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Abstract

This is a set of ongoing LATEX’ed notes on dark matter. They’re not associated with
any one particular project and are not meant for publication.
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The Dark Arts are many, varied, ever-changing, and eternal. Fighting them is like
fighting a many-headed monster, which, each time a neck is severed, sprouts a head
even fiercer and cleverer than before. You are fighting that which is unfixed, mutating,
indestructible. – Severus Snape, Harry Potter and the Half-Blood Prince

1 Introduction

This is a set of notes on dark matter that I started writing to keep track of well-known results.
They are not meant for publication and are a work-in-progress. Some common references for basic
WIMP dark matter and cosmology include the textbooks by Dodelson [1], Kolb & Turner [2], and
Bertone (collection of reviews) [3]. Introductory pedagogical sources include the lectures at SSI
2007 [4]. Additional websites which aggregate review literature and are regularly updated can be
found in [5]. Other reviews of interest include: [6], [7]. . .

2 A historical introduction to dark matter

This section is from the author’s A-exam and is purely for cultural context. Readers
interested in physics should skip this.

We begin with a selective history of dark matter highlighting some motivation and leading up
to a subjective description of recent experimental and theoretical developments in the field. A
more encyclopedic history can be found in [8]. We attempt to provide relevant references to assist
those—such as the author—who intend to continue in this field.

2.1 ‘Dark Matter’ Pre-History

The big question for dark matter experimentalists is how should we detect ‘stuff’ that isn’t ob-
servable in the conventional sense. It is well known that dark matter was originally discovered
through its gravitational effects, but the idea that non-luminous astronomical objects could be
detected in this way is actually much older. Two of the earliest examples (from [9]) include (i)
the discovery of white dwarfs due to the position of the stars Sirius and Procyon, and (ii) the
discovery of Neptune from an anomalous orbit perturbation in Uranus.

2.2 The Dark Matter Dark Ages

An early history of dark matter with original references is presented in [10]. We will only briefly
and selectively mention parts of this story. Dark matter was first proposed in 1933 by Fritz Zwicky
to account for the radial velocity dispersion of galaxies in the Coma cluster [11] (English reprint
[12]) which were suggestive of the presence of non-luminous matter. Zwicky’s phrase ‘dunkle
(kalte) Materie’ is regarded as the origin of the term (cold, i.e. non-relativistic) dark matter.
Zwicky’s observations were later seen in the Virgo cluster [13] and later in the local group [14].
There is a rather famous photograph of Zwicky making a silly face (originally taken as part of a
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series of deliberately exaggerated expressions [15]) that now seems to be a de facto requirement
for any public talk on dark matter.

At around the same time another set of astrophysical observations would lead to the ‘classic’
evidence for dark matter which undergrads will recite in some Pavlovian manner: the rotational
velocity curves of spiral galaxies. Astronomers found that the outer regions of galaxies were
rotating with unexpectedly high velocities given what was expected of their matter distribution
based on luminous matter. The first such observations came in 1939 from the Andromeda galaxy
[16] and were later extended in the to larger radii in the 1970s; see [17] for a history and references.

It is worth noting that papers on the ‘missing mass’ in galaxy clusters and that in the outer
regions of spiral galaxies did not make connections between the two. These were also the dark
ages of scientific publication, well before the arXiv. At this point these astrophysical results were,
“at best, received with skepticism in many colloquia and meeting presentations” [10]. It is not
necessarily comforting to remark that our scientific society has advanced so much that some of us
are no longer burdened by such skepticism against experimental results [18].

A turning point came in 1973 with the work of Ostriker and Peebles that showed that insta-
bilities in models of galaxy disks could be solved by a massive spherical component, a so-called
halo [19]. (Such a halo is a generic prediction of collision-less dark matter [20].) Further, with
Yahil they noted that galaxy masses appear to increase linearly with radius [21]. These results,
combined with the latest velocity curves at the time, provided a strong case for the existence of
‘missing mass’ in galaxies.

2.3 The Dark Matter Renaissance

Following this there were a Renaissance of astrophysical results which confirmed (in the scien-
tific sense) and refined the missing mass hypothesis while ruling out known reasonable alterna-
tives. These are reviewed nicely in Blitz’s lectures in [4] and Gaitskell’s lectures in [22]. An
undergraduate-level discussion with calculations can be found in [23]. In addition to refined as-
trophysical searches of the general type discussed above1 that rely on the virial theorem and
hydrostatic equilibrium (reviwed in [25]), the 1990s brought about new astrophysical and cosmo-
logical methods to probe the nature of this ‘missing mass’ (see reviews in [26]).

The detection of X-rays from hot gas in elliptical galaxies provided a new confirmation of the
dark matter hypothesis. This provides a handle to determine the luminous matter content of
the galaxy which one can compare to the matter required to maintain hydrostatic equilibrium.
Fabricant et al. found that the total mass of the M87 galaxy is indeed ten times larger than the
luminous mass [27]. While this was effectively the same type of analysis as the aforementioned
‘dark age’ experiments, this was convincing evidence that the ‘missing mass’ phenomenon was not
exclusive to spiral galaxies.

Another clear observation of dark matter comes from the prediction of gravitational lensing
in general relativity, reviewed in [28]. Here one observes the dark matter’s presence by the way
it gravitationally warps space and changes the path of light as it comes between luminous astro-
physical objects and our telescopes. The effect can be seen at different magnitudes depending on

1We will not discuss these further. One of the important lessons in the emerging field of particle astrophysics
is that particle physicists should take astrophysical anomalies with a grain of salt, e.g. [24]. We will return to a
modern manifestation of this in Section 2.5.
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the gravitational potential of the lensing object. Strong lensing refers to easily visible distortions
of an individual light source. Weak lensing, on the other hand, requires a statistical analysis of
a large number of sources to search for coherent distortions. Finally, microlensing comes from
relatively light lensing objects whose distortions of the luminous object cannot be resolved so that
one instead searches for a change in that objects overall luminosity. The most advanced lensing
analyses have not only detected dark matter, but have even allowed astrophysicists to construct
three dimensional maps of its distribution [28].

The previous two methods (X-ray spectroscopy and gravitational lensing) converged with the
relatively recent observation of the Bullet cluster which was formed by the collision of two large
galaxy clusters [29]. By using X-ray spectroscopy to image the hot (luminous) matter and weak
gravitational lensing to image mass density, it was seen that the luminous matter lags behind the
total mass as one would expect from weakly-interacting dark matter. This observation effectively
put the nail in the coffin of dark matter alternative theories, such as modified Newtonian gravity.

The cosmic microwave background (CMB) has lifted cosmology out of its status as a largely-
theoretical discipline2. A combination of theoretical and experimental cosmological constraints
have cemented the so-called ‘concordance’ or ΛCDM (dark energy with cold dark matter) paradigm
as an accurate description of our universe [23, 31]. The general strategy here is to measure the
matter density of the universe Ωm ≈ 0.04 and compare to the baryonic energy density Ωb ≈ 0.26
of the universe and conclude that most of the matter in the universe must be composed of non-
baryonic dark matter. Indirect measurements of Ωb include analyses of primordial nucleosynthesis
of 4He, 2H and 7Li [32]; the Sunyaev Zel’dovich effect in which the spectrum of X-ray emission
from hot gasses is shifted from inverse scattering off the CMB [33], and the Lyman-α forest
whose absorption lines indicate the make up of the intergalactic medium [34]. The highlight of
observational cosmology, however, was the direct measurement of the CMB spectrum from the
COBE [35] and WMAP [36] satellites. The measurement of the acoustic peaks in this spectrum
provide the most stringent constraints on dark matter (and dark energy) [37].

Further evidence comes from the requirement of dark matter in cosmology to generate the den-
sity perturbations that led to large scale structure [38] and to account for big bang nucleosynthesis
[39].

2.4 Romanticist Dark Matter

While we have been necessarily brief and incomplete, it should be clear that the ΛCDM model
with weakly-interacting cold dark matter has been well-established by a variety of astrophysical
observations using orthogonal techniques and taken at a range of scales (galactic, galaxy cluster,
and cosmological). What is remarkable is that at roughly the same time that the need for dark
matter was becoming accepted dogma in astrophysics and cosmology, realistic theories of particle
physics beyond the standard model also generically began to predict the existence of new stable
massive states that were natural dark matter candidates. Thus the forefront of cosmology and
astrophysics converged with particle physics and gave rise to particle-astrophysics (or astro-particle
physics).

2As Shamit Kachru once remarked, “Until very recently, string cosmology was the marriage of a field with no
data with a field with no predictions” [30].
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The theory community’s favorite candidate for new fundamental physics is supersymmetry3

(SUSY). Constraints on B−L violation (proton decay) tend to set very restrictive bounds on new
physics—often pushing them into an unnatural regime—unless some sort of parity is imposed to
prevent dangerous higher-dimensional operators. In SUSY the standard solution is to impose R-
parity, which makes the lightest supersymmetric partner (LSP) stable and a benchmark candidate
for weakly-interacting massive particle (WIMP) dark matter.

The theory-side highlight of the dark matter Renaissance is the Boltzmann equation, whose
integral determines the relic abundance of a thermally-produced WIMP particle species of known
interaction cross section after the universe cools and the particle ‘freezes out’ of thermal equilib-
rium. This is the key to connect particle physics data (interaction cross section) with astrophysical
data (relic density). This is the first tool for any honest theorist interested in dark matter and
is discussed in classic (particle-)cosmology texts [2, 40]; also see [41] for a slightly more advanced
analysis. Honestly integrating the Boltzmann equation is a notorious pain in the ass for generic
models due to threshold effects and potential numerical instabilities. Fortunately, numerical tools
now exist [42, 43]. Non-thermal models (e.g. non-thermal axions) are significantly more compli-
cated but—due to kinetic equilibrium—tend to also contribute to thermal dark matter [44]; for
constraints see, e.g. [45].

As reviewed in [46], there are a number of viable dark matter candidates that go beyond the
standard WIMP paradigm. These include sterile neutrinos, axions, and more recently explored
exotica that we will mention in Section 2.7. (Other non-particle candidates, such as massive
compact halo objects—MACHOs, have been shown to be unable to account for most of the dark
matter mass.) However, there is a compelling coincidence called the WIMP miracle that has
made WIMP models a favorite dark matter candidate among theorists [47]. If one assumes only
that the dark matter couplings are on the order of those for the weak interaction (g ≈ 0.65),
then cranking through the Boltzmann equation gives a model-independent statement that the
dark matter mass should be on the order of 100 GeV to 1 TeV. This happens to be “precisely”
where particle physicists already expect to find new physics to solve the hierarchy problem and
illuminate the mechanism of electroweak symmetry breaking. (Though, see Section 3.7.)

Since this brings us to the current era, let us review what is ‘known’ about dark matter [48]:

1. It explains observations over a wide range of scales and experimental methodologies. In
particular, it allows ΩMh

2 ≈ 0.1 as required by cosmological observations.

2. It is neutral. This is strongly constrained by, for example, searches for heavy hydrogen [49].
(Millicharged DM is constrained by cosmology [50].)

3. It is not made up of Standard Model particles but is stable on Hubble time scales.

4. It is cold, i.e. non-relativistic at freeze-out (T ∼ keV), or else structure formation would fail.

5. It is effectively non-(self-)interacting due to the stability of the halo. (A more conservative
statement is that DM must have negligible annihilation and dissipation, see e.g. [51].)

6. If DM interacts with a massless vector4, then the coupling α . 10−3 for mχ ∼ TeV [52].

7. It violates the equivalence principle [53].

3Given the overabundance of excellent references for SUSY, we will not mention any in particular.
4This restriction is not as random as it seems. Our favorite DM benchmark is the neutralino which is a Majorana

fermion so that any interaction with gauge vectors would violate gauge invariance. The restriction that generic
DM should have very small gauge vector couplings means that the neutralino is still a valid benchmark [48].

4



A similar ‘ten point test’ with further discussion can be found in [54].

2.5 Baroque Dark Matter

Particle physicists also saw the dramatic style of Baroque laboratory experiments as a
means of impressing visitors and expressing triumphant power and control [55] (mod-
ified by the author, who is aware that the Baroque period predated Romanticism).

The current era has particle physicists attempting to pull dark matter out of the sky and
into the lab, where one might hope to directly measure dark matter scattering events against
detector material. This so-called direct detection benefits from being largely independent of
astrophysical uncertainties and unknowns (astrophysical assumptions will be explained in Section
5.2). These experiments are placed deep underground to shield against cosmic ray backgrounds
and make use of state-of-the art techniques to determine the dark matter cross section and mass.
The heuristic picture of direct detection is as follows:

χ

SM

χ

SM

A WIMP from the local dark matter halo interacts with a target nucleus (composed of Standard
Model quarks) in a detector and recoils. By counting the number of nuclear recoils, one can hope
to determine information about the dark matter mass and cross section. The review of direct
detection via liquid noble gas detectors is the main focus of this report so we shall leave further
discussion of this topic to the rest of this document.

It is important to note that while exclusions plots continue to chip away at the allowed region
(under standard assumptions), to date there has been no universally-accepted ‘smoking gun signal’
for dark matter via these techniques. A single experiment, the DAMA collaboration [56], has a
many-standard deviation result. While the DAMA signal observes an annual modulation with
the correct phase that one would expect from the motion of the Earth relative to the galactic
dark matter halo, it has been effectively ruled out within the standard WIMP paradigm by, for
example, the CDMS collaboration [57, 58, 59]. Additionally, DAMA’s rudimentary background
rejection and its exclusive contract with the company producing its NaI detector material have
added to particle physics community’s skepticism of their result; for an informal review see [60],
or see [61] (lecture three) for a discussion of potential background sources. In fact, until recently
these results were largely ignored by dark matter model-builders.

2.6 Impressionist Dark Matter

While a generation of particle physicists turned to direct detection to “pull dark matter from the
sky and into the lab,” astrophysicists had turned to indirect detection techniques to go back to
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the sky to search for dark matter annihilation, which is very nicely reviewed in [62]. The heuristic
picture is

χ

χ

SM

SM

Here one hopes to detect the Standard Model products (or the products thereof) of dark matter
annihilation in the halo. Smoking gun signatures include antimatter (positrons and anti-protons),
gamma rays (mono-energetic), and neutrinos. These signals are affected by astrophysics, including
hitherto unknown but otherwise boring astrophysics such as the possible existence of nearby
pulsars that could mimic the above signals.

Several such intriguing astrophysical signals have existed for some time, but interest peaked
rapidly in 2008 with the release of the positron and anti-proton flux data from the PAMELA
satellite5 [64]. PAMELA is particularly interesting because it is a ‘toy’ particle detector in space
with its own magnetic field to determine particle charge (and hence discriminate between particles
and anti-particles). The satellite found an unexpected increase in the charged lepton flux and a
corresponding increase in the positron fraction6 [66] with no similar feature in anti-protons [67].
More recently the Fermi Large Area Telescope [68] does not rule out PAMELA.

Astrophysicists were cautious to herald the PAMELA signal as an avatar of dark matter; see,
e.g., [69] for two early alternate astrophysical explanations. On the other hand, having been
starved of any data vaguely resembling new physics for some time, the particle theory community
was quick to build new models [70] selectively invoking astrophysical hints. Other signals include
HESS [71], INTEGRAL [72], EGRET [73], and the Fermi/WMAP “haze” (see [74] for a recent
critical discussion) [75]. ATIC, a balloon experiment commonly cited in dark matter literature
between 2008 and 2009, seems to have been ruled out by Fermi [68]. A general feature of these
anomalies is that they seem to suggest dark matter with unusual spectra and/or couplings—though
these are not necessarily consistent with one another.

2.7 Postmodern Dark Matter: looking forward

Like all tyrannies, there is a single yoke of control: the one thing we know about
WIMPs is their relic abundance. We’ve lived with this tyranny for a long time. It’s
provided all of us with jobs... and some of us with tenure.
– Neal Weiner, on the ‘tyranny’ of the WIMP Miracle paradigm [76].

5Actually, interest in dark matter interpretations began well before data was officially released. One particularly
bold collaboration published a paper based on a photograph preliminary results presented at a conference and even
had the audacity to reproduce the preliminary results well before the official results were released [63].

6HEAT found a similar anomaly in the positron flux before PAMELA but could not rule our secondary sources
[65]; we thank Bibhushan Shakya for this comment.
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The prospect that astronomers had already indirectly detected dark matter beyond the stan-
dard neutralino-like paradigm spurred much interest in more exotic ‘phenomenological’ dark mat-
ter models that were motivated primarily from astrophysical anomalies rather than models of
electroweak symmetry breaking. Key ideas include light dark matter [72, 77], inelastic dark mat-
ter [78, 79], annihilating dark matter [80], exothermic dark matter [81], superWIMPs [82] and
WIMP-less dark matter [83]. (Additionally, some older top-down ideas have stuck around, e.g.
axions [84].)

A watershed paper by Arkani-Hamed and Weiner [85] (using many ideas earlier proposed by
the latter) established new rules for dark matter model building: pick your favorite anomalies
(direct or indirect) and construct a model that explains them and makes some unique dark matter
signature at colliders. The particle physics community, sitting on its thumbs while delays to
the Large Hadron Collider (LHC) dampened their expectations of when to expect signals of new
physics, was eager to pick up the trend. Thus came a renewed emphasis on direct production
(collider signatures) of dark matter:

SM

SM

χ

χ

Note that this is just related by crossing symmetry to our picture of indirect detection. Thus even
for ‘phenomenological’ models with arbitrary couplings and sectors, one would necessarily expect
there to be some collider given sufficient luminosity and energy.

One effect of this resurgence was the cautious re-admittance of DAMA into the group of vi-
able dark matter hints. While other direct detection experiments had seemed to rule out DAMA
assuming a neutralino-like WIMP, these new models had various ways to be simultaneously con-
sistent with the DAMA annual modulation and the other direct detection constraints [86]. As
will be discussed below, one easy way to do this is to have dark matter with predominantly spin-
dependent coupling [87] since DAMA’s NaI detector material is notably more sensitive to such
couplings compared to the Si and Ge targets used for the other existing direct detection bounds.
An additional handle comes from including channelling and blocking effects [88] in DAMA [89]
(these effects seem to only be particularly relevant for DAMA’s NaI crystals and do not affect
other existing direct detection experiments).

Finally, the most recent hints for dark matter come from the CDMS and CoGeNT collabora-
tions. In December of 2009, CDMS announced two events that they could not rule out as dark
matter hits [58]; see also [57] for recorded seminars announcing this result. While this is nowhere
near a ‘discovery,’ optimists hope that this is a harbinger of actual events in the next generation
of direct detection experiments (some of which are the subject of the rest of this exam). Finally,
just a two months before the preparation of this document, the CoGeNT collaboration released
a similar ‘hint’ that could be interpreted as a dark matter event [90]. It is perhaps interesting to
note that while the CoGeNT and DAMA signal regions appear mutually exclusive, invoking the
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χ

SM

χ

SM

(a) Direct detection

χ

χ

SM

SM

(b) Indirect detection

SM

SM

χ

χ

(c) Collider production

Figure 1: Unknowns in dark matter experiments. (1a) What are the quark couplings? (1b) What
are the final states? (1c) What are the parent species? This should be compared to the three wise
monkeys: See no evil, hear no evil, speak no evil.

channeling effects of the previous paragraph appears to give enough of a handle to allow the two
regions to overlap outside of the region that is otherwise excluded by direct detection.

To close, we remark that a proper experimental understanding of dark matter can only come
from combined results from all three methods of detection (direct, indirect, and collider); each
method is complementary in that each depends on a different source of unknown input. These
are summarized in Fig. 1a.

3 WIMP Relic Density

Here we will assume that dark matter is a thermal WIMP, i.e. a species that was in thermal
equilibrium before freezing out and leaving a relic density. This means that freeze-out occurs
when the WIMP species are nearly at rest; for an ‘improved analysis’ of the abundance of a stable
particle that does not depend on the low relative velocities, see the article by Gelmini and Gondolo
[91]. Recently others have begun to explore the possibilities for non-thermal relics through the
‘freeze-in’ of hidden sector species [92].

The primary references we will follow are Dodelson [1] and Kolb & Turner [2]. (Dodelson is
more readable, while Kolb & Turner are more thorough. Both are rather old.) For a summary of
more ‘recent’ developments as of 1991, see Griest and Seckel and the references therein [93]. For
the current draft, this derivation very closely follows Dodelson. Note that Kolb & Turner have
a slightly different treatment in which they use the entropy density of the universe as a fiducial
quantity. For a nice (and one of the first) treatment, see [94].

3.1 The Boltzmann Equation

For a general derivation, see Appendix D. The main idea is that particles were in thermal equilib-
rium with the early universe. This means that the production rate of particles from the thermal
bath is equivalent to the annihilation rate, Γ. If we adiabatically lowered the temperature of a
static universe below the DM mass, then the DM abundance would freeze out to a value that is
thermally suppressed by exp(−m/T ). However, we know that the universe is expanding at a rate
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given by the Hubble parameter H. Because of this, freeze-out occurs when the expansion rate
overtakes the annihilation rate, H � Γ.

The Boltzmann equation quantifies this picture and can be written as

a−3d(na3)

dt
= 〈σv〉

[
(nEQ)2 − n2

]
, (3.1)

where a is the scale factor, n is the dark matter number density, nEQ is the equilibrium number
density,

nEQ,i ≡ gi

∫
d3p

(2π)3
e−Ei/T

{
gi
(
miT
2π

)3/2
e−mi/T

gi
T 3

π2

, (3.2)

where gi is the number of degrees of freedom for the field. The general Boltzmann equation is
derived in Appenxix D; see also statistical physics textbooks, Kolb & Turner [2], and Dodelson [1].
To simplify this, use the fact that (aT ) is independent of t so that one can write na3 = na3T 3/T 3

and pull a factor of (aT )3 out of the time derivative. It is convenient to write these quantities in
terms of dimensionless quantities

Y ≡ n

T 3
∼ n

s
x =

m

T
. (3.3)

These quantities are useful not only because they’re dimensionless, but because of their scaling
properties. For example, the cubed temperature scales like R−3 so that ṡ + 3Hs = 0. Compare
this to the Boltzmann equation, which can be written as ṅ+ 3Hn = 〈σv〉 [(nEQ)2 − n2]. Using the
variable Y cancels the 3H term.

Let’s now rewrite the Boltzmann equation in a few steps,

dY

dt
= T 3〈σv〉

(
Y 2

EQ − Y 2
)
, (3.4)

where YEQ = nEQ/T
3. See (C.28) for the non-relativistic expression of nEQ.

Alternate formulations. We can write the Boltzmann equation in different ways depending
on how we define Y [94]. For example, for Y = n/s, n/sγ, or n/nγ, we have

Ẏ = 〈σv〉

 s
sγ
nγ

(Y 2 − Y 2
EQ

)
. (3.5)

Note that there are some prefactors that come along with whether one chooses Y = n/T 3 or
Y = n/s, the two most common conventions. The relevant conversion is

s =
2π2

45
g∗sT

3. (3.6)

For a rough derivation see the discussion before (C.46). If you ever compare to other literature,
e.g. Kolb & Turner, remember this conversion factor.
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We now change variables from t to x, for which we need dx/dt = Hx. In particular, since dark
matter production typically occurs in the radiation era where energy density scales like T 4, the
Hubble parameter is H = H(m)/x2 so that

dY

dx
= − λ

x2

(
Y 2 − Y 2

EQ

)
, (3.7)

where the parameter λ relates the annihilation rate to the expansion rate of the universe,

λ =
m3〈σv〉
H(m)

. (3.8)

For s-wave processes λ is constant, but in principle one can have some temperature dependence
in 〈σv〉. In general, we should write 〈σv〉(x) and λ(x).

For reference, you might want to recall the cosmological formulae

H(T )2 =
8π

3
Gρ(T ) (3.9)

ρR(T ) =
π2

30
g∗T

4, (radiation dominated) (3.10)

where H = (ȧ/a) and ρR is the energy density of relativistic species; see (C.9) and (C.35). Note
that 8πG = 1/M2

Pl.
Before proceeding, let us discuss the qualitative solution to (3.7). While the annihilation

rate Γ ∼ 〈σv〉T 3 is much greater than the expansion rate H, the ‘number density’ Y remains
in thermal equilibrium and tracks YEQ. This is because λ is large and Y wants to change to
match YEQ. However, λ is decreasing. Eventually Γ ≈ H at some ‘time’ xf . From that point
on, dY/dx becomes small and Y doesn’t want to change. We’re left with Y (x) ≈ Y (xf ) so that
the number of particles per comoving volume has frozen out. For neutrinos this occurs while the
species are still relativistic, see Appendix C.7. For WIMPs, this occurs when the particles are
already non-relativistic.

3.2 Solving the Boltzmann equation: s-wave

Unfortunately, (3.7) is a type of Riccati equation with no analytic solution. Despite not being
exactly solvable, we can still see this through by invoking some physics intuition. We know that
most of the action happens at x ∼ 1. In this region, we can see that the left-hand side of (3.7) is
O(Y ) while the right-hand side is O(λY 2). We will see shortly that λ� 1, so the right-hand side
must have a cancellation in the Y 2 − YEQ2 term.

After freeze out, YEQ will continue to decrease according to the thermal suppression exp(−m/T )
so that Y � YEQ. This happens at late times x� 1 where the Boltzmann equation reduces to

dY

dx
≈ −λ(x)

x2
Y 2. (3.11)

This is not yet solvable due to the x-dependence of λ coming from the temperature dependence
of 〈σv〉.
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Since we assume freeze-out occurs when WIMPs are non-relativistic, we may expand 〈σv〉 =
a+bv2 + · · · , where a corresponds to an s-wave piece, b corresponds to a p-wave (and some s-wave)
piece, and so forth. For now, let us assume that the process is s-wave so that we may drop all
powers of v2 from the thermally-averaged cross section. In this case λ(x) = λ.

This is now a tractable differential equation which we can solve. The trick will be to match the
solution in the asymptotic future to a good approximation at x ∼ 1; i.e. we go from an intractable
ODE (3.7) to a solvable ODE (3.11) at the cost of determining a boundary condition. The solution
of (3.11) is

1

Y∞
− 1

Yf
=

λ

xf
, (3.12)

where Y∞ is the asymptotic dimensionless number density and Yf is the value at the freeze out
boundary condition xf . Typically Yf � Y∞ so that we may approximate this solution as

Y∞ ≈
xf
λ
. (3.13)

A simple order of magnitude estimate for this solution is xf ∼ 10; more precise values are on
the order of xf ≈ 20 or 25. At this level plugging in this value is a kludge. A more honest
approximation comes from solving

nEQ(xf )〈σv〉 = H(xf ). (3.14)

We give an even more explicit expression below. The plot for the dark matter relic density is
well-known7. The qualitative features are as follows:

• Y tracks its equilibrium value YEQ until x ∼ 10, and then levels off to a frozen-out constant.

• As one increases the annihilation cross section, the freeze out time is later.

• The distinction between Bose and Fermi statistics is negligible by the time the dark matter
species freezes out. (The use of Boltzmann statistics was assumed in when we wrote the
Boltzmann equation.)

3.3 Solving the Boltzmann equation: general

Before moving on, let’s turn to a more general solution to the Boltzmann equation that extends
our s-wave analysis above. The general conclusions are the same, so we’ll focus on some technical
details. We will follow Scherrer and Turner [94]. Useful note: that paper uses Y = n/s, which
differs from our definition of Y by the overall conversion factor in (3.6).

Suppose that in a velocity expansion, the leading order term in the thermally averaged cross
section goes like the p-th power of v,

〈σv〉 ∝ vp. (3.15)

7It is notoriously difficult to plot in Mathematica; see homework 5 from Hitoshi Murayama’s Physics 229C
course for suggestions: http://hitoshi.berkeley.edu/229C/index.html.
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For s-wave p = 0, while for p-wave p = 2, and so forth. From the Boltzmann velocity distribution,
we know that 〈v〉 ∼

√
T so that we may write

〈σv〉 ∝ x−n, (3.16)

where n = p/2. If we write 〈σv〉 = 〈σv〉0x−n, then we may define

λ0 =
m3〈σv〉0
H(m)

= λxn. (3.17)

In this way λ0 is independent of x. In this way we may pull out the x-dependence from λ in (3.7),

dY

dx
= − λ0

x2+n

(
Y 2 − Y 2

EQ

)
. (3.18)

We will rewrite this in terms of ∆ ≡ Y − YEQ:

d∆

dx
= −dYEQ

dx
− λ0

x2+n
∆(2YEQ + ∆). (3.19)

Here we’ve just used Y 2 − Y 2
EQ = (Y + YEQ)(Y − YEQ).

First consider the case where x is small; say 1 < x� xf . We’ll give a more precise definition of
xf below. In this limit, we know that Y is very close to YEQ so that ∆� YEQ and |∆′| � −Y ′EQ,
where we’ve written a prime to mean d/dx. In this regime we can algebraically solve (3.19):

∆ = −dYEQ

dx

x2+n

λ0(2YEQ + ∆)
(3.20)

=

(
1− 3

2x

)
x2+n

λ0(2 + ∆/YEQ)
(3.21)

≈ x2+n

2λ0

. (3.22)

Here we have used YEQ = nEQ/T
3 and (C.28), i.e.

YEQ =
g

(2π)3/2
x3/2e−x ≡ ax3/2e−x. (3.23)

Now consider what happens when x� xf . In this regime we know that YEQ is exponentially
small compared to ∆ ≈ Y � YEQ. We can thus drop YEQ and Y ′EQ in (3.19) to obtain

d∆

dx
= − λ

x2+n
∆2. (3.24)

Physically, particle creation has practically halted while annihilations are still somewhat impor-
tant, leading to a slight reduction to Y compared to the value of YEQ at Γ = H (the natural back-
of-the-envelope rough estimate the for the relic abundance). Integrating this approximation from
xf—which we nebulously take to be the lower-limit of the valid range for this approximation—to
x =∞ gives

Y∞ =
(n+ 1)

λ0

xn+1
f . (3.25)
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The importance of this quantity is that Y (today) ≈ Y∞, i.e. this is what we plug into ρχ and Ωχ

to check if we’ve obtained the correct (observed) dark matter relic density. As mentioned in the
simplified s-wave case, we’ve obtained this by resorting to an approximation in the x� xf case.
The cost is that we’ve introduced a boundary condition at xf , the freeze out ‘time,’ where we
must match our approximation.

Now let’s precisely define xf . We are interested in the regime where ∆ ≈ YEQ. We define
freeze-out precisely by the condition

∆(xf ) = cYEQ(xf ), (3.26)

where c = O(1) and is determined empirically. We will plug into (3.19). We shall take two limits:
first we will assume that d∆/dx� 1 and further that the particle is non-relativistic at freeze-out,
in particular x � 3/2. The 3/2 comes from dYEQ/dx = a(3/2 − x)x1/2e−x. Plugging in and
solving gives,

exf ≈ aλ0c(2 + c)

x
n+1/2
f

(3.27)

xf ≈ ln [aλ0c(2 + c)]− (n+ 1/2) ln ln [(2 + c)λ0ac] . (3.28)

Here we’ve further used the limit xf � 3/2, as appropriate for a particle which is non-relativistic
at freeze out. In (3.28) we now have a detailed expression for xf which we may take as a definition.

One must still pick a value for c. It turns out that the best fit to numerical results sets

c(c+ 2) = n+ 1 (3.29)

which is better than 5% for any xf & 3. Plugging in (3.17), (3.10), (3.9), and M2
Pl = 8πG, we

obtain:

aλ0 =
g

(2π)3/2
· m3

H(m)
〈σv〉0 (3.30)

=
g

(2π)3/2
·m3 1

m2

1√
8πG

√
90

π2g∗
〈σv〉0 (3.31)

=

√
45

4π5︸ ︷︷ ︸
≈0.19

g
√
g∗

m√
8πG
〈σv〉0. (3.32)

Putting it all together,

xf ≈ ln

[√
45

4π5

g
√
g∗

m√
8πG
〈σv〉0

]
−
(
n+

1

2

)
ln2 [· · · ] , (3.33)

where the second bracket contains the same junk as the first bracket. Note that the corrections
to xf ≈ 20 (for s-wave) are only logarithmic. Note that we can write m/

√
8πG = mMPl where

MPl is the reduced Planck mass, MPl = 2.44× 1018 GeV.
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3.4 Solving Boltzmann Equation Again

For instructive purposes (“just for shits and giggles”), we’ll re-do our derivation of the Boltzmann
equation following Murayama-san’s example in Homework #5 of his P229C (Fall 2007) course at
Berkeley8. We will do this for two reasons: first it will be a quick way to go over the analogous
formulae using the definition Y = n/s rather than the Dodelson definition Y = n/T 3. More
importantly, it will also illustrate the solution of the Boltzmann equation in Mathematica, including
some of the numerical difficulties. Note, Hitoshi uses the relativistic formulae for some of his
quantities, but at some point these appear to cancel out to give the same result as when one
(correctly) uses the nonrelativistic versions.

In terms of Y = n/s and x = m/T , the Boltzmann equation is

dY

dx
= − 1

x2

s(m)

H(m)
〈σv〉

(
Y 2 − YEQ

)
(3.34)

We can then plug in (3.6), (3.10), and (3.9),

s(m)

H(m)
=

2π2

45
g∗sm

3

(
8πG

3

π2

30
g∗m

4

)−1/2

(3.35)

=

(
2π
√

90

45

)
︸ ︷︷ ︸

≈1.32

g∗s√
g∗

m√
8πG

. (3.36)

Note that 1/
√

8πG ∼ MPl,red ≈ 0.2MPl,true. In most of this document we’ll use MPl = MPl,red,
the reduced Planck ass. Kolb and Turner use the ‘true’ Planck mass. To avoid confusion, in this
section we’ll keep factors of

√
8πG explicit as long as we can.

The equilibrium number density is YEQ = nEQ/s,

YEQ = g

(
mT

2π

)3/2

e−m/T ·
(

2π2

45
g∗sT

3

)−1

(3.37)

=

(
45

2π4

√
π

8

)
︸ ︷︷ ︸
≈0.145

(
g

g∗s

)
x3/2e−x ≡ ax3/2e−x, (3.38)

where we’re using the non-relativistic expression for nEQ with zero chemical potential. Note that
g is the number of internal degrees of freedom for the dark matter, e.g. g = 2 for a Majorana
fermion.

Let us also expand 〈σv〉 = 〈σv〉0x−n, dropping higher angular momentum contributions. We
then have

dY

dx
=
−λ
x2+n

(
Y 2 − Y 2

EQ

)
λ =

s(m)

H(m)
〈σv〉0. (3.39)

8http://hitoshi.berkeley.edu/229C/index.html
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This is now precisely the same form as (3.18), though since we are using Y = n/s instead of
Y = n/T 3, the definition of λ is different by a factor of s(m). Note that this factor exactly
cancels an additional factor of 1/s(m) in the ‘a’ coefficient of (3.38). The combination λa is
indeed independent of how we defined Y . In particular, (3.33) and (3.25) still hold with the new
definition of λ in (3.39).

Now let’s go in a different direction and see how we can numerically solve the Boltzmann equa-
tion in Mathematica. This is a notoriously difficult thing to do because in the interesting region,
the Boltzmann equation depends on the small difference between two big numbers. (Specifically,
the difference between two big numbers times a small number in the regime where the product
becomes small.) Rushing näıvely into solving the equation can lead to numerical instabilities
and grumpy code. One trick is to try to and rescale to use variables where large factors (like
MPl ∼ 1/

√
G) naturally are cancelled against small factors (like 〈σv〉0). Let’s start again with the

Boltzmann equation, expanded slightly:

dY

dx
= − s(m)

H(m)

〈σv〉0
x2+n

(
Y 2 − Y 2

EQ

)
. (3.40)

We can shift by the x-independent prefactor by defining a variable

y ≡ s(m)

H(m)
〈σv〉0Y = λY. (3.41)

Multiplying both sides of the Boltzmann equation by λ we obtain

dy

dx
=
−1

x2+n

(
y2 − y2

EQ

)
(3.42)

yEQ = a
s(m)

H(m)
〈σv〉0x3/2e−x (3.43)

=

(
45

2π4

√
π

8

)
︸ ︷︷ ︸
≈0.145

(
2π
√

90

45

)
︸ ︷︷ ︸

≈1.32

g
√
g∗

m√
8πG
〈σv〉0x3/2e−x (3.44)

= 0.192
g
√
g∗

m√
8πG
〈σv〉0x3/2e−x (3.45)

We see that all of the physics has been crammed into the prefactor of yEQ. Let’s throw some
typical numbers in: we assume two degrees of freedom (e.g. a Majorana fermion) g = 2, normalize
about g∗ = 100, m = 1000 GeV. The reduced Planck mass is MPl = (8πG)−1/2 = 2.44×1018 GeV.
We’ll throw in a typical ‘weak-ish scale’ cross section with 〈σv〉0 = 10−10 GeV−2. This leaves us
with

yEQ =
(
9.34× 109

) g
2

√
100

g∗

( m

1000 GeV

)( 〈σv〉0
10−10 GeV−2

)
x3/2e−x. (3.46)

Let’s go ahead and use these ‘default’ values in a plot. We’d like to set boundary conditions
Y = YEQ at x = 0, but this is of course outside of the range of validity of the non-relativistic
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Figure 2: Output of our toy freeze out calculation in Mathematica. The blue line is the plot of Y
by x, while the red line plots YEQ.

expressions we used. Instead, we’ll settle on Y = YEQ at x = 1 and verify a posteriori that there
is no strong dependence on x.

Let’s start with the case of s-wave annihilation, n = 0. To avoid numerical issues, start by
integrating y from 1 < x < 50.

MyAssumptions = {m -> 1000, g -> 100, \[Sigma] -> 10^-10,
Subscript[M, Pl] -> 2.44 10^18};

solution1 =
NDSolve [{y’[

x] == -(1/
x^2) (y[x]^2 - (0.192 Subscript[M, Pl] m \[Sigma] x^(3/2)

E^-x)^2),
y[1] == 0.192 Subscript[M, Pl] m \[Sigma] 1^(3/2) E^-1} /.

MyAssumptions , y, {x, 1, 50}];
bc = Evaluate[y[50] /. solution1 ];

Evaluating y at x = 50 gives 42.14. We’ll use this as a boundary condition for the remainder of
the range, say up to x = 10, 000:

solution2 =
NDSolve [{y’[

x] == -(1/
x^2) (y[x]^2 - (0.192 Subscript[M, Pl] m \[Sigma] x^(3/2)

E^-x)^2), y[50] == bc} /. MyAssumptions ,
y, {x, 50, 10000}];

We can now patch together the solutions in a nice plot

LogLogPlot[Evaluate[y[x] /. solution1], {x, 1, 50},
PlotRange -> {{1, 10000} , {1, 10^11}}];

LogLogPlot[Evaluate[y[x] /. solution2], {x, 50, 10000} ,
PlotRange -> {{1, 10000} , {1, 10^11}}];
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Show[%, %%]

This yields the blue line in Fig. 2. Next we can also plot the equilibrium solution,

LogLogPlot[
0.192 Subscript[M, Pl] m \[Sigma] x^(3/2) E^-x /. MyAssumptions , {x,

1, 1000} , PlotRange -> {{1, 10000} , {1, 10^11}} ,
PlotStyle -> RGBColor[1, 0, 0]];

Show[%, %%]

This produces the red line in Fig. 2.
What we notice is that Y closely tracks YEQ until x = xf ≈ 20. In Fig. 3 you can see that

this is a fairly robust value. The value of Y then freezes out after xf and becomes constant. We
thus verify that it does not really matter where we pick our boundary condition when solving the
differential equation; as long as we’re in a regime where x . 10, Y = YEQ is a reliable boundary
condition. To verify this point, we may plot the ratio of YEQ/Y ,

1 10 100 1000 104
1

100

104

106

108

1010

Figure 3: Varying 〈σv〉0: 10−10 GeV−2, 10−11 GeV−2, 10−12 GeV−2.

LogLinearPlot[
0.192 Subscript[M, Pl] m \[Sigma] x^(3/2)

E^-x/Evaluate[y[x] /. solution1 [[1]]] /. MyAssumptions , {x, 1, 50},
PlotStyle -> RGBColor[1, 0, 0]]

which produces the plot in Fig. 4. You can check that the value of y(∞) is relatively insensitive to
the dark matter mass m by varying the latter by an order of magnitude. As noted in our analytic
work above, the deviation is logarithmic at leading order. This is shown in Fig. 5.

You can go ahead and modify the expressions above to generate the relevant plots for p-wave
annihilation.
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Figure 4: A plot of Y/YEQ as a function of x showing that we are free to use Y = YEQ as a
boundary condition for any value of x . 10.
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Figure 5: A plot of Y as a function of x for m = 10, 10, 000, 1, 000, 000.
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3.5 Abundance

Once a particle has frozen out, its number density falls off according to the scale factor, a−3. Thus
the [mass] density today is m(a1/a0)3n, where a1 is assumed to be at a sufficiently late time that
Y ≈ Y∞. Recall that the number density at this late time is n = Y∞T

3
1 . Thus the mass density

today is

ρ = mY∞T
3
0

(
a1T1

a0T0

)3

≈ mY∞T
3
0

30
. (3.47)

This last equality is exercise 11 of Dodelson’s text (the solution is in the back); the point is that
aT is not constant due to the reheating of photons from the annihilation of particles between 1
MeV and 100 GeV. Note that we’ve gone back to our normalization Y = n/T 3.

The relevant number to match is the fraction of the present-day critical density coming from
χ, using (3.8):

Ωχ =
xf
λ

mT 3
0

30ρcrit

=
H(m)xfT

3
0

30m2〈σv〉ρcrit

. (3.48)

Recall that ρcrit = 3H2
0/8πG. Using (3.9) and (3.10), the Hubble rate at T = m, which we assume

to be during the radiation era, is

H(T ) = T 2

√
4π3Gg∗(T )

45
, (3.49)

where g∗(T ) is the effective number of degrees of freedom at temperature T , see Fig. 6 or Fig. 10
in Appendix C. Plugging H(m) into the expression for Ωχ shows that the latter quantity does not
depend on the dark matter mass m except through the implicit dependence in xf and g∗. This
provides an important lesson: the relic abundance is primarily controlled by the cross section,
〈σv〉.

The final expression is

Ωχ =

√
4πGg∗(m)π3

45

xfT
3
0

30〈σv〉ρcr

(3.50)

=

√
4π3g∗(m)

45

8π

90H2
0

xf
〈σv〉

T 3
0

M3
Pl

(3.51)

= 0.3h−2
(xf

10

)(g∗(m)

100

)1/2
10−39cm2

〈σv〉
. (3.52)

Assuming that χ makes up all of the dark matter, the correct density requires Ωχ = 0.3. The
10−39cm2 cross section, which is right around what one would expect from a weakly interacting
100-ish GeV particle, is the “WIMP miracle.”

3.5.1 Sanity check: another derivation

Just became I don’t trust myself, let’s re-do this derivation for Y = n/s. The dark matter density
is

ρ = mY∞s0 = m
s0

s(m)

H(m)

〈σv〉0
y∞, (3.53)
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The early Universe is radiation dominated, so the Hubble-expansion rate falls with temperature 

as H(T) = 1.66gi’2T2/mpl, where mpl = 101’ GeV is the Planck mass. The quantity g* is the 

effective number of relativistic degrees of freedom. It is approximately equal to the number of 

bosonic relativistic degrees of freedom plus 3 times the number of fermionic relativistic degrees 

of freedom. This slowly varying function of temperature is plotted as a function of temperature in 

Fig. 3. At early times (T 2 m,), H CYC T 2, while nX CC T 3, so the expansion rate decreases less rapidly 

than the number density of x’s. Therefore, at early times, the expansion term, 3Hn,, in Eq. (3.2) is 

negligible compared with the right-hand side, and the number density tracks its equilibrium 

abundance. At late times, the right-hand side becomes negligible compared with the expansion 

term, and the comoving abundance of x’s remains unchanged. The temperature Tf at which 

the x’s freeze out is given by T(T,) = H(T,). Using typical weak-scale numbers, the freezeout 

temperature turns out to be Tf E mJ20; there is a small logarithmic dependence on the mass and 

annihilation cross section. After freezeout, the abundance of x’s per comoving volume remains 

constant. 

Barring exotic entropy-producing phenomena, the entropy per comoving volume in the Uni- 

verse remains constant so that nX/s remains constant, where s N 0.4g,T 3 is the entropy density. 
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Fig. 3. The number of effective relativistic degrees of freedom, g,(T) as a function of temperature. 
Figure 6: A plot of the number of relativistic degrees of freedom g∗ as a function of temperature.
Image from in Fig. 3 of JKG [95].

where y is given by (3.41). Further, we know from (3.25) that

Y∞ =
(n+ 1)

λ
xn+1
f (3.54)

y∞ = (n+ 1)xn+1
f . (3.55)

Now invoke the usual formulae (see... well, above all over the place)

ρcrit =
3H2

0

8πG
H(T )2 =

8πG

3
g∗
π2

30
T 4 s(T ) =

2π2

45
g∗T

3. (3.56)

We thus have

Ω =
ρ

ρcrit

= ms0

(
2π2

45
g∗m

3

)−1
√

8πG

3
g∗
π2

30
m4

(n+ 1)xn+1
f

〈σv〉0
× 8πG

3H2
0

(3.57)

=

(
45

2π2

1

3

√
π2

90

)
︸ ︷︷ ︸

≈0.252

(n+ 1)xn+1
f s0

g∗H2
0 〈σv〉0

(8πG)3/2 (3.58)

Note that explicit factors of m have cancelled. We can now plug in xf ≈ 20, or whatever refinement
thereof. The entropy of the universe today is given by the sum of the photon and neutrino
entropies,

s0 = sγ,0 + sν,0 =

(
1 +

21

22

)
sγ =

43

22
2

2π2

45
T 3

0 = 2890 cm−3. (3.59)
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(Check this.) We have used ~c = 0.1973× 10−4 MeV cm and T0 = 2.725 K with K = 8.617× 10−5

MeV. The Hubble constant is

H0 = 100h km sec−1 Mpc−1 = 2.131× 10−42 GeVh. (3.60)

We end up with (recalling 〈σv〉 = 〈σv〉0xn)

Ωh2 = 0.0845× (n+ 1)xn+1
f ×

√
100

g∗

(
10−10 GeV−2

〈σv〉0

)
. (3.61)

For an s-wave process (n = 1) we obtain

Ωh2 = 1.69× xf
20

√
100

g∗

(
10−10 GeV−2

〈σv〉0

)
. (3.62)

Since we want Ωh2 = 0.12, this is too large. We need to enhance the annihilation cross section by
about an order of magnitude to reduce the relic abundance.

3.6 Mini-summary: the Boltzmann Equation

A few quick formulae in one place. We use the definition Y = n/T 3, which differs from Y = n/s
by the factor in (3.6). This modifies the definitions of λ according to (3.39).

dY

dx
=
−λ
x2

(
Y 2

Eq − Y 2
)

(3.63)

λ =
m3〈σv〉
H(m)

(3.64)

H2(T ) =
ρ(T )

ρcrit

H2
0 =

8π

3
Gρ(T ) (3.65)

ρR(T ) =
π2

30
g∗T

4 (3.66)

ρcrit =
3H2

0

8πG
=

3

8π
H2

0M
2
Pl (3.67)

YEQ =
g

(2π)3/2
x3/2e−x. (3.68)

In the radiation era H(T ) is given by (3.49). Long after freeze-out, we may use Y � YEq ∼ e−m/T

to solve the Boltzmann equation up to a boundary condition at freezeout, xf :

Y∞ =
n+ 1

λ0

xn+1
f =

n+ 1

λ
xf (3.69)

〈σv〉 = 〈σv〉0xn (3.70)

λ0 =
m√
8πG

√
90

π2g∗
〈σv〉0 = λx−n (3.71)

xf ≈ 20, (3.72)
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or, more precisely,

xf ≈ ln

[√
45

4π5

g
√
g∗

m√
8πG
〈σv〉0

]
−
(
n+

1

2

)
ln2 [· · · ] (3.73)

Finally, we have a useful numerical value:

Ωh2 = 0.0845× (n+ 1)xn+1
f

√
100

g∗

(
10−10 GeV−2

〈σv〉0

)
(3.74)

Note that in the above formulae we write MPl to mean the reduced Planck mass, 8πG = M−2
Pl . If

you’re concerned about any ambiguities, stick with equations written in terms of G.

3.7 Polemics: WIMP agnosticism

[Flip: need to include citations from GFDM paper]
The WIMP miracle is often presented as strong evidence for new terascale physics connected

to electroweak symmetry breaking. However, this should be taken with a grain of salt. First the
statement of the WIMP miracle is valid only at the “within a few orders of magnitude” level.
Note that a typical weak cross section is 〈σv〉 ∼ pb = 10−36 cm2, so that some amount of tuning
is required in the WIMP coupling.

A more sobering restriction comes from a tension between the correct relic abundance and
recent direct detection bounds. As of the writing of this paragraph, XENON100 has set an
upper limit on the spin-independent elastic WIMP-nucleon cross section on the order of σSI =
7.0×10−45 cm2 = 7.0×10−9 pb for a 50 GeV WIMP at 90% confidence. A very naive assumption
is that the annihilation cross section should be roughly of the same order as the direct detection
cross section, and so there appears to be significant tuning required to generate a difference on
the order of several orders of magnitude between the two processes.

As a case study, consider the plight of the MSSM. The prototypical MSSM WIMP is a neu-
tralino (the LSP) whose abundance is protected by R-parity. A standard approach is to consider
parameters in which the direct detection bounds are satisfied and then attempt to boost the
relic density using handy tricks (i.e. tuning). For example, for a pure bino LSP one could set up
coannihilations due to an accidental slepton degeneracy or resonant annihilations (e.g. a Higgs res-
onance). Alternately, one may note that Higgsinos and winos have annihilation cross sections that
are typically too large allows one to tune the LSP to be a specific combination of bino, Higgsino,
and wino to generate the correct abundance. The parameter space for the latter ‘well-tempered
neutralino’ scenario, however, is now strongly constrained by XENON100.

There remain ways to generate honest-to-goodness WIMPs in models of new physics, but these
appear to be rather special cases in extended models rather than generic phenomena.

Counterpoint: even though there appears to be a 10few tuning required, one may argue that
there is still a ‘miracle’ because of the orders of magnitude that have to cancel. People point out
the (T0/MPl)

3 factor in the explicit formulae above. Of course, the point is that the smallness
of (T0/MPl)

3 is balanced by the smallness (weak scale cross section) of 〈σv〉. In this sense it’s
a coincidence between the Weak scale, the Planck scale, and the CMB scale. (And note, very
importantly, that it is independent of the WIMP mass up to logarithmic corrections.) Is this a
miracle?
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3.8 Thermally averaged cross section & identical particles

Note that v is the relative velocity, so that each of the initial state χ particles in the annihilation
process has velocity v/2. The definition of 〈σv〉 is given below in (B.21). Compared to the usual
definition of σ in Peskin & Schröeder, (B.15), the thermal average includes an integral over the
initial state momenta weighted by the Maxwell-Boltzmann contribution.

Practically, we don’t need to do the thermal average over and over again for each cross section.
Instead, we expand in powers of v2 and insert the moments of the Maxwell-Bolztman velocity
distribution. Typically one only needs the first or second term to get the relevant behavior. Thus
we would like to find

σv = a+ bv2 + · · · . (3.75)

The thermal average gives 〈v2〉 = 6/xf , for example. Note that the overall prefactor 1/|va− vb| =
1/v in the expression for dσ cancels in σv.

The annihilation cross section is given by

dσ =
1

2Ea2Eb|va − vb|

(∏
f

d3pf
(2π)3

1

2Ef

)
(2π)4δ(4)

(
pµa + pµb −

∑
f

pµf

)
|M|2s.a., (3.76)

where |M|2 should be understood to mean the spin averaged squared amplitude. The two-body
phase space is,

dPS2(p1, p2) =

(∏
f

d3pf
(2π)3

1

2Ef

)
(2π)4δ(4)

(
pµa + pµb −

∑
f

pµf

)
=
dΩCM

4π

1

8π

(
2|p1|
ECM

)
. (3.77)

Here 1 and 2 label final state particles.
At this stage there are model-dependent factors of two which become important. Focusing

on the case of 2 → 2 annihilations, we are concerned about symmetry factors which pop up for
identical initial states (e.g. Majorana fermion dark matter) and identical final states.

First consider the initial states. Suppose the two initial state dark matter particles are identi-
cal. There is no additional factor of two coming from identical initial states. Here’s a paragraph
from Dreiner, Haber, and Martin [96]:

Recall the standard procedure for the calculation of decay rates and cross-sections
in field theory—average over unobserved degrees of freedom of the initial state and
sum over the unobserved degrees of freedom of the final state. This mantra is well-
known for dealing with spin and color degrees of freedom, but it is also applicable
to degrees of freedom associated with global internal symmetries. Thus, the cross-
section for the annihilation of a Dirac fermion pair into a neutral scalar boson can be
obtained by computing the average of the cross-sections for ξ1(p1, s1)ξ2(p2, s2) → φ
and ξ2(p1, s1)ξ2(p2, s2)→ φ. [Here ξ is an uncharged, massive, (1/2, 0) fermion.] Since
the annihilation cross-sections for ξ1ξ1 and ξ2ξ2 are equal, we confirm the resulting
annihilation cross-section for the Dirac fermion pair obtained above in the χ–η basis.
[Here ΨD = (χ, η†)T ].
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Thus there are no additional factors in the thermally averaged annihilation cross section 〈σv〉 com-
ing from having identical Majorana dark matter particles. (It is trivial that the above argument
carries over to the case of where the particles have arbitrary spin.)

This should not be confused with the factor of 1/2 which appears when calculating indirect
detection rates, which comes from the number densities in the flux,

d2N

dAdT
∼
∫
d` n1n2〈σv〉. (3.78)

This is explained by Dreiner et al. as follows,

We assume that the number density of Dirac fermions and antifermions and the
corresponding number density of Majorana fermions are all the same (and denoted
by n). Above, we showed that σ is the same for the annihilation of a single
species of Majorana and Dirac fermions. For the Dirac case, n1n2 = n2. For the
Majorana case, because the Majorana fermions are identical particles, given N
initial state fermions in a volume V , there are N(N − 1)/2 possible scatterings. In
the thermodynamic limit where N, V → ∞ at fixed n ≡ N/V , we conclude that
n1n2 = n2/2 for a single species of annihilating Majorana fermions. Hence the
event rate of a Dirac fermion-antifermion pair is double that of a single species of
Majorana fermions.

The factor of 1/2 is explained in [97] and is consistent with the interpretation of a Dirac
fermion as a pair of mass-degenerate Majorana fermions. Alternately,

The extra factor of 1/2 can also be understood by noting that in the case of anni-
hilating dark matter particles, all possible scattering axes occur and are implicitly
integrated over. But, integrating over 4π steradians double counts the annihilation
of identical particles, hence one must include a factor of 1/2 by replacing n1n2 = n2

by n2/2.

This interpretation for the factor of 1/2 in indirect detection (which is not relevant for the relic
abundance calculation with which we are presently concerned) carries over to the degeneracy
of the final states in the annihilation cross section.

Now consider the final state particles. If there are k identical final state particles, then we
expect an additional factor of 1/k!, which can be understood precisely as above: the phase space
integral over-counts final state configurations. For 2 → 2 processes this is a factor of 1/2! which
we will write out as 1/k! in the remainder of this section as a reminder.
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Putting this all together, we have:

dσ =
1

k!

1

4E2v

(∏
f

d3pf
(2π)3

1

2Ef

)
(2π)4δ(4)

(
pµa + pµb −

∑
f

pµf

)
1

4

∑
spins

|M|2 (3.79)

=
1

k!

1

4E2v

dΩCM

4π

1

8π

(
2|p1|
ECM

)
1

4

∑
spins

|M|2. (3.80)

We have written 2Ea2Eb|va − vb| = 4E2v. Now note that

2|p1|
ECM

=
|p1|
E

= v1 (3.81)

where v1 is the velocity of one of the final state axions. This is not integrated over (we’ve already
done the final state phase space integrals) and must be converted into the initial state relative
velocity v using conservation of E2

i = m2
i + p2

i and vi = pi/E,

m2
χ

E2
+
v2
χ

E2
=
m2
a

E2
+
v2

1

E2
, (3.82)

Recalling that v = 2vχ, we find

v2
1 =

v2

4
+
m2
χ −m2

a

E2
. (3.83)

Plugging this back in to dσ,

dσ =
1

k!

1

4E2v

dΩCM

4π

1

8π

√
v2

4
+
m2
χ −m2

a

E2

1

4

∑
spins

|M|2 (3.84)

v dσ =
1

k!

d cos θ

(2E)2

1

16π

1

4

∑
spins

|M|2 (1 + · · · ) , (3.85)

where the expansion of the square root drops terms of order O(v) and O(ma/mχ) since E ≈ mχ.

To be precise, E = γmχ where γ is the Lorentz factor
(
1− v2

χ

)−1/2
.

Comment/question: The expansion of the square root seems to give a higher order correc-
tion proportional to v. Shouldn’t this mean that there’s a term in σv that goes like v3, i.e. the
expansion in relative velocity includes odd powers of v in addition to even powers?

Simplifying a bit more, we have a leading order contribution of

v dσ =
1

k!

d cos θ

64π

1

s

∑
spins

|M|2. (3.86)

Recall that k! encodes the symmetry of the final states: k = 1 for non-identical final states, and
k = 2 for two identical final state particles. One can perform the d cos θ integral and expand in
powers of v to obtain the coefficients in (3.75). From taking the first moment of the Boltzmann
distribution, we can plug in those coefficients to obtain

〈σann.v〉 = a+ 6
b

xf
+ · · · . (3.87)
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3.9 Co-annihilations

See Griest and Seckel [93], and a paper by the DarkSUSY9 collaboration [99].

4 Sample calculation: Goldstone fermion annihilation

As a sample calculation we highlight some features of non-standard interactions. We consider the
decays of Goldstone fermion dark matter to Goldstone bosons via s and t channel processes..

4.1 Feynman rules

The relevant part of the interaction Lagrangian is

L =
b1√

2

q

f
χσµχ̄∂µa+ i

ma

f
√

2
(α + β)a (χχ− χ̄χ̄) . (4.1)

Note that each of these terms are already self-adjoint so no additional “+h.c.” is necessary. The
b1 term is self-adjoint since the Hermitian conjugate just gives. This gives the following two-
component Feynman rules (where p is the incoming scalar momentum):

=
b1√

2

q

f
σµpµ = − b1√

2

q

f
σ̄µpµ

=
−
√

2ma(α + β)

f

=

√
2ma(α + β)

f

To check: there seems to be a sign error for at least the last two rules. However, changing
the sign of both rules should not affect the overall amplitude.

4.2 Amplitude

We assign momenta in the following way:

p1

p2

k1

k2

9DarkSUSY [98] is a tool for the numerical calculation of dark matter relic densities in SUSY while accounting
for coannihilations. A similar tool is micrOMEGAS[43].
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In the absence of any explicit U(1) breaking terms, we have the following diagrams:

=

(
b1q√
2f

)2
i

(p1 − k1)2 −m2
χ

x1 /k1( /̄k1 − /̄p1) /k2y
†
2

(4.2)

=

(
b1q√
2f

)2
i

(p1 − k1)2 −m2
χ

y†1 /̄k1( /k1 − /p1) /̄k2x2

(4.3)

=

(
b1q√
2f

)2 −imχ

(p1 − k1)2 −m2
χ

x1 /k1 /̄k2x2

(4.4)

=

(
b1q√
2f

)2 −imχ

(p1 − k1)2 −m2
χ

y†1 /̄k1 /k2y
†
2

(4.5)

Note that the u-channel diagrams are given by the same expressions with k1 ↔ k2.
If we only consider explicit U(1)-breaking vertices, then we have the following diagrams:

=

(√
2ma(α + β)

f

)2
−i

(p1 − k1)2 −m2
χ

x1( /k1 − /p1)y†2
(4.6)

=

(√
2ma(α + β)

f

)2
−i

(p1 − k1)2 −m2
χ

y†1( /̄k1 − /̄p1)x2

(4.7)

=

(√
2ma(α + β)

f

)2
imχ

(p1 − k1)2 −m2
χ

y†1y
†
2

(4.8)

=

(√
2ma(α + β)

f

)2
imχ

(p1 − k1)2 −m2
χ

x1x2

(4.9)

Note that the u-channel diagrams are given by the same expressions with k1 ↔ k2.
Finally, we can consider diagrams with one explicit breaking vertex and one U(1)-preserving

vertex. There are three sources of signs: (1) the direction of the scalar momentum going into a
b1 vertex, (2) the ���U(1) vertex with incoming fermion arrows, and (3) picking the σ̄ Feynman rule
in the b1 vertex rather than the σ rule.
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The following diagrams pick up a factor of the momentum in the internal propagator:

=

(
b1q√
2f

)(√
2ma(α + β)

f

)
−i

(p1 − k1)2 −m2
χ

x1( /k1 − /p1) /̄k2x2

(4.10)

=

(
b1q√
2f

)(√
2ma(α + β)

f

)
i

(p1 − k1)2 −m2
χ

y†1 /̄k1( /k1 − /p1)y†2
(4.11)

=

(
b1q√
2f

)(√
2ma(α + β)

f

)
i

(p1 − k1)2 −m2
χ

x1 /k1( /̄k1 − /̄p1)x2

(4.12)

=

(
b1q√
2f

)(√
2ma(α + β)

f

)
−i

(p1 − k1)2 −m2
χ

y†1( /̄k1 − /̄p1) /k2y
†
2

(4.13)

Note that the u-channel diagrams are given by the same expressions with k1 ↔ k2.
The following diagrams pick up a mass insertion from the internal propagator:

=

(
b1q√
2f

)(√
2ma(α + β)

f

)
imχ

(p1 − k1)2 −m2
χ

x1 /k2y
†
2

(4.14)

=

(
b1q√
2f

)(√
2ma(α + β)

f

)
−imχ

(p1 − k1)2 −m2
χ

y†1 /̄k1x2

(4.15)

=

(
b1q√
2f

)(√
2ma(α + β)

f

)
−imχ

(p1 − k1)2 −m2
χ

x1 /k1y
†
2

(4.16)

=

(
b1q√
2f

)(√
2ma(α + β)

f

)
imχ

(p1 − k1)2 −m2
χ

y†1 /̄k2x2

(4.17)

Note that the u-channel diagrams are given by the same expressions with k1 ↔ k2.

4.3 Squared amplitude

One can then feed this into Mathematica. See Appendix E for an explicit realization of this; it’s
quite elegant (you’ll never want to do an amplitude by hand again). Squaring the matrix element,
averaging over initial state spins, and summing over final state spins, one finds a big ugly mess.
See my notebook. Since our primary concern is just the overall prefactor, let me only list one
term in the expression:

1

4

∑
spins

|M|2 = −1

4

32B2m2
χ(m2

χ − E2)(m2
a − E2)[

(m2
a − 2E2)2 + 4(m2

a − E2)(E2 −m2
χ) cos2 θ

]2 + · · · , (4.18)
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where

B =

√
2ma(α + β)

f
. (4.19)

Fortunately the expression simplifies as we go on. Let us focus on picking up the right factors of
2 all over the place. Note that E = p0 is the energy of one of the initial state particles so that
ECM = 2E.

4.4 Cross section and phase space

We’ve taken care of the average over initial spins and sum over final spins in the squared matrix
element. What remains to be done is to dress this with the appropriate prefactors and phase space
integrals to get a thermally averaged cross section, 〈σv〉.

Let’s go back to the two-body phase space integral (3.77). Before attacking the integrals, we
should account for factors of two that may pop out from identical particles. We have identical
Majorana axinos, but recall from Sec. 3.8 that having identical initial states does not introduce
any symmetry factor. There is an additional factor of 1/2! coming from the identical final state
particles.

We can then go ahead and plug our amplitude into (3.86) to obtain an expression for vdσ.
The expression for

∑
spins |M|2 can be performed in Mathematica, see Appendix E for an explicit

example. One can then perform the d cos θ integral and expand in powers of v to get the coefficients
in the expansion σv = a+ bv2 + · · · . The leading term is v2.

As a reference expression to check your work, the value for σv in the limit where there are no
explicit symmetry-breaking terms is

σv =
b4

1m
2
χv

2

96πf 4
(
m2
a − 2m2

χ

)4

(
3m8

a − 16m6
am

2
χ + 48m4

am
4
χ − 64m2

am
6
χ + 32m8

χ

)
. (4.20)

5 Direct detection

This section follows the author’s A-exam.

After the above long-winded historical introduction, we now discuss general features of direct
dark matter detection. Direct detection first demonstrated by Goodman and Witten (yes, that
Witten) at around the time when the author was born [100]. As explained in the introduction,
we study the scattering of halo dark matter particles off of highly-shielded targets to determine
information about their interactions (cross sections) and kinematics (mass). Because dark matter
is so weakly interacting with the Standard Model such experiments require large detector volumes,
as is the case with neutrino experiments. Unlike neutrino experiments, however, dark matter is
heavy and the detection methods are rather different. While neutrinos may zip through a liquid
detector relativistically and leave easy-to-detect Čerenkov radiation, WIMPs lumber along like
giant elephants that will absent-mindedly bump into target nuclei10. One can intuitively appreciate
that the two scenarios very different kinematics that require separate detection techniques.

10This behavior is very reminiscent of certain graduate students who shouldn’t be trusted with delicate things.
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The canonical review of the calculation of dark matter direct detection constraints is reviewed
exceptionally well by Lewin and Smith [101]. We shall review these results following the pedagog-
ical discussion in [61]. Additional comments and applications to the CDMS detector are presented
in chapter 2 of [59]. The key result will be to understand the structure of dark matter exclusion
plots. We will also briefly survey and classify the experimental techniques used in the range of
direct detection experiments to help place our specific study of XENON100 into proper context.

5.1 General strategy

A garden-variety neutralino-like WIMP interacts with a target material primarily through elastic
collisions with the target nuclei. Experiments can then use complementary detection techniques
to detect and distinguish such interactions from background events to compare to theoretical
predictions. These theoretical predictions can be parameterized by the dark matter mass and a
single effective coupling for typical WIMPs or up to four effective couplings for more general dark
matter models depending on, e.g., spin coupling. The primary quantity to connect experimental
data to theoretical models is the elastic nuclear recoil spectrum, dR/dER, where R is the recoil
event rate and ER is the energy of the recoiling nucleus.

We will start by assembling some pieces required to construct the recoil spectrum: the astro-
physical input data about the WIMP velocity distribution and the effective (‘phenomenological’)
cross section. Since we will see that most events occur with low recoil energy, it will be advan-
tageous to further parameterize the cross section in terms of a zero momentum transfer part and
a form factor that encodes the momentum and target dependence. In doing so we will uncover
important general features that feed into the design of direct detection experiments.

5.2 Astrophysical input

Our primary astrophysical assumption is that the dark matter in the halo has a ‘sufficiently’
Maxwellian velocity distribution. The Maxwell-Boltzmann distribution describes the veloci-
ties of particles which move freely up to short collisions and is derived in one’s favorite statistical
physics textbook. Here one assumes that the WIMPs are isothermal and isotropically distributed
in phase space (i.e. gravitationally relaxed). It is important to remark that this is not actually
fully accurate and thus that WIMPs cannot have an exactly Maxwellian distribution even though
such an approximation should be sufficient (i.e. with uncertainties smaller than those coming from
the WIMP-nucleus cross section) for garden-variety WIMP models. For a recent discussion of the
implications of the expected departures from the Maxwell distribution at the large velocity tail
and the kinds of models that would be affected by this, see [102].

The complete phase space distribution for such a halo for a dark matter species of mass mχ,
gravitational potential Φ(~x), and velocity in the galaxy frame ~vgal is

f(~x,~v) d3x d3v ∝ exp

(
−mχ [v2/2 + Φ(~x)]

kBT

)
. (5.1)

The Earth is effectively at a fixed point in the gravitational potential so that the position depen-
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dence is is also fixed and can be absorbed into the overall normalization. We may thus write

f(vgal) =
1

k0

ev
2
gal/v

2
0 (5.2)

where k is a factor to normalize the distribution

k0 =

∫
d3~vgal e

v2gal/v
2
0 = (πv2

0)3/2 (5.3)

and v0 is the most probable WIMP speed and is given by the characteristic kinetic energy:

1

2
mχv

2
0 = kBT v0 ≈ 220 km/s ≈ 0.75 · 10−3 c. (5.4)

Note that in (5.3) we have not defined the region of integration in velocity space, we will discuss
this shortly. For now one can assume that we are integrating over the entire space. It is typically
to write the ~vgal explicitly in terms of the velocity in the Earth (lab) frame, ~v, and the velocity of
this frame relative to the dark matter halo, ~vE,

~vgal = ~v + ~vE. (5.5)

The orbit of the Earth about the sun in the galactic halo frame provides the input for an annual
modulation:

vE = 232 + 15 cos

(
2π
t− 152.5 days

365.25 days

)
km s−1. (5.6)

All astrophysical data in this section come from [59]. Further discussion this data can be found
in, e.g., [103].

A key observation on the right-hand side of (5.4) is that the dark matter particle is very non-
relativistic (we include an explicitly factor of c = 1). This will have important implications on
our WIMP-nucleon cross section.

Let us remark once again that for the remainder of this document (except for isolated remarks),
we will assume this astrophysical input. While we have mentioned in Section 2.7 that there are
many new phenomenological dark matter models that can deviate from these assumptions, we
will not consider them in our primary analysis11.

5.3 Phenomenological cross section

Given a matrix element M(q) for the scattering of WIMPs of lab frame velocity ~v against target
nuclei with characteristic momentum transfer q, we may use Fermi’s Golden Rule to determine
the differential WIMP-nucleus cross section,

dσN(q)

dq2
=

1

πv2
|M|2 = σ̂N ·

F 2(q)

4m2
rv

2
. (5.7)

11This would be a novel topic for a future different A-exam, e.g. for Bibhushan Shakya.
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The (πv2)−1 factor comes from the density of final states and the usual 2π in the Golden Rule
formula. In the last equality we’ve written the cross section in terms of a q-independent factor
σ̂N = σN(q = 0) and fit all of the momentum dependence into the remaining form factor, F (q).
We have written mr for the reduced mass of the WIMP-nucleus system,

mr =
mχmN

mχ +mN

. (5.8)

For a general interaction Lagrangian between WIMPs and nucleons, one can show that the
q = 0 cross section can be parameterized by four effective couplings fp,n and ap,n (subscripts refer
to proton and neutron couplings) according to

σ̂N =
4m2

r

π
[Zfp + (A− Z)fn]2 +

32G2
Fm

2
r

π

(J + 1)

J
[ap〈Sp〉+ an〈Sn〉] (5.9)

where J is the nuclear spin, Z (A) is the atomic (mass) number, and Sp,n are the spin content of
the proton and neutron [104]. There is an implied sum over nucleons, p and n. We have separated
the zero momentum transfer cross section into spin independent (SI) and spin-dependent
(SD) pieces. We elucidate the derivation of this paramterization in Appendix ??. The relevant
point is that this is still a general formula for the effective, zero momentum transfer cross section.

Now one must consider the coherence effect coming from summing over nucleons. Nuclear
physicists knew all about coherence effects in atomic interactions... but they’re all old and wrinkly
now. In this day and age, we have to invoke highfalutin ideas like decoupling: as good effective
field theorists, we know that the nuclear scale is ‘macroscopic’ relative to the dark matter scale.
We thus have to ask if it it is appropriate to sum the quantum mechanically over the amplitudes
coming from each target nucleon. This is a question of energy dependence since higher energies
probe smaller scales. We already know from our discussion of the WIMP velocity distribution that
WIMPs are very non-relativistic in the lab frame so that they have a large de Broglie wavelength
that indeed probes the entire target nucleus.

We harp upon this because this already provides a dramatic simplification. It is not surprising
that an electrically neutral dark matter particle should couple in (roughly) the same way to the
proton and neutron since these are related by isospin. Thus we may take fp = fn ≡ f and note
that the first term in (5.9) takes the form

σ̂N |SI ≈
4m2

r

π
f 2A2, (5.10)

i.e. the spin-independent cross section is enhanced by a factor of A2 due to coherence. Further,
since spins form anti-parallel pairs in ground state nuclei, most of the spin-dependent cross section
cancels and only leaves a leftover coupling to an odd number of protons or neutrons in the nucleus.
Thus for our garden-variety WIMP interacting with a garden-variety (e.g. Ge) target with low
spin, we can completely neglect the spin-dependence,

σ̂N ≈ σ̂N |SI . (5.11)

We remark that this simplification (assumed in standard direct detection exclusion plots)
provides a place for the DAMA results to hide since DAMA’s NaI target is much more sensitive
to spin-dependent coupling than other direct detection experiments of comparable volume12.

12I know this is being read by LHC physicists, so I should say that detector volume ∼ [instantaneous] luminosity.
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5.4 Differential recoil rate, a first pass

Let us now turn to the kinematics of the process. We assume elastic scattering since this dominates
for point-like dark matter interacting with nuclei. This assumption provides another place to hide
DAMA results, c.f. inelastic dark matter [78]. In the center of mass frame,

θ
χ N

χ

N

The kinematics of this scattering process are worked out thoroughly in first-year mechanics13,

ER = Eir
1− cos θ

2
, (5.12)

where r is a kinematic factor built out of the particle masses

r =
4mr

mχmN

=
4mχmN

(mχ +mN)2
. (5.13)

The key feature is that 0 < r ≤ 1 with the upper bound saturated for mχ = mN . In other
words, recoil energy is maximized when the masses of the WIMP and target nuclei are matched.
The conventional cartoon to understand this is to consider the scattering of ping pong balls and
bowling balls.

Now let us proceed to calculate the differential recoil rate for the case of zero momentum
transfer q = 0 where we’ve already parameterized the relevant cross section. We will later correct
for the q-dependence in the form factor. In the center of mass frame the scattering is isotropic so
that ER is uniform in cos θ over the range

0 < ER ≤ Eir = Emax
R . (5.14)

This gives us a relatively boring plot of differential recoil rate for an incident energy

d

dEi

dR

dER

EREir

13This would be an excellent Q-exam question, but since this committee has already given me a thorough Q-exam,
think it is not necessary to ask me to derive this—right?
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Nondescriptness notwithstanding, it is important to understand what is being plotted here. The
vertical axis gives the rate of nuclear recoils for a sliver of recoil energies between ER and ER+dER
and a sliver of incident energies between Ei and Ei + dEi. This is the differential of the recoil
energy spectrum for the distribution of input WIMP velocities (i.e. Ei). The area of the shaded
box represents the contribution to this differential rate coming from integrating over ER for a
given Ei. As promised this distribution is flat due to isotropy. The length of the box is given by
Emax
R (Ei). The height of the box is a function of our zero momentum transfer cross section σ̂N and

Ei through the dependence of the rate on the WIMP velocity distribution. Thus we may write

d

dEi

dR

dER
=

area

length
=
dR

Eir
. (5.15)

We would have a boring rectangular plot like this for each incident velocity (i.e. each Ei). The
length of each rectangle is Eir and the height will be a more complicated function (given below)
of the velocity distribution. In order to get the recoil spectrum, dR/dER, we can imagine stacking
all of these boring rectangular plots on top of each other:

d

dEi

dR

dER

ER

Now we can imagine summing together the contribution from each box to get the recoil spectrum,
i.e. we can integrate (5.15)

dR

dER
=

∫ Emax
i

Emin
i

dR(Ei)

Eir
−→

∫
~v

dR(~v + ~vE)

Eir
, (5.16)

where on the right we convert to an integral over WIMP velocity, i.e. Ei = Ei(~v + ~vE). As we
noted above when normalizing the Maxwellian velocity distribution, we have been glib about the
limits of integration. To simplify our first pass, will take Emax

i → ∞ and Emin
i = ER/r from

the second inequality in (5.14). We will later address the effect of a finite Emax
i coming from the

characteristic escape velocity vesc of WIMPs in the dark matter halo.
To perform this integral we need an explicit form of the differential rate dR(Ei) of scattering

from an incident energy Ei to a recoil energy ER. (We have only explicitly written the argument
that is integrated over.) dR(Ei) tells us how many such recoil events occur per kilogram-day of a
target material of atomic mass A. Heuristically this is written as

dR =
# nuclei

kg
· rate

nucleus
, (5.17)
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i.e. the number of nuclei per unit mass multiplied by the rate per nuclei. To determine this latter
quantity we can imagine each target nucleus traveling through space at velocity ~vgal = ~v + ~vE in
the WIMP rest frame with a cross section σ̂N .

v dt

σ̂N

The nucleus effectively carves out an interaction volume σ̂Nv dt across a space with WIMP number
density n0f(~v + ~vE) d3~v. Thus the number of events is

rate

nucleus
dt = σ̂Nvgal n0f(~v + ~vE) d3~v dt, (5.18)

and the rate per nucleus is given by dropping the dt.
Plugging everything into (5.17), including the Maxwellian velocity distribution (5.2),

dR =
N0

A
· σ̂Nvgal n0

1

k
e(~v+~vE)2/v20 d3~v, (5.19)

where N0 is Avogadro’s number. Let us now perform the integral (5.16) in a very simplified ‘toy’
case which we will gradually make more sophisticated. In addition to setting vesc →∞, let us turn
off the annual modulation from the Earth’s motion in the galaxy, ~vE = 0 (this also sets vgal = v).
The resulting integral is then

dR

dER
=

∫ ∞
vmin

1

(1
2
mχv2)r

R0

2πv4
0

v e−v
2/v20 4πv2 dv. (5.20)

The first term is just (Eir)
−1, the second term defines R0 to absorb constants in a way that will

be convenient later, and the remainder contains the v dependence of dR. The minimum velocity
is given by

Emin
i =

ER
r

=
1

2
mχv

2
min. (5.21)

Proceeding to simplify and perform the integral,

dR

dER
=

R0

r
(

1
2
mχv2

0

) ∫ ∞
vmin

2

v2
0

e−v
2/v20 v dv =

R0

E0r
e−ER/E0r, (5.22)

where we have defined E0 = 1
2
mχv

2
0 to be the most probable incident WIMP energy and R0 can

now be simply interpreted as the total rate for isotropic nuclear recoil from a non-relativistic
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point-like particle moving through the galaxy. Explicitly writing in all of the factors that went
into this constant, we find

R0 =
2√
π

N0

A
n0σ̂N v0 ≈

500 GeV

Amχ

· σ̂N
1 pb

· ρDM

0.4 GeV/cm3 ·
events

kg day
. (5.23)

Sometimes people define silly units like tru (‘total rate unit’) = event kg−1 day−1 for this rate
or the dru (‘differential rate unit’) for event kg−1 day−1 keV−1 [101]. However, the last thing
particle physics needs is more units so we will not use these.

It is useful to pause for a moment to admire this toy result since it already gives a very rough
estimate for what one might expect in the real world. Given a 100 kg detector made up of Xe
(A ≈ 100) and a 100 GeV WIMP with typical weak-scale nuclear cross section σ̂N ∼ 1 pb, one
ends up with about 5 events per day. This scales linearly with cross section, WIMP density
(astrophysics), and inversely with the WIMP mass. Now suppose the target nucleus happens to
have the same mass, mN = mχ = 100 GeV (this is the right ballpark for Xe) so that r = 1, then
we can calculate the mean recoil energy,

〈ER〉 = E0r =
1

2
mχv

2
0 =

1

2
50 GeV (.75 · 10−3) ≈ 30 keV. (5.24)

This number is remarkably small, even though we’re in the ‘best case’ scenario where the WIMP
and target masses are matched. To compare to experiments that collider physicists (especially
those at Fermilab) might appreciate a bit better, neutrino beam experiments typically detect
events of MeV-scale energies. Dark matter experiments have to be significantly better than this.

5.5 Comparing apples to apples

Before moving on to make our toy model more realistic, let us pause to make an important point
about meaningful ways to convey the information from a direct detection experiment. Assuming
we have run such an experiment for some time and have detected no signal, we can make an
exclusion plot to convey what our experiment has learned. We present such a plot in Fig. 7. The
plot assumes that there are no events detected within the energy threshold; effectively one assumes
that there was a maximal number of events of energy less than the threshold that would still be
consistent with no observed events above threshold. Integrating (5.22) gives such a value for R
for which one can plot R0/r ∼ σ̂N over mχ. One can qualitatively understand the features of this
graph: at the minimum the kinetic factor r is maximized for mχ ≈ mN . Below this value there’s
not enough kinetic energy transferred (ping pong balls don’t transfer much energy to bowling
balls) and above this value the density of dark matter decreases (n ∼ ρ/mχ) so that the bounds
away from mχ ≈ mN become weaker.

Such a plot can be generated for each direct detection experiment with null results. The key
question is how one ought to combine the results of different experiments. Since we know that
different experiments use different target material (and this is good since this provides sensitivity
for a broad range of WIMP masses), we are particularly concerned about the dependence of the
exclusion plot on the target. This can be summarized by fact that we are setting bounds on the
[zero momentum transfer] WIMP-nucleus cross section σ̂N for various WIMP masses. This clearly
is not a useful quantity when comparing experiments with different target nuclei. Fortunately,
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R0

r

mχ

Figure 7: Model log-log exclusion plots from (5.22) in arbitrary units. Each line excludes points
above it. Solid lines indicate increasing energy threshold (worse sensitivity) following the solid
arrow while the dashed lines indicate increasing target atomic mass A. These plots were generated
by the author, which should be taken as evidence that he knows what he’s talking about.

there is a trivial fix: rescale everything so that we provide bounds on the WIMP-nucleon cross
section σ̂n which is thus independent of the particular nucleus. Note that we use the convention
that lowercase n refers to nucleon (or ‘neutron’) while capital N refers to the entire nucleus. The
conversion is straightforward,

σ̂N =
m2
r

m2
rn

A2σ̂n, (5.25)

where mrn is the reduced mass for the WIMP-nucleon system. Note that we pick up an additional
factor of A2 which, combined with (5.10), gives us a total coherence enhancement of A4 in the
WIMP-nucleon rate (the rate which is sensible to compare between experiments). Let us remind
ourselves that we are restricting ourselves to the case of dominant spin-independent interactions,
the case where spin-dependent scattering is appreciable requires more caution.

Plugging this back into our very rough (back of a very small envelope) estimate (5.23) and
using m2

r/m
2
rn ∼ A2, we find that for our 100 kg Xe detector and 100 GeV WIMP, we get five

events per day for a zero momentum transfer WIMP-nucleon cross section of σ̂n ∼ 10−8 pb.

5.6 More realistic velocities

The differential recoil rate in Section 5.4 is a handy estimate for what one would expect for an
experiment, but it is a dramatic simplification. Let us make our toy expression slightly more
sophisticated by taking into account the effect of a finite escape velocity and replace the effect of
the Earth’s annually modulated velocity relative to the dark matter halo. To make it clear which
spectrum we are referring to, let us write

dR

dER
−→ dR(vE, vesc)

dER
, (5.26)
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where we explicitly write the dependence on the Earth’s velocity and the escape velocity. The
toy-model spectrum we derived above then dR(0,∞)/dER.

Because the dark matter halo is gravitationally bound, there is a characteristic escape velocity
at which the Maxwell distribution necessarily breaks down since any particles with such energies
would escape the halo. Thus our integration over WIMP velocity (or, equivalently, incident energy)
should have some upper limit. Technically, the gravitational potential modifies the Maxwell
distribution at its tail, but it is typically sufficient to impose a hard cutoff. Typically vesc ≈ 600
km s−1 should be used as the upper limit for the integration in (5.22). Note that this also requires
a modification of the overall normalization of the Maxwell distribution. We define the finite vesc

normalization by

kesc = k0

[
erf

(
vesc

v0

)
− 2√

π

vesc

v0

e−v
2
esc/v

2
0

]
, (5.27)

where the error function is a convenient shorthand for the integral over the finite velocity domain.
The modified recoil spectrum can be written in terms of the vesc →∞ spectrum as

dR(0, vesc)

dER
=

k0

kesc

[
dR(0,∞)

dER
− R0

E0r
e−v

2
esc/v

2
0

]
, (5.28)

where we see the effect of the rescaled normalization and an additional term which vanishes in
the vesc →∞ limit. Let us remark that typically these large velocity effects are negligible relative
to our toy model since our garden-variety WIMPs tend to be rather heavy and don’t carry much
kinetic energy. This allowed us, for example, to simply truncate the distribution above the escape
velocity. However, the light WIMP candidates introduced in Section 2.7 can populate more of the
tail of the velocity distribution and proper treatment of this region is important [102].

Now let us account for the modulated velocity of the Earth relative to the dark matter halo,
which we wrote above as:

vE = 232 + 15 cos

(
2π
t− 152.5 days

365.25 days

)
km s−1. (5.29)

Due to the unfortunate placement of our solar system in the Milky Way galaxy, the average
velocity (232 km/s) is not very well known, though the amplitude of the modulation (15 km/s) is
well measured. We should further remark that there are small errors since the modulation isn’t
exactly sinusoidal. This modulation clearly does not affect the finite vesc term in (5.28) since the
large vesc dominates over vE. However, this does affect the dR(0,∞)/dER term. Going through
the same analysis as Section 5.4 with v2 → (~v + ~vE)2, we find

dR(vE,∞)

dER
=

R0

E0r

√
π

4

v0

vE

[
erf

(
vmin + vE

v0

)
− erf

(
vmin − vE

v0

)]
. (5.30)

Combining this with (5.28) finally gives us

dR(vE, vesc)

dER
=

k0

kesc

[
dR(vE,∞)

dER
− R0

E0r
e−v

2
esc/v

2
0

]
. (5.31)
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This certainly brings us closer to a realistic expression (though we still have not included
q-dependence), but (5.30) and (5.31) leaves much to be desired in terms of having something
tractable to interpret. Fortunately, it turns out that (5.30) can be approximated very well by a
simpler form,

dR(vE,∞)

dER
= c1

R0

E0r
e−c2ER/E0r, (5.32)

for some fitting ‘constants’ c1 and c2 which vary slightly with the time of year

.73 ≤ c1 ≤ .77 .53 ≤ c2 ≤ .59. (5.33)

A detailed time-dependence can be found in Appendix C of [101], but for most cases it is sufficient
to set them to their average values 〈c1〉 = 0.75 and 〈c2〉 = 0.56. Note that these are not inde-
pendent, since integration of the above equation forces c1/c2 = R(vE,∞)/R0. In this simplified
form we can see that the that the effects of the Earth’s motion can increase rate and make the
spectrum slightly harder (from c2).

Finally, let’s remark that integrating the spectrum (5.30) to get a total rate and differentiating
with respect to the Earth’s velocity gives

d

dvE

(
R

R0

)
=

1

vE

[
R

R0

−
√
πv0

2vE
erf

(
vE
v0

)]
≈ 1

2vE

R

R0

, (5.34)

where our final approximation assumes vE ≈ v0. From this we can see that the 6% modulation in
vE causes a 3% modulation in the rate. A nice plot of this effect is show in Fig. 8.

5.7 Form factor suppression: coherence lost

Perhaps the most obvious omission in our toy model thus far has been the approximation of zero
momentum transfer, q = 0. This came from our ansatz all the way back in (5.7) that we could
reliably treat the q-dependence as a correction to the q = 0 cross section which we parameterized
as a form factor, F (q). Now we should justify this parameterization and determine the form of
F (q). See [105] for a discussion.

Momentum transfer from the WIMP-nucleus collision is

q =
√

2mNER. (5.35)

For large enough values of q we expect coherence to break down as the de Broglie wavelength
becomes smaller than the scale of the nucleus. A simple way to develop an intuition for the form
factor is to work in the first Born approximation (i.e. plane wave approximation):

M(q) = fnA

∫
d3~x ρ(~x)ei~q·~x, (5.36)

where ρ is the density distribution of scattering sites. The form factor is precisely the this Fourier
transform over the scattering lattice,

F (q) =

∫
d3~x ρ(x)ei~q·~x =

4π

q

∫ ∞
0

r sin(qr) ρ(r) dr. (5.37)
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Fig. 2. Seasonal variation of rate spectrum; - annual average, - - - - - June, . - . - . - December. Inset: enlargement of cross-over 

region, annual average subtracted. . . . +. . monthly averages. 

where 

r = ~MDMT/(MD + MT)*. (3.8) 

We assume the scattering is isotropic, i.e. uniform in cos 8, so that recoils are uniformly distributed in ER, over 

the range 0 5 ER 5 Et-; hence 

-%laX 

dR 

dER= J 
; ME) 

Emin 

urnax 

1 
=- 

Ear J 

$dR(u), 

where Eti,, = ER/T, the smallest particle energy which can give a recoil energy of ER; EO = ~MDu~ = (u$/u*)E; 
and utin is the dark matter particle velocity corresponding to ,?&, i.e., 

u,,,in = (~&&MD)‘/* = (ER/Eor)‘/*uo. 

So, using (3.2), we have: 

hmx 

dR Ro ko 1 -- 
z = G k 214 J 

v, cMd3u, (3.9) 
urnin 

from which we obtain: 

(3.10) 

which is the basic unmodified nuclear recoil spectrum for UE = 0 already referred to in Section 1. 

Figure 8: Plot of dR(ER)/dE showing the seasonal variation of the rate spectrum. The solid line
is the annual average, dashed line is June, dotted-dashed line is December. The inset shows an
enlargement of the crossover region with the annual average subtracted. Dotted lines in the inset
are monthly averages. Image from [101].

For spin independent interactions, a simple model of the nucleus as a solid sphere turns out to be
a very good approximation. In this case the form factor takes the form

F (qrN) =
j1(qrN)

qrN
= 3

sin(qrN)− qrN cos(qrN)

(qrN)3
, (5.38)

where we’ve written the momentum dependence in terms of a dimensionless quantity qrN where
rN ∼ A1/3 is a characteristic nuclear radius. Recall that q ∼

√
AER where the A-dependence

comes from mN ∼ A. Thus the leading A and ER dependence of qrN goes like

qrN ∼ A5/2E
1/2
R . (5.39)

A more accurate parameterization from [101] is

qrN = 6.92 · 10−3A1/2

(
ER
keV

)1/2 (
aNA

1/3 + bN
)
, (5.40)

where aN and bN are ‘fudge factors’ to give the correct nuclear radius rN from its A dependence.
We will simply take aN = 1 and bN = 0 (to this precision 6.92→ 7) so that a reasonable-to-detect
100 keV recoil of a Xe (A ≈ 100) nucleus gives qrN ≈ 3.2. From our argument about length scales
one might worry that this is the regime where coherence breaks down. Indeed, plugging into our
solid sphere nuclear model, we get an F 2(qrN) suppression as plotted in Fig. 9.

We see that for light target nuclei, the form factor doesn’t make much difference. For heavy
nuclei, on the other hand, we can resolve the structure of the Bessel function (the Fourier transform
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Figure 9: Form factor suppression F 2(qrN) on a log plot. Solid line: F 2 suppression for fixed
A ∼ 120 over different recoil energies and corresponding qrN values on the top axis. Dashed line:
F 2 suppression for fixed A ∼ 20 for the same recoil energies. (Note: the qrN values for the dashed
lines are related to the top axis by an additional factor of ∼ 0.2.)

of our solid sphere nuclear model) and we find ourselves hitting the zeroes of j1 and brushing up
against its exponential suppression.

This is a very important plot to take into account when designing a direct detection experiment.
We saw in (5.10) that the spin-independent nuclear cross section scales as A2. This is enhanced
to A4 when considering the more useful nucleon cross section. While we know that having too
large an A (so that mN � mχ) leads to penalty in the kinetic factor r, we know from (5.13) that
this is only A−1. Thus it would still seem advantageous to build detectors with the heaviest target
materials available to maximize the interaction cross section. As we’ve now seen (and could have
expected), this breaks down when the WIMP is no longer able to scatter coherently off the entire
nucleus. One must then balance the coherence from having heavy nuclei with the form factor
suppressing coming from decoherence.

As we consider larger nuclei (large A), the region around q = 0 where F 2(qrN) is not prohibitive
becomes smaller. The trade off when designing an experiment then depends crucially on how low
one can push the energy threshold: what is the smallest nuclear recoil that one can measure?
If you can efficiently detect arbitrarily low threshold recoils, then you can go ahead and use the
heaviest nuclei you can find for your detector. However, real experiments only have a finite energy
threshold (partially a function of the target material). For this minimum recoil energy, one must
consider to what extent the form factor suppression from one’s target material will suppress one’s
signal.

Thus in Fig. 9, the A ∼ 20 detector takes a big hit in the interaction cross section because
of its low A value. However, we see that one is free to use a detector technology with a less
prohibitive energy threshold since F 2 doesn’t decrease very quickly. The A ∼ 120 detector, on the
other hand, gives a nice enhancement from coherence, but only for sufficiently low energy recoils
so that one must be very sensitive to low energy signals. As a rule of thumb, targets lighter than
Ge start start to lose a lot from A2 suppression; i.e. current detector technology does not require
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A any lower than this to ensure reasonable efficiency.
This is an important lesson to put the CDMS and XENON experiments in context. While

Xe is appreciably heavier than Ge, form factor suppression (decoherence) in Xe leads to the two
being roughly the same in their ability to detect WIMPs.

Failure for spin-dependent case: see [11] of LS [105, 106]

5.8 Further refinement

If you are doing everything well, you are not doing enough.
– Howard Georgi, personal motto [107]

In addition to proper inclusion of spin-dependence and refinements of the models used above
(e.g. the halo, Born approximation with a hard sphere), a good and honest experimentalist ought
to properly consider the effects of detector resolution and statistics. (Un-)Fortunately, as a theory
grad student I am neither particularly good nor honest when it comes to such matters and I will
leave their detailed discussion to pedagogical expositions in [101] and [59]. Let us briefly address
some salient effects.

Detection efficiency. First on the list of experimental considerations is the efficiency at
which the nuclear recoil energy is detected. As we already know, nuclear recoils and electron
recoils are very different interactions. Given an electron and a nuclear interaction with the same
recoil energy, a given detector technology will measure different values for such events due to
the nature of the detection technique (we will mention canonical examples below). This means
that instead of the spectrum with respect to the recoil energy dR/dER, one should calculate the
spectrum with respect to the visible energy dR/dEv where Ev = fnER so that

dR

dER
≈ fn

(
1 +

ER
fn

dfn
dER

)
dR

dEv
. (5.41)

A related issue that is important to discuss is quenching14; see [108] for a nice discussion.
Because detectors respond differently to nuclear recoils than to electron recoils, we need useful
units to measure our visible energy. The difference between the visible energy coming from electron
and nuclear events of the same recoil energy is parameterized by a quenching factor, Q. This
leads to some silly notation: keVee for the “electron equivalent” energy (i.e. observed energy had
the event come from an electron) and keVr for the energy signature from a “nuclear recoil.”

Ee(keVee) = Q× Er(keVr) (5.42)

Energy resolution. The next effect to consider is the finite resolution for any real detector.
This means that if there were exactly N signal recoils each of a single energy Ev = E ′v, then
our real detector would observe a spread of energies smeared out in an approximately Gaussian
manner with some energy-dependent width ∆E,

dN

dEv
=

N√
2π∆E

e(Ev−E′
v)22∆E2. (5.43)

14Is it just me, or do experimentalists use this word to refer to way too many different phenomena?
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Thus the actual spectrum that we measure should be transformed to

dR

dEv
=

1√
2π

∫
dE ′v

1

∆E

dR

dE ′v
e(Ev−Ev)2/2∆E2

, (5.44)

where ∆E(E ′v) ∼
√
E ′v. Real experimentalists should also ‘fold in’ the other terms in ∆E relevant

to a given detector technology. For low energy events one should also worry that the Gaussian
statistics above might lead to erroneous loss of counts due to negative energies. This can be solved
by using a Poisson distribution, but leads to issues regarding the energy threshold.

Energy threshold. As discussed above, the most favorable rates come from low energy events
where the de Broglie wavelength of the WIMP is large enough to permit coherent scattering
against an entire target nucleus. However, detectors (e.g. photomultiplier tubes) can only resolve
events above a given threshold energy. Noise reduction also sets a threshold dependent on nearby
radioactive sources (e.g. impurities in the target material) and shielding. These cutoffs must be
taken into account for each experiment when constructing exclusion plots.

Target mass fractions. Let us comment in passing that in detectors with compound targets
(e.g. NaI for DAMA) one must calculate the rate limit separately for each target.

To summarize, let use write out the recoil spectrum with respect to measured energy as a
handy mnemonic:

dR

dEv
= R0

∑
A

fASAF
2
AIA, (5.45)

where R0 is the total rate, A runs over the relevant atomic mass numbers, fA gives the detection
efficiency for nuclear recoil, SA is the spectral function, F 2 is the form factor suppression, and
IA is a reminder about which sort of interaction (spin-independent or spin-dependent) we are
considering. SA is essentially the spectrum in (5.22) modified by all of the above velocity and
detector effects. It gives the same qualitative behavior as in Fig. 7.

6 Indirect detection

7 Cosmological bounds

7.1 BBN

7.2 Structure formation
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A Notation and Conventions

Here we present a set of self-consistent notation and conventions that we (try to) use in this
document. One should be mindful that the ‘useful formulae’ in Appendix B do not necessarily
conform to these conventions.

A.1 Field labels

Chiral superfields are typically written with capital Roman letters, e.g., S, N , X. Complex
conjugation is denoted by a star, (a + ib)∗ = (a − ib). A bar, on the other hand, is used to
distinguish pairs of vector-like chiral superfields, e.g, N and N̄ have opposite charges under a
particular symmetry. Do not confuse this bar with complex conjugate. To avoid confusion, it is
typical to use a tilde to denote the vector-like pair, e.g., N and Ñ . We denote the axino by χ
rather than the usual ã to avoid cumbersome notation and to reinforce its identity as dark matter.
The dual gauge field strength ∗F is defined in component notation relative to the field strength
via

F̃µν =
1

2
Fαβεαβµν . (A.1)

A.2 Spacetime and spinors

There is no completely standard set of spacetime and spinor conventions in the SUSY literature,
but the choices that make the most sense to us are those by Dreiner et al. [96]; see their appendix
for a thorough discussion of how to passing between metric conventions15. See also Problem 1
of Appendix C in Binetruy’s supersymmetry textbook [109] which identifies all possible sources
of sign ambiguities and writes relevant formulae with all choices made explicit. Pedagogical
introductions to Weyl and Majorana spinors can be found in Aitchison [110] and the article by
Pal [111].

4D Minkowski indices are written with lower-case Greek letters from the middle of the alphabet,
µ, ν, · · · . We use the particle physics (‘West Coast,’ mostly-minus) metric for Minkowski space,
(+,−,−,−). Our convention for σ0 and the three Pauli matrices ~σ is

σ0 =

(
1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (A.2)

The un-barred Pauli matrices have indices σµ
αβ̇

while the barred Pauli matrices, σ̄µ = (σ0,−~σ),

have indices σ̄µα̇β. The two types of Pauli matrices are related by

σ̄µα̇α = εα̇β̇εαβσµ
ββ̇
, (A.3)

15To see this in action, see their source file at http://zippy.physics.niu.edu/spinors.html, which includes a
macro to allow one to change metric conventions. The implementation is an excellent example of where the metric
choice is (and isn’t) relevant.
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where our convention for the sign of ε is given below. The Weyl representation for the Dirac γ
matrices is

γµ =

(
σµ

σ̄µ

)
γ5 = iγ0γ1γ2γ3 =

(
−1

1

)
. (A.4)

Note that the definition of γ5 is the usual 4D Weyl basis convention, whereas the sensible 5D
convention is Γ5 = diag(i,−i) so that the 5D Clifford algebra is satisfied. The antisymmetric
products of Pauli matrices are

σµν =
i

4
σ[µσ̄ν] σ̄µν =

i

4
σ̄[µσν]. (A.5)

I don’t like the factor of i, but this is the price of sticking with the conventions in [96].
The totally antisymmetric tensor [densities] are chosen to have

ε12 = ε21 = 1 ε0123 = −ε0123 = 1. (A.6)

This convention agrees with Wess & Bagger [112], Terning [113], and Dreiner et al. [96] but has a
relative sign from Bailin and Love [114]. The significance of this choice is described in footnotes
4–6 of Dreiner et al. [96], but the point is that Weyl spinor indices are raised and lowered via
matrix multiplication from the left,

ψα = εαβψ
β ψα = εαβψβ ψ̄α̇ = εα̇β̇ψ̄

β̇ ψ̄α̇ = εα̇β̇ψ̄β̇, (A.7)

where we’ve introduced the notation ψ̄α̇ = (ψα)∗ and χα = (χ̄α̇)∗. Note the use of ∗ here rather
than †, though the distinction is mostly poetic. If one is perturbed by this, an excellent reference
is the relevant chapter in Aitchison’s elementary text [110]. The relative sign between ε12 and
ε12 sets εαρε

ρβ = δβα so that no signs appear when an index is raised and then lowered again.
Alternately, this relative sign appears when relating the ε tensor to charge conjugation as we
will see below. With this convention, special care is required to keep track of minus signs when
raising and lowering indices of ε tensors (see [96]), but this is usually a silly thing to do to begin
with. Using Lorentz invariance, one can write relations like θαθβ ∝ εαβθθ. The overall constant
of proportionality can be found by contracting the indices of both sides. One finds

θαθβ = −1

2
εαβθθ θαθβ = +

1

2
εαβθθ (A.8)

θ̄α̇θ̄β̇ = +
1

2
εα̇β̇ θ̄θ̄ θ̄α̇θ̄β̇ = −1

2
εα̇β̇ θ̄θ̄. (A.9)

Similarly,

θσµθ̄ θσν θ̄ = +
1

2
θ2θ̄2ηµν (A.10)

(θψ)(θχ) = −1

2
(ψχ)(θθ) (A.11)

(θ̄ψ̄)(θ̄χ̄) = −1

2
(ψ̄χ̄)(θ̄θ̄). (A.12)
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The placement of Weyl spinors (with their natural index placement) within a Dirac spinor is

ΨD =

(
ψα
χ̄α̇

)
. (A.13)

Spinor contractions are descending for undotted indices and ascending for dotted indices:

ψχ ≡ ψαχα ψ̄χ̄ ≡ ψ̄α̇χ̄
α̇. (A.14)

With this convention, contractions are independent of the order of the spinors: ψχ = χψ and
similarly for the barred spinors ψ̄χ̄ = χ̄ψ̄. The Dirac conjugate spinor is given by

Ψ̄D = Ψ†γ0 =
(
ψ†α χ̄†α̇

)( σ0
αβ̇

σ̄0α̇β

)
=
(
ψ†α χ̄†α̇

)( 1αβ̇
1α̇β

)
≡
(
χα ψ̄β̇

)
. (A.15)

One may take this as a definition of χ and ψ̄ in terms of ψ and χ̄ in ΨD. It shows how γ0 is used
to convert the dotted index of χ̄† into the undotted index of χ (and vice versa for ψ† and ψ̄).

The charge conjugate of a Dirac fermion Ψc is given by

Ψc = CΨ̄T C =

(
iσ̄2

iσ2

)
=

(
εαβ

εα̇β̇

)
, (A.16)

This comes from taking the Hermitian conjugate of the Dirac equation

i(/∂ − ie /A)Ψ = 0 ⇒ −iΨ̄γ0γµ†(
←−
∂ µ + ieAµ) = 0 ⇒ −iγµT(∂µ + ieA)Ψ̄T = 0, (A.17)

where we’ve made use of the identities γ0γµ†γ0 = γµ and (γ0)
2

= 1. Because −γµT satisfies the
4D Clifford algebra, there exists a charge conjugation matrix C such that C−1γµC = −γµT. In
particular, CΨ̄T is a solution to the Dirac equation with opposite charge,

iγµ(∂µ + ieAµ)CΨ̄T = 0. (A.18)

The above property of C implies that C ∼ γ0γ2. The constant of proportionality must be a pure
phase so that (Ψc)c = Ψ. We choose this proportionality so that

C = iγ0γ2, (A.19)

which matches (A.16). This can be understood as the reason why the ε tensor density appears
with a different overall sign when written with upper versus lower indices; the sign comes from σ2

versus σ̄2. Writing out indices slightly more carefully,

Ψc = CΨ̄T =

(
iσ̄2

iσ2

)(
χα

ψ̄α̇

)
=

(
εαβ

εα̇β̇

)(
χα

ψ̄α̇

)
=

(
χα
ψ̄α̇

)
. (A.20)

A Majorana fermion obeys ΨM = Ψc
M so that(

ψα
χ̄α̇

)
=

(
χα
ψ̄α̇

)
, (A.21)

that is ψα = χα and χ̄α̇ = ψ̄α̇. In other words,

ΨM =

(
ψα
ψ̄α̇

)
. (A.22)

Sometimes the right-hand side is written somewhat impressionistically as (ψ, iσ̄2ψ∗)T; the intended
meaning is identical to the above expression.
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A.3 Superfields and superspace

The superspace measure is

d2θ = −1

4
dθαdθβεαβ = −1

4
dθαdθα d2θ̄ = −1

4
dθ̄α̇dθβ̇ε

α̇β̇ = −1

4
dθ̄α̇dθ̄

α̇. (A.23)

The field strength superfield is

W = −iλ+ [D − σµνFµν ] θ − θθσ∂λ̄, (A.24)

so that the SYM Lagrangian is L =
∫
d2θ 1

4
WW + h.c.; occasionally I may write W instead of W .

I’ve chosen the definition σµν = i
4
σ[µσ̄ν], c.f. (A.1).

A.4 2-component plane waves

See [96] for details.

x

y†

x†

y

B Useful formulae

B.1 Units and conversions

Most of these are from the PDG [115].

c = 3.0× 108 m/s (B.1)

h = 6.626× 10−34 J s (B.2)

~ = 6.582× 10−25 GeV s (B.3)

~c = 197 MeV fm ≈ 2× 107 GeV nm (B.4)

(~c)2 = 0.389 GeV mb ≈ 0.4× 10−9 GeV pb (B.5)

GF = 1.166× 10−5 GeV−2 (B.6)

GN = 6.709× 10−39 GeV−2 (B.7)

MPl =
√

~c/GN = 1.22× 1019 GeV/c2 (B.8)

MPl,r =
√

~c/8πGN = 2.43× 1018 GeV/c2. (B.9)

Throughout this document we will implicitly be writing MPl to mean the reduced Planck mass. I
think this is the usual convention.

47



B.2 Pauli matrices

These formulae follow our convention for σ0 = diag(1, 1).

Tr(σµσ̄ν) = 2ηµν (B.10)

Tr(σµσ̄νσρσ̄δ) = 2ηµνηρδ − 2ηµρηνδ + 2ηµδηνρ. (B.11)

B.3 Wess & Bagger

Sign subtlety. Please note that Wess & Bagger use the opposite (mostly plus) metric.

Expanding a chiral superfield in the chiral coordinates y = x+ iθσθ̄,

Ψ = A(y) +
√

2θψ(y) + θθF (y) (B.12)

= A(x) + iθσθ̄∂A(x) +
1

4
θ4∂2A(x) +

√
2θψ(x)− i√

2
θ2∂ψ(x)σθ̄ + θ2F (x). (B.13)

The θ4 component of the product of two superfields is

Φ†iΦj

∣∣∣
θ4

= F ∗i Fj +
1

4
A∗i�Aj +

1

4
�A∗iAj −

1

2
∂A∗i∂Aj +

i

2
∂ψ̄iσ̄ψj −

i

2
ψ̄iσ̄∂ψj (B.14)

B.4 Peskin & Schroeder

The differential cross section for a process is given by

dσ =
1

2Ea2Eb|va − vb|

(∏
f

d3pf
(2π)3

1

2Ef

)
|M|2(2π)4δ(4)

(
pµa + pµb −

∑
f

pµf

)
, (B.15)

where Ea and Eb are the energies of the two initial state particles. The squared amplitude is
assumed to already be spin averaged. The differential decay rate of a particle of mass M is

dΓ =
1

2M

(∏
f

d3pf
(2π)3

1

2Ef

)
|M|2(2π)4δ(4)

(
pµa + pµb −

∑
f

pµf

)
, (B.16)

where for the specific case of a two-body final state the phase space integral is

dPS2(p1, p2) =

(∏
f

d3pf
(2π)3

1

2Ef

)
(2π)4δ(4)

(
pµa + pµb −

∑
f

pµf

)
=
dΩCM

4π

1

8π

(
2|p1|
ECM

)
. (B.17)
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B.5 Murayama

The expression for the two-body phase space can be simplified by evaluating the δ function. In
fact, multi-body phase space can be decomposed into two-body phase space integrals. This is
done explicitly in Murayama’s QFT notes16. We simply cite relevant results here.

dPS2(p1, p2) =
β̄

8π

d cos θ

2

dφ

2π
, (B.18)

where

β̄ =

√
1− 2(m2

1 +m2
2)

s
+

(m2
1 −m2

2)2

s2
(B.19)

is a kinematic factor which reduces to the usual velocity β = v/c in the case where m1 = m2 = m,

β̄m1,2=m =

√
1− 4m2

s
=

√
1− m2

E2
1

. (B.20)

B.6 Dodelson, Kolb & Turner

These are from Dodelson’s Modern Cosmology [1] and Kolb & Turner’s The Early Universe [2].
The thermally averaged cross section for a 1, 2→ 3, 4 process is

〈σv〉 =
1

n̄1n̄2
0

(
4∏
i=1

∫
d̄ 3pi
2Ei

)
e−(E1+E2)/T (2π)4δ(4)(p1 + p2 − p3 − p4)|M|2, (B.21)

where n̄ refers to the equilibrium number density,

nEQ,i = gi

∫
d̄ 3pe−Ei/T

{
gi
(
miT
2π

)3/2
if mi � T

gi
T 3

π2 if mi � T.
(B.22)

Here gi is the degeneracy (number of degrees of freedom) of the species, e.g. gγ = 2 since the
photon has two spin states.

B.7 Jungman, Kamionkowski, Griest

These are from the supersymmetric dark matter review [95]. From Section 3.3,

σann.v = a+ bv2 + · · · , (B.23)

so that

〈σann.v〉 = a+ 6
b

xf
+ · · · , (B.24)

16http://hitoshi.berkeley.edu/233B/phasespace.pdf
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where (noting that a and b have dimensions of cross section)

xf = ln

[
0.0764 MPl

(
a+ 6

b

xf

)
c(2 + c)

mχ√
g∗xf

.

]
(B.25)

The relation for xf must be solved iteratively (note the xf on the right-hand side), where c is a
numerical coefficient which can be taken by matching to numerical solutions of the Boltzmann
equation. Typically c = 1/2 may be used to within 10% accuracy.

B.8 CORE

These are relations from the Compendium of Relations [116] that are useful. Note CORE’s
definition σµν = 1

4
σ[µσ̄ν] with σµ = (1,−~σ). Apparently every reference has to have at least one

stubbornly contrarian minus sign floating around.

σαβσµν = gανgβµ − gαµgβν − iεαβµνγ5

+
(
gανgβλgµσ − gαµgβλgνσ − gβνgαλgµσ + gβµgαλgνσ

)
σλσ (B.26){

σαβ, σµν
}

= 2
(
gανgβµ − gαµgβν − iεαβµνγ5

)
(B.27)

C Cosmology basics

Here we give a very quick review of relevant background topics in cosmology at a very low level.
These are based primarily on Ryden’s undergraduate-level textbook [23] with additional remarks
from Kolb & Turner [2] and Dodelson [1]. For more advanced treatments, see any of the other
literature on the topic. See also brief review in the PDG [115].

C.1 Friedmann equation

For a spatially homogeneous and isotropic (Friedmann-Robertson-Walker or FRW) universe the
non-trivial part of the metric reduces to an overall scale factor a(t) such that

ds2 = dt2 − a2(t)dx2. (C.1)

One may now turn the crank of general relativity to derive the Friedmann equation, but for our
purposes a Newtonian example is more physically intuitive and almost gives the exact correct
answer. Following Ryden, instead of using the Einstein equations, a Newtonian argument for
the gravitational force of an FRW universe on itself. Consider a comoving sphere of radius R(t)
containing total mass M . In such a comoving volume the number density ‘static’ objects do not
change with the expansion of the universe. A test mass m on the surface of the sphere experiences
a Newtonian gravitational force

F = −GMm

R(t)2
. (C.2)
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This means that the gravitational acceleration on the test mass is

R̈(t) = − GM

R(t)2
. (C.3)

We can convert this into familiar energies by multiplying by Ṙ and integrating to give

1

2
Ṙ2 =

GM

R
+ U, (C.4)

for a constant of integration U . We can identify the left-hand side as the kinetic energy per unit
mass and the right-hand side as (minus) a potential energy per unit mass. We see that kinetic
plus potential energy is constant.

Now let’s massage things into more common quantities. The radius of the sphere can be
written in terms of a reference radius times the scale factor,

R(t) = a(t)r. (C.5)

Next, we can write the total mass within the sphere in terms of the density,

M =
4π

3
ρ(t)R(t)3, (C.6)

from which (C.4) takes the form

1

2
r2ȧ2 =

4π

3
Gr2ρ(t)a(t)2 + U. (C.7)

Finally, we can divide by r2a2/2 to finally obtain the Newtonian Friedmann equation,(
ȧ

a

)2

=
8πG

3
ρ(t) +

2U

r2

1

a2
. (C.8)

One can see that if you assume an expanding universe, ȧ > 0, the fate of the universe is controlled
by the value of U .

While the above argument gives a correct heuristic picture of what’s going on, one must
honestly solve Einstein’s equations to obtain the honest-to-goodness Friedmann equation,(

ȧ

a

)2

=
8πG

3
ρ(t)− κ

R2
0

1

a2
. (C.9)

This is derived from the 0 − 0 component of the Einstein equation. We implicitly promoted the
Newtonian mass density ρ a the relativistic energy density. If we wanted to be pedantic we could
have given this a different variable, say ε. Further, we have associated the potential U to the
curvature κ via

2U

r2
= − κ

R2
0

, (C.10)

where R0 is related to the radius of curvature of the universe, R(t) = a(t)R0. The different fates
of the universe thus correspond to different values of the curvature. Note that it is typical to write
the Friedmann equation in terms of the Hubble parameter, H(t) ≡ ȧ/a.
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C.2 Density of the universe

Define the critical density, ρc(t), to be the energy density for which the universe is flat, κ = 0:

ρc(t) ≡
3

8πG
H(t)2. (C.11)

This gives a natural way to define dimensionless density parameters,

Ω ≡ ρ

ρc

, (C.12)

so that the Friedmann equation may be written

1− Ω(t) =
−κ
R2H2

. (C.13)

Note that the right-hand side does not change sign so that the universe cannot change the sign of
its curvature. For Ω > 1 we have κ = +1 and a closed universe. Conversely, for Ω < 1 we have
κ = −1 and an open universe. The intermediate case Ω = 1 and κ = 0 yields a flat universe.

C.3 The fluid and acceleration equations

We saw that the Friedmann equation was essentially a statement about comoving conservation of
energy. This has another manifestation in physics, the First Law of Thermodynamics,

dQ = dE + PdV. (C.14)

For a perfectly homogeneous universe we can have no bulk heat flow so that the expansion of the
universe is adiabatic, dQ = 0. Writing V = 4πR3/3 and E = V ρ and plugging into the First Law
we thus find

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (C.15)

This is known as the fluid equation.
We mentioned above that the Friedmann equation corresponds to the 0− 0 component of the

Einstein equation given the FRW ansatz. We could also solve for the i − i component, but it
turns out that this is related to the Friedmann and fluid equations through the Bianchi identity.
Indeed, combining the two equations gives the acceleration equation,

ä

a
= −4πG

3
(ρ+ 3P ). (C.16)

Ordinary stuff has a positive pressure, whereas dark energy has negative pressure P = −ρ.
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C.4 Equations of state

An equation of state relates pressure and energy density, P = wρ for some constant w. The
assumption that the equation of state is linear and time-independent is good for dilute gases.
Requiring that the speed of sound waves cs = dP/dρ is non-tachyonic, cs < 1, imposes w ≤ 1.
One way of recasting the First Law of Thermodynamics is

d
[
R3(ρ+ P )

]
= R3dP, (C.17)

from which we note that the evolution of a given species of energy densities goes like

ρ ∝ R−3(1+w). (C.18)

The most important examples are

• w = 0 for non-relativistic matter. (Non-relativistic matter has zero pressure.)

• w = 1/3 for a relativistic gas (e.g. of photons).

• w = −1 for vacuum energy.

Equation of state for a relativistic gas. See Carroll chapter 8.3 [117]. The trace of the
energy momentum tensor for an FRW metric is T µµ = −ρ + 3P . Relativistic matter can be
treated as photons, for which we know that

T µµ = F µλFµλ−
1

4
4F λσFλσ = 0. (C.19)

In order for these to be consistent, w = 1/3. Physically, matter has an energy density which
goes like ρ ∼ a−3 reflecting dilution due to the expansion of the universe. Radiation has an
energy density which goes like ρ ∼ a−4 since, in addition to the expansion of the universe, the
photons are also redshifted.

C.5 Equilibrium thermodynamics

This is based primarily on Kolb & Turner [2] chapter 3.3–3.4. For dark matter we are primarily
interested in thermodynamics out of equilibrium since this is the regime in which thermal freeze
out occurs. As background, however, let us review salient aspects of equilibrium thermodynamics.
First: we should point out that that ‘temperature’ is something which is species dependent. When
we mention ‘the temperature’ T we mean the photon temperature, T = Tγ. Next recall the usual
Fermi-Dirac (+) and Bose-Einstein (−) phase space distributions,

f(p) =
1

exp((E − µ)/T )± 1
, (C.20)

where the chemical potential (the free energy cost of adding an additional particle, e.g. due to a
conserved charge) may be related to the chemical potentials of other species which are in chemical
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equilibrium with the particle. From this we can write the number density, energy density, and
pressure of a dilute, weakly interacting as as

n = g

∫
d̄ 3pf(p) (C.21)

ρ = g

∫
d̄ 3pE(p)f(p) (C.22)

P = g

∫
d̄ 3p
|p|2

3E
f(p), (C.23)

where g is the number of internal degrees of freedom (e.g. spin). The last expression is explained
in chapter 7.13 of Reif [118]. The main idea is to consider the momentum transfer to an imaginary
wall perpendicular to the +ẑ-direction in a unit amount of time. The force on a unit area A is

F = A

∫
d̄ 3pf(p)vzp, (C.24)

where the explicit factor of vz = pz/m is there to account for the total number of particles
striking the wall; if you want this is vz dt with dt = 1. The integral over all directions accounts
for particles striking the wall in the −ẑ-direction. The pressure is given by P = F/A so that
P =

∫
d̄ 3pf(p)p2

z/m, since the pzpx,y components vanish. One may then use 〈p〉 = 3〈pz〉. This
gives the usual ideal gas law. To obtain the above expression for P , one should remember to
promote the mass m to energy E.

The integrals for n, ρ, and P may be computed to yield analytic results. See Kolb & Turner
for more cases. In the relativistic limit T � m with T � µ,

n =

{
ζ(3)
π2 gT

3 (Bose)
3
4
ζ(3)
π2 gT

3 (Fermi)
(C.25)

ρ =

{
π2

30
gT 4 (Bose)

7
8
π2

30
gT 3 (Fermi)

(C.26)

P =
ρ

3
. (C.27)

Note the famous factor of 7/8 in the relativistic Fermi-Dirac energy density. In the non-relativistic
limit m� T ,

n = g

(
mT

2π

)3/2

e−(m−µ)/T (C.28)

ρ = mn (C.29)

P = nT � ρ. (C.30)

A useful quantity for CP violation is the number excess of a fermion species over its antiparticle.
Assuming that reactions like f+f̄ ↔ γ+γ occur rapidly, then µ = −µ̄ and the net fermion number
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density is

n− n̄ =
g

2π2

∫ ∞
m

dE E
√
E2 −m2

(
1

1 + exp[(E − µ)/T ]
− 1

1 + exp[(E + µ)/T ]

)
(C.31)

=

{
gT 3

6π2

[
π2
(
µ
T

)
+
(
µ
T

)3
]

(T � m)

2g
(
mT
2π

)3/2
sinh(µ/T ) exp(−m/T ) (T � m)

. (C.32)

In the early universe, interactions between different species kept them in equilibrium with
a common temperature. As the universe cooled, species decoupled from thermal equilibrium. It
turns out to be handy to measure the total energy density and pressure of all species in equilibrium
in terms of the photon temperature T :

ρR = T 4
∑
i

(
Ti
T

)4
gi

2π2

∫ ∞
xi

√
u2 − x2

i u
2du

exp(u− yi)± 1
(C.33)

PR = T 4
∑
i

(
Ti
T

)4
gi

6π2

∫ ∞
xi

(u2 − x2
i )

3/2 u2du

exp(u− yi)± 1
, (C.34)

where i runs over all species and we have defined the dimensionless variables xi ≡ mi/T and
yi ≡ µi/T . Further, since the energy density and pressure of non-relativistic species (m� T ) are
exponentially suppressed, we may restrict the sum to only relativistic species so that the above
expressions simplify,

ρR =
π2

30
g∗T

4 (C.35)

PR =
π2

90
g∗T

4, (C.36)

where g∗ counts the number of effectively massless degrees of freedom,

g∗ =
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑
i=fermions

gi

(
Ti
T

)4

. (C.37)

The famous factor of 7/8 accounts for the difference in Bose and Fermi statistics in the equilibrium
distribution function. The value of g∗ is monotonically decreasing.

C.6 Entropy

In the early universe, the interaction rate of particles in the thermal bath was much greater than
the expansion rate so that local thermal equilibrium is maintained. In this case, the entropy per
comoving volume is preserved and this becomes a useful fiducial quantity. Further, for most of the
early universe, the chemical potential is much smaller than the temperature and the distribution
functions depend only on E/T . This means that

∂P

∂T
= g

∫
d̄ 3p

∂f(p)

∂T

|p|2

3E
= g

∫
d̄ 3p

(
−E
T

)
∂f(p)

∂E

|p|2

3E
. (C.38)
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Integrating this by parts (dropping the surface term) yields

∂P

∂T
=
ρ+ P

T
. (C.39)

This can also be derived from integrability, ∂2S/∂T∂V = ∂2S/∂V ∂T . We’ll get back to this
shortly.

The right-hand side is identified with entropy density. To remember this, recall that the Second
Law tells us that

TdS = d(ρV ) + PdV = d [(ρ+ P ) + V ]− V dP. (C.40)

Making use of (C.39), we may write

dS =
d [(ρ+ P )V ]

T
− (ρ+ P )V dT

T 2
= d

[
(ρ+ P )V

T
+ const.

]
. (C.41)

Ignoring the overall constant, the entropy per comoving volume is

S = R3ρ+ P

T
, (C.42)

so that we may identify (C.39) with the entropy density,

s ≡ S

V
=
ρ+ P

T
. (C.43)

Now invoke the First Law (C.14) with dQ = 0 and E = ρV , which we may write as

d [(ρ+ P )V ] = V dP. (C.44)

combining this with (C.39) gives

s = d

[
(ρ+ P )V

T

]
= 0, (C.45)

so that entropy is indeed conserved.
Entropy is dominated by the contribution of relativistic particles, (C.35) and (C.36), so that

s =
2π2

45
g∗sT

3, (C.46)

where

g∗s =
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑
i=fermions

gi

(
Ti
T

)3

, (C.47)

which differs from (C.37) only in the exponent of the (Ti/T ) factors. However, since most particles
had the same temperature in the early (equilibrium) universe, g∗s = g∗. This is depicted in Fig. 10.
Note that by virtue of its dependence on T , s is proportional to the number density of relativistic
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Figure 10: Solid (dashed) line: A plot of the number of relativistic degrees of freedom g∗ (g∗s)
as a function of temperature. Note that g∗s tracks g∗ until late times (low temperatures) when
species fall out of thermal equilibrium and (Ti/T )3 6= (Ti/T )4. Image from Kolb & Turner [2]
using GraphClick [119]. There’s another nice plot in Fig. 3 of JKG [95]; I used that in Fig. 6
above.

particles, (C.25). We also remark that (C.46) is a useful equation when converting between the
definitions Y = n/T 3 versus Y = n/s.

It is convenient to normalize s relative to the photon density,

s = 1.80 g∗snγ. (C.48)

Since s ∼ a−3, the total number of particles in a comoving volume, N = R3n, is equal to the
number density divided by the entropy, N = n/s.

Why two g∗ values? Even though g∗ = g∗s when all relativistic particles share the same
temperature, these quantities differ when one species decouples and has a lower temperature.
Such a species would contribute less to the effective number of relativistic degrees of freedom
by a factor that depends on whether we’re looking at g∗ or g∗s. The reason why we need two
counts of the number of degrees of freedom is that g∗ relates the temperature to energy density
via (C.35), while g∗s relates the temperature to the scale factor via T ∼ g

−1/3
∗s a−1, c.f. (C.48).

C.7 Example: Neutrinos

As a handy example, let us consider the cosmological thermodynamics of neutrinos. Neutrinos
have a Fermi-Dirac distribution with zero chemical potential. Because of their weak (at energies
on the order of their mass) interaction strength, they decouple from the thermal plasma at late
times. However, the Fermi-Dirac distribution is maintained with their temperature falling as a−1.
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Note that unlike thermal WIMPs, neutrinos are relativistic. We would like to relate the neutrino
temperature to the present day photon temperature. The subtlety is that neutrinos decouple just
before e+e− annihilations and so do not inherit any of the this energy; i.e. photons have a higher
temperature than neutrinos.

We can now calculate the entropy using the formulae in the previous subsection. Prior to
e+e− annihilations, there were electrons (2 spins), positrons (2 spins), neutrinos (3 generations
× 1 spin), and anti-neutrinos (3 generations × 1 spin). [This is morally the same as saying that
there are three generations of light Majorana neutrinos with 2 spin states.] This gives an entropy
s1 before annihilation that is

s1 =
2π2

45
T 3

1

[
2 +

7

8
(2 + 2 + 3 + 3)

]
=

43π2

90
T 3

1 . (C.49)

After annihilation, the electrons and positrons are removed and the photon and neutrino temper-
atures no longer match. The entropy is then

s2 =
2π2

45

[
2T 3

γ +
7

8
· 6T 3

ν

]
. (C.50)

Requiring entropy conservation in a comoving volume, s1a
3
1 = s2a

3
2 sets

43

2
(a1T1)3 = 4

[(
Tγ
Tν

)3

+
21

8

]
(Tνa2)3 . (C.51)

The neutrino temperature scales like a−1 throughout the entire process, so a1T1 = a2Tν so that
we find

Tν
Tγ

=

(
4

11

)1/3

. (C.52)

Armed with this information, we can now determine the cosmological neutrino abundance. We
can start with the photon energy density (C.33). Since the chemical potential is zero, we can just
write ργ as

ργ = 2

∫
d̄ 3p

p

ep/T − 1
. (C.53)

To get the neutrino density we swap the sign in the denominator and then multiply by 7/8 to
account for the Fermi-Dirac statistics (c.f. (C.26)). Since the energy density of a massless particle
scales like T 4, then we have to include a fourth power of the right-hand side of (C.52). Lastly, we
tack on an extra factor of three to account for the three neutrino generations. (The two photon
spin states match the degeneracy in neutrinos and anti-neutrinos.) We thus find

ρν = 3 · 7

8

(
4

11

)4/3

ργ. (C.54)

58



In the limit where there are three massless neutrinos today, the contribution to the energy density
is

Ωνh
2 ≡ ρ

ρcr

= 1.68× 10−5. (C.55)

Of course, neutrinos are not actually massless and this formalism should be modified by including
the neutrino mass in the expression for ρν . One finds that at late times, nν = 2nγ/11 with
ρν = mνnν . Finally,

Ωνh
2 =

mν

94h2 eV
. (C.56)

Thus the critical density leads to strong bounds on the neutrino mass.

D Kinetic Theory and the Boltzmann Equation

In the 1960s a national magazine ran a cartoon showing dozens of businessmen and
-women walking the streets of Manhattan looking very serious. Though bubbles over
each head revealed their true focus: each was imagining a raucus sex scene. In at least
some ways, the Boltzmann equation plays a similar role for physicists and astronomers:
no one ever talks about it, but everyone is always thinking about it. – Dodelson, chapter
4 [1]

We present a thorough derivation of the Boltzmann equation. This treatment is based on
statistical physics lectures by Eun-Ah Kim17. Alternately, one may peruse the usual statistical
mechanics texts or chapter 4 of Dodelson [1].

D.1 Kinetic theory

Define the unconditional s-particle probability in an N -particle system,

ρs(p1,q1, · · · ,ps,qs; t) =

∫ N∏
i=s+1

d~µi ρ(p,q, t). (D.1)

Here ρ(p,q, t) is the one-particle probability in phase space. The product on the right-hand side
runs over the (N − s) particles which are not specified by the arguments of the left-hand side.
From this we can define particle densities. We begin with the single particle density which is
the expectation for finding any of the N particles in the state (p,q),

f1(p,q; t) =

〈
N∑
j=1

δ(3)(p− pj)δ
(3)(q− qj)

〉
(D.2)

= N

∫ N∏
j=2

d~µ ρ(p1 = p,q1 = q,p2,q2, · · · ,pN,qN ; t) (D.3)

= Nρ1(p,q; t). (D.4)

17http://eunahkim.ccmr.cornell.edu/teaching/6562_S11/Welcome.html
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We’ve written the phase space measure as d~µ. From here we can generalize to an s-particle
density,

fs(p, · · · ,qs; t) = N(N − 1) · · · (N − S + 1)ρs(p1, · · · ,qs; t) =
N !

(N − S)!
ρs(p1, · · · ,qs; t). (D.5)

A good question is to ask how these densities evolve with time. Fortunately, we only have to
look at ρ1:

∂ρ1

∂t
=

∫ N∏
i=2

d~µi
∂ρ

∂t
= −

∫ N∏
i=2

d~µi {ρ,H} , (D.6)

where ρ is the full phase space density (6N variables) and we’ve use Liouville’s theorem. Let us
organize the Hamiltonian into three pieces, H = H1 +HN−1 +H ′, where,

H1 =
p2

1

2m
+ U(q1) (D.7)

HN−1 =
N∑
i=2

[
p2

1

2m
+ U(q1)

]
+

1

2

N∑
i,j=2

V (qi − qj) (D.8)

H ′ =
N∑
i=2

V (q− qi). (D.9)

Here U(q) is an external potential, while V (qi − qj) is an interaction potential between different
particles. We can thus write

∂ρ1

∂t
= −

∫ N∏
i=2

d~µi {ρ, (H1 +HN−1 +H ′)} . (D.10)

Let us consider each term one at a time.∫ N∏
i=2

d~µi {ρ,H1} =

∫ N∏
i=2

d~µi {ρ,H1} = {ρ1, H1} . (D.11)

Here we’ve used the fact that H1 is independent of ~µi for i 6= 1.∫ N∏
i=2

{ρ,HN−1} =

∫ N∏
i=2

d~µi

N∑
j=1

(
∂ρ

∂pj

∂HN−1

∂qj
− ∂ρ

∂qj

∂HN−1

∂pj

)
(D.12)

=

∫ N∏
i=2

d~µi

N∑
j=1

[
∂ρ

∂pj

(
∂U

∂qj
+

1

2

N∑
k=2

∂V (qj − qk)

∂qj

)
− ∂ρ

∂qj

pj
m

]
(D.13)

= 0. (D.14)
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Here we’ve noted that the term in the parentheses is independent of pj while the remaining term
is independent of qj; thus the entire line vanishes upon the appropriate integration by parts.∫ N∏

i=2

d~µi

N∑
j=1

[
∂ρ

∂pj

∂H ′

∂qj
−

�
�

�
��∂ρ

∂qj

∂H ′

∂pj

]
=

∫ N∏
i=2

d~µi

N∑
j=1

[
∂ρ

∂p1

N∑
j=2

∂V (qi − qj)

∂q1

+
N∑
j=2

���������∂ρ

∂pj

∂V (qi − qj)

∂qj

]

= (N − 1)

∫ N∏
i=2

d~µi
∂ρ

∂p1

· ∂V (qi − qj)

∂q1

(D.15)

= (N − 1)

∫
d~µ2

∂V (qi − qj)

∂q1

· ∂

∂p1

(
N∏
i=3

d~µi ρ

)
(D.16)

= (N − 1)

∫
d~µ2

∂V (qi − qj)

∂q1

· ∂ρ2

∂p1

. (D.17)

On the first line we used the independence of H ′ on p and, on the right-hand side, integration by
parts. What a mess. Fortunately we can clearn this all up and then generalize. Plugging this into
(D.10) yields

∂ρ1

∂t
− {H1, ρ1} = (N − 1)

∫
d~µ2

∂V (q1 − q2)

∂q1

· ∂ρ2

∂p1

. (D.18)

Multiplying by N allows us to convert this into an expression for the time evolution of f1,

∂f1

∂t
− {H1, f1} =

∫
d~µ2

∂V (q1 − q2)

∂q1

· ∂f2

∂p1

. (D.19)

The right-hand side of this equation is a collision integral that tells us about the pair-wise inter-
actions of particles in this system. It is now straightforward to see how this generalizes for the
time evolution of a general multi-particle density,

∂fs
∂t
− {Hs, fs} =

s∑
n=1

∫
d~µ2

∂V (qn − qs+1)

∂qn
· ∂fs+1

∂pn
. (D.20)

The general point that one should glean from this is that the expression for ∂fs/∂t requires
knowledge of fs+1. In order to find out f1, one needs to know f2, but to know f2 one needs f3, an
so forth. This is sometimes referred to as the BGGKY hierarchy.

D.2 The Boltzmann equation

The physical approximation that allows us to bypass the BGGKY hierarchy is the Boltzmann
equation. The key assumption is that interactions are short range. Even with this assumption,
one should take pause: mechanics was already boring and tedious for two-particle scattering. Now
we will be going to N ∼ 1023-particle scattering! We will give a loose, ‘plausible’ presentation.
You may fill in the details as you feel necessary.

Let us explictly write out the first two equations of the hierarchy:[
∂

∂t
− ∂U

∂q1

∂

∂p1

+
p1

m

∂

∂q1

]
f1 =

∫
d~µ2

∂V (q1 − q2)

∂q1

∂f2

∂p1

(D.21)
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[
∂

∂t
− ∂U

∂q1

∂

∂p1

− ∂U

∂q2

∂

∂p2

+
p1

m

∂

∂q1

+
p2

m

∂

∂q2

− ∂V (q1q2)

∂q1

(
∂

∂p1

− ∂

∂p2

)]
f2

=

∫
d~µ3

[
∂V (q1 − q3)

∂q1

∂

∂p1

∂V (q2 − q3)

∂q2

∂

∂p2

]
f3 (D.22)

D.2.1 Time scales

Now we get to do some physics. Let us identify the (inverse) time scales that appear in the
expressions above (this is just dimensional analysis). In fact, before we identify any of the terms,
you should already have some intuition for the relevant scales in the problem.

• The length scale of the external potential

• The length scale of particle-particle interactions

• The length scale for free particle propagation.

These can be converted into time scales though the average particle velocity of the system. First
we have the time scale of the external potential,

1

τU
=
∂U

∂q

∂

∂p
∼ v

L
. (D.23)

Recall that ∂U/∂q is a force and that momentum divided by force indeed gives the time scale
for momentum change. We’ve written v for the average velocity of the particles and L to be the
characteristic length scale for changes in U . Similarly, note that (p/m)∂/∂q is a velocity times
gradient, or v · ∇f .

Next there is a time scale associated with the mean free time between particle interactions.
Consider the right-hand side of (D.21), which we may write heuristically as[∫

d~µ2
∂V

∂q1

∂f2

∂p1

1

f1

]
f1. (D.24)

We’ve written it this way to obtain a quantity that may sensibly be compared to the left-hand
side of the same equation. Indeed, this allows us to define the mean free time more generally as

1

τX
∼
∫
d~µ

∂V

∂q

∂

∂p

fs+1

fs
∼ v

d
· nd3, (D.25)

where d is a length scale characterizing the range of the interaction. τX is the timescale between
particle interactions: given an interaction, when is the next interaction? The factor f2/f1 in the
s = 2 case is the conditional probability of finding a second particle given the first. This should
be associated with the factor of nd3 on the right-hand side, where n is the number density (so
that this is just the probability of finding another particle per unit volume). The right-hand sides
of both (D.21) and (D.22) are thus terms which represent free particle propagation within the
system.
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Finally, we can consider the collision duration, which appears as term containing a gradient
of V on the left-hand side of (D.22).

1

τc

∼ ∂V

∂q

∂

∂p
∼ v

d
. (D.26)

We see that (D.21) is an equation that compares τU with τX , while (D.22) also introduces τc.
Our goal is to try to truncate the BGGKY hierarchy by taking the correct (physically motivated)
limits. First we take the dilute limit, where

nd3 � 1 ⇐⇒ 1

τc

� 1

τX
. (D.27)

Next, we can augment this with the assumption that the external potential is not vary much on
short time scales,

1

τU
� 1

τX
� 1

τc

. (D.28)

In fact, typically the last relation is τ−1
X ≪ τ−1

c . Lastly, we will need to assume molecular
chaos, which is the statement that the two-particle density is well approximated by the product
of one-particle densities. We will quantify this shortly.

D.2.2 Deriving the Boltzmann equation

First not that the limits that we have chosen do not allow us to truncate (D.21). In the regime
τ−1
U � τ−1

X , we cannot drop the right-hand side of the one-particle kinetic equation and we’re
stuck with the full expression. We can do more with (D.22). Here the dilute limit allows us to
note that

τc

τX
≈ nd3 � 1. (D.29)

In other words, as long as we have a τ−1
c floating around (and only when we have such a term),

we are free to drop terms that go like τ−1
X . Needless to say we can also drop the τU term on the

left-hand side. Further, as we are interested in long time scales, i.e. ‘steady state’ situations. We
can thus drop the ∂/∂t on the left-hand side. Typically τ−1

U � 1/t � τ−1
c . Thus means that we

can simplify (D.22) quite a bit:[
p1

m
· ∂

∂q1

+
p2

m
· ∂

∂q2

− ∂V (q1 − q2)

∂q1

·
(
∂

∂p
− ∂

∂p2

)]
f2 = 0. (D.30)

Our assumption regarding the slow variation of the external potential motivates us to use relative
spacetime coordinates,

Q ≡ 1

2
(q1 + q2) q ≡ q2 − q1, (D.31)
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where the factor of 1/2 is intentionally only on Q. We note that in these coordinates,

∂f2

∂q1

≈ −∂f2

∂q
≈ − ∂f2

∂q2

. (D.32)

Using (D.30), we may thus write

∂V (q1 − q2)

∂q1

·
(
∂

∂p
− ∂

∂p2

)
f2 =

(
p1 − p2

m

)
· ∂f2

∂q
. (D.33)

We can now use this to rewrite the right-hand side of (D.21). We start by adding a term propor-
tional to 0 = ∂f2/∂p2 (this vanishes upon integration by parts),∫

d~µ2
∂V (q1 − q2)

∂q1

∂f2

∂p1

=

∫
d~µ2

∂V (q1 − q2)

∂q1

(
∂

∂p1

− ∂

∂p2

)
f2 =

∫
d~µ2

(
p1 − p2

m

)
· ∂f2

∂q
.

Now we express the collision integral in terms of the collision kinematics. We need to recall some
of our favorite quantities from two-particle scattering. In particular, we introduce the impact
vector, b, which lives in the plane perpendicular to the scattering axis and quantifies how off-axis
the initial particle trajectories are. We choose angular coordinates so that θ measures the particle
deflection from scattering axis and φ is the azimuthal angle. We may thus write∫

d3p2d
3q2

(
p2 − p1

m

)
∂

∂q
f2(p1,q1,p2,q2; t)

=

∫
d3p2d

2b |v1 − v2| [f2(p1,q1,p2,b,+; t)− f2(p1,q1,p2,b,−; t)] , (D.34)

where we’ve introduced different arguments in f2: ± denotes the state before (−) or after (+)
the collision. We would like to work exclusively in terms of the ‘before collision’ variables (we are
taking the limit of an instantaneous collision). We thus write

f2(p1,q1,p2,b,+; t) = f2(p′1,q
′
1,p

′
2,b,−; t), (D.35)

where we’ve defined the primed phase space coordinates to denote the momenta which trace into
the unprimed coordinates upon collision. In some sense this is just a slick use of time reversal;
but really it’s just a definition of the primed coordinates.

Finally, the most drastic approximation we shall make is that of molecular chaos. Here we
assume that particles 1 and 2 are independent before collision so that the two-particle phase space
density is well-approximated by the product of single-particle densities,

f2(· · · ,b,−; t) = f1(p1,q1; t)f1(p2,q2; t). (D.36)

Taking all of this into account in (D.21), we finally obtain

df1

dt

∣∣∣∣
coll

=

∫
d3p2d

2b |v1 − v2| [f1(p1,q1; t)f1(p2,q2; t)− f1(p′1,q1; t)f1(p′2,q2; t)] . (D.37)
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E Sample Annihilation Calculation

Below is a sample calculation for χχ → aa in Goldstone Fermion Dark Matter [120]. It demon-
strates how to use Mathematica to calculate amplitudes and cross sections with Weyl spinors.

First we define our metric and Pauli matrices.

Clear["Global ‘*"]
\[Eta] = ( {

{1, 0, 0, 0},
{0, -1, 0, 0},
{0, 0, -1, 0},
{0, 0, 0, -1}

} );
\[Eta]diag = {1, -1, -1, -1};

\[ Sigma] = {( {
{1, 0},
{0, 1}

} ), ( {
{0, 1},
{1, 0}

} ), ( {
{0, -I},
{I, 0}

} ), ( {
{1, 0},
{0, -1}

} )};
\[ Sigma]bar = {( {

{1, 0},
{0, 1}

} ), -( {
{0, 1},
{1, 0}

} ), -( {
{0, -I},
{I, 0}

} ), -( {
{1, 0},
{0, -1}

} )};
\[Eta]dot[p_ , q_] := p.\[ Eta].q;
\[Eta]sq[p_] := \[Eta]dot[p, p];
slash[p_] := Sum[p[[i]] \[Eta]diag[[i]] \[Sigma ][[i]], {i, 1, 4}]
slashbar[p_] :=
Sum[p[[i]] \[Eta]diag[[i]] \[ Sigma]bar[[i]], {i, 1, 4}]

Note that we’ve also defined the four-vector dot product and the contraction with the Pauli
four-vector. Next we define the plane-wave spinors following Appendix C of [96]. We label helicity
by λ[[1]] and λ[[2]], corresponding to λ = ±1/2. This makes it easier to do the spin sum in
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the squared matrix element. For now we’ll just write spinors for the incoming states along the ±z
direction. Note that this section is not fully general. In particular, we do not include all of the
Euler angles in χ · ω.

\[ Lambda] = {1/2, -1/2};
\[ Omega][p_ , \[ Lambda]_] := Sqrt[
p[[1]] + 2 \[ Lambda] Sqrt[Sum[p[[i]]^2, {i, 2, 4}]]]

Angle[p_] := ArcTan[p[[4]] , p[[3]]]

(* Assuming \[Phi] = \[ Gamma] = 0 *)
\[Chi][p_ , 1/

2] := {Cos[Angle[p]/2], Sin[Angle[p]/2]}
\[Chi][p_ , -(1/2)] := {-Sin[Angle[p]/2], Cos[Angle[p]/2]}

(* Plane wave external state spinors *)
(* d = dagger , u/l = \
upper/lower index i.e. ydu = y^(\[ Dagger]
\!\(\* OverscriptBox ["\[ Alpha]", "."]\)) *)

xl[p_ , s_] := \[ Omega][p, -\[Lambda ][[s]]] \[Chi][p, \[ Lambda ][[s]]]
xu[p_ , s_] := -2 \[ Lambda ][[s]] \[ Omega][

p, -\[Lambda ][[s]]] Conjugate [\[ Chi][p, -\[Lambda ][[s]]]]
ydu[p_ , s_] := \[ Omega][p, \[ Lambda ][[s]]] \[Chi][p, \[ Lambda ][[s]]]
ydl[p_ , s_] :=
2 \[ Lambda ][[s]] \[Omega ][p, \[ Lambda ][[s]]]
Conjugate [\[Chi][p, -\[Lambda ][[s]]]]

Now we make a few definitions to make life easier later. We define the external momenta,
the assumptions, and a few replacements. From here on the details are not important (they’re
model-specific), but the general method is instructive.

p1 = {p0 , 0, 0, pz};
p2 = {p0 , 0, 0, -pz};
k1 = {p0 , 0, kz Sin [\[ Theta]], kz Cos [\[ Theta ]]};
k2 = {p0 , 0, -kz Sin [\[ Theta]], -kz Cos [\[ Theta ]]};

(* assumptions , help make things run quickly *)

assume = {p0 \[ Element] Reals , pz \[ Element] Reals ,
kz \[ Element] Reals , \[ Theta] \[ Element] Reals , p0 > 0, pz > 0,
kz > 0, p0 > m\[Chi], p0 > pz , p0 > kz , b1 \[ Element] Reals ,
f \[ Element] Reals , p0 > ma, p0 > m\[Chi], m\[Chi] > ma, ma > 0,
m\[Chi] > 0, A \[ Element] Reals , B \[ Element] Reals };

(* Replacements *)

kz2mass = {pz -> Sqrt[p0^2 - m\[Chi]^2], kz -> Sqrt[p0^2 - ma ^2]};
co2long = {A -> (b1 q)/(Sqrt [2] f),

B -> (ma (\[ Alpha] + \[Beta]) Sqrt [2])/f};
(* A=(b1 q)/(Sqrt [2]f); U(1)-preserving coupling coefficient *)
(* \
B=(ma (\[ Alpha ]+\[ Beta]) Sqrt [2])/f; U(1)-breaking coupling \
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coefficient *)

(* normalize charge *)
q = 1;

Now we write out each diagram. Compare this to Section 4.2.

(* Only U(1) symmetric interactions *)

Mt1[s1_ , s2_ , k1_ , k2_] :=
A^2 I/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)
ydl[p1 , s1]. slashbar[k1]. slash[k1 - p1]. slashbar[k2].xl[p2 , s2]

Mt2[s1_ , s2_ , k1_ , k2_] :=
A^2 I/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)
xu[p1 , s1]. slash[k1]. slashbar[k1 - p1]. slash[k2].ydu[p2 , s2]

Mt3[s1_ , s2_ , k1_ , k2_] :=
A^2 (-I m\[Chi])/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)
xu[p1 , s1]. slash[k1]. slashbar[k2].xl[p2 , s2]

Mt4[s1_ , s2_ , k1_ , k2_] :=
A^2 (-I m\[Chi])/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)
ydl[p1 , s1]. slashbar[k1]. slash[k2].ydu[p2 , s2]

Msym[s1_ , s2_] :=
Mt1[s1 , s2 , k1 , k2] + Mt2[s1 , s2 , k1 , k2] + Mt3[s1 , s2 , k1 , k2] +
Mt4[s1 , s2 , k1 , k2] +
Mt1[s1 , s2 , k2 , k1] + Mt2[s1 , s2 , k2 , k1] + Mt3[s1 , s2 , k2 , k1] +
Mt4[s1 , s2 , k2 , k1]

(* U(1) breaking interactions only *)

Mx1[s1_ , s2_ , k1_ , k2_] :=
B^2 (I m\[Chi])/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)

xu[p1, s1].xl[p2, s2]
Mx2[s1_ , s2_ , k1_ , k2_] :=
B^2 (I m\[Chi])/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)

ydl[p1 , s1].ydu[p2 , s2]
Mx3[s1_ , s2_ , k1_ , k2_] :=
B^2 -I /(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)

xu[p1, s1].slash[k1 - p1]. ydu[p2 , s2]
Mx4[s1_ , s2_ , k1_ , k2_] :=
B^2 -I /(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)

ydl[p1 , s1]. slashbar[k1 - p1].xl[p2 , s2]

Mbr[s1_ , s2_] :=
Mx1[s1 , s2 , k1 , k2] + Mx2[s1 , s2 , k1 , k2] + Mx3[s1 , s2 , k1 , k2] +
Mx4[s1 , s2 , k1 , k2] +
Mx1[s1 , s2 , k2 , k1] + Mx2[s1 , s2 , k2 , k1] + Mx3[s1 , s2 , k2 , k1] +
Mx4[s1 , s2 , k2 , k1]

(* Cross terms: U(1) sym and U(1)-breaking vertex in each diagram *)
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Mc1[s1_ , s2_ , k1_ , k2_] :=
A B (I m\[Chi])/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)

xu[p1, s1].slash[k2]. ydu[p2 , s2]
Mc2[s1_ , s2_ , k1_ , k2_] :=
A B (-I m\[Chi])/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)

ydl[p1 , s1]. slashbar[k1].xl[p2 , s2]
Mc3[s1_ , s2_ , k1_ , k2_] :=
A B (-I m\[Chi])/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)

xu[p1, s1].slash[k1].ydu[p2 , s2]
Mc4[s1_ , s2_ , k1_ , k2_] :=
A B (I m\[Chi])/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)

ydl[p1 , s1]. slashbar[k2].xl[p2 , s2]

Mc5[s1_ , s2_ , k1_ , k2_] :=
A B -I/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)

xu[p1, s1].slash[k1 - p1]. slashbar[k2]. xl[p2 , s2]
Mc6[s1_ , s2_ , k1_ , k2_] :=
A B I/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)

ydl[p1 , s1]. slashbar[k1]. slash[k1 - p1] .ydu[p2 , s2]
Mc7[s1_ , s2_ , k1_ , k2_] :=
A B I/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)

xu[p1, s1].slash[k1]. slashbar[k1 - p1] .xl[p2 , s2]
Mc8[s1_ , s2_ , k1_ , k2_] :=
A B -I/(\[ Eta]sq[k1 - p1] - m\[Chi ]^2)

ydl[p1 , s1]. slashbar[k1 - p1]. slash[k2] .ydu[p2 , s2]

Mcr[s1_ , s2_] :=
Mc1[s1 , s2 , k1 , k2] + Mc2[s1 , s2 , k1 , k2] + Mc3[s1 , s2 , k1 , k2] +
Mc4[s1 , s2 , k1 , k2] +
Mc5[s1 , s2 , k1 , k2] + Mc6[s1 , s2 , k1 , k2] + Mc7[s1 , s2 , k1 , k2] +
Mc8[s1 , s2 , k1 , k2] +
Mc1[s1 , s2 , k2 , k1] + Mc2[s1 , s2 , k2 , k1] + Mc3[s1 , s2 , k2 , k1] +
Mc4[s1 , s2 , k2 , k1] +
Mc5[s1 , s2 , k2 , k1] + Mc6[s1 , s2 , k2 , k1] + Mc7[s1 , s2 , k2 , k1] +
Mc8[s1 , s2 , k2 , k1]

(* Sum over all *)

M[s1_ , s2_] := Msym[s1, s2] + Mbr[s1, s2] + Mcr[s1, s2]

(* Only Mbr *)
(*M[s1_ ,s2_ ]:= Mbr[s1 ,s2]*)

(* Only U(1) symmetric *)
(*M[s1_ ,s2_ ]:= Msym[s1 ,s2]*)

Now we can write out the squared amplitude, ready to plug into a cross section formula:

SquaredAmp = FullSimplify[
Sum[
M[s1, s2] Conjugate[M[s1, s2]] /. kz2mass , {s1, 1, 2}, {s2, 1,
2}],
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Assumptions -> assume]

We can make further simplifications massage things into a nicer form:

SquaredAmp = % /. {Cos[2 \[Theta ]] -> (2 ct^2 - 1),
Sin[2 \[ Theta ]]^2 -> 4 (1 - ct^2) ct^2, Cos[\[ Theta]] -> ct}

Finally, we can plug into an expression for σv that is ready for thermal averaging. To do this
we need to make factors of v explicit.

dsigv = 1/(4 p0^2) 1/(128 \[Pi]) SquaredAmp
Integrate[dsigv , {ct, -1, 1}, Assumptions -> assume]
% /. {p0 -> m\[Chi]/Sqrt[1 - (v/2) ^2]};
FullSimplify[Normal[Series[%, {v, 0, 2}]]]

Some final remarks: parts of the code took a few minutes to run, but I was able to debug in
real time with collaborators. In other words, if it’s taking ages to compute, then you probably
did something wrong.
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