une dégustation : Introduction

Instantons play a rather understated role in standard quantum field theory textbooks, tucked away
as an additional topic or mentioned in passing. Despite being notoriously difficult to calculate,
instanton effects play a very important role in our conceptual understanding of quantum field
theory.

In this examination we provide a pedagogical introduction to the instanton and some of its
manifestations in high energy physics. We begin with ‘instanton’ configurations in quantum
mechanics to provide a controlled environment with few ‘moving parts’ that might distract us
from the real physics. After we’ve used path integrals and imaginary time techniques to remind
ourselves of several quantum mechanical facts that we already knew, we will make use of this
foundation to understand the basis of Yang-Mills instantons and how tunneling between degenerate
vacua can be [surprisingly] manifested in quantum field theory. We will discover that Yang-Mills
theory has a surprisingly rich vacuum structure that can perform seemingly miraculous feats in
the presence of fermions. In particular, we will see how Yang-Mills instantons (which a priori have
nothing to do with fermions) can solve an apparent problem in the spectrum of low-lying spectra
of hadrons. In doing this we will present a deep relationship between instantons and anomalous
U(1) symmetries that can be used for baryon and lepton number violation in the early universe.
We will end with an introduction to the moduli space of SUSY QCD where instanton effects end
up providing a powerful handle to solve the ADS superpotential for any number of flavors and
colors. By the end of this paper we hope that the pun in its title will be clarified to the reader.

There are many things that we will unfortunately not be able to cover, but hopefully this may
serve as an introduction to a fascinating subject.

This work is a review of a broad subjects and we’ve made very little attempts to provide
references to original literature. In the appendix we give a brief literature review of the sources
that this paper drew most heavily upon. Of all the sections of this paper, the literature review
is probably the most useful to other graduate students hoping to learn more about instantons.
Nothing in this work represents original work, except any errors. Of course, at the time of
compilation this document was perfect and flawless; any errors must have occurred during the
printing process.

This examination was prepared over the course of a three week period along with two other
similar exam questions. The reader will note that the tone in the document becomes increasingly
colloquial and borderline sarcastic as the deadline approached. (The introduction was written
last.)

That being said, Allons-y!

2 Apéritif : Quantum mechanics

Let’s start with the simplest instanton configuration one could imagine: tunneling in quantum
mechanics, i.e. 0+1 dimensional quantum field theory. This is a story that we are all familiar with
from undergraduate courses, but we will highlight the aspects which will translate over to Yang
Mills theory in 4D. We will summarize the presentation by Coleman [1]; for details see also [2].
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2.1 The semiclassical approximation and path integrals

Exact solutions to quantum systems are intractably difficult to solve. To make progress, we
proceed using perturbation theory about the analytically soluble (i.e. quadratic) classical path1.
This corresponds to an expansion in ~ (in the language of Feynman diagrams, an expansion in
loops).

In quantum mechanics we know how to take the semiclassical limit: the WKB approximation.
Here we note that for a constant potential, the solution to the Schrödinger equation is just a plane
wave,

Ψ(x) = Ψ(0)e±ipx/~ p =
√

2m(E − V ). (2.1)

For nontrivial V → V (x), we can promote p→ p(x) and proceed to solve for p(x). This plane-wave
approximation is valid so long as the state is probing a ‘sufficiently flat’ region of the potential.
This can be quantified by defining the [position-dependent] Compton wavelength of the quantum
state

λ(x) =
2π~
p(x)

. (2.2)

Thus we can see that the ~ → 0 limit indeed allows the quantum state to probe smaller (and
hence more slowly varying) regions of the potential.

From here one can proceed as usual from one’s favorite introductory quantum mechanics
textbook to derive nice results for scattering and even tunneling. Since we’re grown ups, let us
instead remind ourselves how this comes about in the path integral formalism. Feynman taught
us that quantum ampilitudes can be written as a sum over paths

〈xf |eiHt/~|xi〉 = N

∫
[dx]e−iS/~. (2.3)

The semiclassical limit ~ → 0 causes the exponential on the right-hand side to oscillate quickly
so that nearby paths tend cancel one another. The [parametrically] dominant contribution to the
path integral then comes from the path of stationary phase (steepest descent). This, of course,
comes from the extremum of the action and corresponds to the classical path, xcl. The usual
game, then, is to expand about this path

x(t) = xcl(t) +
∑

n

cnxn(t) (2.4)

using a convenient basis of functions xn(t) chosen so that the resulting functional determinant can
be calculated easily. Ho hum! This is all familiar material since we’re all grown up and already
know all about fancy things like path integrals.

One thing that might cause us to pause, however, is to ask how this can possibly give us quan-
tum tunneling when—by definition—for such processes there exists no classical path to perturb

1The identification of the quadratic part of the Lagrangian as classical is most easily seen in λφ4 theory by scaling
φ → φ′ = λ1/4φ and noting that the partition function contains an exponential of L′/~ = (1/λ~)[ 12 (∂φ)2 + · · · ].
The semiclassical limit corresponds to small (λ~).
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about. Conceptually this is a bit of a hum-dinger, but a hint can already be seen from (2.1): for
E < V the momentum becomes imaginary and we get the expected exponential behavior. Going
back to our high-brow path integrals, we shall now see that we can get to this behavior by working
in the imaginary time formalism via our old friend, the Wick rotation,

t = iτ. (2.5)

The validity of the Wick rotation may seem odd, but we shall simply treat this as a change of
variables2. What does this buy us? Our amplitudes now take the form

〈xf |e−Hτ/~|xi〉 = N

∫
[dx]e−

1
~

R τ LEdτ
′

(2.6)

where

LE =
m

2

(
dx

dτ

)2

+ V (x). (2.7)

We see that the potential has swapped signs relative to the kinetic term. This is easy to see from
the equation of motion, mẍ = −V ′(x), where the left-hand side picks up an overall sign when
t → τ . On the surface this seems like a completely trivial change (it is), but the point is that
the minus sign flips the potential barrier upside down allows us to find a classical path between
the two extrema. The imaginary time formalism provides a classical path about which we can
sensibly make a semiclassical approximation for tunneling processes.

Let us make two remarks:

• The [imaginary] time evolution operator exp(−Hτ/~) is not unitary, but Hermitian.

• An interesting consequence of this is that large time evolution leads to a projection to the
ground state (if the state has any overlap with |0〉):

lim
τ→∞
〈x
∣∣e−Hτ/~

∣∣x′〉 = lim
τ→∞
〈x|n〉〈n|x′〉e−Enτ/~ (2.8)

= 〈x|0〉〈0|x′〉e−E0τ/~ (2.9)

= ψ0(x)ψ∗0(x′)e−E0τ/~. (2.10)

2.2 The harmonic oscillator

Before discussing any tunneling phenomena, let’s review the harmonic oscillator in the imaginary
time formalism. In all cases to follow we will consider events between an initial time −T/2 and a
final time T/2 with T →∞. As before, we shall expand about the classical path

x(τ) = xcl(τ) +
∑

n

cnxn(τ), (2.11)

2 Analyticity is a rather deep idea in physics which the author is still trying to appreciate with the proper
reverence. For example, non-analyticity in the effective potential signals the appearance of massless modes. More
mundanely, in the Kramers-Kronig relation analyticity is related to causality. In the present case, the important
feature is that the Hamilton-Jacobi equations still hold upon complexification. For more about this rather deep
connection, see e.g. [3].
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where we choose our basis functions xn to satisfy the appropriate boundary conditions (xn(±T/2) =
0) and to be eigenfunctions of δ2S/δx2

cl,

−d
2xn
xτ 2

+ V ′′(xcl)xn = λnxn. (2.12)

The path integral measure is converted to [dx] → ∏
n(2π~)dcn, where we use Coleman’s normal-

ization [1]. In the semiclassical limit where ~→ 0, stationary phase tells us that the amplitude is
dominated by

〈xf |e−Hτ/~|xi〉 = Ne−S(xcl)/~
[
det
(
−∂2

τ + V ′′(xcl)
)]−1/2

(2.13)

up to higher order terms in ~. By our choice of basis functions the determinant over δ2S/δx2
cl can

be written as
∏

n λ
−1/2. With suave arithmetic maneuvering one can show that the normalization

and the determinant simplify to

[
det
(
−∂2

τ + V ′′(xcl)
)]−1/2

=
( ω
π~

)1/2

e−ωT/2, (2.14)

where ω ≡ V ′′(xcl). Note that this agrees with our earlier remark that a long time evolution
projects out the ground state. The derivation of this expression is not particularly enlightening,
but (2.14) will be a useful result for future reference. A proper derivation can be found in [2].

Proof. Derivation of (2.14). We shall follow the steps in [2]. The boundary conditions on our
basis functions allow us to solve for their eigenvalues,

λn =
πn2

T 2
+ ω2. (2.15)

Let us then massage the factors in (2.14) as follows

[
det
(
−∂2

τ + V ′′(xcl)
)]−1/2

= N
∏

n

λ−1/2
n (2.16)

= N
∏

n

(
π2n2

T 2

)−1/2 ∏

n

(
1 +

ω2T 2

π2n2

)1/2

. (2.17)

We have simply pulled out the first factor from the expression for each λn. This term should look
rather familiar. It is the only term to survive the limit V → V0 = constant , i.e. it gives the
‘classical’ contribution for a plane wave solution. We have

N
∏

n

(
π2n2

T 2

)−1/2

=

∫
dp

2π
e−p

2T/2 =
1√
2πT

. (2.18)

Meanwhile, for the other factor we can invoke an identity for the hyperbolic sine,

sinh(πy) = πy
∏

n

(
1 +

y2

n2

)
. (2.19)
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This allows us to write

[
det
(
−∂2

τ + V ′′(xcl)
)]−1/2

=
1√
2πT

(
sinh(ωT )

ωT

)−1/2

(2.20)

=

√
ω

π
(2 sinh(ωT ))−1/2 (2.21)

=

√
ω

π
e−ωT/2

(
1 +

1

2
e−2ωT + · · ·

)
. (2.22)

2.3 The double well

Now that we’re warmed up, let’s move on to a quantum mechanical system with actual tunneling.
As we discussed, the imaginary time formalism flips over the potential so that there now exists
a classical path between the two extrema. This is shown heuristically in Fig. 1. The classical
equation of motion tells us that if we start at x = −a, there is a conserved energy

E = 0 =
1

2
(∂τx)2 − V (x). (2.23)

From this we get ∂τx =
√

2V (x), which we can integrate.
2 Will be inserted by the editor

−v v

V (φ)

φ

−v v

V̄ (x)

x

Fig. 2. Left: the mexican hat potential. Right: In the particle picture the potential is inverted. The
soliton ‘rolling’ from the hill at −v in the infinite past to the hill at v in the infinite future is depicted.

see Fig. 2 left. An alternative would be the so-called ‘sine-Gordon’ model V (φ) ! (1 − cosφ)
which is periodic and thus has infinitely many minima.

The mexican hat potential contains the well-known φ4 interaction, whereas its mass term
comes with a negative sign rendering φ = 0 unstable. Obviously, this potential also has two
stable vacua at φ = ±v (v stands for vacuum expectation value, see below) with second deriva-
tives

V ′′(φ = ±v) =
λ

3
v2 ≡ m2 . (3)

m is the mass of perturbative excitations.
In addition, tunnelling occurs as a typical nonperturbative effect. Related to this is the

existence of a static solution of the Euclidean equations of motion with finite action connecting
the vacua, which I will derive now.

First of all, the transition to Euclidean space is performed by going to imaginary time

LE(x1, x2) ≡ −L(x0 = ix2, x1) =
1
2

(∂x2φ)2 +
1
2

(∂xφ)2 + V (φ) , x ≡ x1 . (4)

This Lagrangian is very similar to a Hamiltonian, its first term will vanish for static solutions.
Steadily moving solutions can be obtained easily by Lorentz boosting the static one.

The positivity of the Lagrangian implies that configurations with finite action must have
the potential term vanish asymptotically, i.e. the field has to go to one of the vacua:

φ(x = ±∞) ∈ {±v} . (5)

2.1 Particle mechanics analogy

The Lagrangian (4) without the first term reminds of the one familiar in particle mechanics,

L̄(x(t)) =
1
2

ẋ2 − V̄ (x) , V̄ = −V , (6)

upon substituting φ(x) → x(t). The bar .̄. denotes quantities in the particle picture (and I have
set the mass in the kinetic term to unity). Notice that for the analogy to work, the particle
moves in the inverted potential. In particular, the region between the vacua becomes a classically
allowed one. The boundary conditions translate into x(t = ±∞) ∈ {±v}.

It is clear that this system has two trivial solutions, where the particle stays at the hill −v
or v forever, plus nontrivial solutions ‘rolling’ from one hill to the other, see Fig. 2 right. We
can use energy conservation to write

1
2

ẋ2 + V̄ (x) = Ē = 0 , ẋ = ±
√

2(−V̄ ) , (7)

which enables us to give the solution explicitly.

Figure 1: The double well potential and its flipped over euclidean version, from [4]. We use slightly
different notation: the extrema will be labelled x = ±a.

We start by writing out the action associated with this ‘classical’ tunneling path,

S0 =

∫
dτ

[
1

2
(∂τ )

2 + V (x)

]
=

∫
dt

(
dx

dt

)2

=

∫ a

−a
dx
√

2V . (2.24)

Taylor expanding
√

2V about x = a at late times tells us that for τ � 1

∂τx ≈ ω(a− x)⇒ (a− x) ∝ e−ωτ . (2.25)
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As before, we’ve written ω = V ′′(a). This tells us that the instanton solution is a kink of some
characteristic width 1/ω; these topological configurations are localized in time. This is the origin
of the term instanton, or (as Polyakov suggested), “pseudo-particle.”

One can solve for the structure of the instanton kink solution that interpolates between the
two vacua. The answer is, as we would expect, a hyperbolic tangent. Instead of dwelling on this,
let us move on to consider the tunneling amplitude. The usual formula with S(xcl) = S0 gives

〈a|e−Hτ/~| − a〉 = Ne−S0/~
[
det
(
−∂2

τ + V ′′(xcl)
)]−1/2

. (2.26)

In the case of the harmonic oscillator (single well) we already solved for the normalized determinant
and found (2.14). Since the two minima in the double well locally behave like single wells and
since the quantum state spends most of its time very close to one or the other well, our physics
intuition tells us that (2.14) should hold up to some corrections to account for the instanton. Let
us parameterize this correction as an overall factor K,

N
[
det
(
−∂2

τ + V ′′(xcl)
)]−1/2

=
( ω
π~

)−1/2

e−ωT/2K. (2.27)

Thus we find that for a single instanton background,

〈a|e−Hτ/~| − a〉 =
( ω
π~

)−1/2

e−ωT/2Ke−S0/~. (2.28)

2.3.1 The zero mode

This isn’t the whole story. For large times (e.g. compared to the characteristic instanton lifetime
1/ω) we should properly account for the time translation invariance; i.e. we must include the
effects of instantons occurring at any intermediate time. We can pitch this in fancier language.
For example, we can say that the instanton has a collective coordinate which acts as a parameter
to give different instanton solutions. In other words, the instanton has a moduli space.

More physically, we remark that the mode x0 associated with this time translation can be
thought of as a Goldstone boson for the spontaneously broken τ -symmetry. As one would
expect, such a Goldstone mode has zero eigenvalue: λ0 = 0. We can write out the form of this
mode explicitly:

x(τ) = xcl(τ + dτ) = xcl(τ) + xcl(τ + dτ)− xcl(τ) = xcl(τ) +
dxcl

dτ
dτ + · · · , (2.29)

so that comparing to (2.11), we have

x0 = S
−1/2
0

dxcl

dτ
, (2.30)

where the normalization comes from our normalization of the classical path in (2.24) and the
requirement that the modes xn must be orthonormal.

We’ve made a bed of fancy words and now we have to lie in it. In particular, now that we’ve
thrown around the idea of a zero mode, we need to stop and go all the way back to our evaluation
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of the functional integral. When we evaluated the functional integral into a determinant, we as-
sumed that all of the eigenvalues λn were positive definite. This made all of our Gaussian integrals
sensible. Now we have a zero eigenvalue, we have an apparent conundrum: exp(−c2

0λ0)dc0 = dc0,
so that we no longer have a Gaussian integral! This integral is formally infinite and we worry that
our state is not normalizable.

Fortunately, we have nothing to fear. This apparently-divergent integral is simply corresponds
to the integration over the instanton time that we mentioned above. In fact, in this light it is an
expected ‘divergence’ for we need some kind of extensive dependence on the large time T .

To be more rigorous, we would like to convert the dc0 integral into a dτc where τc is the instanton
center. This is easy to work out since we know that the change in the instanton configuration
x(τ) = xcl(τ) +

∑
n cnxn induced by a small change in τc is

dx =
dxcl

dτ
dτc. (2.31)

Meanwhile, the change in the instanton configuration from a change in c0 is

dx = x0 dc0. (2.32)

Combining these results we find that

dc0 =
√
S0 dτc. (2.33)

This wasn’t particularly surprising, but we want to keep track of the constant of proportionality
(
√
S0) since it will feed into our determination of the factor K. This digression is prescient in

another way: it is an example of how an instanton couples to zero modes of a system, and so is a
crude prototype for the ’t Hooft operator that we will explore in QCD.

2.3.2 Determining K

While the current treatise focuses primarily on the qualitative features of what instantons are and
what they can do, it is nice to flesh out quantitative results when they don’t require much work3.
For our quantum mechanical example, it is nice to explicitly work out the K factor in (2.28).
From the zero mode discussion we found that

1√
2π~

dc0 =

√
S0

2π~
dτc. (2.34)

Thus when we take into account the integration over the instanton position, our tunneling ampli-
tude takes the form

〈a|e−HT/~| − a〉 = NT

√
S0

2π~
e−S0/~

[
det
(
−∂2

τ + V ′′(xcl)
)]−1/2

. (2.35)

Comparing to (2.28) we find that

K =

√
S0

2π~

∣∣∣∣
det(−∂2

τ + ω2)

Det(−∂2
τ + V ′′(xcl))

∣∣∣∣ , (2.36)

3Unfortunately, most of the ‘honest’ calculations in this field require a lot of work.
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where we’ve introduced the notation Det to mean determinant without any zero modes. (Most
review literature refers to this as det’, but the author thinks this notation is silly because it is
suggestive of some kind of derivative.)

2.3.3 Multi-instanton effectsWill be inserted by the editor 5

−v

v

φ

x
y1 y2 y3 y4

Fig. 4. A multi-soliton consisting of two kinks and two antikinks.

2.4 Application: semiclassical calculation of the path integral

Let me go back to the particle picture for a moment and consider the Euclidean time evolution
(for reasons of better convergence and its analogy to statistical mechanics)

G±(t) ≡ 〈x = ±v|e−Ht/h̄|y = v〉 = N

∫ x(t)=v

x(0)=±v

Dxe−S[x]/h̄ . (21)

The path integral3 weights all pathes x(t) starting at ±v and ending at v by the exponent of their
action. In the semiclassical approximation one expands the exponent around (approximate)
solutions that obey these boundary conditions, too, and performs a Gaussian integration:

G±(t) = #
∫

Dx
∑

A

exp
(
−S[xA]/h̄ + 0− 1

2

∫
dt

δ2L

δx2
(xA)[x(t)− xA(t)]2/h̄

)
. (22)

In the eigensystem of the second variation of L, one can decompose the path integral (with
Jacobian unity since this is a unitary transformation L2 → l2) and perform all integrations,

x(t)− xA(t) =
∑

n

cnxn(t) ,

∫
Dx =

∫ ∏

n

dcn · 1 ,

∫
dcn e−

1
2 λnc2

n ∼ 1√
λn

. (23)

Hence to this order we arrive at a formula involving the determinant of the fluctuation operator,

G±(t) = #
∑

A

e−S[xA]/h̄ 1√
det[−∂2

t + V ′′(xA(t))]]
. (24)

However, S is independent of the parameters y of the classical solution (for the kink just the
location parameter y) and this will lead to zero modes of the form ∂yxA(t) of the fluctuation
operator −∂2

t + V ′′(xA(t)), as can easily be checked by using the equatons of motion. These
flat directions have to be split off from the determinant and can be treated by an integration
over the collective coordinates with a Jacobian J ,

x(t) − xA(t) = c0x0(t) + rest ,

∫
Dx =

∫
dc0 · rest =

∫
dy J · rest . (25)

So the final expression for the propagator in the semiclassical approximation is

G±(t) = #
∑

A

∫
dyA JA e−S[xA]/h̄ 1√

det′[−∂2
t + V ′′(xA(t))]

, (26)

3 Its problems like the infinite normalisation N cannot be discussed here.

Figure 2: An example of a multi-instanton background from [4]. Note that we use different
notation. The author is too pressed for time to draw his own diagrams properly.

We’re not yet done with the double well. If we think about it a bit longer, we’ll note that
the one instanton solution is not the only possible classical background to perturb about. One
could, in fact, have a chain of instantons and ‘anti-instantons’ tunneling back and forth between
the vacua, as depicted in Fig. 2. The only restriction is that instantons from |−a〉 → |a〉 can only
be followed by anti-instantons from |a〉 → | − a〉 and vice versa. Our previous logic leading up to
the K factor should tell us that these n-instanton solutions should take the same form but with
K → Kn:

N
[
det(−∂2

τ + V ′′(xcl))
]−1/2

=
( ω
π~

)−1/2

e−ωT/2Kne−S0/~. (2.37)

One should again integrate over these instanton positions (corresponding to their zero modes,
as discussed above). Note that the alternating instanton/anti-instanton ordering gives us a slightly
more non-trivial integral,

∫ T/2

T/2

dτ1

∫ τ1

−T/2
dτ2 · · ·

∫ τn−1

−T/2
dτn =

T n

n!
. (2.38)

This integral should look rather familiar from one’s first introduction to perturbation theory and
canonical quantization in quantum field theory.

The ‘full’ classical background for the semiclassical approximation must take into account these
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multi-instanton solutions. We thus find

〈±a|e−Hτ/~| − a〉 =

√
ω

π~
e−ωT/2

∑

n odd/even

(
Ke−S0/~T

)n

n!
(2.39)

=

√
ω

π~
e−ωT/2

1

2

[
eKe

−S0/~T ∓ e−Ke−S0/~T
]

(2.40)

up to leading order in ~. Recalling that the time evolution operator has eigenstates of definite
energy, e.g. (2.8), we find that the energy eigenstates and their eigenvalues are

|±〉 ≡ |a〉 ± | − a〉 E± =
1

2
~ω ± ~Ke−S0/~. (2.41)

This is, of course, exactly as we would have expected since the action obeys a Z2 symmetry
under which x → −x. In such a case we know that the ground state of the system is degenerate
with a small breaking coming from tunneling effects (exactly what we’ve re-derived). The energy
eigenstates of the system are also eigenstates of the parity operator (since this commutes with the
Hamiltonian) and the lowest states correspond to the symmetric and antisymmetric combinations.
We note that the factor of exp(−S0/~) makes it clear that even though this term is small, it is
clearly a non-perturbative effect that one would not have found doing näıve perturbation theory.

2.4 The periodic potential

There’s one more obvious tunneling generalization in quantum mechanics. Since we’ve already
made the leap form a single well harmonic oscillator to a double well potential, it’s trivial to go
to a triple or n-tuple well potential. The strategy is now completely analogous, though finding
closed form solutions for the appropriate instanton sums become non-trivial; e.g. for a triple well
one may have up to two instantons in a row but no more. One way to avoid this is to identify the
sides of a well, so that we are led to the periodic (cosine) potential.

Remark: It should be ‘obvious’ that the functional form near the minima of each of these
potentials is arbitrarily close to the harmonic oscillator for long times T so that our strategy of
duplicating the single well result up to a K factor is justified in the semiclassical approximation.

For the periodic potential there is no constraint on how many instantons (n) or anti-instantons
(n̄) one might have nor is there any constraint on their ordering except that they must sum to
give the appropriate shift in vacua. For example, consider the tunneling process |j〉 → |k〉. The
appropriate generalization of our above techniques is

〈k|e−HT/~|j〉 =

√
ω

π~
e−ωT/2

∑

n=0

∑

n̄=0

1

n!n̄!

(
Ke−S0/~T

)n+n̄
δ(n−n̄),(k−j). (2.42)

We may now use one of our usual tricks and go to a Fourier series representation,

δab =

∫ 2π

0

dθ

2π
eiθ(a−b). (2.43)
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This allows us to simplify our amplitude to the form

〈k|e−HT/~|j〉 =

√
ω

π~
e−ωT/2

∫ 2π

0

dθ

2π
ei(j−k)θ exp

(
2KTe−S0/~ cos θ

)
. (2.44)

Just as the double well potential contained a discrete permutation symmetry that forced the
energy eigenstates to also be permutation eigenstates (whose energy is only split by tunneling
effects), the periodic potential also contains a translation symmetry that forces eigenstates to be
shift-invariant. This should again sound very familiar from toy models of solid state systems: the
energy eigenstates are Bloch waves,

|θ〉 =
( ω
π~

)1/4 1√
2π

∑

n

e−inθ|n〉. (2.45)

The |θ〉 states are eigenstates of a shift operator, e.g. a shift to the next well to the right, T1:

T1|θ〉 = eiθ|θ〉. (2.46)

The energy eigenvalues for the Bloch waves are

E(θ) =
1

2
~ω + 2~Ke−S0/~ cos θ. (2.47)

This example will turn out to be very handy when we discuss the θ-vacua of Yang-Mills theories.

2.5 The bounce

If you are doing everything well, you are not doing enough.
– Howard Georgi, personal motto [5]

One topic that is egregiously omitted in this document is the treatment of ‘the bounce’ and
tunneling from metastable vacua. Such field theoretic calculations have been important in early
universe cosmology and, more recently, the long-term stability of vacua in metastable SUSY-
breaking models. This type of tunneling is also described very well by first considering a quantum
mechanical archetype which demonstrates many subtle aspects of the semiclassical approximation.
This is described in Section 2.4 of Coleman’s lectures [1].

2.6 Polemics: tunneling in QM versus QFT

2.6.1 Summary of QM

Before wiping our hands of quantum mechanics and graduating to quantum field theory (straight to
gauge theory, no less), let’s pause to make a very important philosophical point about the transition
from 0+1 dimensions to nontrivial spacetimes (i.e. QM → QFT). It is not a stretch to say that
tunneling is one of the key results in quantum mechanics. The idea that a quantum state can pass
through a classically-impenetrable barrier is the foundation for all of the manipulations we did
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above4. This is also related to the idea that energy eigenstates ought to also be eigenstates of any
discrete symmetry relating theory’s vacua, hence the appearance of symmetric and antisymmetric
|±〉 states in the double well or the Bloch waves |θ〉 in the periodic potential. The cost of barrier
penetration was evident from our WKB formula (2.1): the oscillating plane wave picks picks up a
factor of i in its argument from

√
E − V and then becomes exponentially suppressed. The bigger

the energy difference the more strongly suppressed the tunneling amplitude. This is all as we have
grown to know and love: tunneling is one of the highlight calculations in any quantum mechanics
course.

2.6.2 Zero (and one) spatial dimensions is special

In quantum field theory of any nonzero space dimension, however, we never talk about a physical
field tunneling. Never (well, almost—certainly never in an introductory course). The reason is
clear: quantum field theory is an infinite number of copies of quantum mechanics: there is a
coupled QM oscillator at each point in spacetime so that any discussion about the vacuum is not
a statement about a Hilbert space, but rather a Fock space. Instead of energy, QFT deals with
energy densities that must be multiplied by the (infinite) volume of spacetime. More concretely:
in order to tunnel from one vacuum to another, each of an infinite number of QM oscillators
must tunnel. This picks up an infinite number of e−∆E suppression factors (where ∆E is the
characteristic energy difference) which leads to zero tunneling probability between Fock space
vacua. Thus in QFT there is never any tunneling phenomena between degenerate vacua with a
potential barrier. The double well potential in 1+1 dimensional field theory leads to spontaneous
symmetry breaking (as do its more famous ‘Mexican hat’ generalizations in higher dimensions),
rather than any parity-symmetric vacuum states. (To be a bit more honest, we will remark below
that the case of a single spatial dimension is also ‘special’ due to kink solutions and should be
lumped together with the 0+1 dimensional case5.)

From this point of view one ought to say that we’ve so far gone over a very nice review of
undergraduate quantum mechanics, but the document should end right here. It’s not clear why
there should be anything else to be said about ‘instantons’—certainly not in field theory where
there is no tunneling phenomena to be considered. Thus you should be wondering why there are
any more pages to this document at all.

2.6.3 Can we be clever?

The argument above is certainly heuristic. One could ask if we can be clever enough to find a
loophole. A good first attempt is to imagine a situation in field theory with metastable vacua
tunneling to a ground state via bubble nucleation. Here finite volumes of space tunnel and the
difference in energy between the true ground state and the metastable state (δE ∼ volume) versus
the surface tension coming from the energy barrier (∼ surface area) can lead to either vacuum decay
or bubble collapse depending on the characteristic size of the quantum fluctuation. Such tunneling
events can indeed be calculated using fancy instanton methods (though they are unfortunately

4Note, for example, that a double well with an infinite finite-width barrier separating the minima will exactly
have two degenerate spectra.

5We thank Zohar Komargodski for bringing this to our attention.
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outside the scope of the present document). These cases, however, avoid the philosophical issue
above because one transitions from a metastable vacuum to an energy-favorable vacuum. It
should be clear that one can never have this sort of bubble nucleation for physical fields between
degenerate vacua.

We can be a little more clever and consider the Sine-Gordon kink solution. We know that a
scalar field in 1+1 dimensions and a double well potential can have kink solutions where the field
only has a nonzero vacuum expectation value over a localized position in space. One typically looks
for a time-independent solution from which one can reconstruct time-dependence from Lorentz
invariance. One could then imagine Wick rotating to try to construct such a kink in the [imaginary]
time direction rather than the space direction. Here, however, one still runs into the problem
of a vanishing tunneling amplitude because an infinite number of QM oscillators must undergo
barrier penetration. Fancier attempts involving just scalar fields will similarly fail for more general
grounds: Derrick’s theorem tells us that scalar fields cannot have solitonic solutions in dimension
higher than one. (A short discussion of Derrick’s theorem can be found in, e.g. [6].)

We’re on the right track. If one wanted to näıvely generalize the Sine-Gordon kink into a
vortex for a two dimensional scalar, it is a well-known result that Derrick’s theorem manifests
itself as a divergence in the energy of the static configuration. For the case of space-like solitons,
however, we already know how to evade Derrick’s theorem: we introduce gauge fields. Indeed, the
vortex solution is given by the winding of a U(1) gauge field. Now we have a handle for how to
proceed into QFT.

2.6.4 Gauge redundancy

What is so special about gauge theory that allows us to create solitons? In quantum mechanics
where we spoke about the tunneling of a ‘physical’ state to another ‘physical’ state and we argued
that in QFT it is impossible to pull an infinitely (spatially) extended field over a potential barrier
of finite energy density. Gauge theory provides the loophole we wanted because it gives us lots of
manifestly unphysical degrees of freedom to twist and wrap about. We will see that topological
winding about gauge degrees of freedom will lead to classes of distinct gauge vacua. Surprisingly,
tunneling can occur between these vacua (since such tunneling doesn’t require a physical field
being pulled over an energy potential) and this leads to the construction of Bloch waves (θ-vacua)
and rather remarkable physical effects.

It is worth spouting some rhetoric about gauge symmetry that amounts to doctrine rather
than physics. Gauge symmetry can be thought of in two ways:

1. A gauge symmetry is what one obtains by taking a global (‘normal’) symmetry and promote
it to a local symmetry.

2. A gauge symmetry is a redundancy in the way one describes a physical system.

Both doctrines are compatible, but the latter point of view is particularly handy for the philo-
sophical dilemma at hand. Physical states are defined modulo gauge orbits. In other words, gauge
transformations form an equivalence class of physical states. The extra degrees of freedom afforded
by this gauge redundancy is certainly convenient, but the actual physical system is described by
modding out the gauge degree of freedom (fixing a gauge).
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The Yang-Mills theories that we get when introducing a gauge redundancy6 can have additional
structure due to the gauge symmetry. In particular, we will find that this structure lends itself
to multiple vacua that are gauge equivalent but distinguished topologically from one another.
One will not be able to continuously deform one topological vacuum to another without pushing
the physical field over a potential which, as we discussed, is forbidden in QFT. Further, each of
these vacua appear to spontaneously break gauge invariance. The ‘magic’ now is that because
gauge degrees of freedom are redundant (whether or not they are continuously connected along the
vacuum manifold), one is free to construct the analog of our Bloch wave states in gauge space: i.e.
we can construct gauge-invariant linear combinations of the topologically distinct vacua. These
are called the θ vacua and will be the main topic in this paper.

3 Entrée: Vacua of gauge theories

In anticipation of non-trivial vacuum structure and tunneling phenomena, we now study Yang-
Mills theory in Euclidean spacetime. We’ll be a little bit loose with our conventions—we may
miss a sign here or there—but the underlying physics will be transparent. There will be some
relatively fancy ideas tossed around, but the physical intuition follows precisely the simple quantum
mechanical examples above. This is why we invested so much into our quantum mechanical
treatment, it gives us a little bit of wiggle room to play it fast and loose now that there are many
more moving parts.

First we’ll go over the relevant physics to get to the point. Then we’ll close with a section that
gives just the slightest flavor for the mathematical elegance that’s running ‘under the hood.’

3.1 Euclidean Yang-Mills

We would now like to consider classical solutions to the Euclidean equation of motion. We define
our gauge field and generator normalization via

Aµ = igAaµt
a tr

(
tatb
)

=
1

2
δab. (3.1)

The Euclidean action takes the form

SE =
1

4g2

∫
d4xFµνF

µν , (3.2)

where we remind ourselves that we’re working with a Euclidean metric so that raised and lowered
indices are equivalent. The classical equation of motion is

DµF
µν = 0. (3.3)

6One might introduce such a gauge redundancy to describe vector particles in a handy way, or—more
technically—to identify (via the Rξ gauges) the extra degree of freedom that in a massive vector that disappears
for a massless vector.
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3.2 Finite action and the field at infinity

As we mentioned above, one of the principal differences between quantum mechanics and quantum
field theory is the appearance of several extensive quantities—such as the action—that appear
to diverge as the volume of spacetime go to infinity. This is not actually a problem since we
are primarily concerned with densities. In the ~ → ∞ limit the path integral is dominated by
configurations with finite action. Thus our approach in the semiclassical limit will be to perturb
about solutions which give finite action. Perhaps more intuitively this is equivalent to the condition
of finite energy since there is no potential in pure Yang-Mills theory.

Let us define a sphere of constant radius r in Euclidean spacetime, S3 ⊂ R4. Finite action
requires that the Lagrangian (density) falls of sufficiently quickly on this surface as r →∞. This
means that the field strength Fµν must must go like F ∼ r−3 for large distances (the power is
because our boundary is a three-sphere), and so the gauge potential must go like Aµ ∼ r−2. It is
completely equivalent and—as we will see—more useful to think about this as boundary conditions
for A at the three sphere boundary of spacetime S3 with radius R→∞. Thus we are tempted to
write

Aµ (x)||x|=R = 0. (3.4)

This, of course, is too restrictive and must be wrong: it is not gauge invariant. The correct
statement is that the potential on the boundary must be in the same gauge orbit as Aµ(R) = 0.
Thus we are led to the general form that A must be pure gauge,

Aµ (x)||x|=R g(x)∂µg
−1(x), (3.5)

where g(x) is an element of our gauge algebra (the Lie algebra of our gauge group). If you are
already very fancy you might call this configuration a Maurer-Cartan form, but it won’t earn
you any friends. For our purposes it is sufficient to consider the gauge group SU(2). As physicists
we are happy to accept that any more complicated non-Abelian unitary group will contain SU(2)
as a subgroup so that our conclusions will hold rather generally.

The elements of SU(2) can be written as an exponential of its Lie algebra, e.g. expanded in
terms of the Pauli matrices (τ = iσ/2),

U = exp(g01+ ~g · ~τ) (3.6)

with the restriction g2
0 +~g2 = 1. From this it is clear that SU(2) is isomorphic (as a Lie group and

topologically) to the three sphere, SU(2)∼= S3. The gauge transformations in (3.5) are then maps
from the boundary of Euclidean spacetime to SU(2), g : S3 → SU(2) ∼= S3.

3.3 Bastard topology

Even as physicists (e.g. from our experience with monopoles or other solitons) we know that maps
between topologically equivalent spaces can be classified by the appropriate fundamental group,
Πn, with generalizes winding number. We will, in particular, be interested in Π3(SU(2)) = Z which
tells us how many times the image of the map g wraps SU(2)∼= S3. Hoity-toity people who like
to smell their own farts might call this the Pontryagin number. We will say a little bit about

14



the construction of this number in Section 4, but for now we’ll pull weakly-motivated results out
of the aether on a need-to-know basis in order to the physics.

Let us motivate this excursion with the simpler case of a map f : S1 → U(1) ∼= S1. In this
case the winding number has an analogous definition,

n =
−i
2π

∫ 2π

0

dθ

[
1

f(θ)

df(θ)

dθ

]
. (3.7)

One can check the validity of this equation by plugging in a simple form, e.g. f(θ) = ei(nθ+a).
Let us now return to the case of SU(2). One should expect that the winding number can be

calculated by integrating some topologically-sensitive function of g over its domain S3. It turns
out that the correct integral is

n =
−1

24π2

∫

S3

dθ1dθ2dθ3 tr
(
εijkAiAjAk

)
, (3.8)

with A a pure gauge configuration (3.5). The funny factor of 24π2 cancels terms from the angular
integral so that n really is an integer. The trace runs over gauge representation indices. Gauge
invariance is further manifested by the antisymmetric εijk tensor which cancels the Jacobian when
performing a gauge transformation. If you’re particularly trusting you should thus accept that
this quantity really is topological and is invariant under continuous deformations.

Proof. It is sufficient to show that n is invariant under small transformations. We will write this
as δg(x) = g(x)δT (x). The variation of of A is then

δ(g∂g−1) = δg · ∂g−1 + g∂δg−1 = gδT · ∂g−1 − g(∂δT )g−1 − gδT · ∂g−1 = −g(∂δT )g−1. (3.9)

From this we can write the change in n (using auspicious integration by parts)

δn ∝
∫
dθ1dθ2dθ3 ε

ijktr
(
g∂ig

−1 g∂jg
−1 g(∂kδT )g−1

)
(3.10)

∝
∫
dθ1dθ2dθ3 ε

ijktr
[(
∂ig
−1
)

(∂jg) (∂kδT )
]

= 0, (3.11)

where we used the antisymmetry of ε in the final step.
To check that n is an integer we can do a quick calculation. At the north pole the angular

directions can be treated as Cartesian directions, dθ → dx and the Maurer-Cartan form is g∂ig
−1 =

−iσ1 so that

εijktr
(
g∂ig

−1 g∂jg
−1 g∂kg

−1
)

= −12. (3.12)

The hypersphere area is 2π2 so that we indeed get the desired result that n ∈ Z.

We can construct representative maps for each homotopy class in Π3(SU(2)). Writing g(n) for
a map of winding number n,

g(0) = 1 g(1) =
x0 + i~x · ~σ

r
g(n) =

[
g(1)
]n
. (3.13)

This generalizes the composition of Π1(U(1)) maps, einθeimθ = ei(n+m)θ.
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3.4 Winding up an energy density

We now present what, at this cursory level, may appear to be a rather nice magic trick. For no
particular reason, let us consider the Chern-Simons current,

Kµ = 4εµνλσtr

(
Aν∂λAσ +

2

3
AνAλAρ

)
=

4

3
εµνλσtr

(
g∂ig

−1 g∂jg
−1 g∂kg

−1
)
. (3.14)

One should recognize that in addition to the rather a striking resemblance to (3.7), this looks very
similar to the abelian anomaly coefficient. We will see later that this is not a coincidence. Let us
press on and consider taking the divergence of this current,

∂µKµ = 2 tr(F µνF̃µν), (3.15)

where F̃µν ≡ 1
2
εµνλσF

λσ is the dual field strength. Still with no particular motivation, let us
integrate this quantity:

∫
d4x 2 tr(F µνF̃µν) =

∫
d3S r̂µK

µ !
= 32π2n. (3.16)

Here we’ve used (3.8) and (3.5). The punchline is that we’ve found a handy way to represent the
winding number in terms of the field strength,

n =
1

16π2

∫
d4x tr

(
FF̃
)
. (3.17)

3.5 The Bogomol’nyi bound

Continuing with our semiclassical approximation we would like to determine the action of the
instanton gauge configurations that give tunneling between the vacua of different winding numbers.
We know from our experience with spacelike solitons in field theory that a useful trick is to saturate
the Bobomol’nyi bound. We note that the field strength and its dual trivially obey positivity,

∫
d4x tr

(
F ± F̃

)2

≥ 0. (3.18)

From this we obtain a bound that is written explicitly in terms of the winding

∫
d4x trFµνF

µν ≥
∣∣∣∣
∫
d4x trFµνF̃

µν

∣∣∣∣ = 16π2n. (3.19)

This tells us that the Euclidean action must satisfy the Bogomol’nyi bound,

SE[A] ≥ 8π2n

g2
. (3.20)

The usual manipulations tell us that the bound is saturated for (anti-)self dual field strenghts,

F = ±F̃ . These correspond to instantons and anti-instantons.
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Proof. A cute way to show this is to write out the action as

SE =
1

4

∫
d4xFµνF

µν =
1

4

∫
d4x

[
FF̃ +

1

2

(
F − F̃

)2
]

=
8π2n

g2
+

1

8

∫
d4x

(
F − F̃

)2

. (3.21)

The anti-instanton case corresponds to ~x→ −~x which gives FF̃ → −FF̃ and so n→ −n.

As usual, the real benefit of the Bogomol’nyi trick is that we have converted our problem of
finding classical solutions from a second-order differential equation into one that is first order.

3.6 BPST instantons

In the present document we won’t be too concerned with the explicit form of the instanton solution,
but in the interests of completeness and passing this A-exam let’s go over the construction anyway.
We know that on the boundary the gauge potential must approach pure gauge. Because we know
we want to generate a winding number, we will consider pure gauge configurations with winding
n. Thus we know that as r →∞, the A must approach

Aµ = f(r)g(n)∂µ
[
g(n)
]−1

+O(1/r2), (3.22)

where f(r) → 1 as r → ∞ and the g(n)s are given in (3.13). Since we know each tunneling buys
us a factor of exp(−8πn/g2) we’ll focus on the one-instanton case, (n) = (1).

Rotations and gauge transformations. One of the features of SU(2) that makes it partic-
ularly amenable to instanton solutions is its relation to the ‘Euclidean Lorentz group’ (i.e. the
rotation group) O(4)∼=SU(2)×SU(2). Under a rotation the g(1) ∝ (x0 + ~x · ~τ) element rotates
as g(1) → hLg

(1)h−1
R for some hL and hR in SU(2). Now note that under a constant gauge

transformation h0,

Aµ → h0Aµh
−1
0 +O(1/r2). (3.23)

Thus we see that choosing h0 = h−1
L allows us to undo any rotation. This is what motivated

us to consider f a function of r in (3.22).

As an ansatz let’s assume that the O(1/r2) term can be dropped. Solving the self-duality
condition from our Bogomol’nyi bound we find the BPST solution,

f(r) =
r2

r2 + ρ2
, (3.24)

where ρ is an arbitrary constant with dimensions of length. One can guess that it corresponds to
the size of the instanton. We will not discuss the effects that cut off the instanton behavior at
large and small values of ρ.

These instanton solutions are conformally invariant. Let us remark on the collective coordi-
nates of our instanton configuration, that is, we can ask how can we generate new one-instanton

17



solutions trivially from this solution. The instanton configuration can be scaled, special-conformal-
transformed, translated, rotated, and gauge transformed. We have already shown that rotations
and (at least a subset of) gauge transformations generate identical instantons. Further, it turns
out that combined gauge transformations and translations can generate special conformal trans-
formations. Thus we end up with an eight parameter set of collective coordinates corresponding
to scaling (1), translations (4), and rotations (3).

3.7 Instantons enact vacuum tunneling

Let us explicitly see how instantons change the winding number of our vacuum. We will work in
A0(x) = 0 gauge. this affords us a leftover gauge freedom g(~x) with ∂0g(~x) = 0. It won’t hurt
anybody to put our system into a box7 so long as the boundary has a definite winding number
(we’ll take n = 1) and respects our gauge choice. Let’s heuristically draw our space as we have in
Fig. 3. As we explained above, the vacuum states must be pure gauge on the boundary

Figure 3: The instanton boundary over Euclidean spacetime. Image wrenched heartlessly from
[7].

Ai|boundary = g(~x) [∂ig(~x)]−1 . (3.25)

For the spacelike boundary at τ = −T/2 we can pick Ai(−T/2, ~x) = 0 via g(~x) = 1. This
corresponds to g = g(0) which, of course, is the trivial vacuum with zero winding. Now suppose
that the volume of spacetime is filled with the one-instanton gauge configuration. Let’s calculate
the Pontryagin index (winding number),

n =
1

16π2

∫
d4x tr

(
FF̃
)

(3.26)

=
1

24π2

∫

I-II

d3S ε0ijk tr (AiAjAk) +

∫ T/2

−T/2

∫

III

d2Si εiνλσ tr (AνAλAσ) (3.27)

7http://qdb.mit.edu/176
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Before plugging in the appropriate BPST one-instanton potential one should be careful to gauge
transform to satisfy our gauge choice A0 = 0. It turns out that one such transformation is
Aµ → V AµV

−1 − i(∂µV )V −1 with

V = exp

[
i~x · ~τ√
r2 + ρ2

tan−1

(
x0

√
r2 + ρ2

− π

2

)]
, (3.28)

see [7, 8] for more details. This means that the integral over the cylinder (region III) vanishes
and n is just the difference of the winding between the spacelike surfaces at τ = ±T/2. We stuck
in the one-instanton potential so that n = 1 and we conclude that the gauge configuration has
changed homotopy classes between the asymptotic past and future. With a little bit of elbow
grease one can further see that the one-instanton potential in A0 = 0 gauge indeed satisfies

Ai(−T/2, ~x)→ ig(0)
[
∂ig

(0)
]

(3.29)

Ai(+T/2, ~x)→ ig(1)
[
∂ig

(1)
]
. (3.30)

This suggests that we should have a term I in our effective Lagrangian encoding the instanton
so that the tunneling between two asymptotic vacua:

〈n|e−iHτ |m〉J =

∫
[dA](n−m)e

−i
R
d4xL+JI(x), (3.31)

where J is a source for the instanton I(x). We’ll identify what this I(x) is in due course.

3.8 Fancy-pants notation and the special role of SU(2)

There is a very fancy way of writing the asymptotic behavior of the instanton solution in terms
of the so-called ’t Hooft symbols, ηaµν and η̄aµν , which is popular in the literature. Let us recall
the asymptotic form of the one-instanton solution,

Aµ|r2→∞ = i

(
ixµτ+

µ

r

)
∂µ

(
ixµτ+

µ

r

)−1

, (3.32)

where we’ve used the notation τ± ≡ (∓i, ~τ). The term in parenthesis is simply what we called
g(1) earlier. To simplify our lives, let’s define the ’t Hooft symbol,

ηaµν =





εaµν if µ, ν = 1, 2, 3
−δaµ if µ = 1, 2, 3 ν = 0
+δaµ if ν = 1, 2, 3 µ = 0
0 if µ = ν = 0 .

(3.33)

The η̄aµν symbol is the same with the explicitly written signs swapped. With this notation one
can rewrite (3.32) as

Aµ|r2→∞ = 2ηaµν
xν
x2
τa. (3.34)
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Anti-instantons can be written with η̄. The properties of these operators can be found in Appendix
B of [9]. Ordinarily the author would remark that this choice of notation is just a display of fancy-
pants pomposity, but let us instead remark that there is some depth to this choice. The point is
that these ’t Hooft symbols mix SU(2) and ‘Lorentz’ (Euclidean) indices. We know that the SU(2)
index a is an adjoint index. Further, it is clear that η and η̄ are antisymmetric in the Lorentz
indices. But we recall that [µν] is an index of the adjoint representation of the rotation group
SO(4) ∼=SU(2)×SU(2). In fact, if one stares at the definition long enough, one will recognize that
ηaµν projects onto the first SU(2) while the η̄aµν projects onto the latter. This should ring true to
our previous topological arguments about maps between spaces.

We can further appreciate the role of SU(2) by looking at the aforementioned relation between
gauge transformations and rotations. Given an arbitrary gauge configuration Aµ(x), we can gauge

fix to Ãµ(x) by some transformation

Aµ(x) = S(x)Ãµ(x)S−1(x) + iS(x)∂µS1(x). (3.35)

This is not the end of the story. Aµ is still invariant under global transformations,

S(x)→ S(x)S−1
0 Ãµ(x)→ S0Ãµ(x)S−1

0 . (3.36)

Further, by the gauge invariance of any physical quantities, the theory is still invariant under a
further global SU(2) symmetry

S(x)→ S1S(x) Ãµ(x)→ Ãµ(x). (3.37)

Thus we have a leftover SU(2)×SU(2) global symmetry.
Now we can clarify the relation between gauge symmetry and instanton rotations. The choice

of U(x) in (3.32) singled out a direction in the Lorentz SU(2)×SU(2) space by virtue of xµ that
transforms under rotations. Thus the configuration näıvely appears to be an object with nonzero
spin. Any such rotation, however, can be undone by invoking the residual SU(2)×SU(2) global
symmetry. For example, if we defined generators

T a1 =
1

4
ηaµνM

µν + τ1 (3.38)

T a2 =
1

4
η̄aµνM

µν + τ2, (3.39)

where the τ1,2 refer to the residual (global) gauge symmetry and Mµν are the generators of Lorentz
transformations. With respect to these SU(2) generators, the instanton has zero ‘spin.’

3.9 θ vacua

Now we get to the question that should have been lingering since we introduced the distinct
topoloical vacua of Yang-Mills: what are the true vacuum states? We have already shown that
instanton gauge configurations are minima of our action (i.e. classical paths) that enact tunneling
between these vacua. In fact, we should be very proud of coming this far: we’ve now side-stepped
Derrick’s theorem and found real tunneling effects in quantum field theory.
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The next step is to recognize that because of instanton-mediated tunneling, the |n〉 vacua are
not true vacua. Our quantum mechanical analogy serves us well, we would like to construct the
Yang-Mills equivalent of the |θ〉 states, the so-called θ vacua. In fact, if we wanted to play it fast
and loose, we could just make a one-to-one correspondence between the |n〉 vacua of the sinusoidal
potential in QM and the n-winding vacuum state of Yang-Mills theory. The analog of ‘translation
invariance’ leads us to the ‘Bloch waves’

|θ〉 =
∑

n

e−inθ|n〉. (3.40)

We can now calculate the vacuum-to-vacuum amplitudes using the effective action (3.31). We
know that the |θ〉 vacua should be orthogonal. Thus,

〈θ′|e−iHτ |θ〉J = δ(θ − θ′)∆J(θ). (3.41)

Our task is to determine ∆, and in so doing learn something about the form of our effective
Lagrangian in an instanton background.

〈θ′|e−iHτ |θ〉J =
∑

m,n

eimθ
′
e−inθ〈m|e−iHτ |n〉J =

∑

n,m

e−i(n−m)θeim(θ′−θ)
∫

[dA](n−m)e
i

R
d4xL+JI . (3.42)

This tells us that (writing ν = (n−m))

∆J(θ) =
∑

ν

e−iνθ
∫

[dA]νe
−i

R
d4xL+JI =

∑

ν

∫
[dA]νe

−i
R
d4xLeff+JI , (3.43)

where the effective Lagrangian is

Leff = L+
ΘYM

16π2
tr
(
FµνF̃

µν
)
, (3.44)

where we’ve used (3.17) to write the index. Thus we find that instantons introduce a θ term.
We could have written this in from the very beginning; it’s dimension-4 and gauge invariant. We
know, of course, that we can express the winding number as a derivative of the Chern-Simons
form, so the effects of this term vanish in perturbation theory. Note that we will write θ → ΘYM

because (i) it looks cooler and (ii) this will help avoid any confusion with fermionic superspace
directions when work with supersymmetric theories.

In case the above translation to our periodic potential in quantum mechanics was unsatisfying,
let’s consider the Θ vacua from a slightly different point of view. In analogy to our multi-instanton
configurations in quantum mechanics (c.f. Fig. 2), we can consider integrating over gauge config-
urations over large boxes of Euclidean spacetime with some definite winding number, n. We will
call the result of this integral

F (V, T, n) = N

∫
[dA]n e

−SE , (3.45)

where we assume the measure is gauge-fixed. For large time separation the winding number simply
adds,

F (V, T1 + T2, n) =
∑

n1+n2=n

F (V, T1, n1)F (V, T1, n1), (3.46)
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i.e. we sum over combined smaller-number instanton configurations subject to obtaining the
total amount of winding number required. For sufficiently large volumes we can ignore surface
effects when instantons approach one another. The above composition law is rather clunky and is
representative of our working with a poor basis of states. The solution is to work with a Fourier
transform,

F (V, T, θ) =
∑

n

einθF (V, T, n) = N

∫
[dA]e−SEeinθ, (3.47)

so that we indeed get the composition

F (V, T1 + T2, θ) = F (V, T1, θ)F (V, T2, θ). (3.48)

The important point is that our θ vacua now properly take into account the tunneling between
the gauge configurations of different winding. These semiclassical states are stable in that there
is no way to tunnel from one θ to another.

There’s one last question that comes up, especially for those who are familiar with the effects
of the θ term: what is the physical significance of the particular θ vacuum that we inhabit? Recall
that our Bloch waves had energies that depended on their ‘momentum’ θ. We can follow the exact
same arguments for (2.47) to obtain

E(θ)/V = −2Ke−S0 cos θ, (3.49)

where the K factor is now different and must be calculated in a slightly more honest manner. A
heuristic derivation can be found in Section 3.6 [1], but a slightly more detailed form to leading
order in coupling is

E(θ)/V = −A
g2
e
− 8π2

g2 cos θ

∫ ∞

0

dρ

ρ5
(ρM)8π2β1 . (3.50)

Here we’ve determined the g dependence by following ~ dependence. We have to integrate over
the characteristic scale ρ of the instanton; the ρ−5 dependence comes from dimensional analysis.
M is an arbitrary renormalization scale coming from the running of the gauge coupling, which is
the origin of the β1 dependence. A is a factor that is difficult to calculate unless one was educated
in the USSR.

3.10 Philosophy, gauge symmetry, and winding number

It is now timely to make more philosophical remarks about gauge invariance and the appearance
of topologically distinct vacua. Let us remind ourselves that we started with Derreck’s theorem
as a ‘no-go’ theorem for tunneling amplitudes in p + 1 dimensional field theory (p > 1). This
boiled down to having to pull an infinite number of physical oscillators over a tunneling potential
causing an infinite product of exponential suppressions to our tunneling amplitude. The way out
was to put the potential not over physical field, but rather in the space of not-necessarily-physical
gauge configurations.

One ‘moral dilemma’ that one should be concerned about is the apparent incompatibility of
gauge invariance and the vacua of a given winding number n. We harped on and on in Section 2.6
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about gauge invariance as a redundancy that must be modded out, i.e. physical states are equiv-
alency classes. This seems to be in direct contradiction to the previous paragraph: the |n〉 vacua
are distinct, yet gauge symmetry seems to say that they are physically equivalent. Meanwhile,
we know that there’s definitely something physical about this whole business because we found in
(3.49) that our energy density is θ-dependent.

To resolve this conceptual issue it is important to distinguish between so-called small gauge
transformations and large gauge transformations. Small transformations are homotopic
to the identity while large transformations change winding number. One cannot continuously
perform a sequence of small gauge transformations to produce a large gauge transformation since
this pulls the field out of the pure gauge configuration at infinity—in other words, this requires
changing the physical field over a physical potential barrier at an infinite number of points. (This
is our usual argument about tunneling in QFT.)

We’re thus concerned about large transformations. How can they take us to ‘distinct’ vacua
when they’re supposed to be modded out in a physical state? The answer is that they’re not. Only
the small gauge transformations form the ‘physical’ equivalency class. Topological arguments show
that this subgroup is closed. For example, one can argue that at the origin a gauge transformation
must have no winding or else it would be singular. A ‘physical gauge transformation’ (that’s an
oxymoron, but you know what I mean) thus cannot have winding at infinity. We will refine these
ideas in Section 4.5 when we provide an alternate bundle-description for what the S3 surface
really is. Modding out by the large gauge transformations (those not homotopic to the identity)
is certainly a valid procedure, but that defines a different theory with a larger gauge group. This
would be analogous to ‘gauging’ out all nontrivial spin states so that all physical states are spin-0.

An orthogonal way of arguing that different |n〉 vacua are distinct (e.g. in the sense of gauge
redundancy) is to invoke Gauss’ law. For details see [10]. The general idea is that one may
canonically quantize Yang-Mills theory in some nice gauge like A = 0 and look for Gauss’ law,

DµF
µν = 0. (3.51)

Deriving the Hamiltonian equations, however, Gauss’ law is nowhere to be found. In fact, the
left-hand side of Gauss’ law is an operator that does not commute with the canonical variables. If
we impose Gauss’ law as an operator equation, then it turns out that one finds that the only ‘good’
gauge transformations—those which can be built up from infinitesimal transformations—are those
which have no winding. (Given our exhaustive discussion, this is actually a rather tautological
statement.)

Note, however, that each |n〉 vacuum contains the same physics. This is just as in the case
of the sinusoidal potential where it didn’t matter which vacuum one started off in. We note that
this is different from the |ΘYM〉 vacua, which does have physical significance, as we will discover
later. In the sinusoidal potential this θ corresponded to a conserved ‘pseudomomentum.’ We can
talk about Yang-Mills tunneling between |n〉 vacua, but left to its own devices instantons will not
go between different |ΘYM states. One might argue that the |n〉 vacua cannot contain the same
physics since they have different winding. In particular, this means that highly wound states have
more FF̃ turned on somewhere in the spacetime. Since these are field strengths, wouldn’t this
have some physical effect? The answer is no: one should be careful to distinguish FF ∼ ~E2 + ~B2

from FF̃ ∼ ~E · ~B. The highly wound states have, for example, the same vacuum energy.
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Another question one might ask is whether or not instantons somehow break some gauge
invariance. The answer is no since we must sum over instanton configurations in our generating
functional. For a given correlation function, however, we will see that typically only one sector
(e.g. one-instanton background) will contribute.

4 Amuse-bouche: a taste of mathematics

We’ve spent a lot of time dabbling half-heartedly with topological ideas. Let’s now spend a bit
of time to tip our heat properly to the mathematical structure that we have hitherto taken for
granted.

Two spaces are topologically equivalent if they can be continuously deformed into one another.
We say that the two spaces are homeomorphic. This would certainly be a useful idea, but it
turns out that explicitly determining homeomorophisms between spaces is very difficult. We have
to lower our expectations. Instead of directly determining topological equivalence, we will instead
work with necessary conditions of such equivalence. For example, we can look for topological
invariants which are equal for homeomorphic spaces. It turns out that even this is still very diffi-
cult. We can lower our expectations still by relaxing the condition of homeomorphism and instead
consider spaces that are homotopic, i.e. one can be continuously deformable into one the but
not necessarily in an invertible way (e.g. loops can shrink to a point). The fundamental group
is the group of homotopy classes, and we’ve already met Π3(SU(2)) in our study of instantons.
We’ve already developed an intuition for homotopic equivalency classes: they represent winding
numbers that tell us how many times a map sends a covering of one space into the other.

4.1 Brouwer degree

Homotopies have served us rather well, though we were a bit lucky because the relevant funda-
mental group was very simple. Suppose we complained further and said that these are still very
difficult to calculate—as they are in general. We can simplify even further by restricting to maps
between spaces of the same dimension. This leads us to an even simpler object, the Brouwer
degree of a map φ : M → N with dim(M)=dim(N),

deg(φ) =

∫

M

φ∗Ω, (4.1)

where Ω is a normalized volume form on N ,
∫
N

Ω = 1. Since the difference between volume forms
is exact this quantity doesn’t depend on the choice of Ω. It is very straightforward to read off that
deg(φ) is counting how many ‘volumes’ of N we get back from integrating over a volume in M .
From this explanation in words one can see that this is precisely the same thing as the winding
number (or what we earlier called a Pontryagin number) that we’ve been making a big deal about.

4.2 The Maurer-Cartan form

For matrix Lie group manifolds there is a particularly handy volume form that one can construct
from the Lie-algebra-valued Maurer-Cartan form, g−1dg, where g is an element of the group.
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Geometrically these are a basis of one-forms for a matrix Lie group. A left- and right-invariant
volume form is then given conveniently by

Ω =
1

24π2
tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
. (4.2)

This should now look dramatically familiar, down to the factor of 24π2. This is just the integrand
Pontryagin—ahem, sorry, the winding number in (3.8). Combining this with our Brouwer degree
formula we now have a somewhat deeper appreciation for the nature of the topological quantities
underlying our instanton derivation. One should note the mathematical game that we’re playing:
we are using the geometric structure of our gauge fibration of spacetime to determine topological
information (which is independent of the particular geometry).

While I have your attention, let me remark that the Maurer-Cartan form is a surprisingly
under-appreciated object in physics. Among its uses, it provides a natural way to understand
the form of the supersymmetric covariant derivative, i.e. the geometric sense the SUSY covariant
derivative is actually covariant.

4.3 Disco inferno (Chern, baby, Chern!)

The integral for winding number has another name, the second Chern number, c2. Before
trying to motivate what this means, let us remark on its significance. Thus far we’ve touched
on topology and geometry. The second Chern number (and a slew of other objects named after
Chern) connects our endeavor of finding topological invariants to cohomology. This will bring us
to a mathematical connection to anomalies which will, in turn, lead to a remarkable connection
between Yang-Mills instantons (which have been constructed in a purely gauge theory) and the
axial anomaly (which is related to chiral fermions).

We’ll drop a few fancy words and try to string coherent thoughts between them, but our
treatment will be necessarily incomplete8. We will unfortunately begin with a sequence of def-
initions. Let us first introduce the idea of a characteristic polynomial. This is a polyno-
mial P (X1, · · · , Xn) of elements Xi in a Lie algebra that is invariant under transformations
Xi → g−1Xig with g in the Lie group. This can be extended to a polynomial in Lie-algebra-
valued forms, α = Xη (where X is the Lie algebra element and η is a p-form),

P (α1, · · · , αn) = P (X1, · · · , XN)η1 ∧ · · · ∧ ηn. (4.3)

We will be particularly interested in polynomials of the field strength. One can then define an
invariant polynomial Pn(F ) = P (F, · · · , F ). These objects have the properties that (1) they
are closed, dPn(F ) = 0, and (2) the difference of an invariant polynomial for different connections
on the same bundle is exact, i.e. there exists a transgression n− 1 form Q such that

Pn(F ′)− Pn(F ) = dQ2n−1(A′, A) (4.4)

8To the A-exam committee: I think all of the theory students (and a appreciable number of condensed matter,
high energy experiment, and mathematics students) would be very interested in a course on differential geometry
and physics. If there were a faculty member willing to teach such a ‘special topics course,’ there is a wealth of very
interesting and relevant material to be covered.
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where, in ‘physics-speak,’ F ′ is a gauge transformation of F . The quantity Q is called a Chern-
Simons form. Because Pn(F ) is closed, it represents an element of a de Rahm cohomology class,
[Pn(F )] ∈ H2n(M,R), called a characteristic class. Because the difference Pn(F ′) − Pn(F )
is exact, then their integral over a manifold without boundary vanishes. This means that the
integrals (‘periods’) of Pn(F ) over the space are independent of the connection and are topological
properties of the fibre bundle.

The particular invariant polynomial which will be of interest to us is the dterminant

c(F ) = det

(
1 +

i

2π
F

)
, (4.5)

called the total Chern class. (Mathematicians in this field aren’t particularly creative with
names.) This can be expanded into a series

c(F ) = 1 + c1(F ) + c2(F ) + · · · (4.6)

where each cn(F ) is a 2n form over the base space(time) and is called the nth Chern class. These
are precisely the Chern-Simons 2n− 1 forms Q2n−1. These have the property that cn(F ) = 0 for
2n > dim(M), where M is the base space(time) manifold. The first two Chern classes are

c1(F ) =
i

2π
trF (4.7)

c2(F ) =
1

8π2
[trF ∧ F − trF ∧ trF ] . (4.8)

For the particularly important case of an SU(2) fibration of a four-dimensional manifold we find
that c1(F ) = 0 by the tracelessness of our generators and

c2(F ) = Q3(A) =
1

8π2
tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
. (4.9)

This should now look familiar once again: this is our celebrated Chern-Simons form that keeps
popping up everywhere, most recently in (3.14). The integrals of Chern classes are, as we showed
above, independent of geometry so that their integrals are topological quantities called Chern
numbers. We already know the second Chern number for our instanton system as the winding
number, Pontryagin index, and Brouwer degree. What will also be rather important is that we
should in addition know the second Chern number as the abelian anomaly coefficient.

Just to show that we can keep constructing new phrases out of a very limited word bank, let
us remark that one can also define a Chern characters chn and the total Chern character
ch,

ch(F ) =
∑

n

chn(F ) =
∑

n

1

n!
tr

(
i

2π
F

)n
. (4.10)

This is another characteristic class that is generally easier to compute than the Chern class and
from which one can later compute Chern classes. Working things through, one finds

ch2(F ) = −c2(F ) +
1

2
c1(F ) ∧ c1(F ). (4.11)

The second Chern number shows up somewhere else rather important, it is proportional to the
index of the Dirac operator in the celebrated Atiyah-Singer index theorem. This will come
back to us when we address the U(1) problem in Section 5.
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4.4 Connection to fermions

We will soon connect instanton effects to massless (chiral) fermions. On the one hand you should
be skeptical: our entire discussion thus far has been based on pure Yang-Mills theory with no
mention of fermions at all. On the other hand, by now all of our discussion about the topological
index should sound rather familiar. After all, we’ve seen all of this before: the FF̃ term is just
what we find when calculating the ABJ anomaly! Life is short and the author has other A-exam
questions to address, so we’ll leave it as homework for the reader to follow up on the mathematical
nature of the second Chern class in the abelian anomaly. The key result is that one may write
the anomaly in terms of differential forms,

d ∗ j5 =
1

4π
trFF. (4.12)

4.5 Instantons for the mathematically inclined

Let us now describe the fibre-bundle set up for the BPST instanton. In grown up notation, our
topological charge (winding number, second Chern class, Pontryagin number, whatever you want
to call it) is

n =
−1

16π2

∫
d4x trFµν ∗ F µν =

−1

8π2

∫

S4

trF 2 (4.13)

where we have compactified our space via stereographic projection: R4 → S4. We may write the
integrand—the topological density—as

Q =
−1

8π2
trF 2, (4.14)

which we already know is the transgression in (4.4)... so many names for the same thing. One
can use the Bianchi identity DF = 0 to prove a result that we already know: the Chern-Simons
form is closed, dQ = 0. (Use DtrF 2 = 2trDFF .) We can divide S4 into patches according to the
upper and lower hemisphere as in Fig. 4. This construction should sound very familiar from the ’t

Figure 4: The compactified base manifold S4 for the instanton bundle. Image from [11].

Hooft-Polyakov monopole. Poincaré’s theorem then tells us that locally Q is exact. On the upper
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hemisphere, for example, we may write Q = dK so that

n =

∫

H+

dK =

∫

S3

K. (4.15)

K is, of course, the familiar Chern-Simons form and we see that it is indeed integrated over and S3

as we were doing earlier. Now the nature of the S3 is now clearer: it is the homotopic equivalent of
the overlap region between the two patches we chose for S4. Combining with the chiral anomaly
equation (4.12),

d ∗ j5 = −2dK. (4.16)

This should cause us to pause. The right-hand side of the anomaly appears to be a total divergence.
Total divergences aren’t so bad, especially over manifolds without boundary. One might wonder
if such a total divergence can really have any effect on actual physics. To codify this, let’s take
the obvious step of combining the two exact forms into a new current,

∗j′ = ∗j5 + 2K. (4.17)

Then clearly d ∗ j′ = 0 and we’ve found a new axial current that appears to be conserved. No
more anomalies, right? This will be the main point of Section 5. As a hint that there’s much more
to this than meets the eye, let us note that that the Chern-Simons form K is not gauge invariant.

Let’s move on to constructing the instanton solution. The Bogomol’nyi bound takes the form
∫
d4x (F ± ∗F )2 ≥ 0, (4.18)

and we are led to the usual (anti) self-dual solutions ± ∗ F . This gives us a first-order system of
differential equations for the gauge potential A. Let us make the ansatz,

A = f(r) γ∗ζ = f(r) γ−1dγ, (4.19)

where r is the R4 radial direction, γ is an SU(2)-valued function, and ζ is the Maurer-Cartan
one-form on SU(2). We already know that finite action leads us to functions f that tend to 1 as
r →∞. We may write

γ(x) =
1

r

(
x0 + 2~x · ~τ

)
. (4.20)

This map is singular at r = 0 but otherwise identifies the there-sphere of finite radius r with
SU(2). Thus γ−1dγ differs from the Maurer-Cartan form ζ only by this identification. In other
words, it is the pullback γ−1dγ = γ∗ζ.

We need ∗F , so let’s define an orthonormal frame

ej =
1

2
rγ∗ζ and e0 = dr. (4.21)

Thus

F =
3∑

i=1

τi

[
2

r

df

dr
e0 ∧ ei +

2

r2
(f 2 − f)

3∑

j,k=1

εjkie
j ∧ ek

]
. (4.22)
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Now we can calculate the Hodge star,

∗F =
3∑

i=1

τi

[
−4

r2
(f 2 − f)e0 ∧ ei − 1

r

df

dr

3∑

j,k=1

∑

jki

ej ∧ ek
]
. (4.23)

Imposing the self-duality condition we obtain

df

dr
= −2

r
f(f − 1), (4.24)

and similarly for the anti-self-dual case. We can solve this to get the instanton potential,

A+ =
r2

r2 + c2
γ−1dγ, (4.25)

where γ : (R4 − {0})→SU(2) and c is a constant. Our potential is regular at x = 0, but doesn’t
decay fast enough at r →∞ since it only goes as r−1 asymptotically. This is fine, of course: the
whole point of the fibre bundle construction is that we can have different local trivailizations over
different patches. For the physicists in the audience, this means that we can choose different gauge
potentials over different coordinate patches. The only condition is that there exists a transition
function (gauge transformation) that relates the different potentials where the patches overlap9.

We’re happy with (4.25) everywhere except at r =∞, so let us take this as the potential over
H− in Fig. 4. Let us perform a gauge transformation by γ to get a potential that is valid at r =∞

A− = γAγ−1 + γdγ−1 =
c2

r2 + c2
γdγ−1. (4.26)

To fill in some details, let us define the stereographic projections

α±(x0, · · · , x3) =
1

1± x3
(x0, · · · , x3) x4 6= ∓1. (4.27)

We can consider A± as being defined over U± via the maps α±. Over U+ ∩ U− ∼= S3 (homotopic
to the ‘hyper-equator’) the two potentials are related by a gauge transformation. We say A± are
each local representatives of an SU(2) principal fibre bundle (the instanton bundle) over S4

with transition function g± = γ. (A principal fibre bundle is a bundle whose fibre is identical to its
structure group.) Let us remark that it is a fact that any finite action solution to the Euclidean
Yang-Mills equation leads to a fibre bundle over S4.

Let’s say a few things about the resulting topology of the instanton bundle. As we’ve already
remarked the base manifold is our compactified R4 = S4 which we divide into two hemispheres
H± which overlap on a band which is homotopic to the hyper-equator. This forms the boundary
of the two hemispheres,

∂H± = ±S3, (4.28)

9In fact, in case you were wondering earlier how integrals over differential structures (e.g. de Rahm cohomology
classes) end up giving us topological data that is manifestly insensitive to geometry, this is your answer. The
transition functions on the fibre bundle structure encode all of the information about the bundle topology.
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where the sign comes from the orientation, as shown in Fig. 4. The structure group and the fibres
are SU(2) and our local bundle patches are H±× SU(2) with bundle coordinates (x, f±) where
f± ∈ SU(2). These patches are stitched together with the transition functions h−+ so that

f− = h−+f+ along the ‘equator’ H+ ∩H− = S3. (4.29)

Thus these represent the ‘twist’ in the fibration of the two patches. This ‘twist’ is, of course, just
the winding number that we’ve made such a big deal about. These transition functions take value
in SU(2) and we can see that as we go around the hyper-equator we wrap the group SU(2)∼= S3.
This is now a rather familiar story.

Let’s reacquaint ourselves with terminology. The connection one-form associated with the
instanton bundle are the gauge potential A± and must satisfy the compatibility condition

A+ = h−1
−+A−h−+ + h−1

+−dh−+ (4.30)

on H+ ∩H− = S3. This is of course just the gauge transformation law that we already know and
love. The curvature two-form are the field strengths

F± = dA+±+ A2
± F+ = h−1

−+F−h−+. (4.31)

Recall our discussion below (4.4) where we remarked that the periods of the invariant polynomials
are are independent of connection and must thus be topological in character. Let us now see this
for the Pontryagin index (or whatever you choose to call it),

∫

S4

trF 2 =

∫

H+

d tr

(
F+A+−1

3
A3

+

)
+

∫

H−

d tr

(
F−A = −1

3
A3
−

)
(4.32)

=

∫

S3

tr

(
F+A+ −

1

3
A3

+ − F−A− +
1

3
A3
−

)
(4.33)

=

∫

S3

[
−1

3
tr
(
h−1
−+dh−+

)3
+ d trA−dh−+h

−1
−+

]
(4.34)

= −1

3

∫

S3

tr
(
h−1
−+dh−+

)3
, (4.35)

where we’ve applied Stokes’ theorem twice. What we find is that the Pontryagin index is mani-
festly independent of the connection A and only depends on the transition functions h+−. As we
suspected earlier, the transition functions encode the topological data of the fibre bundle.

We already know how to calculate the index, but let’s remark upon how one would see this
from our fancy-schmancy fibre bundle construction. We may simplify the S3 integral by choosing
a reference point at the north pole (of S3, not S4). We may do this since h−+ maps S3 uniformly
onto SU(2)∼= S3. Then we may construct our Maurer-Cartan form

h−1
−+dh−+ = iσkdx

k. (4.36)

Then the Pontryagin index integrand may be written as

tr(h−1
−+dh−+)3 = i3 trσiσjσk dx

idxjdxk = 2εijkdx
idxjdxk = 12 dx1dx2dx3. (4.37)
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This is now just a multiple of the area element at the north pole of S3, so that we may integrate
over the entire space using

∫
S3 dx

1dx2dx3 = 2π2. (Of course we write dx1dx2dx3 = dx1∧dx2∧dx3.)
The result is the usual integer in (3.17),

n =
1

24π2

∫

S3

tr(h−1
−+dh−+)3 = 1, (4.38)

for a one-instanton background. This brings us roughly up to the same point of the story that
we’d developed on the physics side.

5 Plat principal : the U(1) problem

Now we get to the meat and gravy. We’ve made several oblique references to the instanton number
and the chiral anomaly. Both depend on the Pontryagin number. In this section we clarify the
nature of this relationship and demonstrate how instantons can lead to real phenomenological
effects.

5.1 A fermion refresher

We would like to study fermions in an instanton background. Fermions are inherently quantum
mechanical and never pick up a nontrivial semi-classical configuration so that all of our heavy
lifting for pure Yang-Mills theory in the previous sections are unaffected by the fermionic path
integral,

∫
[dΨ][dΨ̄]ei

R
d4x Ψ̄i /DΨ. (5.1)

We see, however, that the quantum theory of our fermion fields will be affected by the nontrivial
semi-classical gauge configuration.

Let us begin by establishing notation for fermions in Euclidean space. Clifford algebra takes
the form,

{γµ, γν} = 2δµν . (5.2)

The Euclidean γ matrices are

γ0 =

(
1

1

)
γi =

(
−iσj

iσj

)
⇒ γµ ≡

(
σµ

σ̄µ

)
. (5.3)

The chiral matrix is γ5 = γ0 · · · γ3. We shall write out our Direct fermions Ψ in terms of Weyl
fermions χ, ψ̄ using the ‘standard’ notation,

Ψ =

(
χ
ψ̄

)
Ψ̄ = (ψ, χ̄). (5.4)

The Dirac bilinear can then be decomposed into chiral components

Ψ̄i /DΨ = χ̄iσ̄ ·Dχ+ ψiσ ·Dψ̄. (5.5)
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Chiral Dirac operator. Let us make a parenthetical remark that the chiral Dirac operators
iσ ·D and iσ̄ ·D are not self-adjoint. Instead, they are adjoints of one another. One can see
this from looking at the operators on left-chiral fermions. First one can integrate by parts to
obtain

∫
d4x χ̄iσ̄ ·Dχ =

∫
d4x χ̄i(D0 + i~σ · ~D)χ (5.6)

=

∫
d4x (−i)

[
∂0χ̄+ igχ̄Aata + i(~∂χ̄) · ~σ − gχ̄ ~Aa · ~σta

]
χ. (5.7)

Next next one can compare this to the adjoint operator,

[
(i~σ ·D)†χ̄

]T
= i
{[
∂0 − igAa0(−tTa )

]
χ̄T + i~σT ·

[
~∂ − ig ~Aa(−t2a)

]
χ̄T
}
. (5.8)

Multiplying by σ2 and using σ2~σT = −~σσ2,

σ2(i~σ ·D)†σ2 = i
[
(∂0 − igAa0 t̄a)− i~σ · (~∂ − ig ~Aat̄a)

]
, (5.9)

where we’ve written the conjugate representation generators as t̄. From this we finally obtain
(iσ̄ · D)† ∼= iσD with the representation r → r̄. For the special case of SU(2) we know that
2 ∼= 2.

The adjoint of spinor operators is something which is rarely done very carefully. This
can become rather important in non-trivial cases, for example the Randall-Sundrum scenario
where the dimensionality, orbifold compactification, and warping of the space make our fermion
‘inner products’ rather delicate. I only make a emphasize this now because none of the other
students in my group seem to appreciate this subtlety.

Let us now consider the eigenspinors and eigenvalues of the chiral Dirac operators acting on
the left and on the right. These take the form

(iσ̄ ·D)χk = λ̄kχk χ`(iσ̄ ·D) = λ`χ` (5.10)

(iσ ·D)ψ̄` = λ`ψ̄` ψ̄k(iσ ·D) = λ̄kψ̄k. (5.11)

The spectrum of iσ̄ ·D from the left and iσ ·D from the right are identical and vice versa. It is
thus tempting to say that λ` = λ̄k,

∫
d4x χ̄`(iσ̄ ·D)χk = λ̄k

∫
d4x χ̄`χk = λ`

∫
d4x χ̄`χk. (5.12)

Thus, indeed, while
∫
d4x χ̄`χk 6= 0, we must have λ` = λ̄k as expected and all non-zero λ` and λ̄k

are paired. However, if λ` = 0 (or, similarly λ̄k), then we can see that there’s no need for such a
zero mode to have a partner. Chiral symmetry alarm bells should be going off inside your head.

We can rephrase this statement by saying that the massive spectra of iσ · D and iσ̄ · D are
matched, while the massless spectra—i.e the kernel of those operators—need not be. We can
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define an index10,

ind(iσ̄ ·D) = dim[ker(iσ̄ ·D)]− dim[ker(iσ ·D)], (5.13)

which just counts the number of left-chiral zero spinors minus the number of right-chiral zero
spinors.

The same statement using four-component spinors. For completeness, let us consider
how an analogous argument would look using four-component Dirac spinors. The eigenvalue
equation for the Dirac operator is

i /DΨj = λjΨj. (5.14)

We know that the λjs are real by the usual Hermiticity of i /D. Further, we know that γ5

anticommutes with γµ so that we may write

i /Dγ5Ψj = iλjγ
5Ψj. (5.15)

This tells us that each non-zero λr eigenvalue must come in pairs according to chirality. How-
ever, if the i /D eigenvalue vanishes then one is free to choose Ψ0 to also be an eigenvalue of
γ5,

γ5Ψj = ±Ψj, (5.16)

where the eigenvalues are restricted to ±1 via (γ5)2 = 1.

5.2 Friend or foe? Massless fermions and instantons

So far all that we have argued is that a zero mode does not necessarily need to have a partner.
Now let us look for an explicit example where such a scenario is realized. We shall make the
bold (though by now unsurprising) claim that this occurs precisely in the presence of a nontrivial
instanton background. Let’s consider the case n = 1. We would like to find a solution of

(D0 + i~· ~D)χ = λ̄χ, (5.17)

with λ̄ = 0. With a tremendous prescience, let us try and ansatz that the spinor takes the form

χαi =
Cαi

(x2 + ρ2)a
(5.18)

where α is our spinor Lorentz index, i is an SU(2) gauge index, and a is a power that we’d like to
determine. Cαi is some constant matrix in SU(2)Lorentz×SU(2)gauge space. This ought to remind us

10...and by now you should already expect that there is onlyone index in this entire document and we keep
referring to it in different contexts.

33



of our discussion about ‘fancy pants’ notation in Section 3.8, where we noted that the ‘coincidence’
that both the gauge and Lorentz group could be written in terms of SU(2)s was the reason that
instantons are an SU(2) effect. (Of course the SU(2) may live inside larger groups.) Using the ’t
Hooft symbol defined in (3.8), we may write the covariant derivative as

Dµ = ∂µ − igAaµτa = ∂µ − i
2

x2 + ρ2
ηaµνx

ν σ
a

2
. (5.19)

The action on a left-chiral fermion thus takes the form

(D0 + i~σ · ~D)χ =
1

(x2 + ρ2)a+1

[
−2ax0 − iηa0νx

2σ2 + iσj(−2axj) + ηajνx
νσjσa

]
· C (5.20)

Let’s consider the x0 terms,

[· · · ]|x0 = x0(−2a+ ηaj0σ
jσa) · C = x0(−2a− ~σ · ~σ) · C. (5.21)

By assumption these much vanish so that we want a to cancel ~σ · ~σ. The evaluation of this latter
quantity depends on the form of Cαi. First, a sanity check. Note that there are two ‘kinds’ of
Pauli σ matrix floating around here: one that acts on SU(2) spinor Lorentz indices and one that
acts on SU(2) ‘color’ gauge indices. The quantity ~σ · ~σ = σiσjδij is contracted along the vectorial
rotation indices but are not contracted along their matrix indices which instead act on the indices
of Cαi. We know what to do when we have a matrix Cαi with two SU(2) indices: we decompose it
into irreducible representations and say words like ‘Clebsch-Gordan.’ In particular, the two cases
are that C is symmetric or antisymmtric (Cαi ∝ εαi). In the antisymmetric case we find that C is
an object with ‘spin’ 0 while in the symmetric ase it has ‘spin’ 1. The total ‘spin’ J2 is

J2 =

(
~σLorentz

2
+
~σgauge

2

)2

=
3

4
+

1

2
~σ · ~σ +

3

4
=

3

2

(
1 +

~σ · ~σ
3

)
. (5.22)

Thus the two cases give

spin-0 ⇒ ~σ · ~σ = −3 ⇒ a = +3/2 (5.23)

spin-1 ⇒ ~σ · ~σ = +1 ⇒ a = −1/2. (5.24)

Looking back at our ansatz (5.18) we can see immediately that the a = −1/2 case is not nor-
malizable and cannot exist in the spectrum. We note that we could do the analogous calculation
for ψ̄ to find values of a that are the same up to a sign flip. In this case, both modes are not
normalizable. To be complete we should also check the terms with xi (we only did the x0 terms
above); one will find that our results here are consistent.

The punchline is that we have indeed found a solution in an instanton background where there
is only a zero mode for the left-chiral spinor χ and not the right-chiral spinor χR. We conclude
that in the one-instanton background ind(iσ̄ ·D) = 1.
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Motivating the ansatz. We’ve seen that (5.18) indeed gives us the structure that we would
like. It is appropriate to insert a quick remark motivating that particular ansatz given its
suggestive similarity to the instanton profile. See [12] for further details. The trick is to
consider the commutator [Dµ, Dν ] ∼ Fµν . This connects our Dirac operator to the structure
of the instanton solution. This ends up giving us D2ψ = 0 and D2χ suggestive of our ansatz.
The D2ψ = 0 statement in fact tells us that the ψ field has no vanishing eigenvalues since −D2

is a sum of the squares of Hermitian operators and is hence positive definite. We can see that
indeed the zero mode picks up many characteristics of the instanton such as its localization
and size.

5.3 The ’t Hooft operator

Let’s now consider what happens to the fermion path integral in an instanton background. Let
us expand our fields in a basis of i /D = iσ̄ ·D ⊕ iσ ·D eigenstates. For left-chiral spinors,

χ = c0χ0 +
∑

k=1

ckχk (5.25)

χ̄ = c̄kχ̄k (5.26)

and similarly for right-chiral spinors

ψ̄ = d̄kψk (5.27)

ψ = d0ψ0 +
∑

k=1

dkψk. (5.28)

These obey the conditions that χ̄k = (σ2ψk)
T and ψk,0 = (σ2χk,0)T . We remind ourselves that the

c and d coefficients now carry the anticommuting structure of the fermions. Using the orthonor-
mality of the fields χ and ψ, we see that the fermionic action takes the form

∫
d4x Ψ̄i /DΨ =

∑

k=1

λk
(
c̄kck + d̄kdk

)
, (5.29)

i.e. the zero modes c0 and d̄0 do not appear because c̄0 = d0 = 0. This fact manifests itself
dramatically when we perform the path integral over the fermion field. The functional measure
can be decomposed into a product of measures over the anticommuting coefficients c and d,

∫
[dΨ][dΨ̄] · · · =

∫
dc0

∏

k

dckdc̄k dd̄0

∏

k

dd̄kddk · · · . (5.30)

(In retrospect, the choice of writing dk was probably not very wise.) Note the important point
that the dc0 and dd̄0 still appear in the functional integral even though they do not appear in the
action. This means that there’s no Gaussian over those modes in the generating functional,

∫
[dΨ][dΨ̄]e−

R
d4x Ψ̄i /DΨ =

∏

k

(λ2
k) ·
∫
dc0 dd̄0. (5.31)
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the first factor is the usual Gaussian integral for fermionic modes while the leftover integral runs
over the zero modes. We know very well from the path integral formulation of fermions11 that
this integral vanishes. A constant integral over a Grassmanian measure vanishes.

We now reach an important lesson. In the presence of massless fermions, the contribution of
the n = 1 instanton configuration to the path integral is zero. In other words, massless fermions
suppress vacuum-to-vacuum instanton tunneling. This does not mean, however, that all of our
pure Yang-Mills discussion is in vain: it should also now be very obvious how to calculate objects
from the partition function that do not vanish.

The answer is the calculate an axial correlation function, 〈ψχ〉. This ‘order parameter’ violates
axial current conservation since Q5 6= 0 so that we know any perturbative calculation should give
us 〈ψχ〉 = 0. (This still holds in the presence of the axial anomaly, at least in the perturbative
picture.) Fortunately, we are not doing a purely perturbative calculation since we are expanding
about a nontrivial semiclassical configuration. Let’s see what this buys us.

〈χψ〉 =

∫
[dA]n[dΨ][dΨ̄] e−

R
d4xLψ(x)χ(x)∫

[dA]n[dΨ][dΨ̄] e−
R
d4xL . (5.32)

Note that one should, in fact, sum over winding sectors n appropriate to the ΘYM vacuum of the
theory. We will see (in case you’re not already convinced) that only the n = 1 sector contributes.
Evaluating the numerator about the n = 1 instanton background,

∫
[dA]1[dΨ][dΨ̄]e−

R
d4xLψχ =

∫
[dA]1e

−
R
d4xF 2

eiΘYM

∫
[dΨ][dΨ̄]e−

P
k λk(ck c̄k+d̄kdk) ψχ (5.33)

=

∫
[dA]1e

−
R
d4xF 2

eiΘYMdet(i /D)

∫
dc0 dd̄0 ψχ (5.34)

=

∫
[dA]1e

−
R
d4xF 2

eiΘYMdet(i /D)ψ0χ0. (5.35)

Voilà! The determinant, which we have defined to run only over non-zero modes, is manifestly non-
zero and so we end up with 〈ψχ〉 6= 0! Thus find that instantons violate axial charge conservation
by two units. The realization of this mechanism is that the instanton configuration spits out zero
modes of different chirality. (The anti-instantonc configuration just gives the Hermitian conjugate
of the above operator.) More generally, for F flavors of fermions coupling to the SU(2) gauge
field, one expects a violation

∆Q5 = −2F (nL − nR), (5.36)

where (nL−nR) is the number of unpaired zero modes (the number of left zero modes minus right
zero modes). Below is a schematic diagram of such an instanton effect from [13].

11Most of the review literature on instanton methods appear to have been written before fermionic path integrals
were a staple of quantum field theory textbooks and so spend a lot of time belaboring this point. We will assume
that the reader does not live in the 1970s.
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The author could have drawn a fancy computer-generated version, but there’s something charming
about Michael Peskin’s drawings. One can see that the operator is promoted to

O ∼ det(ψiχj). (5.37)

There is an overall prefactor which includes the integration over instanton collective coordinates
and the exponential of the classical action. The actual amplitude is not our concern, rather we are
more interested that these surprising events can happen at all. This operator was discovered by
’t Hooft and is sometimes called the ’t Hooft operator or the ’t Hooft vertex. To really drive
home the point, let’s say it once more time: instantons, as represented by a ’t Hooft operator,
generate effective couplings between the zero modes of all fermions coupling to that instanton’s
SU(2) gauge field.

5.4 Instantons make zero modes

Where did this zero mode come from? Surely I can have a theory where all of my fermions have
some non-zero mass (e.g in the Standard Model after electroweak symmetry breaking). What
does it mean to talk about an electron (me 6= 0) zero mode in an instanton background? It turns
out that such zero modes are created by the instanton field itself (e.g. by the ’t Hooft operator).
These are precisely the solutions we constructed in Section 5.2. A slightly more poetic statement
is to consider particle and antiparticles relative to the ‘Dirac sea.’ The effect of an instanton is to
create a left-handed particle by pulling up a right-handed antiparticle over the ‘mass gap’ around
−m < E < m for a particle of mass parameter m. By doing this the field configurations in the
asymptotic past and future end up with different axial charge. The act of pulling the state across
the ‘mass gap’ means that there exists some point in time where the fermion being lifted crosses
E = 0, as shown in the following diagram from [14],

A Ω1A

E > 0

E < 0

instanton

anti-inst.

E

Figure 4.7: The instanton not only changes the winding number by 1, but also
creates a (left-handed) particle and removes a (right-handed) anti-particle. For the
anti-instanton it is vice versa. Infact the picture is delicate: In the original theory
there is no mass and no gap, but we could add a small mass and the considerations
still hold.

The operator ∂
∂λ
≡ ∂

∂x4
enters the Dirac equation and extracts the energy,

(γ4∂4 + #γ#D)ψ = 0 = (−γ4E + #γ#D)ψ

We represent its action on ψ by two functions of λ,

∂

∂λ
ψ = +α(λ)ψ λ→ −∞

∂

∂λ
ψ = −β(λ)ψ λ→ +∞

The signs follow from the general shape of normalisable modes. For the case
at hand it has a power law behaviour: ψ(λ, #x) ∝ 1

λ3 . If we approximate
it by an exponential law, α and β become constants and we arrive at the
qualitative spectrum shown in Fig. 4.7: The instanton provides a transition
from A to Ω1A during which the number of left-handed particles increases by
1, while the number of right-handed anti-particles drops by 1,

&QL = −&QR = 1

accordingly -1 for anti-instantons.
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5.5 Physical nature of the ΘYM term

Of course, we should have expected something like this ought to happen. We know that axial
symmetry is anomalous so something weird occurs. Even though—as we saw above—it seemed
like we could still use the axial current perturbatively12, we could have even guessed that there
must be some non-perturbative effect since we could see that the anomaly funciton was related to
the ΘYM term. Let us remark on the nature of the ΘYM term as a physical object.

Under a redefinition of our path integral functional argument Ψ→ eiαγ
5
Ψ, Fujikawa taught us

that the funtional measure transformas as

[dΨ][dΨ̄]→ exp

(−iα
32π2

∫
d4xFF̃

)
[dΨ][dΨ̄]. (5.38)

This is completely equivalent to a shift in the ΘYM parameter,

ΘYM → ΘYM + 2α. (5.39)

The transformation also changes our fermion mass parameters. Let us first write them in terms
of ‘chiral’ masses

Lm = −mΨ̄PLΨ−m∗Ψ̄PRΨ. (5.40)

The chiral redefinition of Ψ also forces us to redefine m→ e2iαm. This is a problem. A complex
mass parameter violates P and CP symmetries. These are, of course, very well constrained by
experiment. More to the point, such a rephasing appears to be a physical effect.

This does not seem to make sense; we know that redefinitions of our path integral functionals
cannot lead to physical effects. The resolution is that observables cannot depends separately on
ΘYM or m phases, but only on the combination

e−iΘYMm, (5.41)

where m→∏
f mf for many flavors (in which case the ΘYM shift is Θ→ Θ + 2

∑
f αf ). This tells

us that we can always define our fermion masses and effective Lagrangian relative to ΘYM = 0.
However, the cost is possible P and CP violation. Of course, if there exists a massless fermion f
with mf = 0, then the ΘYM angle has no effect and both P and CP are conserved.

(CP violation is an important question regarding the ΘYM term; why have we found ourselves
in a vacuum where ΘYM is so small? This topic is unfortunately beyond the scope of this article
but readers are encouraged to explore the axion solution to this so-called strong CP problem.)

5.6 The U(1) problem

Now that we’ve done a lot of heavy lifting, let’s try to reap something useful: a solution to the
U(1) problem. Stated succinctly, the U(1) problem asks: where is the would-be Goldstone boson
associated with the U(1)A axial symmetry of QCD?

As we know, we can describe low-energy QCD using chiral perturbation theory. The La-
grangian satisfies an U(3)V×U(3)A flavor symmetry for the light quarks (u, d, s). One assumes

12Old-timers will refer to the partially-conserved axial current (PCAC).
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that the QCD vacuum forms a quark-antiquark condensate 〈qq̄〉 6= 0 that breaks U(3)A sponta-
neously. One can then construct the Goldstone modes associated with U(3)A by acting upon the
QCD ground state with the axial currents and calling the resulting modes pions (or otherwise
light mesons). In the limit of nonzero quark masses the axial U(3) symmetry is preserved in the
Lagrangian so that these pions must indeed be massless Goldstone modes. Turning on small quark
masses lifts the modes and breaks their degeneracy.

Since the strange quark mass is much heavier than the other light quarks, let us ignore it for
the moment and only consider the U(2)V×U(2)A subgroup which is not-so-badly broken by mu,d.
Further, us decompose this symmetry into

SU(2)V × SU(2)×U(1)V × U(1)A. (5.42)

We recognize the preserved SU(2)V flavor symmetry and U(1)V baryon number current. Since this
is not a paper on chiral perturbation theory13 we will only state the result that one can indeed
construct the SU(2)A goldstone modes corresponding to the pseudoscalar isotriplet (pions). We
can turn on the light quark masses and they obtain masses at the expected scale and we indeed
see these particles in our low-energy hadronic spectrum. Splendid.

The problem is the U(1)A current. There is no pseudoscalar isosinglet would-be Goldstone
boson (pseudo-Goldstone) anywhere near the pions in our hadronic spectrum. If we relax our
search parameters and look at higher masses, we find that η has the correct quantum numbers,
but is oddly heavy. Weinberg provided an upper bound for the expected would-be Goldstone
boson [15, 6]

mU(1)A
≤
√

3mπ, (5.43)

which is violated by the η and any other candidate meson.
It turns out that the η is a red herring, anyway [1]. Even though the η happens to have the

right quantum numbers of the U(1)A pseudo-Goldstone, it is actually a member of the SU(3)A
pseudo-Goldstone octet. It’s just another particle. There are a bunch of QCD resonances that
happen to have the right quantum numbers. Typically the U(1)A problem is associated with the
next-lightest meson, the η′. We will see that it doesn’t really matter (nor does it necessarily make
sense to identify) which meson is the pseudo-Goldstone of U(1)A precisely because there isn’t a
pseudo-Goldstone of U(1)A. The U(1) problem is sometimes called the η or η′ problem, so that
at this point one may sit back and reflect upon the title of this paper.

5.7 The U(1) solution

We could attempt to wave away the previous argument by saying that there is no problem because
U(1)A is anomalous and so is not a ‘real’ symmetry of the system. One might choose to say that
U(1)A is broken explicitly by these anomalies and that’s that. However, we must still deal with
the uneasy proposal made much earlier in (4.17): the anomalous term in the divergence of the
axial current is itself a divergence so that we are free to define a modified axial current that really

13Chiral perturbation theory is an interesting topic in itself that, were it not for little Higgs models, would be
something of a dying art. The author refers you to his personal notes on the subject.
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is divergence-free:

j′ = j5 − 2K. (5.44)

As far as perturbation theory about a trivial gauge background is concerned, this is perfectly
good current and should lead to precisely the axial pseudo-Goldstone that we’ve been rambling
on about. We will see that the punchline is, in fact, that the anomaly breaks U(1)A and that
there shouldn’t be a Goldstone associated with it. The real ‘problem,’ then, is to understand how
this actually happens given that simply saying ‘anomaly’ doesn’t appear to make the Goldstone
go away.

Kogut14 and Susskind15 proposed a way out of the U(1) problem [16]. The crux of their proposal
was that the divergence-free modified axial current j′µ could couple to a particle which remains
massless in the mu,d,s = 0 limit. This would allow a way out of the partially conserved axial
current (PCAC) constraints that relate mU(1)A

to mπ. (The story of PCAC is beyond the scope
of this paper but is presented in older texts such as [8, 17].) Heuristically, Kogut and Susskind
hoped that ghost fields (e.g. from covariant gauge fixing) could couple to j′ in such a way. Their
prototype was Schwinger’s model of spinor electrodynamics in 1+1 dimensions where massless
fields φ± were, respectively, positive and negative norm fields so that their sum is free of any
poles (in particular, from Goldstone modes). Gauge invariant quantities couple to a combination
with zero propagator φ+ + φi while non-invariant quantities could couple to combinations whose
propagators did not cancel, e.g. ∂µ(φ+− φ−). Coleman calls such a thing a ‘Goldstone dipole,’
but this is a rather misleading (and altogether silly) name.

The moral of the story is really gauge invariance, which we’ve subtly been trying to promote
over the course of this paper. The Chern-Simons current Kµ is not gauge invariant. The key to
the proposed Kogut-Susskind mechanism is that the massless pole which the non-invariant current
couples to should not also appear as poles in physical quantities. In other words, such poles are a
kind of gauge artifact. ’t Hooft found that this mechanism can be realized using instantons [18].

In fact, we’ve already done most of the relevant heavy-lifting. We’ve already seen how in-
stantons cause a shift in the axial charge ∆Q5 = 2F . The Chern-Simons current is precisely the
gauge non-invariant object which couples to axial charge. In Section 5.5 we saw that the effect of
chiral rotations can be undone by a rotation on the ΘYM angle. This tells us that the Goldstone
boson for chiral rotations corresponds to oscillations of the ΘYM parameter. This is the ‘order
parameter’ of chiral symmetry breaking. Unlike the usual σ models for scalar fields with U(1)
symmetry, however, the ΘYM Goldstone is not physical. It is certainly no more physical than the
unphysical ‘pseudomomentum’ θ of the periodic potential in quantum mechanics. In other words,
angular rotations about a Mexican hat potential are really oscillations in physical field space that
do not cost any energy, where as rotations in ΘYM are ‘unphysical.’

This proposed solution may sound trivial. The point, however, was that the PCAC framework
was developed before gauge theories were widely understood so that historically very intelligent
people applied the usual arguments based on Ward identities to gauge non-invariant sectors of
QCD [19].

Returning to the title of this paper, is it plausible that the η′ is the missing U(1)A pseudo-
Goldstone which, by instanton effects (i.e. mass terms from the ’t Hooft operator), have picked

14at around the same time he was developing the renormalization group
15at around the same time he was connecting the Veneziano amplitude to a theory of strings
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up a much heavier mass than the pion octet? In some sense this question is ill-posed; one would
like to say that the η′ somehow becomes very light when ‘instanton effects are turned off.’ Unlike
taking mu,d → 0, it is certainly not a well-prescribed continuous limit to ‘turn off anomalies.’
However, given that the question is ill-posed, we can act like theorists and push valiantly forward
anyway. The relevant scales are

mπ0 ≈ 135 MeV mη ≈ 548 MeV mη′ ≈ 958 MeV. (5.45)

The pion masses are right where they ought to be, somewhere around ΛQCD. The η, as we
explained, is part of the pseudo-Goldstone octet and gets mass contributions from the strange
quark which breaks chiral symmetry significantly more than the up and down. To get a feel for
whether η has a reasonable mass, we can compare to the kaon (a s̄s bound state), which has
mK ≈ 498 MeV. This is also in the right ball park. Now we get to the η′. We posit that this
gets contributions form QCD instantons. In the context of the ’t Hooft interaction, we say that
there is no U(1)A symmetry at all and instead of a zero mass the η′ should have masses on the
order of the strong interaction scale. A reasonable comparison is the vector meson φ, which has
mφ = 1019 MeV. This precisely the neighborhood of the observed η′, so we can pat ourselves on
the back.

6 Fromage: Baryon and lepton number violation

Let us make an incredibly brief remark about generalizations of these techniques for anomalous
symmetries. Let us forget about SU(3) color and return to the SU(2)L of electroweak theory. We’ve
seen how instantons provide a non-perturbative mechanism to realize the anomalous breaking of a
symmetry. Now that we’ve developed a hammer, we might as well look around for some nails. Are
there any anomalies in electroweak theory? Yes! Although all of the currents coupling to gauge
symmetries are non-anomalous by algebraic miracles (which may come about from embedding
into an anomaly-free gauge group), there are certainly two global symmetries that are broken by
anomalies: baryon and lepton number. (Recall, however, that (B − L) is conserved.)

jµL =
∑

f

¯̀
fγ

µ`f + ν̄fγ
µνf (6.1)

jµB =
∑

f

1

3
ūfγ

µuf +
1

3
d̄fγ

µdf . (6.2)

These have a divergence that take an unsurprisingly familiar form. For G generations,

∂µj
µ
L = ∂µj

µ
B = − Gg

2

16π2
trFµνF̃

µν . (6.3)

Now we can make exactly the same arguments that we’ve done above. In particular, we have
sectors of different weak winding number and instantons tunneling between them. These instanton
backgrounds yield ’t Hooft operators that will violate baryon and/or lepton number. In particular,
for G = 3 we can have interactions of the form

Q1Q2 → Q̄1 + 3Q̄2 + 3Q̄3 + L1 + L2 + L3 (6.4)
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Here the Q and L refer to quark and lepton SU(2)L doublets. The ’t Hooft vertex is an interaction
between 12 fermions (including color factors for the quarks). Examples include

u+ d→ d̄+ s̄+ 2c̄+ 3t̄+ e+ + µ+ + τ+ (6.5)

u+ d→ ū+ 2s̄+ c̄+ t̄+ 2b̄+ νe + νµ + τ+. (6.6)

We remark that B−L must be conserved, and indeed we see that ∆B = ∆L = −3. These events
are weak, with amplitudes that have the semiclassical factor exp(−16π2/g2

2) ∼ 10−169.
We note that there are two main differences between the case of electroweak symmetry versus

QCD. First, we know that electroweak symmetry is broken and most of the SU(2)L gauge bosons
obtain masses. This makes them short range forces whose profiles should go as something like
e−Mr. As far as our qualitative assessment is concerned, this is fine: the instanton configurations
are modified, but they still interpolate between vacua. Secondly, we remark that the couplings of
leptons L and quarks Q to the weak force involve only the left-handed doublets. Thus couplings
include projectors PL which mix vector and axial couplings. Thus both vector and axial currents
can be anomalous. In particular, baryon and lepton number are vector currents.

Let us end this discussion with an even more parenthetical remark. Because the electroweak
sector is much more weakly coupled than QCD, instanton effects are expected to be rather small.
However, there exist cousins of instantons that mediate similar effects called sphalerons. These
are shown heuristically in Fig. 5. Instead of tunneling between the topological vacua like instan-
tons, sphalerons are events that are actually energetic enough to jump over the potential barrier.
Such events are expected to have occurred in the early universe when the temperature was hot
enough for fields to access neighboring topological vacua.

Figure 5: Heuristic description of sphalerons versus instantons. Image from [20].
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7 Dessert : SQCD

Now we switch gears completely and review the key aspects of supersymmetric SU(N) gauge
theory with F flavors, in particular its nonperturbative for various values of F and N . We will
find that instanton effects play a surprising role in the determination of the Affleck-Dine-Seiberg
(ADS) superpotential for all values of F and N . We’ll dispense with the usual pleasantries of
motivating supersymmetry; no time to wax poetic about its virtues. Let’s jump straight into the
fracas!

7.1 Moduli space

SYM theories one typically finds flat directions or moduli in the field space. These are directions
in the scalar fields with vanishing potential. When supersymmetry is broken these tree-level flat
directions are often lifted through quantum corrections, i.e. by the Coleman-Weinberg potential.
In that case these directions are called pseudomoduli. We can now study how these flat directions
arise in super QCD. At the bare minimum this theory will have a D-term potential since it is a
gauge theory. It needn’t necessarily have any superpotential, so we will ignore the superpotential
contribution for now16.

7.1.1 Case F < N

We assume that we have an SU(N) theory with F < N flavors of ‘quarks’ φim in the fundamental

and ‘antiquarks’ φ
im

in the anti-fundamental, where i = 1, · · · , F and m = 1, · · · , N . The D-term
for this theory are

Da =
∑

i

φ†iT
aφi + φ

†
iT

a
φi

=

[∑

i

(
φ†
)in

φim −
∑

i

φ
in
(
φ
†
)
im

]
(T a) m

n .

where we understand that the φs really mean 〈φ〉. We can define the N × N matrices Dn
m and

D
n

m,

Dn
m =

(
φ†
)in

φim

D
n

m = φ
in
(
φ
†
)
im
.

The condition that our D-term scalar potential vanishes (the ‘D-flatness condition’) then imposes
Da = 0. Since the generators T a are traceless, a solutions is

Dn
m −D

n

m = α1

for some overall constant α. We may now use an SU(N) gauge transformation to diagonalize the
D and D matrices. In the case F < N . Then from their definition we see that the D and D

16In general the superpotential is highly constrained by the global symmetries of the theory.
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matrices can have at most F nonzero eigenvalues. Thus they must take the form

D = diag(v2
1, v

2
2, · · · , v2

F , 0, · · · , 0︸ ︷︷ ︸
(N−F )

).

Imposing D −D = α1 then imposes that D must also be a diagonal matrix. By the structure of
the zero and non-zero entries, we establish that the D-flatness condition can only be satisfied for
α = 0. From this we may write the solutions for our quark fields,

〈φ〉 = 〈φ†〉 =




v1

. . .

vF
0 · · · 0


 . (7.1)

This spontaneously breaks SU(N)→ SU(N −F ). We observe the super Higgs mechanism at
work: we started with (2F ) × N chiral superfields and found a vev where we have a number of
broken generators

(N2 − 1)−
(
(N − F )2 − 1

)
= 2NF − F 2,

each of which ‘eats’ a chiral superfield. The number of D-flat directions is then the number of
chiral superfields minus the number of broken generators,

(2NF )− (2NF − F 2) = F 2.

In the usual Higgs mechanism a massless vector eats a massless Goldstone boson. The exact same
effect occurs here, but due to supersymmetry the entire superfields must be included. Conceptually
the actual ‘coupling’ of the two superfields occurs between the massless vector component and the
Goldstone scalar, so one can think of the super Higgs mechanism as the joining of two superfields
due to the mixing of one of each of their components due to the regular Higgs mechanism. After
this feast, the remaining F 2 massless degrees of freedom are parameterized by an F × F meson
field,

M j
i = φ

jn
φni. (7.2)

There is actually a more general theorem by Luty and Taylor [21] regarding this.

Theorem 7.1 (Luty-Taylor). The classical moduli space of degenerate vacua can always be pa-
rameterized by independent, holomorphic, gauge-invariant polynomials.

Proof. A heuristic proof is provided in Intriligator and Seiberg’s lecture notes on Seiberg duality
[22]. Setting the [D-term] potential to zero and modding out by the gauge group is equivalent
to modding out by the complexified gauge group. The space of chiral superfields modulo the
complexified gauge group can be parameterized by the gauge invaraint polynomials modulo any
classical relations. Then, Intriligator and Seiberg claim, this theorem follows from geometrical
invariant theory [23]. For a proper proof the reader is directed to the original paper by Luty and
Taylor [21].
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7.1.2 Case F ≥ N

Before moving on let’s quickly cover the case F ≥ N . As before the D-flatness condition is still
D − D = ρ1, where ρ is some constant. We can again use the SU(N) gauge degree of freedom
to diagonalize the D = (φ†)iφi and D matrices, though now they are of full rank and we may use
the D-flatness condition to write D in terms of the eigenvalues of D and the constant ρ,

D =



|v1|2

. . .

|vN |2


 D =



|v1|2 − ρ

. . .

|vN |2 − ρ


 . (7.3)

This implies that we may write the 〈φ〉 and 〈φ〉 matrices as

〈φ〉 =




v1

. . . 0
vn


 〈φ〉 =




v1

. . .

vN
0


 . (7.4)

Now we see that SU(N) is completely broken at a generic point on the moduli space. This means
that we have (N2−1) broken generators and thus [2NF − (N2−1)] light D-flat directions in field
space. Again we parameterize these degrees of freedom by ‘gauge-invariant polynomials’,

M j
i = φ

jn
φni (7.5)

Bi1···iN = φn1i1 · · ·φnN iN εn1···nN (7.6)

Bi1···iN = φ
n1i1 · · ·φnN iN εn1···nN . (7.7)

But wait! We find that we have too many degrees of freedom. That’s okay. We’ve forgotten to
impose the classical constraints to which these fields are subject,

Bi1···iNB
j1···jN

= M
j1

[i1
· · ·M jN

iN ] ∼ detM (7.8)

7.2 The holomorphic gauge coupling

Recall that the action for a vector superfield is conventionally written as

L =
1

4

∫
d2θWaα

W
a
α + h.c. (7.9)

In this case, the gauge coupling g shows up in the kinetic term for the chiral superfields

Lkin =

∫
d4θ φ†egV

aTaφ. (7.10)

We can redefine W by absorbing the coupling into the vector superfield,

Ṽ a = gV a, (7.11)
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where we are no longer canonically normalized, but we are in some sense using a natural normal-
ization17. Then the vector Lagrangian takes the form

L =
1

4g2

∫
d2θWaα

W
a
α + h.c. (7.12)

We know that there are also non-perturbative effects that contribute to this Lagrangian, i.e. the
ΘYM term. We can include this effect by defining a holomorphic gauge coupling18,

τ ≡ 4πi

g2
+

ΘYM

2π
(7.13)

Our vector superfield Lagrangian finally takes the form

L =
1

16πi

∫
d2θ τWaα

W
a
α + h.c. (7.14)

Since τ only appears under the d2θ of the superpotential, it is manifestly a holomorphic parameter.
Recall the RG equations for the perturbative coupling,

µ
dg

dµ
= − b

16π2
(7.15)

1

g2(µ)
= − b

8π2
. (7.16)

Applying this to τ , we may write

τ1-loop =
1

2πi

[
b log

( |Λ|
µ

+ iΘYM

)]
(7.17)

=
b

2πi
log

(
Λ

µ

)
, (7.18)

where have defined the holomorphic dynamical scale

Λ = |Λ|eiΘYM/b . (7.19)

Theorem 7.2. The holomorphic coupling is only perturbatively renormalized at one loop. It does,
however, receive non-perturbative corrections from instanton effects.

Proof. We’ve written the one-loop renormalization of g in Eq. (7.18). We now have to show that
this only gets corrections from instantons. The key will be to consider the ΘYM dependence. We
know that ΘYM is a term which multiplies an FF̃ in the Lagrangian,

FF̃ = 4εµνρσ∂µTr

(
Aν∂ρAρ +

2

3
AνAρAσ

)
. (7.20)

17This can be understood, for example, by considering the renormalization of the gauge coupling in ordinary
(non-supersymmetric) field theory. The only diagrams that contribute to this renormalization come from loop
contributions to the gauge field propagator. This tells us that g is ‘really’ something associated to the vector field,
not necessarily the coupling of the vector to fermions.

18There seem to be many ‘standard’ normalizations for τ which differ by factors of, e.g., 2π. I audibly groan
every time I read a paper with a different normalization.
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This is a total derivative and has no effect in perturbation theory (as expected from a non-
perturbative instanton effect). However, this term contributes to a topological winding number,
n,

ΘYM

32π2

∫
d4xFF̃ = nΘYM. (7.21)

In the path integral
∫
dA exp (iS) ∼

∫
dA exp (inΘYM). Thus we see that the ΘYM must be

periodic in 2π, i.e. ΘYM → ΘYM+2π must be a symmetry of the theory. Under this transformation
the dynamical scale goes as

Λ→ e2πi/bΛ. (7.22)

This, in turn, affects the effective superpotential Weff = τ/(16πi)W2 through the dependence of
the holomorphic coupling on Λ,

τ =
b

2πi
log

(
Λ

µ

)
+ f(Λ, µ), (7.23)

where the first term is the one-loop result that we derived and the second term represents an
arbitrary function that would include higher-loop corrections. Under the transformation of Λ in
(7.22), the one-loop term is already shifted by one unit. Thus the first term already saturates the
correct behavior, so the second term must be invariant under the transformation. We can then
write out the second term as

f(Λ, µ) =
∞∑

n=1

an

(
Λ

µ

)bn
, (7.24)

where the form is set by demanding weak coupling as Λ → 0 (we want the perturbative result
in this limit). Terms of this form, however, just represent instanton effects. Recall the instanton
action,

Sinst =
8π2

g2
⇒ eSinst ∼ e2πiτ =

(
Λ

µ

)b
. (7.25)

Thus instanton effects in SUSY gauge theories will always appear with a prefactor of (Λ/µ)b. Thus
we have the result that τ is only [perturbatively] renormalized at one-loop order.

One can also determine the instanton corrections. For example, Seiberg and Witten famously
found exact expressions for the an coefficients in N = 2 SYM. For review see, e.g., [24].

7.3 The NSVZ β-function

If you are doing everything well, you are not doing enough.
– Howard Georgi, personal motto [5]

There is a lovely discussion of the role of instantons in the NSVZ β function. In fact, the
story of the NSVZ β function is delightful in itself. Unfortunately, this is beyond the scope of the
current work and the author is hopelessly out of time to add anything extra.
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7.4 F < N : the ADS superpotential

We now review the famous result by Affleck, Dine, and Seiberg in the 1980s that instantons
generate the so-called ADS superpotential [25]. Along the way we’ll learn how to use the moduli
space to go to regions in parameter space where we can make definitive statements that carry
over to the nonperturbative regime. In the following section we’ll make use of the tools that we’ve
developed to go over the F ≥ N case. This should prepare the reader for next step—well beyond
the scope of this paper—a discussion of Seiberg duality.

7.4.1 Holomorphic scale as a spurion

The trick that we will employ is to promote the instanton power of the holomorphic scale Λb to
a spurion for anomalous symmetries. In particular, anomalies from instantons appear via the ’t
Hooft operator,

O’t Hooft = Λb
∏

i

ψ 2Ti
i , (7.26)

where Ti = T (�) = 1/2 for the fundamental representation. For a one-instanton background and
under a chiral rotation, i.e. a rotation that acts independently on each chiral fermion ψi,

ψi → eiαqiψi (7.27)

ΘYM → ΘYM − α
∑

r

nr · 2T (r) (7.28)

Λb → Λbe−i
P
r nr(2T (r)). (7.29)

If we recall that Λ = |Λ| exp(iΘYM/b), we note that we can assign a fake (i.e. spurious) charge to
Λ so that the ’t Hooft operator preserves the chiral symmetry,

qΛ = −
∑

r

2nrT (r). (7.30)

7.4.2 The ADS Superpotential

Our goal is to write down the effective superpotential. We know that this is given by gauge-
invariant polynomials. In fact, the symmetries of the theory allow us to further constrain the
superpotential. Let’s explicitly write out the representations of the relevant fields under all of
these symmetries using a funny table of boxes,

SU(N) SU(F ) SU(F ) U(1)1 U(1)2 U(1)R
Q � � 1 1 0 0
Q � 1 � 0 1 0
Λb 1 1 1 F F −2F + 2N

The Λb charges under U(1) and U(1)2 are given by the prescription above. Note that all of the
U(1) symmetries are anomalous, though two combinations are anomaly-free. (We don’t have to
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worry about this for now.) Since the holmorphic scale is the only quantity carrying R-charge, we
know that the superpotential must go as

W ∼ Λ
3N−F
N−F . (7.31)

Invariance under the U(1) symmetries forces additional factors,

W ∼
(

Λ3N−F

QFQ
F

) 1
N−F

. (7.32)

Imposing flavor invariance and writing the superpotential in terms of gauge invariant polynomials
(which parameterize the moduli space), we get the ADS superpotential,

WADS = CNF

(
Λ3N−F

detM

) 1
N−F

, (7.33)

where we’ve written M to be the gauge-invariant meson field and CNF is a coefficient that we
have to determine. We’ll now do this for the particular case F = N − 1 and then we’ll show that
there are neat tricks we can do to derive more general combinations (F,N).

7.4.3 ADS: F = N − 1

For F = N − 1, W ∼ Λ3N−F = Λb, so that the ADS superpotential smells like an instanton effect.
In this case the SU(N) gauge symmetry is completely Higgsed to SU(N − (N − 1)) = SU(1) =
nothing. Does this buy us anything? It sounds bad, this puts us in an asymptotically free (β > 0),
strongly interacting region. However, we can go to a region in moduli space where 〈M〉 is very
large. In particular, we can go to a theory where the gauge group breaks before the theory becomes
strongly coupled so that our instanton calculations are reliable in this weakly interacting regime.
Before we jump ahead of ourselves, though, let’s convince ourselves that these really are instanton
effects. The ’t Hooft operator can be drawn as a vertex with an external leg for each zero mode
fermion: the quarks, anti-quarks, and the gauginos.

QN−1
Q
N−1

λ2N

This doesn’t quite look like our superpotential. However, we can go along the flat directions to
points in the moduli space where the squarks have very large vevs, v. Now recall that we have the

49



coupling between squarks and gauginos, λQQ̃∗ and λQQ̃
∗
. We can use these couplings to connect

the λ and Q,Q legs of the ’t Hooft operator. We have two gaugino legs left over, which we may
convert into quarks as shown in the diagram19

λ

Q

λ

Q

Q̃

Q̃

v

v v

v

v

v

Q

Q

This rather complicated diagram gives us a contribution to the ‘quark’ mass (where we’re being
lax about v versus v∗)

v2NQQΛ2N+1. (7.34)

To get the right term for the ADS superpotential we need to suppress by the length scale of the
instanton. In the presence of the squark vev, this length scale is

ρ2 ∼ b

16π2|v|2 ,

and so we can write our instanton-background Lagrangian as

L ∼ v2NQQΛ2N+1 (ρ)2N (7.35)

= v−2NQQΛ2N+1. (7.36)

This is just the fermion mass term that we get from the ADS superpotential.

WADS =
Λ2N+1

detM
→ ∼ Λ2N+1 QQ

(
Q̃Q̃
)N ∼ Λ2N+1QQ

v2N
. (7.37)

Thus we see that the ADS superpotential for F = N − 1 is really just a one-instanton term.
Grown-ups can do the exact instanton calculation. I don’t know how they do it, and for the

19I drew this diagram myself using the TikZ/PGF library in LATEX. I am very proud of myself.
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moment I don’t really care. The magical result however, is that the coefficient CNF for F = N −1
is... drum-roll...

CN,N−1 = 1. (7.38)

Now we understand what we need for the particular case F = N−1. That’s useful for very specific
models, but we are more ambitious.

7.5 Exploring the moduli space

Now that we have the instanton-generated solution for the particular case F = N − 1, we would
like to determine the ADS coefficient for arbitrary values of F and N by deforming the theory
and seeing where we can find ourselves by following the moduli space.

7.5.1 Give one squark a large vev

Our first trick will be to assign a large vev to one squark flavor,

〈qF 〉 = 〈qF 〉 = v. (7.39)

We thus have two scales in the theory that we’d like to relate via the Wilsonian renormalization
group. The original theory has an SU(N) gauge group with F flavors, while the low-energy
Higgsed theory has SU(N) → SU(N − 1) and one flavor eaten, i.e. SU(N − 1) with (F − 1)
flavors. Thus this Higgsing has taken us from (N,F ) to (N − 1, F − 1). By matching these two
theories, we can find a way to relate the coefficients CN,F and CN−1,F−1.

We can now perform usual EFT matching of the low energy (with a subscript L) and UV
couplings at the scale v. T

8π

g2
L(v)

=
8π

g2(v)
⇒ bL log

(
v

ΛL

)
= b log

(µ
Λ

)
⇒

(
ΛL

v

)bL
=

(
Λ

v

)b
. (7.40)

The value of the β-function coefficients are well known in SUSY QCD,

b = 3N − F ⇒ bL = 3(N − 1)− (F − 1), (7.41)

from which we obtain the so-called scale-matching conditions,

Λ3N−f
N,F = v2Λ3N−F−2

N−1,F−1. (7.42)

We can represent the (F − 1)2 light [scalar] degrees of freedom as an (F − 1) × (F − 1) matrix
ML. This can be related to the analogous F × F matrix in the original (UV) theory via

detM = v2 detML. (7.43)

Going back and plugging (7.40 - 7.43) into the ADS superpotential in (7.33), we get

CN,F

(
Λ3N−F

detM

)1/N−F

= CN,F

(
��v

2Λ3N−F−2
N−1,F−1

��v
2 detML

)1/N−F

≡ CN−1,F−1

(
Λ3N−F−2
N−1,F−1

detML

)1/N−F

, (7.44)
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where in the last line we’ve reminded ourselves of the form of the ADS potential with N −1 colors
and F − 1 flavors. They take precisely the same form. Coincidence? No, the Higgsed theory is
exactly the same as the (N − 1, F − 1) theory at low energies since in this limit the effects of the
Higgsed flavors decouples. (This is the lesson of Wilsonian renormalization.) Thus what we’ve
discovered is that

CN−1,F−1 = CN,F . (7.45)

In particular, this means that C only depends on (N − F ), i.e. CN,F = CN−F . Thus thanks to
our N = F − 1 solution, we now have a set of solutions for (N − F ) = −1. It turns out there’s
still one more trick we can play.

The astute reader will wonder how we came to find such a simple relation in (7.45). What ever
happened to the usual complications, namely threshold effects? Usually when we integrate out a
field, we get some remnant of the matching in the solutions to the RG equations. The matching
we’ve written without any threshold effects implicitly reflects a choice of the DR subtraction
scheme. In other words, the threshold effects are absorbed into the particular definition of the
cutoff scale.

7.5.2 Exploring the moduli space: mass perturbations

The general principle is clear now: how do we can perturb the UV limit of a super QCD and work
out the consequences for the low energy theory. In that limit the UV perturbations are negligible
effects so that the IR theory characterized by (N ′, F ′) is ‘really’ the (N ′, F ′) super QCD theory.
We can match the C coefficients of the two theories to obtain a relation between CN,F and CN ′,F ′ .

The next perturbation we have at our disposal is to give mass m to a flavor without Higgsing
the group,

∆W = mQFQF . (7.46)

This allows us to integrate out that flavor in the low energy theory, (N,F )→ (N,F − 1). We can
go ahead and play our scale matching game (really just effective field theory),

(
Λ

m

)b
=

(
ΛL

m

)bL
⇒

(
ΛN,F

m

)3N−F

=

(
ΛN,F−1

m

)3N−(F−1)

so that we finally obtain

Λ3N−F+1
N,F−1 = mΛ3N−F

N,F . (7.47)

Now we would like to solve the equation of motion in the presence of the mass term,

WADS = CN,F

(
Λ3N−F

detM

) 1
N−F

+mMFF . (7.48)

I’ll skip the magnificent details which are presented in [26], the result is the rule

CN,F−1 = (N − F + 1)

(
CN,F
N − F

)(N−F )/(N−F+1)

. (7.49)
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7.6 Gaugino condensation

If you are doing everything well, you are not doing enough.
– Howard Georgi, personal motto [5]

Unfortunately there is no time (and it is too far away from the original prompt) to discuss
the case F < N − 1, in which case we get the phenomenon of gaugino condensation. This is
especially a shame since it naturally interfaces with another A-exam question I’ve received on
the Klebanov-Strassler warped throat which is the gravity dual to a ‘cascade’ of Seiberg dualities
leading to a confinement scale with, among other features, gaugino condensation.

8 Digestif : Conclusions

We have presented a pedagogical introduction to instantons in quantum mechanics, Yang-Mills
theory, quantum chromodynamics, electroweak theory, and supersymmetry. We’ve been selective
about what we present, but we have hopefully demonstrated the significance of instantons in
quantum field theory.

There are many topics which I am sorry to not have been able to cover. These include:

• The [possible] role of instantons in confinement in both pure Yang-Mills and supersymmetric
Yang-Mills theories (also SQCD with gluino condensation)

• A more thorough presentation of the relevant differential geometry and topology (in partic-
ular a bundle-based analysis of the anomaly)

• The role of the cluster decomposition principle [27]

• A discussion of chiral symmetry breaking in duality cascades; this topic segues naturally
into a concurrent A-exam paper on Klebanov-Strassler throats in string theory.

• A discussion of the role of the instanton ‘bounce’ solution for vacuum decay in field theory.
This topic is particularly interesting to me for its role in metastable supersymmetry breaking
models

• The night before this exam was submitted, a new paper on surprising topological results in
supergravity was posted [28]

Given the time constraints that are part of the nature of this examination, I have limited my
discussion to the topics suggested in the prompt—though I have erred off course when necessary.
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A Notation and Conventions

4D Minkowski indices are written with lower-case Greek letters from the middle of the alphabet,
µ, ν, · · · . We use the particle physics (‘West Coast,’ mostly-minus) metric for Minkowski space,
ds2 = (+,−,−,−). As self-respecting grown-ups, we will generally set c = ~ = 1. Occasionally we
will descend into infancy and make ~ explicit, e.g. when we want to emphasize the semiclassical
expansion.

We will roughly follow the conventions of [1] and [13]. All formulae should be expected to be
accurate up to factors of 2, i, g, etc. Signs should only be trusted where they are important...
and even then they should be taken with a grain of salt.

B Discussion of references

Nearly all of the content in this work came from the references discussed below, though the errors
are the fault of the author.

The canonical introduction to instantons are Coleman’s lectures [1]. It is less-well known that
the NSVZ authors also have an excellent—albeit somewhat dated—review that was written to be
complementary to Coleman’s lectures [2]. Both of these served as my primary references for general
instanton queries. More recently, Rajaraman’s textbook provides a nice technical treatment with
good discussion [29].

General quantum field theory textbooks with particularly helpful discussions include those
by Cheng and Li [8], Ryder [7], and Weinberg (volume II) [6]. The supersymmetry (and general
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beyond the Standard Model) texts by Terning [26] and Dine [30] also had particularly well-written
concise discussions of anomalies and instantons with an eye for modern applications.

A nice gradual introduction to instantons starting with quantum mechanics and building up to
QCD can be found in Forkel [31]. Gerard ’t Hooft’s lectures at the 1999 Saalburg school provide
an idiosyncratic (thus useful) overview of monopoles and solitons. These lectures were typeset by
Falk Bruckmann, who also has since written his own review of topological objects in QCD [4].
There are two rather encyclopedic reviews that were helpful references: Schäfter and Shuryak [32]
and Vandoren and Nieuwehuizen [9]. The latter are the most modern set of review material on
this topic. Both provide excellent insights, though the author finds that instanton neophytes are
better served using these as references while following a more pedagogical texts.

The author’s original motivation to learn more about instantons was a personal interest in
differential geometry. (Part of this came from a desire to better understand the geometric nature
of superspace and to clarify issues about the curved space Dirac operator.) Particularly well-
written works that constitute the author’s bed-time, bus-time, and bored-time reading include
Göckeler and Schucker [33] and the lectures by Collinucci and Wijns [1]. In addition the usual
complement of mathematical physics references have been helpful: Frankel [34], Nakahara [35],
and Eguchi-Gilkey-Hanson [36]. More detailed mathematical treatments on particular topics can
be found in Bilal [37], Harvey [38], Alvarez-Gaume [39], Zinn-Justin [40], and Stora [41].

Papers that have been particularly helpful for the U(1) problem include Creutz’ recent review
[42], ’t Hoofts papers [18, 19], and Weinberg’s review [15].

I have benefitted from courses on related subjects from Michael Peskin [43], Paul Sutcliffe, and
Csaba Csáki. I thank them all for lending their wisdom and insight.

Finally, I would especially like to acknowledge David Simmons-Duffin, and Sohang Gandhi,
and Yuhsin Tsai for illuminating discussions on this topic.
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