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1 Course details

The content in this section are based on Liam McAllister’s course bulletin and the
introductory part of the first lecture.

This course will cover classic results in string theory that are relevant for contemporary re-
search. It will differ from other courses on the subject in that our goal will be to cover special
topics that developed over the past decade that have not yet found themselves in standard text-
books. We will necessarily have to tread more briefly and lightly on more traditional topics in
perturbative string theory.

1.1 Prerequisites

The course will begin with a brief introduction to perturbative string theory; prior acquaintance
with this subject is preferable, but not essential. Students are expected to have a solid background
in quantum field theory and general relativity. Familiarity with supersymmetry will be necessary.
In particular, the three aspects of supersymmetry that will be especially relevant are (i) BPS states,
(ii) nonrenormalization theorems, and (iii) holomorphy. For an undergraduate-level introduction
one can consult the text by Zwiebach [1]; the first twelve chapters roughly correspond to the first
chapter or so of Polchinski.

1.2 References

The primary references for this course will be original papers, but it may be useful to consult the
textbooks by Polchinski [2, 3]; Green, Schwarz, and Witten [4, 5]; and Becker, Becker and Schwarz
[6]. The typist adds that a particularly good pedagogical treatment of a ‘traditional’ string theory
course can be found in David Tong’s lectures [7] and the accompanying course website [8].

1.3 Topics

After a brief introduction to the quantization of the bosonic string, topics will include important
achievements from the 1980s, such as heterotic compactifications and non-renormalization theo-
rems; the 1990s, including mirror symmetry, dualities, M-theory, matrix theory, and the AdS/CFT
correspondence; and the past decade, including geometric transitions and flux compactifications.
We will focus particularly on the AdS/CFT correspondence and its many applications, including
dual descriptions of warped compactifications for models of electroweak symmetry breaking.

1.4 Additional sources

In some parts of these notes the typist has included discussions from other sources. These include
the Durham University Centre for Particle Theory MSc course on Superstrings and D-Branes
taught by Simon Ross in 2008, lecture notes from the 2008 version of the present course, Clifford
Johnson’s D-Branes text, Bailin and Love’s SUSY and strings text (one of the original textbooks)
[9], Dine’s textbook [10], and various other sources as necessary.
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Comment boxes like these will be scaterred around the document highlighting supplementary
topics that were not directly covered in the lectures.

2 Introduction: What is string theory?

String theory is a quantum theory of 1D objects called strings. These strings come in open (free
endpoints) and closed (connected endpoints) varieties. Slightly more rigorously, it can be defined
as a quantum field theory on the (1+1) dimensional worldsheet of the string, S =

∫
d2σ Lstring.

There exist many such quantum field theories and so there exist many string theories. Further,
for some string theories the strings themselves arise from wrapped higher-dimensional objects and
hence can have some internal structure.

To whet our appetites and motivate our exploration of the subject, we will see that:

• All closed string theories contain a massless spin-2 particle. General arguments say that the
only consistent couplings of such a particle are those of a graviton. Open string theories
always contain closed strings, and thus string theory is a theory of quantum gravity. We
will see further that it is in fact a finite theory of quantum gravity.

• Spacetime is treated as a target space of quantum fields. Consistency at the quantum level
requires that the dimension of spacetime is D > 3 + 1. Bosonic strings require D = 26 while
superstrings ‘only’ require D = 10. One can find other values for more exotic theories.

• The metric on the target space obeys the Einstein equations. This is surprising and amazing.

• Open strings often contain non-abelian gauge fields and chiral fermions. Both of these are
important ingredients for the Standard Model. String theory naturally exists in D > 4 and
can be readily supersymmetrized so that one might hope that string theory could be the UV
completion of of the Standard Model and its most popular extensions.

Even though string theory has its origins in “dual resonance models” of hadrons in the pre-QCD
era, much of its allure is its potential as a consistent theory of quantum gravity. Why should this
be interesting? Recall in quantum field theory, e.g. a toy model of scalars,

L =
1

2
(∂φ)2 − 1

2
m2φ2 − λ4φ

4 − λ6

M2
φ6 + · · · (2.1)

that interactions λk with

• positive mass dimension are super-renormalizable

• zero mass dimension are renormalizable

• negative mass dimension are non-renormalizable.
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Recall further that the Newton constant has dimension [GN ] = −2 so that gravity is non-
renormalizable. At high energies, higher order corrections become important. General relativity
is badly behaved in the ultraviolet. We can understand this intuitively. Consider a high-energy
collision between two point particles in GR+QFT:

At high-enough energies these can produce a microscopic black hole. The fact that we can have a
black hole as an intermediate state tells us that the process can be very badly nonlinear. On the
other hand, let us consider a cartoon picture of string scattering:

Higher energy strings have more oscillations, so our picture of a very high energy collision now
looks like the collision of two bird nests. When the two bundles hit they produce another bird
nest. This resulting tangled ball of yarn is larger than the Schwarzchild radius so that the collision
is actually very soft. Voilá, no poor UV behavior!

So is that all? String theory gives us hope for a finite theory of quantum gravity with some
prospect of lower-energy model building? No! The extremely rich structure of string theory has
led to many important insights into a range of topics, such as

• nonperturbative dualities

• gauge theories (e.g. at strong coupling)

• mathematics (e.g. algebraic geometry)

• black holes (e.g. entropy from microscopic counting of states)

• holography, i.e. the AdS/CFT correspondence

• theories on branes.

In this course we will not spend too much time talking about strings as a fundamental theory.
Instead, we will focus on topics that are the ‘bonuses’ that we get from studying a quantum theory
of strings. These bonus topics have become a major reason for the growing appeal of string theory
to a broad audience, including mathematicians, particle phenomenologists, and condensed matter
theorists.

Now let’s gets our hands dirty. Allons-y!
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3 A classical theory of relativistic strings

We will begin by considering a classical theory of relativistic strings. Let us define the target
space M to be a spacetime with metric gµν and coordinates Xµ. The string’s worldsheet Σ is a
two dimensional spacetime with coordinates ξ1 = τ , ξ2 = σ where we treat τ as a time direction.
For now we will assume Minkowski signature for both spaces, though we will soon wick rotate
into Euclidean coordinates on the worldsheet.

We would like to study embeddings Φ : Σ→M of the worldsheet into the target space,

Φ : ξα → Xµ(ξα). (3.1)

Let us consider the pullback of the spacetime metric by the embedding Φ,

Φ∗g ≡ hαβ =
∂Xµ

∂ξα
∂Xν

∂ξβ
gµν . (3.2)

The natural measure for the size of the worldsheet is the usual volume form

Vol(ξ2) =

∫
d2ξ

√
− dethαβ. (3.3)

As we know from the derivation of an action principle in general relativity, this is also a natural
candidate for the action of the string. Let us study this instructive analogy more thoroughly.

3.1 An analogy to the relativistic point particle

For the point particle we would like to consider the worldline with a single parameter ξ = τ . The
pullback of the metric is simply

h00 =
∂Xµ

∂τ

∂Xν

∂τ
gµν (3.4)

so that the volume of the worldline’s embedding into the target spacetime is

Vol(ξ1) =

∫
dτ

√
∂Xµ

∂τ

∂Xν

∂τ
gµν =

1

m
Spoint. (3.5)
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We are thus inspired to use Vol(ξ2) as an action for the relativistic string. This is called the
Nambu-Goto action,

SNG = −T · Vol(ξ2). (3.6)

The constant of proportionality (which was the particle mass for a point particle) is the string
tension which has dimensions of mass per length, or [T ] = 2. At this point one can treat this
action as simply a choice that we can make.

Quantum field theorists should be unsettled. When we want to treat our relativistic particle as
a quantum object we know that this volume form action is not the one we would use to quantize
the theory. Actions with a square root are notoriously hard to quantize. We would like to write
down an equivalent action that is easier to quantize. By this we mean we would like an action
which will ultimately give us the same equation of motion (EOM) for the to-be-quantized fields,
X:

∂

∂τ

 mẊµ√
ẊµẊµ

 = 0 ⇔ mẊµ√
ẊµẊµ

= const. (3.7)

where we write the dot to mean a derivative with respect to τ .
So what is a likely action that would reproduce this equation of motion? As quantum field

theorists we could write down our favorite action

Swrong =

∫
dτ
(
ẊµẊµ +m2

)
. (3.8)

It sure has that familiar ring to it, but this doesn’t work. A clever way to see this is to note that
the action (3.5) obeys a symmetry

τ → λτ. (3.9)

This is simply a reparameterization invariance that tells us that it doesn’t matter how we pa-
rameterized the worldline. We can see that our guess for a nice action (3.8) does not obey this
reparameterization invariance and so cannot be correct. Let’s try to fix up this action by intro-
ducing a compensator field e,

S ′ =

∫
dτ
(
e−1ẊµẊµ + em2

)
. (3.10)

One can think of this compensator as a Lagrange multiplier, or more usefully (and with some
foresight) as the metric on the worldline. If we assume that under reparameterizations we have

τ → λτ (3.11)

e→ λ−1e, (3.12)

then our action S ′ successfully is successfully reparameterization invariant. The key thing to check
is that we now get the same equation of motion. The EOM for the compensator field is

− 1

e2
ẊµẊµ +m2 = 0⇒ e =

1

m

√
ẊµẊµ. (3.13)
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Similarly, the EOM for the Xµ field (the field of interest) is

d

dτ

(
e−1Ẋµ

)
= 0. (3.14)

When we plug in the compensator EOM, we get precisely (3.7). We’ve thus found a quantization-
friendly action for the relativistic point particle which reproduces the correct equation of motion.

3.2 The Polyakov action

We would now like to find the analogous quantization-friendly action for the string. This is called
the Polyakov action. It takes the form

SP = −T
2

∫
d2ξ
√
−γ γαβ∂αXµ∂βX

νηµν , (3.15)

where we are specializing to the case gµν = ηµν for now. This won’t change the treatment here, but
it will make quantization much smoother. (It is still a messy business to quantize string theory for
a general target space metric.) The quantity γαβ is our compensator field which now manifestly
takes the form of a worldsheet metric. We’ve written γ = det γαβ so that our Polyakov action
looks like a two dimensional σ model. This is an important analogy to keep in mind. Recall the
usual σ model in 4D QFT on a general background spacetime with metric gµν :

Sσ =

∫
d4x
√
ggµν∂µφ

M∂νφ
NGMN , (3.16)

where GMN is a metric on the field space. To go back and forth from the Polyakov action for
string theory and our σ model analogy, we note

Xµ ↔ φM (3.17)

ηµν ↔ GMN (3.18)

γαβ ↔ gµν . (3.19)

In particular, don’t confuse Xµ (which corresponds to a field to be quantized) with coordinates
on the space (these are the ξαs or more properly Φ(ξα)), and don’t confuse the worldsheet metric
with the target space metric. This is a little tricky the first time you see it since the target space
metric (i.e. the GMN in our analogy) will end up being the spacetime metric that we’re used to
from general relativity. If you want you could take the Polyakov action as the starting point for
string theory and treat everything prior to this as motivation.

We are working with a (1+1) dimensional quantum field theory with the metric γαβ treated, in
some sense, as a physical field. Does this mean that we’re actually doing two dimensional general
relativity? (Or, more appropriately: two dimensional GR coupled to scalar fields Xµ.) The answer
is no. The worldsheet metric isn’t really physical since currently it’s just playing the role of the
compensator from our analogy to the relativistic point particle. We know it’s not physical because
it doesn’t have a kinetic term (like the auxilliary fields in supersymmetry). In other words, our
action does not contain an Einstein-Hilbert term. In fact, general relativity in (1+1) dimensions
is nearly trivial.
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GR in (1+1)D. The Einstein-Hilbert action gives us the Einstein equations

SEH =
1

2κ2

∫
d2ξ
√
−γR ⇒ Rαβ −

1

2
gαβR = Tαβ, (3.20)

which vanishes in vacuum. However, let us note that the Riemann tensor obeys

Rαβγδ = −Rβαγδ = −Rαβδγ = Rγδαβ (3.21)

so that since α, β, γ, δ ∈ {0, 1} we can write

Rαβγδ = f εαβεγδ. (3.22)

Contracting indices to get the Ricci tensor we find

R = f εαβεγδg
αγgβδ = Rαβγδf g

αγ
(
ε δ
α εγδ

)
= f εγδεγδ = 2f, (3.23)

where we’ve used ε δ
α εγδ = gαγ. Plugging this back into the Riemann tensor we obtain

Rαβγδ =
R

2
εαβεγδ (3.24)

which we can again plug back into the Ricci tensor to find (in vacuum)

Rαγ ≡ Rαβγδg
βδ =

1

2
Rgαβ, (3.25)

which is precisely the Einstein equation. In other words, the equations of motion from the 2D
Einstein-Hilbert action are trivially satisfied.

We want to take the variation of the action with respect to the worldsheet metric γαβ. In
particular, we would like to write out the tricky term δ

√
−γ/δγαβ, recalling that γ = det γρσ. We

can invoke a well-known result for a general metric gab,

δg = ggabδgab, (3.26)

which one can prove by using detM = exp Tr lnM . The important thing to keep track of are
signs relative to the height of the indices. For example, by swapping the heights of the indices we
can see that we pick up a negative sign since

δ(gabgab) = 0 ⇒ δg = −ggabδgab. (3.27)

We thus have

δ
√
−g =

1

2

√
−ggabδgab = −1

2

√
−ggabδgab. (3.28)
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The variation of our action with respect to γρσ is then

δS = −T
2

∫
d2ξ

{
−1

2

√
−γ γσρ δγσρ γαβ hαβ +

√
−γ hσρ δγσρ

}
(3.29)

δS

δγρσ
= −T

2

∫
d2ξ
√
−γ
{
hρσ −

1

2
γρσ γ

αβhαβ

}
(3.30)

with the equation of motion

hρσ =
1

2
γρσ γ

αβ hαβ. (3.31)

When these EOM are satisfied, one can take a determinant to prove

γαβhαβ = 2

√
−h√
−γ

. (3.32)

To prove this just take the determinant of both sides and obtain an expression for
√
−h then

explicitly use these equations to write out hαβ/
√
−h. The factor of two comes from a trace of γαβ.

Plugging this handy equation back into the Polyakov action, we get

SP|EOM = −T
∫
d2ξ
√
−h = SNG, (3.33)

and so we have successfully shown that the Polyakov action is the same as the Nambu-Goto action
once we plug in the equation of motion for the compensator (worldsheet metric). It may be worth
remarking that even though the Polyakov action contains a square root of a field (

√
−γ), we are

perfectly happy with this since it is not the field that we are quantizing. This is the analogy of
doing quantum field theory on a curved background.

Variation of the action. To prove equations (3.27) and (3.28) we use the two matrix
identities

detM = exp Tr lnM (M + δM)ab = Mac

(
δcb + (M−1)cd δMdb

)
. (3.34)

From this we have

det(M + δM) = detM det
(
1+M−1δM

)
(3.35)

= detM exp Tr ln
(
1+M−1δM

)
(3.36)

= detM
(
1+ TrM−1δM

)
, (3.37)

so that the variation of the determinant is

δ detM = detMTrM−1δM (3.38)

= detM
(
M−1

)ab
δMab. (3.39)

For Mab = gab we get precisely (3.27), from which (3.28) follows readily as explained above.
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3.3 Symmetries of the Polyakov action

Before we work out the classical equations of motion, let’s pause to think about the Polyakov
action. As every theorist knows, symmetries are very powerful tools. We saw this when we
noted the reparameterization invariance of the relativistic point particle action. Let’s go over the
symmetries of the Polyakov action.

1. Poincaré symmetry. This is the symmetry of Lorentz transformations and translations.
This means that our action is invariant if our fields transform as

Xµ(τ, σ)→ Λµ
νX

ν(τ, σ) + aµ. (3.40)

2. Diffeomorphism invariance in 2D, i.e. reparameterization invariance. This is the sym-
metry of general relativity that tells us that we could choose coordinates however we like:

τ → τ ′(τ, σ) (3.41)

σ → σ′(τ, σ) (3.42)

where we remind ourselves that the worldsheet metric in different coordinates is

γαβ(τ, σ) =
∂ξ′ρ

∂ξα
∂ξ′σ

∂ξβ
γ′ρσ(τ ′, σ′). (3.43)

3. Weyl rescaling. This is a particularly important symmetry which we can see in the
Polyakov action but not in the Nambu-Goto action. We may rescale the metric via

γαβ(τ, σ)→ e2ω(τ,σ)γαβ(τ, σ). (3.44)

It is clear that this is related to conformal invariance, which will be very handy for us.
That Weyl invariance should appear in SP and not SNG is a sign that local dilations are
an additional redundancy of the Polyakov actions. It is worth noting that ω(τ, σ) is not a
physical field and has no degree of freedom associated with it.

Diffeomorphism and Weyl invariance are local symmetries of the Polyakov actions, in other words
we can think of them as gauge symmetries. (And here the mnemonic ‘gauge symmetry = gauge
redundancy ’ is handy.) Poincaré symmetry, on the other hand, is a global, internal symmetry.

3.4 The Xµ equation of motion

We can work out that the functional derivative of the Polyakov Lagrangian with respect to the
derivative of the dynamical field is

δLP
δ∂αXµ

= −T
2

√
−γ · 2γαβ∂βXνηµν . (3.45)

Thus the Euler-Lagrange equations give

∂α
(√
−γ γαβ∂βXµ

)
= 0. (3.46)
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Does this look familiar? One should recall (or prove for one’s self or otherwise accept on some
kind of religious faith) that the expression for the Laplacian for a general metric gab is

∇2f ≡ 1
√
g
∂a
(√

g gab∂bf
)
. (3.47)

Thus we see that our Euler-Lagrange equation is just telling us that ∇2Xµ = 0, i.e. the strings
(unsurprisingly) obey a wave equation. Since our worldsheet (for now) is Minkowski, this we
should really be talking about the d’Alembertian, but since we’ll be Wick rotating there’s no need
to make a distinction.

3.5 Boundary conditions

Now we get into the business of boundary terms. Usually in QFT we derive the equations of
motion and discard the boundary terms since we assume spacetime to be infinite and that all
relevant quantities die off sufficiently quickly. In string theory, however, boundaries matter. The
variation of the Polyakov action includes boundary terms

δSP = −T
2
· 2
∫
dτ dσ

√
−γ γαβ∂αXµ∂β (δXµ) . (3.48)

Recall that for any operator O∫
dξα O ∂αδXµ = −

∫
dξα (∂αO) δXµ +O δXµ

∣∣∣ξfin
α

ξinit
α

. (3.49)

We will treat τ as a timelike coordinate and σ as a spacelike coordinate with the integration
regions

−∞ < τ <∞ (3.50)

0 ≤ σ ≤ π. (3.51)

Thus the boundary terms for τ really do vanish, while we are left with a boundary term for σ,

δSP = −T
∫
dτ
√
−γ ∂σXµδXµ

∣∣∣σ=π

σ=0
. (3.52)

This boundary term vanishes if they are

(a) Neumann: ∂σXµ(τ, 0) = ∂σXµ(τ, π) = 0

(b) Dirichlet: Xµ(τ, 0) = const and Xµ(τ, π) = const

(c) Periodic: Xµ(τ, 0) = Xµ(τ, π), ∂σXµ(τ, 0) = ∂σXµ(τ, π), γ(τ, 0) = γ(τ, π).

The periodic boundary conditions correspond to a closed string for somewhat obvious reasons
(see picture below). For an open string one may have Neumann boundary conditions in some
directions and Dirichlet boundary conditions in others. This maps out surfaces in the target space
that the strings can move along. One of the unexpected things we will find in our study of string
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theory is that it is not only a theory of strings, but also of extended objects called D-branes. We
shall denote the dimensionality of a brane by saying that a Dp-brane is an object with p space
dimensions. Here are some pictures illustrating Neumann and Dirichlet boundary conditions
defining a Dp-brane, the periodic boundary conditions for a closed string, and an example of how
an open string may have endpoints which are Neumann/Dirichlet in different directions on each
endpoint.

(N)

(D)

(P)

D1-brane

D1-brane

3.6 The energy-momentum tensor

Recall the equation of motion for the γαβ,

δSP
δγαβ

= 0, (3.53)

where we computed the left-hand side in (3.30). We know how to understand this quantity from
appealing to general relativity, where we know that

T ab =
const.√
−g

δS��EH

δgab
, (3.54)

where S��EH means everything in S that is not the Einstein-Hilbert action, i.e. the matter action.
The constant is usually -2 but we will write it as 4π to follow the usual notation from Polchinski.
We end up with

Tαβ = −2πT

{
∂αX

µ∂βXµ −
1

2
γαβ∂

αXµ∂βXµ

}
, (3.55)

from which we can see manifestly that Tαβ is traceless: γαβTαβ = 0. There is also a definition
of the energy-momentum tensor from the Noether procedure which agrees. Since we’ll be using
Noether’s theorem, it is prescient to review this now. If, under a transformation of fields

φa → φa + δφa(ξa) (3.56)

the Lagrangian density transforms as

δL(φa, ∂αφ
a) = ∂αV

α
a , (3.57)

11



then we have (plugging in the Euler-Lagrange equations)

∂αV
α
a =

δL
δφa

δφa +
δL

δ(∂aφa)
δ(∂aφ

a) (3.58)

= ∂α

(
δL

δ(∂αφa)

)
δφa +

(
δL

δ(∂αφa)

)
∂aδφ

a (3.59)

= ∂α

[(
δL

δ(∂αφa)

)
δφa
]
. (3.60)

This tells us that there is conserved current jαa , [CHECK: a indices?]

∂αj
α
a ≡ ∂α

[(
δL

δ(∂αφa)

)
δφa − V α

a

]
= 0. (3.61)

Let’s consider a concrete application of this. If L does not depend explicitly on ξα (e.g. if our
action is reparameterization invariant) then under ξ′α = ξα + εα, we have

φa(ξα + εα) ≈ φa(ξα) + εα∂αφ̇
a. (3.62)

We can then show that

δL = εβ
∂

∂ξα
(
δαβL

)
. (3.63)

Thus there exist conserved currents

Tαβ ≡ jαβ =
δL

δ(∂αXµ)
∂αXµ − γαβL (3.64)

= −T
2

[
2∂βXµ∂αXµ − γαβ∂α′Xµ∂β′Xµγ

α′β′
]

(3.65)

= −T
[
∂αXµ∂βXµ −

1

2
γαβ∂γXµ∂γXµ

]
. (3.66)

where we can identify this with the stress-energy tensor jαβ ⇔ Tαβ so that one can see that the
GR and Noether definitions of Tαβ agree.

It is also useful to notice that under constant [target] spacetime translations Xµ → Xµ + εµ

the action is invariant with V µ = 0. This tells us that

jαµ =
δL

δ(∂αXµ)
(3.67)

jτµ =
δL
δẊµ

(3.68)

jσµ =
δL
δX ′µ

. (3.69)

The space integral of the time component gives the conserved charge,

Q =

∫
dd−1x j0 =

∫
dσ jµτ , (3.70)

which is just spacetime momentum.
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3.7 Summary so far

We’ve seen that from the principle that the action is proportional to the volume form S ∝
Vol(Φ(Σ)) we can get two actions:

SNG = −T
∫
d2ξ
√
−h (3.71)

SP = −T
2

∫
d2ξ
√
−γ γαβhαβ. (3.72)

The Nambu-Goto action is really ugly since it has a square root of the dynamical fields. We can
get rid of the square root by transitioning to the Polyakov action. This form is less ugly, but is
still somewhat formidable. We’ll try to simplify this even further in just a bit. The equations of
motion are

∇2Xµ = 0 (3.73)

Tαβ = 0. (3.74)

We have three sets of symmetries: D-dimensional Poincaré, two dimensional diffeomorphism, and
Weyl. We also have three kinds of boundary conditions: Dirichlet, Neumann, and periodic. Using
our calculation for δSP/δγαβ, we have

Tαβ = −2πT

{
∂αX

µ∂βXµ −
1

2
γαβ∂

ρXµ∂σXµ

}
, (3.75)

from which it is clear that

γαβTαβ = 0, (3.76)

i.e. our energy-momentum tensor is traceless. You know what that means: our theory is scale
invariant. (This is another harbinger of conformal methods to come.)

3.8 Gauge fixing

We would like to use our symmetries to even further simplify our Polyakov action before we
quantize, i.e. we’d like to gauge fix. A good analogy is the quantization of QED. We have to be
a bit careful since we must remember to impose the “lost” equations of motion (the EOM before
gauge fixing) as constraints to our gauge-fixed theory. This is best clarified with an example.

The worldsheet metric γαβ is a symmetric 2 × 2 matrix and thus has 3 degrees of freedom.
Diffeomorphism invariance gives us two functions to fix two degrees of freedom while Weyl invari-
ance gives an additional function to fix a degree of freedom. Thus it looks like we can completely
gauge away γ, i.e. we can perform transformations such that

γαβ −→
Diff

e2ωηαβ −→
Weyl

ηαβ. (3.77)

We call this the unit gauge. However, the equation of motion for the γαβ tells us that Tαβ = 0.
This piece of information is lost when we gauge fix γαβ. We’ve lost a total of two degrees of freedom.
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Why two? From the symmetry of the energy-momentum tensor we can count three independent
degrees of freedom: T01 = T10, T11, and T00. Additionally, we know from the tracelessness of the
energy-momentum tensor that two of these are related via T00 − T11 = 0. This leaves us with two
equations of motion in Tαβ = 0 that have to be applied as a constraint.

We continue to use a dot to mean a ∂/∂τ derivative and introduce the notation of a prime to
mean a ∂/∂σ derivative. The constraints that have to be applied are thus

0 = T00 ∝
1

2

(
Ẋ2 +X ′2

)
(3.78)

0 = T01 ∝ Ẋ ·X ′. (3.79)

These are called the Virasoro constraints. So in summary, we can use our symmetries to
dramatically simplify our general worldsheet metric γαβ by sending it to the flat metric γαβ → ηαβ,
but we have to additionally impose Ẋ2 = X ′2 = Ẋ ·X ′ = 0.

We can now start thinking a couple steps ahead and consider our options for quantizing this
classical theory. We have three options:

1. Old covariant quantization. We can quantize the theory first and then impose the Vira-
soro constraints. The Hilbert space after quantization is too big and includes negative norm
states (it is not manifestly unitary, and the Schrodinger equation doesn’t generate time evo-
lution) so that imposing the Virasoro constraints corresponds to projecting onto a physical
Hilbert subspace. The nice feature of this approach is that we never have to mention gauge
choices when quantizing and so it is manifestly covariant.

2. Lightcone gauge. Alternately, before we quantize we can use our symmetries immediately
to immediately pick a particular gauge that solves the Virasoro constraints. This is mani-
festly unitary but also not covariant and obscures Lorentz invariance. It has the benefit of
being a quick way to quantize the string.

3. BRST quantization (‘new’ covariant quantization). Unfortunately we do not have the
time (or perhaps patience) to cover this rich subject in our course.

We will highlight some features of the covariant approach and point out where things become
hairy. Upon the first sign of distress we’ll immediately retreat to light cone gauge and follow
through.

4 Quantizing the string

We will proceed by focusing on the case of an open string with Neumann boundary conditions.
We will mention the other two boundary conditions (Dirichlet, periodic) at the end of this section.

4.1 Solving the classical theory

Before we jump into quantizing the string, let’s make use of all the pieces we’ve gathered to
explicitly solve the classical theory. Let’s remind ourselves once again that the that the Polyakov
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action is

SP = −T
2

∫
d2ξ
√
−γ γαβ ∂αXµ∂βXµ. (4.1)

Furhter, we recall that we’ve used our diffeomorphism and Weyl invariance to send our worldsheet
metric to a canonical form, (3.77). The equation of motion for the Xµ fields is

∂α∂
αXµ = 0. (4.2)

We also have the additional constraint Tαβ = 0 arising as a relic of gauge fixing, but we’ll get
to this in due course. The solution to the Xµ equation of motion is easy since this is just the
wave equation. We know that the general solution is written as the sum of left-moving (Xµ

L) and
right-moving (Xµ

R) modes,

Xµ(τ, σ) = Xµ
L(τ + σ) +Xµ

R(τ − σ). (4.3)

4.2 Neumann boundary conditions

Let’s now consider the case of Neumann boundary conditions. This requires imposing the following
constraints:

∂Xµ

∂σ
(τ, 0) = 0 (4.4)

∂Xµ

∂σ
(τ, `) = 0. (4.5)

From the first equation we get the constraint (up to an overall constant which can be absorbed
into the definition of Xµ

L)

X ′µL (u) = X ′µR (u) ≡ fµ(u), (4.6)

where prime (′) denotes a derivative with respect to the argument, e.g. ∂/∂(τ + σ) for Xµ
L. Thus

Xµ =
1

2
[fµ(τ + σ) + fµ(τ − σ)] . (4.7)

The second boundary condition then reduces to

f ′µ(τ + `) = f ′µ(τ − `), (4.8)

which tells us that f ′µ is periodic with period 2`. The most useful normalization is to set ` = π
so that σ ∈ [0, π]. We can now straightforwardly expand this function into a Fourier series,

fµ(u) = fµ0 = fµ1 u+
∞∑
n=1

(Aµn cosnu+Bµ
n sinnu) . (4.9)
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Plugging into our Xµ general solution (4.6) we have

Xµ = fµ0 + fµ1 τ +
∞∑
n−1

Aµn cos[n(τ + σ)] +Bµ
n sin[n(τ + σ)]

+Aµn cos[n(τ − σ)] +Bµ
n sin[n(τ − σ)] (4.10)

= fµ0 + fµ1 τ +
∞∑
n−1

(Aµn cosnτ +Bµ
n sinnτ) cosnσ. (4.11)

The fµ1 is clearly the momentum P µ. Now to connect to the literature and for later convenience,
let us define an additional set of coefficients aµn such that

Aµn cosnτ +Bµ
n sinnτ ≡ i

√
2

n

1√
2πT

(
aµ∗n e

inτ − aµne−inτ
)
, (4.12)

where we can also introduce the ubiquitous inverse tension, α′ = 1/2πT which has dimensions
of (length)2. These an Fourier coefficients will be the canonically normalized raising and lower-
ing operators in our quantized theory. Instead of these perfectly reasonable objects, we will be
somewhat perverse and introduce yet another set of coefficients, α,

αµ0 = P µ/
√

2α′ (4.13)

αµn = aµn
√
n (4.14)

αµ−n = (αµn)∗
√
n, (4.15)

where n ≥ 1. Under no circumstances should These αs be confused with the constant α′. The
raison d’être for these oddly-normalized coefficients will not be clear until equation (4.69) when
a τ derivative will bring down a factor of n to cancel a 1/n in the Virasoro constraint. For now
have faith that it’s a somewhat arbitrary definition of our coefficients with no physical content
but that will eventually simplify some expressions. Plugging in all of this jazz into our expression
for Xµ,

Xµ = Xµ
0 +
√

2α′αµ0τ −
√

2

n

1√
2πT

∞∑
n=1

(
aµ∗n e

inτ − aµne−inτ
)

cosnσ (4.16)

= Xµ
0 +
√

2α′αµ0τ − i
√

2α′
∞∑
n=1

1

n

(
αµne

inτ − αµne−inτ
)

cosnσ (4.17)

= Xµ
0 +
√

2α′αµ0τ + i
√

2α′
∑
n6=0

1

n
αµne

−inτ cosnσ. (4.18)

Note that all we’ve done is shuffle around how we define coefficients in a way that will turn out
to be helpful. One can check that this is the still the most general solution to the Xµ equation
of motion subject to Neumann boundary conditions. This expression is completely classical and
we have not yet imposed the very important constraint Tαβ = 0 coming from our specialization
to unit gauge. Thus we have not yet found a correct solution.

16



4.3 Quantizing the open string incorrectly

Being bold men and women of science, we won’t let matters of correctness get in the way of
pedagogy. Let’s go ahead and try to quantize what we have to see where things fall apart. Recall
the usual prescription: from the Lagrangian, we find the canonical momenta π to each field φ via

π =
δL

δ(∂tφ)
(4.19)

and then impose the equal-time canonical commutation relations

[φ(t, x), π(t, x′)] = iδ(x− x′). (4.20)

In our [overly] convenient unit gauge our action takes the form

S = −T
2

∫
dτ dσ ∂τX

µ∂τXµ − ∂σXµ∂σXµ (4.21)

and so our momenta are

P µ(τ, σ) = −T∂τXµ(τ, σ). (4.22)

Our equal-time canonical commutation relations take the form

[Xµ(τ, σ), P µ(τ, σ′)] = iηµνδ(σ − σ′). (4.23)

Let us remark first that ηµν should be understood to be the metric on the target space of the
fields Xµ rather than as a spacetime metric. While both statements are correct, it is important
to emphasize that we are doing field theory on the two-dimensional string worldsheet, not the
D-dimensional spacetime. Next, one might ask why this factor of ηµν should appear at all in
the commutation relations. This comes from the covariance with respect to the global symmetry
of the Xµ target space (which happens to be Lorentz). Substituting our näıve mode expansion
(4.18), we get

[αµm, α
ν
n] = mηµνδm,−n. (4.24)

This, however, is terrible! Consider, for example, the µ = ν = 0 relation,

[α0
m, α

0
−m] = mη00 = −m. (4.25)

We can consider a vacuum state |0〉 which is acted upon by the raising operators αµ−m = αµ†m . then
this commutation relation tells us that

||α0
−m|0〉||2 = 〈0|α0

mα
0
−m|0〉 = −m〈0|0〉 < 0. (4.26)

This state has a negative norm! We can now scream, pull out our hair, and say things like ‘not
unitary’, ‘negative probability’, ‘ghost,’ and ‘apocalypse.’ Of course, it’s not really the end of
the world since we know that we’ve been going about this whole business very näıvely since we
haven’t taken into account the all-important Virasoro constraints, Tαβ = 0.
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4.4 A leftover gauge freedom

Like all good fairy tales, our problem will be solved (to some extent) when we incorporate the
Virasoro constraints. We know from Section 3.8 that there are a few ways of doing this. Our prob-
lematic undertaking above was a half-hearted attempt at covariant quantization where Lorentz
symmetry was manifest at each step. In other words, each equation was written in terms of
objects with well-defined Lorentz structure and we never had to ‘break up’ the µ, ν indices into
non-covariant components. We could work harder and fix up this attempt, but instead we will sac-
rifice covariance and retreat to a simpler ‘quick-and-dirty’ quantization procedure in light cone
gauge.

We can always write down our coordinates/fields in light cone coordinates,

x± =
1√
2

(
x0 ± x1

)
. (4.27)

This is just a trivial choice of coordinates and we haven’t actually ‘done anything’ with respect to
our theory. Light cone gauge is different and involves actually fixing a remaining gauge freedom
in our theory.

Wait, what? Haven’t we already used up our entire diffeomorphism and Weyl (diff×Weyl)
gauge invariance to set γαβ → ηαβ? Somewhat surprisingly, we have not. We have a leftover ‘hid-
den’ gauge symmetry. Actually, there’s nothing particularly mysterious about this. The implicit
assumption we’ve made is that diffeomorphism and Weyl invariance are two separate sets of gauge
symmetries. In fact there is a small set of reparameterizations that are both diffeomorphisms and
Weyl rescalings, i.e. the set diff∩Weyl is nonzero. The transformations that we have ‘used up’ to
set γαβ = ηαβ live in

diff×Weyl

diff ∩Weyl
. (4.28)

We still have the leftover freedom of transformations that belong to diff∩Weyl. For these special
reparameterizations, one can perform a diffeomorphism and then undo its transformation of γαβ
by a subsequent Weyl rescaling. Note, however, that while we can use a diffeomorphism to undo
the transformation of the worldsheet metric, the effect of the diffeomorphism on the ξα coordinates
is not undone. Thus we have performed an additional non-trivial gauge transformation that still
preserves γαβ = ηαβ.

Let’s start by examining this infinitesimally. Under the infinitesimal diffeomorphisms

ξ′α = ξα + εα(ξ) ⇒ g′αβ = gρδ
∂ξ′α

∂ξρ
∂ξ′β

∂ξδ
= gαβ + ∂αεβ + ∂βεα +O(ε2). (4.29)

If δgαβ = g′αβ − gαβ = ∂αεβ + ∂βεα obeys δgαβ = Λ(ξ)gαβ, then the diffeomorphism is also a Weyl
rescaling such that there is some ω(ξ) such that

g′αβ = e2ω(ξ)gαβ (4.30)

and so the effect of the diffeomorphism on the metric can be undone by a Weyl rescaling.
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Define light cone coordinates ξ± and infinitesimal transformations ε± via

ξ± = ξ0 ± ξ1 ε± = ε0 ± ε1. (4.31)

In these coordinates the derivatives (e.g. ∂0 = ∂/∂ξ0) are given by

∂0 = 2 (∂+ + ∂−)
∂1 = 2 (∂+ − ∂−)

∂0 = −2 (∂+ + ∂−)
∂1 = +2 (∂+ − ∂−) .

(4.32)

with similar expressions for upper-index derivatives. If we consider a very special class of infinites-
imal diffeomorphisms where the ε+ = ε+(ξ+) and ε− = ε−(ξ−), then we find

∂0ε0 = −2(∂+ + ∂−)(ε+ + ε−) · 1

2
= −∂+ε

+ − ∂−ε− (4.33)

∂1ε1 = 2(∂+ − ∂−)(ε+ − ε−) · 1

2
= ∂+ε

+ + ∂−ε
− (4.34)

∂0ε1 = −2(∂+ + ∂−)(ε+ − ε−) · 1

2
= −∂+ε

+ + ∂−ε
− (4.35)

∂1ε0 = 2(∂+ − ∂−)(ε+ + ε−) · 1

2
= ∂+ε

+ − ∂−ε−. (4.36)

In other words,

0 = ∂0ε1 + ∂1ε0

0 = ∂1ε1 + ∂0ε0

}
⇒ ∂αεβ + ∂βεα = Ληαβ. (4.37)

We thus find that infinitesimal diffeomorphisms of the type ξ± → ξ± + ε±(ξ±) are also Weyl
transformations and hence live in diff∩Weyl. These diffeomorphisms are just reparameterizations
of the light cone coordinates and this structure is almost single-handedly responsible for the
appearance of holomorphy in string theory.

4.5 Complex coordinates

These sorts of transformations have some interesting properties that become very valuable if we
shift to complex variables:

z = ξ0 + iξ1 z̄ = ξ0 − iξ1. (4.38)
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It will be convenient to treat z and z̄ as independent variables. This leads to too many real degrees
of freedom (four), so we should remember that we are ‘really’ only working on a real subspace
of this complexified space. We may write vectors and tensors with respect to z and z̄ using the
metric (factors of 2 are to match Polchinski’s notation)

gzz = gz̄z̄ = gzz = gz̄z̄ = 0 (4.39)

gzz̄ = gz̄z =
1

2
(4.40)

gzz̄ = gz̄z = 2. (4.41)

Thus we may write vectors as

vz = v0 + iv1 vz =
1

2
(v0 + iv1) (4.42)

vz̄ = v0 − iv1 vz̄ =
1

2
(v0 − iv1). (4.43)

Partial derivatives are

∂ = ∂z =
1

2
(∂0 − i∂1) (4.44)

∂̄ = ∂z̄ =
1

2
(∂0 + i∂1) (4.45)

and the volume form is given by

d2z = 2 dξ0 dξ1. (4.46)

In these coordinates our light cone reparameterizations (the leftover diff∩Weyl gauge transforma-
tions) are

z → z + εz(z) (4.47)

z̄ → z̄ + εz̄(z̄). (4.48)

In complex coordinates, our light cone reparameterizations are holomorphic! And we all know
that holomorphy is always very important in physics (just ask Seiberg). Before we proceed,
let’s make two important generalizations. We proved the above result for infinitesimal light cone
reparameterizatios, but in fact all infinitesimal diff∩Weyl reparameterizations are holomorphic.
Further, we can generalize this to finite as well as infinitesimal transformations. Let’s prove both
of these in one fell swoop using complex coordinates. Let us consider diffeomorphisms z, z̄ → w, w̄
such that g′αβ ∝ gαβ (i.e. elements of diff∩Weyl). This proportionality tells us that

g′ww̄ =
∂w

∂z

∂w̄

∂z̄
gzz̄ 6= 0 (4.49)

g′ww =
∂w

∂z

∂w

∂z̄
gzz̄ = 0 (4.50)

g′w̄w̄ =
∂w̄

∂z

∂w̄

∂z̄
gz̄z̄ = 0. (4.51)
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The first equation tells us that

∂w

∂z
,
∂w̄

∂z̄
6= 0, (4.52)

so that the second and third equations tell us

∂w

∂z̄
=
∂w̄

∂z
= 0. (4.53)

This, of course, is just telling us that w = w(z) and w̄ = w̄(z̄) so that this transformation is
holomorphic.

Let us remark that the space of diffeomorphisms is the space of functions from R
2 → R

2. The
intersection diff∩Weyl, however, is the space of holmorphic functions from C→ C. This is a very
small subset indeed, in fact, it is a measure-zero subset of the space of all diffeomorphisms. This
little sliver of diffeomorphism space, however, is what gives us the leftover gauge freedom to go to
light cone gauge and quantize our string in a quick-and-dirty manner.

4.6 Light cone gauge

More concretely, we can use diff∩Weyl to allow us to fix our τ parameterization. An obvious
choice might be τ = X0, but this doesn’t turn out to be very useful. Instead, we will transform to

τ ∝ X+ =
1√
2

(
X0 +X1

)
. (4.54)

To motivate this, we can reparameterize τ such that it satisfies

∇2τ = ∂∂τ(z, z̄) = 0. (4.55)

This is precisely the same wave equation satisfied by the Xµ fields, ∇2Xµ = 0. In particular, this
holds even in light cone coordinates in spacetime, i.e.

X± =
1√
2

(
X0 ±X1

)
; ∇2X+(τ, σ) = 0. (4.56)

Thus we can make the choice

X+ = 2α′P+τ, (4.57)

where the main point is that X+ ∝ τ and 2α′P+ is just a convenient normalization. P+ is just
the light cone momentum. One can check that the dimensions are correct for a two-dimensional
field theory, e.g. from (4.19) we know that [P+] = 0. This is what we call light cone gauge.
It should be clear that unlike going to light cone coordinates, we have actually done something
when we fix this gauge freedom. For a more thorough proof that one can actually make this gauge
choice, see Polchinski [2].

The strategy from here is to solve the Virasoro constraints (3.78) - (3.79) for the classical string
and then extend this to quantize the string excitations.

21



Light cone coordinates. It is handy to review the salient features of light cone coordinates,
(4.27). In these coordinates the metric takes the form (e.g. in 4D)

ηµν =


0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

 . (4.58)

The inner product of two vectors can then be decomposed as

vµwµ = −v−w+ − v+w− + viwi, (4.59)

where the last term is just the usual Euclidean inner product over the remaining spacelike
directions. By raising and lowering indices we find

v+ = −v− ; v− = −v+ ⇒ vµwµ = v+w
+ + v−w

− + viwi. (4.60)

In terms of the momentum four vector, the energy is given by

E = H = −p+ = +p− (4.61)

4.7 Solving the Virasoro constraint in light cone gauge

Let us recall that the Virasoro constraint tells us

Ẋ ·X ′ = 0

Ẋ2 +X ′2 = 0
⇔ (Ẋ ±X ′)2 = 0. (4.62)

The straightforward thing to do is to plug in our Xµ mode expansion (4.18), but we can see that
this gets rather messy very quickly. Instead, let’s try to be a little more slick by working in light
cone coordinates.

(Ẋ ±X ′)2 = −2(Ẋ+ ±X+′)(Ẋ− ±X−′) + (Ẋ i ±X i′)2 = 0. (4.63)

Since we’ve just made a big hullabaloo that X+ = 2α′P+τ , we know that Ẋ+ = 2αP+ and that
X+′ = 0. Hence

(Ẋ ±X ′)2 = −2Ẋ+(Ẋ− ±X−′) + (Ẋ i ±X i′)2 = 0. (4.64)

Since we already have a solution for X+ (by construction), it is now trivial to read off a set of
solutions for the Virasoro constraints. We just have to pick

Ẋ− ±X−′ = 1

4α′P+

(
Ẋ i ±X i′

)2

. (4.65)
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Easy peasy ! Once we specify the transverse oscillations (X i) and the zero modes (P+ and X−0 ),
we can just read off the Virasoro-constrained evolution of the state. Let’s now go back to the
mode expansion (4.18) and do this a little more explicitly. In light cone target space coordinates,

X−(τ, σ) = X−0 +
√

2α′α−0 τ + i
√

2α′
∑
n6=0

1

n
α−n e

−inτ cosnσ (4.66)

X i(τ, σ) = X i
0 +
√

2α′αi0τ + i
√

2α′
∑
n 6=0

1

n
αine

−inτ cosnσ (4.67)

X+(τ, σ) = 2α′P+τ ≡
√

2α′α+
0 τ (4.68)

where in the last expression we recall (4.13). The first two equations give us explicit forms that
we can differentiate,

Ẋβ ±X ′β =
√

2α′
∞∑

n=−∞

αβne
−in(τ±σ), (4.69)

where α ∈ {−, i}. Substituting into our Virasoro constraint (4.65),

√
2α′

∞∑
n=−∞

α−n e
−in(τ±σ) =

1

2P+

∑
n

∑
p

αipα
i
n−pe

−in(τ±σ). (4.70)

We can project out each Fourier coefficient to obtain

√
2α′α−n =

1

P+

[
1

2

∑
p

αipα
i
n−p

]
≡ 1

P+
L⊥n , (4.71)

where we have defined L to be the modes of the Virasoro constraint, i.e. the “transverse Virasoro
modes.” One can check that these are just the Fourier coefficients of the stress-energy tensor,
(3.75). Let’s pause to emphasize what we’ve done: we are now able to express the oscillators of
X−(σ, τ) in terms of the transverse oscillators in X i(σ, τ). Finally, we have

Ẋ− ±X−′ = 1

P+

∑
n

L⊥n e
in(τ±σ). (4.72)

Let us recall our definition (4.13)

√
2α′α−0 = 2α′P− =

1

P+
L⊥0 ⇒ 2α′P+P− = L⊥0 =

1

2

∑
p

αi−pα
i
p. (4.73)

Now that you’re probably bored of all of these redefinitions, let’s squeeze something useful out
of this. We will now determine the classical mass spectrum of the string.
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4.8 The classical string spectrum

We know that the mass is given by the relation

P 2 = −2P+P− + P iP i = −M2, (4.74)

where the typist arrogantly notes unfortunate choice of metric convention. From (4.73) we note
that we can write

L⊥0 = 2α′P+P− =
1

2
αi0α

i
0 +

∑
p>0

αi−pα
i
p. (4.75)

Now if you try and remember way back decades ago when you first learned quantum field theory,
you’ll recall that this is precisely where one should start hyperventilating while trying to say
something about operator ordering ambiguities associated with the raising and lowering operators,
the αi±ps. For now let’s just reassure ourselves that we are still working with a classical theory
and keep this in mind for later. Our expression for the string mass can be written in terms of L⊥0
as

M2 =
1

α′
L⊥0 − P iP i. (4.76)

We can now go back to our original canonically normalized an raising and lowering operators from
equations (4.13-4.15) and write out the mass spectrum,

1

α′
L⊥0 =

1

2α′
(2α′)P iP i +

1

α′

∞∑
n=1

n ai∗n a
i
n ⇒ M2 =

1

α′

∞∑
n=1

n ai∗n a
i
n. (4.77)

This formula has an obvious and intuitive interpretation: the mass of the string is just given by
counting the number of excitations in each transverse direction.

4.9 Quantizing the relativistic string in light cone coordinates

Okay! So that’s the classical string with Neumann boundary conditions. So far this could have
been an involved project for freshman physics majors learning analytic mechanics. Now it’s time
to own up and see what this all looks like when we quantize the string. We already tried this
once in Section 4.3 using a covariant formulation. Our flawed attempt was to write the canonical
commutation relation,

[αµm, α
ν
n] = iηµνδm,−n. (4.78)

We failed miserably due to the appearance of negative norm states. Now we’re armed with the
light cone gauge framework which breaks manifest target space Lorentz covariance, but which
come with the Virasoro constraints built in:

[X i, P j] = iδijδ(σ − σ′) (4.79)

[αim, α
j
n] = mδijδm,−n. (4.80)
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The second constraint comes from [X−(τ, σ), P+(τ, σ′)] = iη+−δ(σ − σ′) = −iδ(σ − σ′) and then
expressing the Fourier coefficients α−n of X− in terms of the transverse coefficients αin in (4.73).
The X+ is gauged away in (4.73). It is understood that all other commutation relations vanish.
Note that the commutation relation for the αn =

√
man and α−n =

√
ma†n verify that the a and

a† are canonically normalized raising/lowering operators.
Our claim is that because we’ve already incorporated the Virasoro constraints our quantized

theory now only deals with physical states1. We can write down a handy set of commuting
operators: P+, P i, αim where m < 0 and i = 2, · · · , D − 1.

Our next task is to use these to construct the spacetime Hilbert space. Yes, we do mean Hilbert
space; we will be first quantizing the string wherein we consider the operators that excite modes
of a string. This should be contrasted with second quantization wherein strings themselves are
created (rather than just excitations on a string). This is called string field theory and is beyond
the scope of these lectures. Waxing poetic a bit longer, let us remark that on the worldsheet side,
we are properly second quantizing the 2D field theory.

To fix our terminology, we will refer to the zero-excitation string state to be the string ground
state, |0; k〉, where k refers to the overall center-of-mass motion of the string. This should be
contrasted with a notion of ‘vacuum state,’ |vac〉, which one ought to reserve for the ‘no string’
state of string field theory. The action of our set of commuting operators on the string ground
state is

P+|0; k〉 = k+|0; k〉 (4.81)

P i|0; k〉 = ki|0; k〉 (4.82)

αim|0; k〉 = 0 (m > 0) (4.83)

A general string state can then be constructed by acting upon the ground state with raising
operators, αi−m for m > 0:

D−1∏
i=2

∞∏
n=1

1√
nNi,mNi,m!

(
αi−n

)Ni,n |0; k〉, (4.84)

where Ni,n is the occupation number of excitations of the n mode in the transverse i direction.
One should thing of the zero mode state |0; k〉 as a small non-oscillating bit of string which has
spatial extent only due to its zero point energy. The first excitation is the same picture but with a
wave propagating along its length, and so forth. The energy of the string should go like the level,

N =
D−1∑
i=2

∞∑
n=1

nNi,n. (4.85)

Now we have to face up to the operator ordering ambiguity that we observed in the classical

1There is a subtlety that we’re glossing over here associated with commutation relations for the α−n operators.
This is discussed in the footnote in Section 2.2.2 of David Tong’s lectures [7]
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formula for the string spectrum. Recalling equations (4.61), (4.73), and (4.13) we may write

P− =
1

2α′P+
L⊥0 =

1

4α′P+

∑
p∈Z

αi−pα
i
p (4.86)

=
1

4α′P+

(
∞∑
p=1

αipα
i
−p +

∞∑
p=1

αi−pα
i
p + αi0α

i
0

)
(4.87)

=
P iP i

2P+
+

1

2α′P+

(
∞∑
p=1

αipα
i
−p + A

)
, (4.88)

where we’ve introduced a normal ordering constant A to account for the normal ordering of the
raising and lowering operators. One should feel a sense of déjà vu with the Casimir energy from
quantum field theory. Plugging into our mass formula, we get the expression

M2 =
1

α′

(
∞∑
p=1

αi−pα
i
p + A

)
=

1

α′
(N + A) . (4.89)

Instead of specifying some prescription for the normal ordering constant, we can impose the
consistency of our theory to fix A. (Later we’ll derive A from a more formal argument using
conformal field theory.) Reading off our low-lying mass spectrum, we see that the ground state
and first excited states have masses

(M0)2 =
1

α′
A and (M1)2 =

1

α′
(1 + A). (4.90)

The lazy (i.e. clever) way to determine A is to consider what is really going into the equation for
M1. This formula accounts for D − 2 states, as is manifest from the sum over i = 2, · · · , D − 1.
In fact, the index structure in (4.84) tells us that this is a vector particle excitation, where
light cone gauge has butchered manifest Lorentz invariance in exchange for working with only
physical states. We know from working with 4D gauge theories that massive vector bosons have
an additional degree of freedom over their massless cousins associated with the ability to boost to
the rest frame of a massive particle. In particular, in D spacetime dimensions a massive vector
has D − 1 states while a massless vector has D − 2 states. Clearly our first excited states, with
its sum over D − 2 indices, must be a massless. This then tells us that M1 = 0, from which we
can fix

A = −1. (4.91)

That’s not bad for a quick-and-dirty derivation. Unfortunately, purists will note that we’ve been
a little bit too quick and too dirty. When proving A = −1 we took the non-covariant gauge choice
τ ∝ X+ (light cone gauge). In a different target space Lorentz frame this will look different. We
need to ask ourselves if our gauge choice actually does respect Lorentz invariance ‘under the hood.’
In other words, we need to determine whether or not Lorentz invariance holds in the quantum
theory or whether it is anomalous. Hence we’ve found that A = −1 is a necessary condition,
but is is not sufficient. It turns out that a sufficient condition is A = −1 and D = 26. This
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is straightforwardly, but very tediously, derived by writing out the Lorentz generators and then
demanding that the correct Lorentz algebra is satisfied in light cone gauge. This is one way of
observing the ‘critical dimension’ D = 26 appearing in bosonic string theory.

Happily taking that at face value, we return to the first equation in (4.90): it appears that our
zero mode has become tachyonic! In fact, when α′ is at the Planck scale this state has a very large
negative mass indeed. Geez Louise! It makes you feel like the little Dutch boy: you plug one hole
and another leak springs right out. At some level, though, we should appreciate that at least this
is ‘only’ a tachyon. This is very different from the non-unitary states that we ran into in Section
4.3 that were an inconsistency of the theory. The reason why I’m trying so hard to convince you
that this is not such a bad problem is that our bag of tricks is now empty and we’ll have to live
with this tachyonic state for the meanwhile. In fact the tachyon is a general problem of bosonic
string theory. We will see, however, that in superstring theory the zero mode is cancelled and the
tachyon goes away.

The Virasoro algebra as a projection to physical states. In light cone gauge our
Virasoro constraints read T++ = T−− = 0. This motivates us to Fourier transform the energy-
momentum tensor,

Lm =
1

4πα′

∫ π

0

dσ e−2imσT−− =
1

2

∑
p

αµpα(m−p)µ, (4.92)

where we note that we are considering all oscillators, not only the perpendicular modes (L⊥m).
This is the origin of the definition of the Ls in (4.71). The L0 component is special. For one,
it is equivalent to the Hamiltonian, H = L0. However, in light of the commutation relations
(4.80) we can see that L0 is special in a different way: it is the only operator which picks up
a normal ordering constant because the αs don’t commute.

We can write our Virasoro constraint as a set of equations where the Ls act upon physical
states as operators:

(L0 − A)|phys.〉 = 0 Lm|phys.〉 = 0 (m > 0). (4.93)

In other words, the Ls can be understood as projection operators onto the space of physical
states. We can remark that the first equation has the same content as the second equation of
(4.90); it sets the normal ordering coefficient to make the lowest physical state massless. One
might ask why we restrict to the case m > 0. The commutation relations of the αs imposes
an algebra for the Ls called the Virasoro algebra,

[Lm, Ln] = (m− n)Lm+n +
D

12
(m3 −m)δm+n. (4.94)

There is a non-zero central term when n = −m so that the projection onto physical states
would be inconsistent if we included negative values of m.

27



4.10 Open string: Dirichlet boundary conditions

We will postpone our discussion of the open string with Dirichlet boundary conditions since this
case is best discussed in the context of D-branes, which exist as the Dirichlet boundary conditions
of precisely these kinds of strings. The reader is encouraged to perform the above analysis for the
open string as homework.

4.11 Closed string: Periodic boundary conditions

We now make some remarks about the closed string in light cone gauge. We claim that we end
up with what amounts to two copies of the open string. Details can be found in your favorite
string theory text. We still have the same equation of motion (3.73), Virasoro constraint (3.74),
and general solution of left and right movers (4.3). The big difference are the boundary conditions
which are now periodic,

Xµ(τ, σ) = Xµ(τ, σ + 2π). (4.95)

We start by expanding the general solution for independent XL and XR,

Xµ
L(τ + σ) =

1

2
XLµ

0 +

√
α′

2
α̃µ0 (τ + σ) + i

√
α′

2

∑
n6=0

1

n
α̃µne

−in(τ+σ) (4.96)

Xµ
R(τ − σ) =

1

2
XRµ

0 +

√
α′

2
αµ0 (τ − σ) + i

√
α′

2

∑
n6=0

1

n
αµne

−in(τ−σ), (4.97)

where we emphasize that α and α̃ are independent Fourier coefficients and are not related by any
kind of complex conjugation. Imposing the periodic boundary conditions we obtain

Xµ
L(τ + σ) +Xµ

R(τ − σ) = Xµ
L(τ + σ + 2π) +Xµ

R(τ − σ − 2π) (4.98)

rearranging this, we have

Xµ
L(τ + σ)−Xµ

L(τ + σ + 2π) = Xµ
R(τ − σ − 2π)−Xµ

R(τ − σ). (4.99)

We know, however, that (τ + σ) and (τ − σ) are completely independent variables. Thus we can
take derivatives with each separately to obtain

X ′µL (τ + σ + 2π)−X ′µL (τ + σ) =
∂

∂(τ + σ)
RHS = 0, (4.100)

where ′ = d/d(τ + σ). Simillarly for the right-moving modes,

X ′µR (τ − σ + 2π)−X ′µR (τ − σ) = 0, (4.101)

where now ′ = d/d(τ − σ). From this one may write

X ′µL (τ + σ) =

√
α′

2

∑
n∈Z

α̃µne
−in(τ+σ) (4.102)

X ′µR (τ − σ) =

√
α′

2

∑
n∈Z

αµne
−in(τ−σ). (4.103)
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Integrating these equations we get

Xµ
L =

1

2
XLµ

0 +

√
α′

2
α̃µ0 (τ + σ) + i

√
α′

2

∑
n6=0

α̃µn
n
e−in(τ+σ) (4.104)

Xµ
R =

1

2
XRµ

0 +

√
α′

2
αµ0 (τ − σ) + i

√
α′

2

∑
n6=0

αµn
n
e−in(τ−σ). (4.105)

Now one can take the difference after a shift σ → σ + 2π,

Xµ
L(τ + σ)−Xµ

L(τ + σ + 2π) =

√
α′

2
α̃µ0 (−2π) (4.106)

Xµ
R(τ + σ)−Xµ

R(τ + σ + 2π) =

√
α′

2
αµ0 (2π). (4.107)

And thus we find that the periodicity condition gives us an additional constraint on the otherwise
independent αµn and α̃µn,

αµ0 = α̃µ0 . (4.108)

This has a strightforward interpretation: while the left- and right-moving excitations are indepen-
dent, the center of the string only moves in one way. One can derive this using a more sophisticated
Noether current approach, for which the reader is referred to Zwiebach exercise 13.4 [1].

Let as now impose light cone gauge. This allows us to set

X+ = α′P+τ, (4.109)

note that there is a factor of two with respect to our normalization of the open string. Solving
the Virasoro constraint using (4.65) with the appropriate modification to overall normalization,

Ẋ− ±X−′ =
1

2α′P+

(
Ẋ i ±X ′i

)2

. (4.110)

Then we can write

(Ẋ i +X ′i)2 = 4α′
∑
n∈Z

(
1

2

∑
p∈Z

α̃ipα̃
i
n−p

)
e−in(τ+σ) ≡ 4α′

∑
n∈Z

L̃⊥n e
−in(τ+σ) (4.111)

and, analogously for the lower sign,

(Ẋ i −X ′i)2 = 4α′
∑
n∈Z

(
1

2

∑
p∈Z

αipα
i
n−p

)
e−in(τ−σ) ≡ 4α′

∑
n∈Z

L⊥n e
−in(τ+σ). (4.112)

Using the mode expansion and following the same steps that we did in Section 4.7,

Ẋ− +X ′− =
√

2α′
∑
n∈Z

α̃−n e
−in(τ+σ) (4.113)

Ẋ− −X ′− =
√

2α′
∑
n∈Z

α−n e
−in(τ−σ). (4.114)
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Using this we can once again relate the oscillator modes in the minus light cone direction to those
in in the transverse direction,

√
2α′α̃−n =

2

P+
L̃⊥n (4.115)

√
2α′α−n =

2

P+
L⊥n , (4.116)

where we have written our Ls as

L⊥n =
1

2

∑
p∈Z

αipα
i
n−p (4.117)

L̃⊥n =
1

2

∑
p∈Z

α̃ipα̃
i
n−p. (4.118)

We also note that our additional constraint (4.108) gives us

L⊥0 = L̃⊥0 . (4.119)

Plugging in these modes we get

1

2
αi0α

i
0 +

∞∑
p=1

αi−pα
i
p =

1

2
α̃i0α̃

i
0 +

∞∑
p=1

α̃i−pα̃
i
p. (4.120)

Defining the excited state sums

N =
∞∑
p=1

αi−pα
i
p Ñ =

∞∑
p=1

α̃i−pα̃
i
p, (4.121)

we get from (4.120) the level matching condition

N = Ñ . (4.122)

This tells us that the left-moving and right-moving levels (N and Ñ) are equal. Note that this

does not mean that each mode number matches individually (Ni,n 6= Ñi,n), but rather that the
total number matches. Again, the physical origin of htis level matching condition can be traced
back to σ-translation invariance.

Now is is easy to quantize our closed string. The set of commuting operators (degrees of
freedom) are as before but with the addition of separate left- and right-moving operators,

X i, P i, X−, P+, αin, α̃
i
n. (4.123)

Their commutation relations are as before,

[α̃im, α̃
j
n] = mδij δm,−n [αim, α̃

j
n] = 0, (4.124)
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along with the usual center of mass commutation relations

[X−, P+] = −i [X i, P j] = iδij. (4.125)

All other commutators vanish.
Indeed, up to the requirement of level matching, this is the algebra of two non-interacting

copies of the open string. We can now write out a general state in terms of raising operators
acting on the ground state |0, 0; k〉,

|N, Ñ ; k〉 =
D−1∏
i=2

∞∏
n=1

(αi−n)Ni,n(α̃in)
eNi,n√

nNi,nNi,n!n eNi,nÑi,n!
|0, 0; k〉. (4.126)

Let us consider the spectrum of the closed bosonic string:

M2 = 2P+P− − P iP i (4.127)

=
2

α′

[
∞∑
n=1

(
αi−nα

i
n + α̃i−nα̃

i
n

)
+ A+ Ã

]
(4.128)

=
2

α′

(
N + Ñ + A+ Ã

)
=

2

α′
(2N − 2) (4.129)

=
4

α′
(N − 1). (4.130)

We’ve used the fact A = Ã = −1, which we will not prove in detail. And, again as before, we
still have a tachyonic ground state, (M0)2 = −4/α′. We make the same remark that this state
is removed in the superstring. Okay, so thus far this should all be a mind-numbing review of
quantizing in light cone gauge. The reason that we’ve gone through this exercise, however, is that
the closed string does buy us one very interesting new feature: the mode

αi−1α̃
j
−1|0, 0; k〉 with M2 = 0. (4.131)

This is a massless two-index tensor. We know that this can be decomposed into a symmetric,
antisymmetric, and trace components. In particular, the moment we hear ‘antisymmetric 2-index
tensor,’ we know we’re talking about gravitons.

To be more precise, (4.131) is a basis of general massless two-index states. We can write a
general state as ∑

ij

eijα
i
−1α̃

j
−1|0, 0; k〉 (4.132)

where eij is a general tensor. It is useful to decompose eij into irreducible representations of
SO(D − 2),

eij =
1

2

(
e+ ij + eji −

D

D − 2
δije

k
k

)
+

1

2
(eij − eji) +

1

D − 2
δije

k
k, (4.133)

where we can write these three terms as eij = gij + bij + Φ. These will be our field names for the
graviton, the antisymmetric tensor, and the scalar (trace) of our decomposition.
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4.12 Remarks: consistency and the zero-point energy

The A (and Ã) factors in the open (and closed) string spectrum came from the reordering of the
Fourier coefficients as operators with non-trivial commutation relations, i.e. taking

1

2

∞∑
n=1

αi−nα
i
n + αinα

i
−n →

∞∑
n=1

αi−nα
i
n + A. (4.134)

A has the interpretation of being a sum of zero-point energies for all oscillator modes, i.e.

A =
∑ 1

2
ω =

D−1∑
i=2

∞∑
n=1

1

2
n =

D − 2

2

∞∑
n=1

n. (4.135)

Those of you who have dabbled in string theory before already know what the very non-intuitive
result is: this sum, which looks ‘obviously’ divergent, can be taken to converge to a value of

∞∑
n=1

n = − 1

12
. (4.136)

This is absurd on many levels, but it turns out to be a sensible thing to do. One way to motivate
this is to appeal to the Zeta function,

ζ(s) ≡
∞∑
n=1

n−s (4.137)

so that the sum of all positive integers is just ζ(−1). By performing an analytic continuation of
ζ we obtain ζ(−1) = −1/12. This ‘explanation’ should be completely unsatisfactory. It can be
understood more rigorously using conformal methods, though we will not dwell on this issue. For
further reading see Tong’s notes [7] or a lucid account by Lubos Motl at http://motls.blogspot.
com/2007/09/zeta-function-regularization.html.

The result from all this is that

A =
D − 2

2
·
(
− 1

12

)
=

2−D
24.

(4.138)

We already know that Lorentz invariance requires A = −1, from which we obtain the (in)famous
result from bosonic string theory, D = 26. This matches the claim earlier that demanding the
Lorentz algebra gives us D = 26.

5 The Polyakov path integral

So far we’ve developed a theory of a free string with a flat target space. One generalization we’d
like to make is to develop the theory of an interacting string. Along the way we’ll develop a handy
path integral formalism for the quantized string.
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5.1 Cartoon picture of string scattering

There are two ways to think about string interactions. The first way is to appeal to what we are
used to from quantum field theory. We have the usual LSZ formalism for determining interactions
by calculating correlation functions and amputating the external legs:

?

We would like to develop a similar picture for the worldsheet, where instead of external point
particles we have initial and final string states. We thus propose that between these external
string states we draw any connected worldsheet surface and count this as a contribution towards
the string amplitude. This is a vague statement; in fact, the vague part is the word ‘any.’ What
we mean is that we consider any embedding of the worldsheet into the target space (Xµ(σ, τ))
and any intrinsic metric on the worldsheet (γαβ(σ,τ)). In particular, we will consider any topology
of this worldsheet connecting the final states. We would like to perform a path integral over all
such worldsheets.

A second picture is to actually consider open and closed strings in spacetime merging and
splitting off one another. This is most simply seen in pictures:

Here we depict two open strings combining into a single open string, a closed string splitting into
two closed strings, and two open strings combining into a closed string.

5.2 A general Polyakov action

Thus far we’ve studied the Polyakov action SP and studied its symmetries. Going to Euclidean
complex coordinates and unit gauge, SP takes the form

SP = − 1

4πα′

∫
d2σ
√
γγαβ ∂αX

µ∂βXµ −→ 1

2πα′

∫
d2z ∂Xµ∂̄Xµ. (5.1)
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This, however, is not the most general action that we could have written that is invariant under
the gauged diff×Weyl and global Poincaré symmetry that we made such a big deal about. There
is an additional topological term which we could have introduced,

∆S =
λ

4π

∫
d2σ
√
γ R. (5.2)

We say that this is “topological” in the sense that it is equivalent to the Euler number, χ, so
that ∆S = λχ. You’re probably starting to feel queasy: we just went through a lot of work
(albeit abridged) in Section 4 to quantize the Polyakov action. Now we have a new action, and
nobody wants to have to go through all that again. Fortunately, this topological term does not
contribute to the equation of motion. One nice way to see this is to note that ∆S is just the 2D
Einstein-Hilbert term (3.20) and recall that general relativity in 1+1 dimensions is, as we noted
earlier, non-dynamical. The lesson for 2D general relativity is that the Einstein-Hilbert action is
independent of the metric and only depends on the worldsheet topology.

Thus trying to construct a path integral formalism for strings, we should properly weight our
path integral by the combined action SP + ∆S = SP + λχ. We would like to relate this to our
[worldsheet] Fock space (i.e. the spacetime Hilbert space). For point particles the path integral
sums over all paths connecting the initial and final states. We generalize this to all worldsheets
connecting initial and final strings. The cartoon picture of this generalization is:

A subtle assumption is that we know how express the external state data. We’ll get to this in due
course. We can write out the partition function,

Z =
∑

topologies

∫
[DX] [Dg]

(overcounting)
e−(SP+λχ). (5.3)

We’ve shifted notation for future convenience by writing gαβ as the worldsheet metric, i.e. γαβ →
gαβ. (We don’t want to get confused from having too many γs floating around.) Here the sum is
over all suitable compact, connected topologies. The overcounting is just the volume of the gauge
group, Vdiff×Weyl. To account for this gauge redundancy one must apply the usual Fadeev-Popov
procedure that one is familiar with from field theory. For brevity we’ll not review the details
but will assume that it’s clear what we mean when we mod out by Vdiff×Weyl. Finally, one might
worry about the Dg integral. Is gαβ really a degree of freedom? In the preceding derivation of the
string spectrum we gauged fixed to gαβ = ηαβ at the cost of imposing the Virasoro constraints.
Certainly we should keep track of these constraints, especially when considering extrema of the
path integral, but the Dg integral reflects the integration over off-shell paths.

We can understand the partition (in particular, the λχ term) as an expansion in topologies of
the vacuum-to-vacuum amplitude Z = 〈1〉:
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Ultimately we would like correlation functions of operators, 〈O1 · · · On〉. To do this, we need to
understand how to properly encode the initial and final state data into our path integral.

5.3 Conformal invariance

Our primary tool to answer this question is conformal invariance. This is a powerful symmetry
of the Polyakov action SP that is not present in the Nambu-Goto action SNG. In fact, conformal
invariance is the true raison d’être of using the Polyakov action over the Nambu-Goto action,
much more so than any of the square root business we used to originally motivated SP. However,
just like the details of the Fadeev-Popov procedure, we’re going to skip a lot of the formalism of
2D conformal field theories (CFTs).

Wait a second! Are you being short-changed? Maybe the only reason you’re reading this is
because you want to learn the AdS/CFT correspondence. Isn’t the CFT part half of the deal?
Fortunately, you can relax. The formalism for two-dimensional conformal field theory is rather
special compared to a general D > 2, e.g. there are an infinite number of generators which can
be used to strongly constrain the form of correlation functions. In string theory D = 2 case is
used mainly for developing a way to calculate string amplitudes. This will not be of particular
importance for the ‘modern developments’ that we will focus on in these lectures, in particular
the ‘CFT’ in the AdS/CFT correspondence is decoupled from the details of D = 2 conformal
field theory. For those with a burning desire to learn more (en route to string scattering), we
particularly recommend David Tong’s lectures [7], the large text by Di Francesco et al. [11], the
reviews by Ginsparg [12] and Schellekens [13], Freddy Cachazo’s 5th lecture on string theory at
the 2009-10 Perimeter Scholars International school [14], as well as the usual classic string texts
[2, 4].

We’ve already seen a glimpse of how all of this works, so let’s review the ‘leftover’ gauge
freedom diff×Weyl that played such a key role in our lightcone gauge quantization of the string.
This time we will work in unit gauge complex coordinates,

SP =
1

2πα′

∫
d2z ∂Xµ∂̄Xµ. (5.4)

The 2D complex line element is

ds2 = gzz̄ dz dz̄. (5.5)

We claim that there is a leftover gauge freedom after fixing to unit gauge; from our earlier quan-
tization in light cone gauge complex coordinates we know this has to do with holomorphic dif-
feomorphisms z → z′(z). These are, we recall, a very (infinitesimally) small subset of the set of
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all possible diffeomorphisms. Under such a holomorphic change of coordinates, the line element
transforms as

ds2 → ds′2 =

(∣∣∣∣ ∂z∂z′
∣∣∣∣2 gzz̄

)(∣∣∣∣∂z′∂z
∣∣∣∣2 dz dz̄

)
= ds2, (5.6)

that is to say that the line element does not transform. Of course, we expected this since lengths
are unchanged by a a change in coordinates even though the metric itself (gzz̄) is transformed, as
seen by the first term in parentheses. The transformation of the metric is an annoyance since we
are interested in fixing the metric to unit gauge. Following our observations from Section 4.4, we
know that we can get back to unit gauge via a Weyl transformation. In particular, if we chose

ω = ln

∣∣∣∣∂z′∂z
∣∣∣∣ , (5.7)

then our line element would then transform as

ds′′2 = e2ωds′2 = gzz̄

∣∣∣∣∂z′∂z
∣∣∣∣2 dz dz̄ = gzz̄ dz

′ dz̄′ 6= ds2. (5.8)

Thus the actual line element has changed, though our metric has not. It is easy to miss the point
of what we have done here. We have not just simply ‘undone’ the holomorphic diffeomorphism.
A Weyl transformation is a very different beast than a diffeomorphism. While we have indeed
reverted our metric back into its unit gauge form so that the action is unchanged, this has come
at a cost: actual lengths (as determined by the line element) in the system have changed.

We will now use this to our advantage. The sequence of transformations we’ve just done
are just conformal maps. We don’t mean this in any fancy AdS/CFT sense, but rather the
conformal maps that people studied in the 1900s to do complicated electrostatics problems before
the days of Mathematica.

5.4 Conformal Maps: some pictures

We will use conformal invariance to map our complicated interacting string worldsheets to simpler
objects, namlely spheres and torii with punctures. This is best described by the following cartoon:

+ +

+

+ ++

36



The external string states, which were holes on the worldsheet have been mapped to punctures
nice-looking spacetime embeddings. More precisely, we would like to consider the scattering of
states that are asymptotically far away from each other before and after the interaction, so we
can imagine this as

+ +

+ +

A somewhat subtle point that is that internal states can have different numbers of strings;
consider e.g. constant time slices of complicated worldsheet topologies. It thus seems like we are
in fact creating and annihilating strings themselves, not just excitations of strings. In this sense
it looks like we are second quantizing the string (i.e. doing string field theory). This, however,
is still not quite what we’re doing. The correct analog is to recall the way that physicists of
yesteryear worked with Dirac theory before quantum field theory was developed. With those tools
they were able to add particles via interactions to existing external lines, but there was no true
second quantization of particle fields. In the same way, we can consider worldsheets with funny
topologies that are interpreted as interactions that add additional string states to existing external
strings, but we really have not second quantized anything.

5.5 A hint of radial quantization

Let’s now consider a much simpler map:

τ

σ=0 σ=2π

+

Here we map the string worldsheet into polar coordinates. The hats refer to Euclidean worldsheet
coordinates. We’ve identified the σ̂ = 0 and σ̂ = 2π coordinates so that the object on the left is
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really a cylinder representing the worldsheet of a closed string. If we complexify our worldsheet
coordinates via

w = σ̂ + iτ̂ , (5.9)

then we consider the conformal map from w → z coordinates

z = e−iw = e−iσ̂+τ̂ . (5.10)

Re w

Im w z = e-iw

These ‘radial’ coordinates have some nice features. We can see that the origin of this space z = 0
corresponds to the asymptotic past τ̂ = −∞. Circles about the origin correspond to equal time
contours. In fact, this is the first step to radial quantization. In quantum field theory we care
about time-ordered operators. In these radial coordinates, time ordering corresponds to radial
ordering. Let us remark that, as one would imagine, the open string can be mapped conveniently
to the half plane.

Now let’s write our our mode expansion. In Minkowski space, this was

Xµ
L =

1

2
XLµ

0 +

√
α′

2
αµ0 (τ − σ) + i

√
α′

2

∑
n6=0

αµn
n
e−in(τ−σ) (5.11)

with a similar expression for L → R, α → α̃, and τ − σ → τ + σ. Going from Minkowski
to Euclidean worldsheet coordinates ds2 = −dτ 2 + dσ2 → dτ̂ 2 + dσ̂2 with τ = −iτ̂ and radial
coordinates ln z = −i(σ − τ), we find

Xµ
L =

1

2
XLµ

0 +

√
α′

2
αµ0 (−i ln z) + i

√
α′

2

∑
n 6=0

αµn
n
z−n. (5.12)

One can check that the right-handed modes are the same with the antiholomorphic variable, i.e.
L → R ⇒ z → z̄. This is a nice result, we’ve found that our Fourier expansion of modes has
turned into a Laurent-like expansion (up to the logarithmic term) in the radial coordinates.

We can thus write out our D-plet of 2D Euclidean CFT scalar fields as

Xµ(z, z̄) = Xµ
L(z) +Xµ

R(z̄). (5.13)

Furthermore, taking the appropriate derivatives,

∂zX
µ
L(z) = −i

√
α′

2

∑
n

αµnz
−n−1 and ∂zX

µ
R(z̄) = −i

√
α′

2

∑
n

α̃µnz̄
−n−1. (5.14)
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Now this really is a Laurent expansion and we can perform contour integrals. In radial quantization
a circular contour integral about the origin is just an integration over constant time. Since contour
integrals just pick up simple poles, we can use this to determine the coefficients rather simply,

αµ−n = i

√
2

α′

∮
dz

2πi
z−(n−1)∂zX

µ(z) (5.15)

= i

√
2

α′

∮
dz

2πi
z−(n−1)

[
· · ·+ 1

(n− 1)!
zn−1∂nzX

µ(0) + · · ·
]

(5.16)

=

√
2

α′

∮
dz

2π
z−n∂zX

µ(z). (5.17)

5.6 The state-operator map

The beauty of working in these radial complex coordinates is that the integral over a circle about
the origin is related to an integral over a spacelike surface,∮

⇐⇒
radial quantization

∫
spacelike surface

. (5.18)

Integrals over spacelike surfaces are usually how we define things like (ta-dah) conserved charges
in the Noether procedure. This is actually a rather nice statement with more significance than it
lets on. On the left-hand side we have the Fourier coefficient αµ−n, which in our quantum theory is
promoted to an operator. However, on the right-hand side, the integrand contains no operator-like
objects. In fact, the integrand is made up of the derivative of a local field, which is a completely
different kind of object in quantum field theory.

It turns out that this is a rather ‘deep’ relation between operators and local fields, i.e. states
in 2D conformal field theory. We now claim, albeit heuristically at this level, that this relation
can be made more rigorous into an isomorphism between operators and states. A handy analogy
is the charge associated with a current jµ in ordinary QFT:

Q ∼
∫
t=t0

j0. (5.19)

The left-hand side is a conserved charge which, in QFT, is the generator of the symmetry associated
with the current. The right-hand side is again a construct of the local fields of the theory integrated
over a spacelike surface. Evaluating equation (5.17),

αµn =

√
2

α′
i

(n− 1)!
∂nXµ(0), (5.20)

where we’ve identified the simple pole term from expanding ∂zX
µ(z) about the origin. As the case

of the Noether charge, the left-hand side is an operator (of the creation/annihilation variety) and
the right-hand side is some construct of fields in the QFT. We would like to [somewhat] formalize
the relation between the creation/annihilation operators associated with the external states of a
string scattering diagram and the local operators of the worldsheet QFT. A heuristic picture is:
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+

initial state Ψ

operator associated
with the state Ψ

For a state |Ψ〉 = αµ−mα̃
ν
−m|0, 0〉, we can construct the associated operator

OΨ =

[√
2

α′
i

(m− 1)!
∂mXµ(0)

]
×

[√
2

α′
i

(m− 1)!
∂̄mXν(0)

]
. (5.21)

To check this properly, one should check that this transformation maps states faithfully. See
chapter 2 of Polchinski [2] or Tong’s lecture notes [7] for details. Here we’ll be content to motivate
this correspondence from elementary quantum mechanics.

Consider the path integral for a point particle propagating from state |qi〉 at time t = 0 to |qf〉
at time t = T . The path integral associated with this evolution is given by

〈qf , T |qi, 0〉 =

∫
[Dq] e

i
~

R T
0 dtL(q,q̇). (5.22)

We can “cut open” the path integral at some intermediate time t = t∗. In pictures, we would slice
the set of paths from |qi〉 to |qf〉:

This is equivalent to inserting 1 =
∫
dq(t∗)|q, t∗〉〈q, t∗|, where we emphasize that this is an ordinary

integral, not a path integral:

〈qf , T |qi, 0〉 =

∫
dq(t∗)

∫ qf ,T

q0,t∗
[dq] e

i
~

R T
t∗ dtL

∫ qi,t
∗

qi,0

[dq] e
i
~

R t∗
0 dtL (5.23)

=

∫
dq(t∗) 〈qf , T |q, t∗〉〈q, t∗|qi, 0〉. (5.24)
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What we’ve inserted here is just a complete set of states. We cold have replaced
∫
dq |q, t〉〈q, t|

with any complete set of states. The lesson here is that the path integral up to a fixed time,∫ q,t∗

qi,0

[Dq] e
i
~

R t∗
0 L(q,q̇), (5.25)

is actually a state. As a sanity check, we note that the path integral up to a particular final
state is (of course) the amplitude to propagate to that state. What we are saying is that the sum
(ordinary integral) of the path integral up to all such final states is a state.

We can do this slightly more formally from the point of view of radial quantization. Suppose
we have an operator insertion O(0) at the origin and fix the value of the field φ = φb on some
constant radius surface on the complex worldsheet, e.g. |z| = 1.

+ |z|=1
φ =φb operator

insertion

We can now do the path integral on the internal disc up to this boundary. We claim that this
gives us a state, ΨO isomorphic to the operator. In particular,∫

[Dφi]φb e−S[φi]O(0) ≡ ΨO[φb]. (5.26)

This is a functional of boundary field configurations φb, i.e. for any given φb it spits out a number.
This, however, is precisely what we call a state.

This can be a bit nebulous because in QFT one doesn’t often make a distinction between states
and operators. Operators create and annihilate states, and that’s that. It is useful to appeal to
quantum mechanics. In quantum mechanics we have a state which is the wavefunction Ψ(q). This
is an object which exists over all space for a fixed time t0. Its argument is a quantum configuration
q and it tells us the probability amplitude associated with that configuration at t0. (The time
evolution is, of course, governed by the Schrödinger equation.) In quantum field theory (i.e. after
second quantization) the quantum configuration is promoted to a quantum field q → φ(x) and the
wavefunction is promoted to a wavefunctional Ψ[φ(x)]. The meaning of this wavefunctional is the
again the probability amplitude for field configuration φ(x) for each point x in space at a fixed
time t0. This is exactly what we claimed above in (5.26). Let us further remark that operators
are a completely different object than wavefunction(al)s (states). Operators exist at a fixed point
in spacetime and are associated with exciting the first-quantized oscillators of the quantum field.
Cast this way, it is indeed rather surprising that an isomorphism between states and operators
should exist in CFTs. For more details, see Tong’s lecture notes [7].
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One straightforward example of the state-operator map is the zero-excitation state with mo-
mentum k, |0, 0; k〉, which is mapped to a plane wave,

|0, 0; k〉 ⇔ eikµX
µ(0). (5.27)

Similarly, we can map the one- and two-tensor excitations

αµ−m|0, 0; k〉 ⇔
√

2

α′
i

(m− 1)!
∂mXµ(0)eik·X(0) (5.28)

αµ−mα̃
ν
−m|0, 0; k〉 ⇔

(√
2

α′
i

(m− 1)!

)2

∂mXµ(0)∂̄mXν(0)eik·X(0). (5.29)

One remark we can make is that we’re working with a conformal field theory of fields Xµ. Our
local operators are spanned by polynomials in ∂Xµ, ∂2Xµ, · · · , ∂̄Xµ, ∂̄2Xµ, · · · multiplied by the
plane wave eikµX

µ(0). In this sense the state-operator correspondence is rather straightforward.
This is just the heuristic association between creation operators and quantum fields that one could
imagine from canonical quantization and the path integral formalism. Conformal field theories
are somewhat special in that one can actually formalize this heuristic relation.

Thus far we’ve learned how to relate external states in spacetime to local operators at the
origin of the worldsheet corresponding to a particular on-shell state at τ = −∞.

+

One should be concerned that we chose to put our operators at the origin since this is manifestly
not diffeomorphism invariant. In order to restore diffeomorphism invariance, we must perform the
d2z integral over the worlsheet. For example, the vertex operator for the string ground state with
momentum k, |0, 0; k〉 (or |0; k〉 for the open string) is

V0 = gc

∫
d2z eikµX

µ(z,z̄), (5.30)

where gc is a normalizing constant. More interesting is the vertex operator for the first excited
state, αµ−1α̃

ν
−1|0, 0; k〉,

V−1,−1 = gc

∫
d2z

(
2

α′

)
∂Xµ(z)∂̄Xµ(z̄)eikµX

µ(z,z̄) (5.31)

=
2

α′
gc

∫
d2z ∂Xµ∂̄Xνeik·X . (5.32)
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This maps, e.g., a graviton on the cylindrical worldsheet to a local operator on the complex plane.
Inserting a final state is analogous, except that now one would like to put the final state at

the asymptotic future, i.e. at the complex infinity of the Riemann sphere,

initial state Ψ(i)

�nal state Ψ(f )

operator ν(f )

operator ν(i)

[Question: Are these positions just for illustrative purposes? The integral over the complex plane
seems to violate any sense of positioning of the operators.] We conclude that the leading-order
propagation amplitude between given initial and final states is the correlation function on the
sphere of

〈ViVf〉 ⇔
∫

[DX][Dg]

Vdiff×Weyl

e−SP−λχsphere

∫
d2σi
√
g Vi

∫
d2σf ,

√
g Vf . (5.33)

5.7 Scattering amplitudes

Let’s now press on and perform the path integral. We would like to compute the scattering
amplitude (or correlation function) of spacetime diagrams like

Ψ1(k1)

Ψn(kn)

Ψi(ki)

The n-string correlator can be computed through the path integral using the appropriate insertions
of the vertex operators coming from the state-operator map,∫

[DX][Dg]

Vdiff×Weyl

e−SP−λχ
n∏
i=1

νi(ki) ≡ S
(c)
Ψ1···Ψn(k1, · · · , kn). (5.34)

43



S
(c)
Ψ··· is the scattering amplitude for external states Ψi and a particular topology c. We can think

of this as the 〈V1(k1) · · ·Vn(kn)〉c correlation function. The full amplitude is given by a sum over
topologies (i.e. arbitrary number of intermediate holes),

SΨ1···Ψn =
∑

topologies

e−λχ〈
n∏
i=1

Vi〉c = e−2λ〈
∏
V〉S2 + e−0〈

∏
V〉T 2 + · · · , (5.35)

where we noted the formula for the Euler characteristic

χ = 2− 2g − b, (5.36)

where g is the genus and b is the number of boundaries of the topology. In particular, χ(S2) = 2
and χ(T 2) = 0. The higher topology terms drop off very quickly for small λ.

5.8 The Weyl Anomaly

Before we can say anything meaningful, we have to suitably normalize our results by dividing by
the partition function Z. This corresponds to calculating 〈1〉,

Z =

∫
[DX][Dg]

Vdiff×Weyl

e−SP−λχ. (5.37)

We remind ourselves that the point of the measure is that it an be decomposed into a parts that
are gauge-equivalent and those that are not (i.e. unique orbits within the gauge group),

[DX][Dg] = [D(orbit)] · [D(gauge equivalent)]. (5.38)

The second factor is just Vdiff×Weyl and cancels the denominator. The Fadeev-Popov method tells
us that this decomposition is always allowed and also buys us an additional consistency condition.

We already know that the system is classically invariant under the local diffeomorphism ×
Weyl symmetry and the global Poincaré symmetry. We need to check if these symmetries turn
out to be anomalous. (If the gauged symmetries are anomalous then our theory dies.) Since it’s
not necessarily obvious that anomalies could appear, let’s motivate the possibility that such an
inconsistency could appear. Consider, for example, introducing a regulator into our theory. One
method that rarely failed us in field theory was the introduction of a Pauli-Villars field,

∆S =

∫
d2σ
√
γ
(
µ2YµY

µ
)
. (5.39)

This is manifestly Poincaré invariant (from the contraction of Lorentz indices), it is diffeomorphism
invariant (since we know we can have massive fields in general relativity), but it is not Weyl
invariant. This is easy to see since we already know that

√
γγαβ · · · is Weyl invariant, therefore√

γ by itself cannot be. We thus have reason to ask whether or not Weyl symmetry is anomalous,
i.e. does there exist a Weyl invariant regulator? A more sophisticated way of saying this is to take
the Fujikawa perspective and ask whether or not both the action and the measure are invariant
under Weyl transformations. (This way one doesn’t have to ask about regulating a divergence
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which doesn’t necessarily exist.) We know, of course, that an anomaly in a gauge symmetry such
as Weyl invariance would be an automatic game-over: we would lose covariance and could even
lose unitarity as the theory becomes inconsistent.

Let’s sketch out the derivation of the Weyl anomaly cancellation condition. A correlation
function for “· · · ” (i.e. for any operator) takes the general form

〈· · · 〉 =

∫
[DX][Dg]

Vdiff×Weyl

e−S[X,g] · · · . (5.40)

Let us introduce a fiducial metric ĝ that we introduce as part of the Fadeev-Popov procedure
so that we can write correlation functions with respect to this gauge-fixed metric,

〈· · · 〉ĝ =

∫
[DX] e−S[X,ĝ] · · · . (5.41)

We’ve cheated a bit since the action should properly contain a term for the Fadeev-Popov ghosts
which are introduced to cancel shifts in the Jacobian. We’ll ignore all this and leave the reader
to work out the details or follow them in the usual references. What we’re looking for when we
say that there should be no Weyl anomaly is that the correlation functions should not change if
the metric undergoes a Weyl transform, ĝ → ĝξ where ξ is some Weyl transformation parameter,
ĝξαβ = e2ωξ ĝαβ. Thus for Weyl invariance to be anomaly-free, it is necessary and sufficient that

〈· · · 〉ĝ = 〈· · · 〉ĝξ . (5.42)

Let’s see a correlator changes under a variation of the metric,

δ〈· · · 〉ĝ =

∫
d2σ
√
g

δ

δgαβ(σ)
〈· · · 〉ĝ. (5.43)

Recall, however, that

δS

δgαβ(σ)
=

√
g

4π
Tαβ(σ) (5.44)

from the definition of the energy-momentum tensor in general relativity. Let us stress that Tαβ

is the energy-momentum tensor of the worldsheet quantum field theory, not the target spacetime.
Now we make a big simplification. Thus we can write

δ〈· · · 〉ĝ = − 1

4π

∫
d2σ δgαβ(σ) 〈Tαβ(σ) · · · 〉ĝ. (5.45)

We want this to hold as an operator equation. That is to say that we would like this to hold ‘off
shell’ and for any operators “· · · ”. Further, we would like this to hold even when the operators
inside the “· · · ” become coincident. Recall that when different operators in a correlation function
become local, i.e. 〈· · · Oi(zi)Oj(zj) · · · 〉 with zi → zj, one often finds singularities. We shall
assume that δgαβ(σ) = 0 in some neighborhood of each of the operator insertions. In other words,
the support of our variation of the metric looks like
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This is a very dramatic simplification that borders on dishonesty. For our ‘quick-and-dirty’ pur-
poses, however, it will be sufficient. The proper way to treat this is to do an operator product
expansion (OPE) which turns out to be not-so-painful thanks to the simplifications of working
with holomorphic functions. A good review of this can be found in Tong’s lectures [7].

For a variation of the metric that is a Weyl rescaling, δξ, we find that

δξgαβT
αβ = Tαα

(
e2ωξ − 1

)
(5.46)

since δξgαβ = (e2ωξ − 1)gαβ. Now we see that we want to demand that

〈Tαα · · · 〉 = 0, (5.47)

i.e. that Tαα = 0 as an operator equation. This is equivalent to the Weyl invariance being non-
anomalous. Recall, however, that the tracelessness of the energy-momentum tensor is just the
statement that the theory is scale invariant.

In unit gauge on a flat worldsheet embedding, we already knew that the energy-momentum
tensor is traceless. This was part of our Virasoro constraints. For a more general embedding, then,
we know that the trace of the energy-momentum tensor must be proportional to the curvature,

Tαα = a1R
(2), (5.48)

in order to ensure the correct limit in the flat case. (We write R(2) to mean the Ricci scalar on the
2D worldsheet theory.) One can then spend eight hours learning about conformal field theories to
derive that the coefficient a1 depends on the dimension of the spacetime as

a1 =
26−D

12
. (5.49)

We see that in order for the Weyl anomaly to vanish on a general target space, we must have a
target spacetime of dimension D = 26.

6 The stringy nonlinear sigma model

Now let’s build on all that we’ve developed and write out a low-energy effective action for the
light modes of our theory. Recall when we have a quantum field theory with a spontaneously
broken global symmetry we can write out an effective theory of light states, i.e. (pseudo-)Nambu-
Goldstone bosons. Recall, for example, chiral perturbation theory for pions in QCD. We call
these effective theories nonlinear sigma models (NLΣM), and now we’d like to work out a stringy
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version. In particular, we will be interested in the theory of the graviton and its massless friends.
This means we’d like to study the low-energy string states on a general target space metric. Here’s
a cartoon picture. We shall write r to be some characteristic curvature scale of the target space
whose precise definition isn’t something we’ll lose sleep over.

r

We began with the Polyakov action (written here with Euclidean signature) for a Minkowski
target space metric,

SP =
1

4πα′

∫
d2σ
√
g gαβ ∂αX

µ∂βX
ν ηµν . (6.1)

We can generalize this by replacing ηµν with Gµν(X),

S =
1

4πα′

∫
d2σ
√
g gαβ ∂αX

µ∂βX
ν Gµν(X). (6.2)

One can see that we’re starting to connect our string theory to something resembling quantum
excitations of spacetime general relativity. With this generalization we can expand our action in
terms of the flat spacetime metric, Gµν(X) = ηµν + χµν(X),

e−S = e−SP

(
1− 1

4πα′

∫
d2σ
√
g gαβ ∂αX

µ∂βX
νχµν(X) + · · ·

)
. (6.3)

Recall our state-operator correspondence (where the subscript ‘graviton’ refers to any of the
massless closed string excitations, not just the symmetric one)

Vgraviton(sµν , k) ⇔ gc
α′

∫
d2σ
√
g gαβ ∂αX

µ∂βX
ν sµνe

ik·X , (6.4)

where sµν is a polarization vector (sµνk
µ = 0 and sµµ). Comparing to our expansion of the target

space metric about ηµν . Thus our expansion (6.3) can be understood in terms of an expansion of
the correlation functions of arbitrary operators (“· · · ”),

〈· · · 〉G = 〈· · · 〉G=η +
∞∑
k=1

〈· · ·
j∏
i=1

Vi(siµν , ki)〉G=η. (6.5)

In other words, the correlator with respect to the general [target] spacetime metric is equal to an
expansion of correlators with respect to the ‘graviton’ (and friends) vertex operators in flat space.
In pictures,
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+ + + . . .

where each puncture is a graviton (or antisymmetric tensor, or dilaton).
We could have picked any background metric to expand about. The Minkowski metric is the

obvious choice since we know how to calculate with respect to it, but we’ll soon be interested in
more general backgrounds (e.g. black holes). Let’s remind ourselves that our general background
of massless closed string states can be decomposed into a graviton Gµν(X), an antisymmetric
tensor Bµν(X), and a dilaton Φ(X). Thus we may write our nonlinear sigma model action as

SNLΣM =
1

4πα′

∫
d2σ
√
g
{[
gαβGµν(X) + iεαβBµν(X)

]
∂αX

µ∂βX
ν + α′R(2)Φ(X)

}
. (6.6)

We’ve written R(2) to mean the worldsheet 2D Ricci scalar to distinguish it from the geometric
quantities of the target spacetime. This NLΣM action corresponds to coherent states of the
massless fields ‘generated’ by exponentiating the massless vertex operators, V .

6.1 The sigma model expansion

This is all a nice story, but how do we get a handle for working about this general target space
geometry with a non-trivial Gµν(X), Bµnu(X), and Φ(X).

We will start by expanding our worldsheet-to-target space map Xµ about a point in the target
space Xµ

0 ,

worldsheet

X0
μ

i.e. we define an origin in the target space via

Xµ(τ, σ) = Xµ
0 + Y µ(τ, σ). (6.7)
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Then the NLΣM action can be Taylor expanded about this reference piont,

SNLΣM =
1

4πα′

∫
d2σ
√
g
{
gαβ∂αY

µ∂βY
ν
[
Gµν(X0) +Gµν,ω(X0)Y ω + · · ·

]
+ iεαβ∂αY

µ∂βY
ν
[
Bµν(X0) +Bµν,ω(X0)Y ω + · · ·

]
+ α′R(2)

[
Φ(X0) + Φ,ωY

ω + · · ·
]}

(6.8)

In principle there should also be a tachyon term, but it carries its own set of issues and we’ll
assume that it is projected out. We should interpret this action as a 2D interacting quantum
field theory. One can see that it has the usual kinetic term for the fields Y µ. The couplings are
given by spacetime derivatives of the metric and its friends (G, B, and Φ). There are infinitely
many couplings. In fact, to be more precise, we have whole functions worth of couplings: the
interactions depend on where one is in field space. This is indeed an expansion, the so-called sigma
model expansion. To make the expansion scheme more plain, we can introduce dimensionless
coordinates

φµ =
Y µ

√
α′
. (6.9)

It then becomes more clear that the derivative expansion about the reference point Xµ
0 can really

be taken as an expansion in powers of (α′/r2), where r is the characteristic curvature scale of
the target space (the radius of curvature). Recall further that the string tension is given by
T = (2πα′)−1 so that

√
α′ is the length scale of the string. Thus the sigma model expansion is

valid when the string too small to probe the curvature of the target space, i.e. when the length
scale for change in the geometry of spacetime is large in string units.

6.2 Consistency of the sigma model expansion

We should now pause and consider consistency. We emphasized that we are now working in a
general target space background. But we also know that when we quantized our string theory we
were very particular about our set of consistency conditions. We now ought to check when, in
terms of our general target space, these consistency conditions are still satisfied.

Recall that varying the action with respect to the metric gives us the stress-energy (or “energy-
momentum”) tensor,

δ

δgαβ
S ↔ Tαβ. (6.10)

Thus it is straightforward that a Weyl rescaling δWeyl gαβ = f(x)gαβ gives the trace of Tαβ. Indeed,
we recall that we had to require that the Weyl anomaly vanishes,

〈Tαα〉 = 0. (6.11)

Weyl rescaling is just a dilatation so that in particular we have to require (at least) invariance with
respect to rigid dilatations. Actually, the vanishing of the Weyl anomaly is a stronger statement
than this, but for our present purposes we will work with this weaker statement. Invariance under
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rigid dilatations tells us that the theory must be scale invariant, i.e. the couplings (heuristically
λ) must have vanishing β functions,

βλ(M0) = M
∂

∂M
λ(M)

∣∣∣∣
M=0

= 0. (6.12)

In our 2D QFT we may compute 〈Tαα〉 to any order we desire in the sigma model expansion
parameter (α′/r2). From (5.48) we already know that at O[α′/r2)0], that is even in infinite flat
space, we have

Tαα = − 1

12
(D − 26)R(2). (6.13)

There are, however, corrections at higher orders in (α/r2).

Tαα = − 1

2α′
βGµνg

αβ∂αX
µ∂βX

ν (6.14)

= − 1

2α′
βBµνε

αβ∂αX
µ∂βX

ν − 1

2
βΦR(2). (6.15)

Where, after some hard work, one finds that the β functions are

βGµν = α′Rµν + 2α′∇µ∇νΦ−
α′

4
HµλωH

λω
ν +O(α′2) (6.16)

βBµν =
α′

2
∇ωHωµν + α′∇ωΦHωµν +O(α′) (6.17)

βΦ =
D − 26

6
− α′

2
∇2Φ + α′∇ωΦ∇ωΦ− α′

24
HµνλH

µνλ +O(α′2) (6.18)

and the 3-form Hµνρ is the exterior derivative of the Bµν tensor, H = dB,

Hµνρ = ∂µBνρ + {antisymmmetric permutations}. (6.19)

We can think of these as loop corrections (in the sigma model) to the β functions. Our condition
of Weyl invariance requires that these loop corrections vanish,

βG(X) = βB(X) = βΦ(X) = 0. (6.20)

To zoom out to the big picture once again, we started with a worldsheet theory of fields Xµ(τ, σ)
with a set of equations of motion to impose. Now the vanishing of the beta functions is another
set of equations that have to be imposed. [Check: ] We understand that these constraints come
from Weyl invariance in the full string theory, but how should we understand this condition from
the point of view of the nonlinear sigma model?

It turns out that these equations can be understood as coming from come from extremizing
the 26-dimensional action

S26 =
1

2κ2
0

∫
d2X
√
Ge2Φ

{
R− 1

12
HµνλH

µνλ + 4∂µΦ∂µΦ +O(α′)

}
. (6.21)
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Here κ0 is some constant that is not yet determined and all geometric quantities (e.g.
√
G, R) are

evaluated on the target space. We see that up to a Φ rescaling S26 looks just like the Einstein-
Hilbert action plus ‘stuff’ (matter). The H2 term should be understood as a 3-form generalization
of the usual fieldstrength and we can see the usual scalar kinetic term. We know exactly what
we’re going to get from varying this action: the Einstein equation. One can perform a metric
transformation to the Einstein frame, see e.g. Polchinski chapter 3, in which case one would see
that, that κ0 exp(Φ0) should be (8πGN)1/2 = (8π)1/2/MP as required to match gravity. Moreover,
going to a higher order in α′ one finds (through more calculation)

βGµν = α′Rµν +
α′2

2
RµκλτR

κλτ
ν +O(α′3), (6.22)

the second term is the stringy correction to GR. It seems weird that we’re imposing these extra
spacetime equations of motion on top of the X equations of motion. Further, it seems disconcerting
that these appear to come only from a special subset of theories, i.e. those which look like S26.
Indeed, this would seem to say that only a subset of string theories are self consistent.

It turns out that there is yet another way still to understand where these ‘additional’ constraints
come from. In particular we will see that S26 comes from somewhere else still, i.e. we will find a
different way to get the low-energy EFT of massless modes. Let’s start by computing S-matrix
elements of massless states. We already have a nice picture of this:

+
+
+

+

+ +
+ + +

where the crosses represent insertions of the vertex operators Vmassless for massless modes (Gµν ,
Bµν , Φ). This is the picture coming from the path integral,∫

DX V1 · · · Vne−SP−λχ. (6.23)

We would have to do this for all numbers of insertions and for all Riemann surfaces. Note that this
is really really hard for topologies beyond the torus. Fortunately, there are aspects that survive
to any order.

Assume that we compute S-matrices that look like:
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(We don’t care about the specifics of the external states other than that they are massless.) We can
ask ourselves the following question: Does there exist a 26-dimensional QFT coupled to gravity
(i.e. a long-wavelength low-energy EFT) that has S-matrix elements that match our string theory
up to O(α′):

AEFT = Astring up to O(α′). (6.24)

Thus we wonder if there exist a QFT in which the above stringy diagrams can be calculated via
normal Feynman diagrams,

So does such a theory exist? It turns out that the answer is yes! and that the theory is precisely
S26 in (6.21). The effective action that ‘reproduces’ the string S-matrix is precisely the effective
action that gives the β function equations that we wanted to impose for Weyl invariance.

We can now rejoice and jump up and down emphatically since we now see that Weyl consistency
is imposed automatically in string theory. On the one hand, it is imposed (1) by the cancellation
of the Weyl anomaly and (2) by looking for a QFT that gives the same S-matrix elements. We
find that the bulk (target space) Einstein equation appears both from Weyl consistency in string
theory and the scattering of gravitons in the low-energy effective theory. Thus just by starting
with the Polyakov action SP we find that we force the background of our target space to obey the
Einstein equations. Cool.

6.3 Two expansion schemes: genus vs. sigma model

Now we arrive at an often-confusing point. There are two expnsions in string theory. We’ve
already familiarized ourselves with the sigma model expansion. Let us introduce the string loop
(genus) expansion as an expansion in the number of donut holes of our S-matrix element. Recall
that in a non-trivial Φ background and in the limit where

√
α′ ∂

∂X
〈Φ〉 is small, our action looks

like

S = SP +
1

4πα′

∫
d2σ
√
g R(2)α′Φ (6.25)

where we can readily identify the second term as Φχ = Φ·(Euler number). We thus have λ = 〈Φ〉.
In other words, we can define a string coupling

gS = eΦ (6.26)

so that the expansion in genus g (g = number of holes) is

∞∑
g=0

= Age−λχ =
∞∑
g=0

Age−2Φ+2gΦ =
1

g2
S

∞∑
g=0

g2g
S Ag. (6.27)
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Since the powers of gS in the genus expansion count the number of holes in the scattering amplitude
for the worldsheet, the expansion in gS is indeed a loop expansion in the 26-dimensional spacetime
QFT. This is somewhat obvious is we just draw some pictures, e.g.,

+

+
+

Classical effects in spacetime (tree-level Feynman diagrams) correspond to vertex insertions on the
sphere while quantum effects correspond to more complicated non-spherical (hole-y) worldsheets.
Note that gS plays a role that is very much analogous to ~ in that it counts the loop level of
spacetime quantum effects.

On the other hand, for a fixed genus we can also consider the 2D QFT expanded about flat
space, i.e. the sigma model expansion (α′ expansion) that we’ve already familiarized ourselves
with. This is an expansion in powers of (α′/r2) via derivatives of the massless fields (e.g. Gµν,ω,ρ).
We haven’t been rigorous in our definition of r mostly because we don’t need to be. But we can
see where that it comes from the term in the effective action that looks like α′H4 from which
we can very crudely say that H ∼ 1/r. The sigma model expansion corresponds to loops in the
two-dimensional quantum field theory (this is not necessarily a CFT, though usually we will find
that this is necessary).

We thus have two expansions schemes. If we wanted to use string theory to study, for exam-
ple, four-graviton scattering, then we can write out our amplitude with respect to each of these
expansions. Let us write Aij to mean the amplitude contribution from the ith order in the sigma
model expansion and jth order in the loop expansion.

A = A0
0 + A0

1gS + A0
2g

2
S + · · ·

+ + +

A1
0

(
α′

r2

)
+ A1

1

(
α′

r2

)
gS + A1

2

(
α′

r2

)
g2

S + · · ·
...

...
...

(6.28)

Brute force never gets further than these terms. However, clever use of symmetries and nonrenor-
malizations theorems will allows us to get results to all orders in gS and α′.

We could ask ourselves where the higher-order terms come from, e.g. the α′2 term in (6.22)
appears to be an expansion in α′×curvature. The true quantum gravity effects are gS effects since
quantum gravity in the target spacetime requires ~ 6= 0. However, string theory provides other
high-scale effects from ‘stringy’ α′ physics. For example, we know that the Einstein-Hilbert action
for general relativity is L =

√
gR. The correction to this at string tree-level (i.e. O(g2

S)↔ S2) is
given by

∆L =
√
g α′3ζ(3)

(
RαβγδR

αβγδ + · · ·
)
. (6.29)

Note that we are at O(α′3), but still at string tree-level. Including string loops would introduce
O(g3) terms which come from corrections like 〈h · · ·h〉T 2 . The lesson is this:
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1. gS terms represents a genuine loop expansion (“string loop”) capturing effects from string
theory as a quantum gravity

2. α′ represents different “stringy” corrections coming from string theory as a theory of ex-
tended objects.

Now a comment: we started with a long-wavelength effective field theory. It was certainly not
finite; you knew well before you started with these lectures that QFT and GR do not typically
combine to give a finite theory. What repairs this theory are α′ and gS corrections. We cannot
compute the α′ corrections within the string sigma model. This will be very important for quantum
black holes where the two expansions will give important new structure. Finally, in this course
we will spent a lot of time on topics where we can avoid these expansions and instead focus on
non-perturbative effects that hold to all orders.

6.4 String instantons

The vertex operator for our massless antisymmetric tensor Bµν is

V =
gc
α′

∫
d2σ
√
g εαβ∂aX

µ∂βX
νa[µν]e

ik·X . (6.30)

For zero momentum k = 0 this simplifies (integrating by parts and using εαβ∂α∂βX
ν = 0)

V =
gc
α′

∫
d2σ
√
g ∂α

(
εαβXµ∂βX

νgµν
)
. (6.31)

This is a total derivative so that if the worldsheet has no boundary V vanishes. This is true
to all orders in α′. In fact, this is true to all orders in gS since we never invoked the genus of
the target space embedding of worldsheet. Thus the zero-momentum coupling of Bµν vanishes
at zero momentum, i.e. the zero momentum mode of this plane wave decouples. From this we
conclude that the effective spacetime action cannot have any terms involving undifferentiated
Bµν(X) fields; i.e. there are no non-derivative couplings of Bµν to any order in gS and α′. Thus
the terms involving this field in the spacetime action can look like

SEff
26 ⊃ HαβγH

αβγ + · · · (6.32)

but it cannot have terms like, e.g., BµνB
µν .

We now ask ourselves: When can this fail?

1. If the worldsheet contains a boundary, then certainly the total derivative term in (6.31) can
contribute.

2. Alternately, we can consider the term in the worldsheet action

∆S =

∫
Σ2

d2σ
√
g εαβBµν(X)∂αX

µ∂βX
ν =

∫
Σ2

B2. (6.33)

In sigma model perturbation theory Σ2 is contractible (we’re just calculating about some
fixed Xµ

0 ) and so this vanishes. However, we could consider cases where Σ2 is nontrivial and
∆S 6= 0.
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The second case is what we’ll now briefly consider. If we suppose that the target space has a big
sphere, i.e. a “nonvanishing 2-cycle,” then we know from gauge theory in QFT that we can have
some non-vanishing winding about this topology. This is what we call a worldsheet instanton.
It is manifestly a non-perturbative effect. The lesson is that we can write an instanton action

Sinst. =
1

2πα′

(∫
√
g + i

∫
B

)
. (6.34)

Thus the 26-dimensional spacetime action can depend on H = dB at O
(
α′kgjS

)
for any finite k

and j, but it can depend on B itself only as

exp

(
n

2πα′

∫
√
g − in

2πα′

∫
B

)
= exp

[
− n

2πα′

(
Vol(Σ2) + i

∫
Σ2

B

)]
= e−n(t+ib). (6.35)

Schematically we may write

LPert. ⊃ c2HµνρH
µνρ + c4α

′ (HµνρH
µνρ)2 + · · · (6.36)

where ca =
∑∞

j=0 c
(j)
a gjS. To this perturbative piece we add the non-perturbative instanton contri-

bution,

LNP ⊃
∑
Σ2

∑
j

dje
−j

h
VolΣ2
2πα′ +i

R
Σ2

B
i
. (6.37)

We can close with a cartoon picture of what’s going on. Suppose we have a string probe (of
characteristic scale

√
α′) probing the non-trivial cycles of the bulk [target] spacetime.

α’

When the string wraps a small 2-cycle we get O(1) contributions. However, when the 2-cycle is
larger than the string scale we get contributions which are exponentially suppressed. Thus non-
perturbatively we can have zero-momentum contributions from Bµν (that are not pre-packaged in
H = dB). These are pseudo-Nambu-Goldstone bosons due to their shift symmetry. (One could
call these ‘axions,’ but for technical reasons this terminology would be too strong.)

7 Superstrings

We have already noted that bosonic string theory is not suitable to describe our physical reality.
In addition to the instability from the tachyon modes, the most obvious deficiency is the lack of
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fermions. We know of an easy way to get fermions out of a theory: imposing supersymmetry.
This leads us naturally to the superstring. Two of the key results from superstring theory
should already be well-known from popular expositions on string theory: (1) the tachyonic mode
is projected out and (2) the spacetime dimension is reduced to D = 10. In this section we’ll build
up the structure of superstring theory to see where we get these results. Then, in the remainder
of these lectures, we’ll really put our superstring theory to work. We shall assume that the reader
has a strong background in supersymmetry so that details regarding superspace an the SUSY
algebra can be omitted.

7.1 Fermions in 2D

Consider the action

S =
1

4πα′

∫
d2σ

(
∂αX

µ∂βXµ η
αβ + Ψ̄µρα∂αΨµ

)
, (7.1)

where we are working in unit gauge. We note that for now we shall work with a flat Minkowski
metric in both the target space and worldsheet. It is worth noting that the Minkowski signature is
important on the worldsheet since we will want the Minkowski signature Clifford algebra. We’re
already familiar with our friends the Xµ fields. Now joining the party are worldsheet fermions
Ψµ. Again µ is a target spacetime Lorentz index (i.e. a worldsheet ‘flavor’) and for the moment
we have suppressed spinor indices. The ρα are two-dimensional Dirac matrices which obey the 2D
Clifford algebra {

ρα, ρβ
}

= 2ηαβ. (7.2)

This admits a representation of 2× 2 real matrices

ρ0 =

(
0 −1
1 0

)
ρ1 =

(
0 1
1 0

)
. (7.3)

Armed with ρ0 we can define the ‘conjugate’ spinor field as usual,

Ψ̄ = Ψ†iρ0. (7.4)

Now the fact that the ρ matrices are real tells us that we can take Ψµ to be real, i.e. Majorana,
two-component spinors. We shall label these two components as ψµ− and ψµ+ so that Ψ = ψ−⊕ψ+.
We can also define a chirality operator

Γ = ρ0ρ1 =

(
−1 0
0 1

)
, (7.5)

this is a 2D version of the 4D chirality operator −iγ5 = diag(12×2,−12×2). These obey the usual
relations,

Γ2 = 1 {Γ, ρα} = 0. (7.6)
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The existence of such an operator that commutes with the Hamiltonian tells us that Γ eigenstates
do not mix and we can decompose the reducible Ψ representation into irreducible representations
according to chirality: Ψ = Ψ− ⊕ Ψ+. Thus the irreps are simply the states Ψ− and Ψ+ taken
independently, or (Ψµ

−, 0)T and (0,Ψµ
+)T if one wants to be picky.

To recap we started with 2CD (two complex dimensional) Dirac spinors. The projection
operator Γ allows us to construct chiral irreducible representations Ψ± are which are 2CD Weyl
spinors since a Weyl spinor is one that is projected onto a chirality. Separate from any chiral
considerations, we also noted that our 2D space furnishes a representation of the Clifford algebra
that is purely real. Thus we learned that our Dirac spinors could in fact be written as 2RD (two
real dimensional) Majorana spinors. Combining this with the chiral projections we find that in
2D we have irreducible representations which are 1RD Majorana-Weyl spinors.

This can be somewhat counterintuitive to those who are used to working with spinors only in
four dimensions where there are no Majorana-Weyl representations. One can only simultaneously
impose the Majorana and Weyl conditions when the chiral projector is real. It turns out that this
is only allowed in spaces with dimension D = 2 mod 8. Now is a good time to mention that that
for the superstring, D = 10. More details can be found in the appendix of Polchinski’s second
volume [3].

The Dirac equation in 2D is

ρα∂αΨµ = 0 i.e.

(
0 −∂0 + ∂1

∂0 + ∂1 0

)(
Ψµ
−

Ψµ
+

)
. (7.7)

We can define

∂± =
1

2
(∂0 ± ∂1) (7.8)

so that the Dirac equation reduces to the relations

∂∓Ψµ
± = 0. (7.9)

Now we can work with the irreducible, single real dimensional Majorana-Weyl spinors. This
means we choose our fermions to be a single chirality and decompose into left- and right-movers.
(For this chiral worldsheet theory, choice of Ψ+ or Ψ− chirality is irrelevant, so pick one.) We will

write the left-movers as ψµ and the right-movers as ψ̃µ so that the fermion Lagrangian takes the
form

LF = ψµ∂̄ψµ + ψ̃µ∂ψ̃µ. (7.10)

Now we cut to the chase. What special property does the action (7.1) have? Supersymmetry.
In particular, if we take our supersymmetry transformation parameter to be ε = (ε−, ε+)T , a
Majorana spinor, then the action obeys a symmetry

δXµ = ε̄Ψµ (7.11)

δΨµ = ρα∂αX
µε. (7.12)

In fact, our action obeys more than just supersymmetry. It obeys an N = (1, 1) superconformal
symmetry. What we mean by this is that we have twoN = 1 sectors in our theory: the independent
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Qα and Q̄α̇ Majorana-Weyl generators of SUSY (the indices are just meant to be suggestive and
only take one value).

That’s silly notation. Indeed, the notation N = (1, 1) might be unfamiliar to those used to
four-dimensional SUSY. In particular, we could recall ‘vanilla’ 4D SUSY and ask why we write
N = 1 when this theory also has left and right chiral sectors, i.e. the Qα and Q̄α̇. The key is
that in 4D the Weyl representation is complex so that the representation of Q̄ is fixed to be the
conjugate of the Q representation. In 2D, on the other hand, our Weyl representation is real
(Majorana-Weyl) and the Q̄ representation is completely independent of the Q representation.
For more on this, see the relevant chapters of West [15].

7.2 A motivation for light cone gauge

We will not discuss the details of superconformal field theory on the worldsheet, but let’s imagine
what would happen if we wanted to plow ahead and quantize the theory.

First of all, we would start with the canonical (anti-)commutation relations

[αµm, α
ν
n] = mδm+nη

µν (7.13)

{Ψµ
m,Ψ

ν
n} = δm+nη

µν . (7.14)

Both of these relations are bad. We know from our experience in Section 4.3 that these relations
can give us negative norm states that invalidate our theory (much worse than a tachyon).

Let’s recall how we dealt with this problem in the bosonic string. We introduced the Polyakov
action which has an additional degree of freedom gαβ (previously called γαβ) whose equations of
motion gave the Virasoro constraints, Tαβ = 0. We saw that these constraints are an avatar of
the conformal invariance of the Polyakov action (associated with the leftover diff∩Weyl gauge
freedom) and furnished a constraint algebra (the Virasoro algebra) to identify physically allowed
states.

Now for the superstring we could follow the analogous procedure to formulate a theory with
a local worldsheet supersymmetry and derive the resulting constraint algebra. The equations of
motion for the Ψµ will give us a condition for the worldsheet fermionic energy-momentum tensor
TF = 0. This, in turn, will be our signal of superconformal symmetry, whose algebra will act
as our generalization of the Virasoro algebra acting on states. As before, anomaly cancellation
will give us the critical dimension; the result of SCFT calculations is that D = 10.

In the bosonic string, conformal symmetry (diff∩Weyl) allowed us to set X+(σ, τ) = X+ +P−τ
and thus remove the α† oscillators, i.e. we can go to light cone gauge. In this gauge we were able
to solve for X−(σ, τ) in terms of the transverse modes X i(σ, τ) with

[αim, α
j
n] = mδm+nδ

ij. (7.15)

Similarly, superconformal symmetry allows us to set ψ+(σ, τ) = 0 and solve for ψ−(σ, τ) in terms
of the transverse ψi(σ, τ) with

{ψim, ψjn} = δm+nδ
ij. (7.16)

Since we already know the punchline (D = 10), we’ll skip the long story. It’s covered thoroughly
in the usual references.
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7.3 Boundary conditions: Ramond and Neveu-Schwarz

Now let us consider the boundary conditions of the closed superstring. We shall use the complex
worldsheet coordinate w that we introduced in (5.9). These were just a straightforward complex-
ification of the τ and σ coordinates including the periodicity in σ. As a reminder, let’s draw the
picture again:

Re w

Im w z = e-iw

As a remark, most textbooks (i.e. all except Polchinski) discuss this topic using (τ, σ) coordinates.
We will follow Polchinski’s notation, but it may be helpful to mentally keep track of w and w̄ in
terms of the original worldsheet coordinates. Recall our fermionic action,

Sψ =
1

4πα′

∫
d2w ψµ∂̄ψµ + ψ̃µ∂ψ̃µ. (7.17)

Note the invariance of Sψ under w → w + 2π. The variation of the fermion action allows more

choices for the open ψ and ψ̃ strings: each mode can independently be periodic or anti-periodic,

ψµ(w + 2π) = ±ψµ(w) (7.18)

ψ̃µ(w + 2π) = ±ψ̃µ(w̄). (7.19)

These fermion boundary conditions have names: Ramond (R) for the periodic condition and
Neveu-Schwarz (NS) for the anti-periodic condition. Thus for the open string there are four
distinct sectors corresponding to the choice of boundary conditions on each end of the string: R-R,
R-NS, NS-R, and NS-NS.

Two boundary conditions. Why did we not also consider anti-periodic boundary conditions
for our bosonic closed strings? Certainly the bosonic action is also invariant under X(σ+2π) ≡
−X(σ) in the exact same way that the fermionic action is; they are both quadratic in the field.
This is actually a rather subtle topic and is related to the Lorentz symmetry of the target
spacetime. Bosonic fields with antiperiodic boundary conditions, i.e. ‘twisted sector’ fields,
break spacetime translation invariance. This is straightforward to see because Xµ → −Xµ does
not commute with Xµ → Xµ + Aµ. Fermionic directions (target superspace coordinates) are
inherently quantum and so we never have to worry about breaking symmetry in the ‘classical’
limit. This should become more clear with we discuss D-branes shortly.

A handy notation in the w coordinates is to write

ψµ(w + 2π) = e2πiνψµ(w) ψ̃µ(w̄ + 2π) = e2πieνψ̃µ(w̄) (7.20)
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where ν = 0, 1
2

according to Ramond or Neveu-Schwarz boundary conditions respectively. We can
expand in Fourier modes,

ψ(w) = i−
1
2

∑
r∈Z+ν

ψre
irw ψ̃(w̄) = i−

1
2

∑
r∈Z+eν ψ̃re

irw̄. (7.21)

We now go back to the complex z worldsheet coordinates where these Fourier expansions map to

ψ(z) =
∑
r∈Z+ν

ψr
zr+1/2

ψ̃(z̄) =
∑
r∈Z+ν

ψr
z̄r+1/2

. (7.22)

We remark that the factor of 1/2 in the power of z introduces a branch cut associated with the
half-integer moding of the R and NS sectors.

7.4 Open strings and the doubling trick

When we first introduced the closed bosonic string we remarked that it is essentially ‘two copies’
of the open string. This is a general feature that one should keep in mind when relating open
and closed strings. Without going into details, one may describe the open superstring using a
‘doubling trick’ to relate it to the closed string.

The boundary terms in the variation of the action for the open string in light cone gauge are

δSψ =
1

2π

∫
dτ
[
ψi+δψ

i
+ − ψi−δψi−

]σ=π

σ=0.
(7.23)

In order to have a non-trivial solution (imposing, e.g. ψ±(τ, 0) = 0 forces the entire field to vanish
by the solution of the wave equation) one has to relate the ψ+ and ψ− chiralities so that

ψi−(τ, σ = 0, π) = ±ψi+(τ, σ = 0, π), (7.24)

Because we can choose the overall signs of ψ+ and ψ− arbitrarily, we may chose—without loss of
generality—to set

ψ−(τ, 0) = ψ+(τ, 0). (7.25)

On the other end of the string, we have a choice to make:

ψ−(τ, π) = ±ψ+(τ, π). (7.26)

where the top sign corresponds to the Ramond sector while the bottom sign corresponds to the
Neveu-Schwarz sector. Now for the trick: we can combine these boundary conditions into a closed
string over the interval σ ∈ [−π, π] (one can then shift to the usual interval σ ∈ [0, π]):

ψi(τ, σ)

{
ψi−(τ, σ) σ ∈ [0, π]
ψi+(τ,−σ) σ ∈ [−π, 0]

. (7.27)

This closed string has Ramond or Neveu-Schwarz boundary conditions according to (7.26). The
payoff is that we can work with an open string of either chirality by looking at a closed string
formed by gluing together the chiral open strings.
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7.5 The superstring spectrum

Now we’ve established boundary conditions, mode expansions, and commutation relations. Let’s
quickly go over the low energy spectrum. We can take the Neveu-Schwarz vacuum |0〉NS to obey

ψµr |0〉NS = 0 for r > 0

(
r =

1

2
,
3

2
, · · ·

)
. (7.28)

As a sanity check recall that NS boundary conditions correspond to r taking half-integer values.
We can build states in the usual way,

ψµ−1/2|0〉NS. (7.29)

Because this is a fermionic raising operator, we can only add one at a time. Do not be confused,
however: this is a worldsheet fermion. As far as the target spacetime is concerned, this is a vector
boson. This is indeed a bit weird. More generally, the first excited state in the NS sector is given
by ψµ−r|0〉NS for r = 1/2, 3/2, · · · . Following the same arguments as the bosonic string we find a
general mass formula

α′M2 =
∞∑
n=1

αi−nαni +
∞∑

r=1/2

r ψi−rψri −
1

2
. (7.30)

The first term is the usual bosonic contribution, the second term is its fermionic analog, and the
final factor of −1/2 is a zero point energy contribution that comes from normal ordering. We can
find it from the usual slick argument: we count the degrees of freedom and we argue that they
are only consistent with a massless state (given spacetime dimensionality D = 10, which came
from anomaly cancellation). In fact, we will find that the spacetime graviton will come from the
NS sector worldsheet fermion. (This is indeed surprising since in the bosonic theory the graviton
came from the Xµ fields.)

Let’s move on to the Ramond sector, which turns out to be much more interesting. We start
by looking at the low-lying anticommutation relation

{ψµ0 , ψν0} = ηµν . (7.31)

Hmm! Do you see it? Let’s define a suggestively-named rescaled operator, Γµ =
√

2ψµ0 . Then our
above anticommutation relation reads

{Γµ,Γν} = 2ηµν . (7.32)

This is just the D-dimensional Clifford algebra! (Where we already argued that superconformal
anomalies require D = 10.) We can impose the usual condition that the Ramond ground state,
|0〉R, is annihilated by lowering operators,

ψµr |0〉R = 0 for r > 0 (r ∈ Z), (7.33)

but what about the ψµ0 operator? One might also want to impose ψµ0 |0〉R = 0, but it turns out
that this would be inconsistent. From the anti-commutation relations, we can read off

ψν0 ψ
µ
0 |0〉R + ψµ0 ψ

ν
0 |0〉R = ηµν |0〉R 6= 0. (7.34)
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Thus we learn that the Ramond ground state is degenerate and furnishes a representation of the
10D Clifford algebra. By the spin-statistics theorem in spacetime, we learn that |0〉R is a spacetime
fermion. Fermions in the worldsheet have now given us fermions in spacetime. These fermions will
turn out to be massless, but one would have to compute this ‘honestly’ since it’s hard to apply
our ‘slick’ argument based on degrees of freedom on spacetime spinors.

Let’s go to light cone gauge where we have some familiarity with identifying physical states.
In this gauge, the relevant anti-commutation relation is

{
√

2ψi0,
√

2ψj0} = 2δij. (7.35)

This is the eight dimensional Euclidean Clifford algebra, Spin(8), which is represented by eight
16×16 Γ matrices, Γ1, · · · ,Γ8. We can again define a chirality operator, Γ9 ≡ Γ1 with the usual
properties (

Γ9
)2

= 1
{

Γ9,Γi
}

= 0. (7.36)

To repeat the usual spiel, the existence of the chirality operator tells us that our representation can
be decomposed into ± eigenvalues of Γ9. In other words, we are decomposing 16→ 8+⊕8−. (The
16 refers to SO(9,1), which goes to SO(8) in light cone gauge.) To match Polchinski’s notation,
we’ll write this as 8⊕8′. So SO(8) has three eight-dimensional representations: two spinors (8,8′)
and a vector (8V ) [the obvious rep]; these are related by the so-called ‘triality’ property of the
SO(8) Dykin diagram. The reader is directed to Appendix B of Polchinski [3] for a comprehensive
treatment of spinors in various dimensions.

Dirac in 10D. See Liam old notes page 21. Or Simon Ross notes 12/3/08. [Do this: Fill
this in.]

We now know that the Ramond vacuum has to be a spinor representation of SO(8). Which
one? We are free to choose either the 8 (|0〉+R) or the 8′ (|0〉−R) since these are related by parity.

Analogous to (7.30), our general mass formula for the Ramond sector is

α′M2 =
∞∑
n=1

αi−nαni +
∞∑
r=1

r ψi−rψr + 0, (7.37)

where we have explicitly written that the zero point energy vanishes. The easiest proof for this
is to dive in and use the properties of the superconformal field theory. We’ll content ourselves
with more indirect proofs down the road. Now we claim that the ground states |0〉±R are massless.
Unlike the case with bosonic target spacetime representations, we are now dealing with target
spacetime fermions and this is no longer a straightforward exercise in counting degrees of freedom.
[Question: why?]

Let’s pause to summarize the upshot of everything we’ve done so far. Our low-lying spectrum
now looks like

|0〉NS α′M2 = −1
2

tachyon
ψi− 1

2

|0〉NS α′M2 = 0 8V

|0〉+R α′M2 = 0 8
|0〉−R α′M2 = 0 8′
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We’ve only writte the left-movers (holomorphic functions of z); the transition to right-movers is
as simple as adding tildes and bars. A full state written as a tensor product of a left-moving and
a right-moving state, e.g. |0〉+R ⊗ |0〉

−
R. As we can plainly see, our theory still has a problem: the

tachyon. In fact, this problem is now slightly worse: not only do we have a negative-norm state,
but the tachyon breaks spacetime supersymmetry.

On the topic of supersymmetry, we remark that the näıve unprojected spectrum contains a
massless spin 3/2 field, a gravitino. Such a theory is only consistent if it is supersymmetric.

7.6 A proposed solution: GSO projection

We’ve dealt with unwanted states a couple times already. A tool which has come in handy is the
idea of some kind of operator to project out unwanted states. (Recall, for example, the Virasoro
algebra and chirality operators for spinors). We propose, with this admittedly scant motivation,
a solution: perhaps there is an operator O that squares to one, O2 = 1 and that can be used
to project out the tachyon in the same way that we use a chirality operator to project a Dirac
spinor representation to a Weyl representation. Since our tachyon is just the NS vacuum, we
would require O|0〉NS = −|0〉NS.

To be clear, at this point in our discussion there’s no a priori reason to believe that such an
operator should exist. (This is partially because of the fast track we took through the material.)
Don’t worry about this for now. We’ll retroactively motivate this later on.

Gliozzi, Sherk, and Olive (GSO) proposed one such operator, (−)F , by

(−)F =

{
(−1)

P∞
r=1/2 ψ

i
−rψri+1 (NS)

Γ9(−1)
P∞
r=1 ψ

i
−rψri (R)

. (7.38)

F is an operator that counts the worldsheet fermion number. The Γ9 will turn out to be be
important for projecting out extra fermions to get a supersymmetric spectrum of spacetime fields.
With this operator we find the following parities, (recalling once again that we are only explicitly
writing one sector, e.g. left-movers, of the theory)

(−)F |0〉NS = −|0〉NS (7.39)

(−)Fψi−1/2|0〉NS = +ψi−1/2|0〉NS (7.40)

(−)F |0〉±R = ±|0〉±R. (7.41)

This looks pretty good; it gives us a way to segregate our tachyon and project it out, taking one
of the Ramond vacuum states with it. In fact, this seems too good to be true, a little deus ex
machina. Where exactly did this operator come from? It turns out that we can properly motivate
the GSO projection by looking at the quantum behavior of our theory.

7.7 Modular invariance and boundary conditions

Fujikawa taught us that the quantum consistency of our theory (i.e. that gauge symmetries be
anomaly-free) requires an invariance of our path integral measure under diffeomorphisms. For
infinitesimal transformations this is clear, but there is one place where this is tricky. Consider the
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computation of vacuum amplitudes on T 2, the torus, the analog to one-loop bubble diagrams in
quantum field theory.

σ2

σ1

The torus is periodic in two directions, for example, 0 ≤ σ1, σ2 ≤ 2π. Alternately, the torus can
be defined with a complex structure τ and a flat metric via w = σ1 + τσ2 with the identifications

w ∼ w + 2πn w ∼ w + 2πmτ (7.42)

and the metric ds2 = dw dw̄. [Check: understand this better? See D-branes, p. 88.] The complex
number τ determines the shape of the metric: i.e. it determines whether the donut is fat or skinny.
The cartoon picture for this is

σ2

σ1

2π τ

2π

Now we can consider a special set of transformations(
σ′1
σ′2

)
=

(
a −b
−c d

)(
σ1

σ2

)
ad− bc = 1
a, b, c, d ∈ Z

}
PSL(2Z). (7.43)

These transformations are those of the group SL(2,Z); the P in PSL(2,Z) refers to reflections
a, b, c, d→ −a,−b,−c,−d. SL(2,Z) is generated by the modular transformations:

a = d = 0
b = 1
c = −1

a = b = d = 1
c = 0

(7.44)
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This group is turns out to be rather special. Under the transformations (7.43), the metric has the
same form but with a modified modular parameter

τ → τ ′ =
aτ + b

cτ + d
. (7.45)

Thus under the combined transformations (7.43) and (7.45) the torus is mapped to an equivalent
torus under the identifications (7.42).

Now let us discuss the boundary conditions in σ1 and σ2. We now work in Euclidean time
(σ2). Recall (for example, from statistical mechanics) that the path integral for fermions have
anti-periodic boundary conditions in time, i.e. under σ2 → σ2 + 2π in the torus. (Bosons have
the usual periodic identification). The derivation of this is a long exercise in quantum mechanics,
so we’ll leave it to the reader to review elsewhere. For σ1, we already know that there is a
choice of boundary conditions: + for Ramond superstrings and - for Neveu-Schwarz superstrings.
We will write our boundary conditions as (σ1, σ2) = (+,−) for Ramond strings and (−,−) for
Neveu-Schwarz strings.

σ1

σ1

±

±

Now for the critical question: how do modular transformations affect our choice of boundary
conditions? Under our first modular transformation (associated with τ → −1/τ),(

σ′1
σ′2

)
=

(
−1

1

)(
σ1

σ2

)
=

(
−σ2

σ1

)
. (7.46)

The minus sign doesn’t matter, but the thing to notice is that we have swapped σ1 ↔ σ2, i.e. we’ve
swapped which circle is which. For boundary conditions (α, β), this modular transformation pro-
duces boundary conditions (β, α). For example, Ramond boundary conditions (+,−) get mapped
to (−,+). Now we pause awkwardly: what the heck is (−,+)? This is a boundary condition that
is anti-periodic in σ1 but periodic in σ2 (i.e. bosonic). This is manifestly a new kind of boundary
condition!

This is the lesson that we wanted to get to. We started by emphasizing that diffeomorphism
invariance should be anomaly free. We then considered a special subset of diffeormorphisms, the
modular transformations. Starting with our theory of Ramond and Neveu-Schwarz superstrings,
invariance under the first modular transformation now tells us that in order to be consistent
we must consider other boundary conditions. A similar thing happens for the second modular
transformation.

65



Under the transformation associated with τ → τ + 1, we have(
σ′1
σ′2

)
=

(
1 1
0 1

)(
σ1

σ2

)
. (7.47)

One can check that this sends the boundary condition (α, β) to (αβ, β). In particular, for the
Neveu-Schwarz boundary condition, we map (−,−)→ (+,−). This is just the Ramond boundary
condition, so that modular invariance tells us that we must have a Ramond state. Thus we see
that modular invariance relates the

(−,−) (+,−) (−,+) (7.48)

boundary conditions, but not (+,+). If the reader will now permit a statement without proof,
the (+,+) condition joins its friends at the two-loop level so that one should consider the entire
set of four boundary conditions. While this is already quite a development that we should try to
grok, we haven’t yet understood how to interpret the + boundary condition in the Euclidean time
direction.

7.8 The twisted partition function

Recall that the unit operator corresponds to the partition function itself,

〈1〉T 2(τ) = Z(τ). (7.49)

2π τ
1

2π τ
2

We can recall from quantum mechanics that the partition function can be written as

Z = Tr e−βH =
∑
α

〈α|e−βH |α〉. (7.50)

We can read e−βH |α〉 as “|α〉 at tE = 2πτ2,” so that

e−βH |φ, tE = 0〉 = |φ, tE = 2πτ2〉. (7.51)

In other words, e−βH time translates by 2πτ2, using β = 2πτ2. In order to interpret the (±,+)
boundary conditions, we want a sign flip upon a similar time translation. How do we introduce
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such a sign flip? We can appeal to our new friend, (−)F . Let us compute a ‘twisted partition
function,’

ZF = Tr (−)F e−βH =
∑
α

〈α|(−)F e−βH |α〉. (7.52)

This gives us precisely the ‘time translation plus sign flip’ that we wanted, at least for states with
an odd fermion number. In other words, Tr (−)F e−βH is the partition function ‘twisted’ by (−)F .
This object is properly an index: it gives us

Tr (−)F e−βH |φ, tE = 0〉 = [dim(+)− dim(−)] eβH |eigenspace〉, (7.53)

which gives the number of + chirality zero modes minus the number of − chirality zero modes
(since the excited states are always paired).

Let’s recap the story to this point. We started with boundary conditions that we un-
derstood: Ramond (+,−) Neveu-Schwarz (−,−) corresponding to periodic and anti-periodic
boundary conditions in the σ direction. Both of these had fermionic (anti-periodic) boundary
conditions in Euclidean time, τE. We then looked at modular transformations, a particular set
of diffeomorphisms that take the torus to itself. Quantum consistency then requires that these
transformations don’t change our theory. However, one particular aspect of our theory – the
boundary conditions – are very clearly changed under modular transformations: it takes our
Ramond and Neveu-Schwarz boundary conditions to weird periodic-in-time boundary condi-
tions that we didn’t understand: (−,+) and, at two-loop, (+,+). We decided that this is the
theory telling us that we should have included these odd boundary conditions to our theory.
We wanted to do what the theory is telling us, but we were thoroughly confused about how
to actually do this. Now, with the introduction of a twisted partition function, we have found
a way to implement the (±,+) boundary conditions.

The remaining step is to combine this twisted partition function with the untwisted partition
function so that we have a theory that includes all of our boundary conditions. The correct way
to do this is to do the ‘obvious’ thing and to sum the two partition functions with no further
weighting. This is because our modular transformations maps single states to [other] single states.
Thus the map (−,−) → (−,+) also maps TrNSe

−βH → TrNSe
−βH(−)F . We are then led to

consider the summed partition function,

1

2
Tr
(
e−βH + (−)F e−βH

)
= Tr

(
1

2

[
1 + (−)F

]
e−βH

)
. (7.54)

The object 1
2

(
1 + (−)F

)
is just a projection onto the + eigenspace of the (−)F operator. Voilà!

This is precisely the GSO projection acting on the partition function. We now come back to
the question raised at the end of Section 7.6: how do we properly motivate the GSO projection?
What we’ve found here is that we don’t have to: the GSO projection is required by the quantum
consistency of our theory as one can see by just looking at the boundary conditions and the
symmetries of a special set of vacuum donut diagrams. We have a choice of how to choose the
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overall charge of (−)F which translates to choosing between projecting out the NS tachyon or the
first and third excited states; it is obvious which choice we make.

If we start with the Neveu-Schwarz sector, we saw that modular invariance implies the existence
of both twisted (−,−) and untwisted (−,+) NS sectors as well as the untwisted R sector (+,−).
We learned that this means we have to include the GSO projection [1 + (−)F ]NS on the NS sector.

We could have also started with the Ramond sector. We know from above that at one-loop
level modular invriance tells us that the (+,−) state hangs out with the NS sector. The twisted
R sector (+,+), however, has its own distinct orbit under SL(2, Z) and is not related to anything.
One might then wonder if we could just start with the twisted R sector and never worry about
NS states. However, one would find techncial evidence that this is not correct since scattering
amplitudes would have NS states as poles and the operator product expansion would not close.
More heuristically, two-loop modular invariance turns out to mix the (+,+) boundary condition
to the other three. One can check (see Polchinski) that this allows the OPE to close.

Thus we can never have a theory of only Ramond states and even in the Ramond sector one
must also compute the GSO projection [1 + (−)]FR. The correct perscription, then, is to include
all boundary conditions and project with the GSO operator in each sector.

7.9 Super-spectrum

Let us write NS± for the± eigenstates of the (−)F operator in the Neveu-Schwarz sector. Similarly,
let us write R± for the corresponding eigenstates in the Ramond sector. Let us be clear that we
have a choice in which sector we project onto. Or, in other words, we can say that we project onto
the + eigenspace but we have a choice in how to define the overall sign of (−)F . We will choose
the following definitions:

(−)F =

{
+(−1)

P∞
r=1/2 ψ

i
−rψri+1 (NS)

+Γ9(−1)
P∞
r=1 ψ

i
−rψri (R)

, (7.55)

where we have explicitly written out the leading + as our choice of sign. This corresponds a
definition of F . More explicitly, we may write a general NS state as[

D−1∏
i=2

∞∏
n=1

(αi−n)Ni,n

]
m∏
j=1

ψ
ij
−rj |0〉NS. (7.56)

The NS+ states correspond to m odd while NS− states correspond to m even. Writing the exact
same equation for the general R state,[

D−1∏
i=2

∞∏
n=1

(αi−n)Ni,n

]
m′∏
j=1

ψ
ij
−rj |0〉

±
R. (7.57)

The R+ states correspond to m′ even if we choose the |0〉+R vacuum or otherwise m′ odd if we
choose |0〉−R. Similarly, the R− states correspond to m′ odd if we choose the |0〉+R vacuum or
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otherwise m′ even if we choose |0〉−R. As a reminder, the lowest states in each sector are:

NS+ : ψi−1/2|0〉NS (7.58)

NS− : |0〉NS (7.59)

R± : |0〉±R. (7.60)

Thus far this discussion has only focused on the left-movers. Do not forget that we also have
a right-moving sector which is related to the left-movers by level matching. We would like to
contruct the space of states built upon |0〉L ⊗ |0〉R. Because modular transformations act in

the same way on the ψ(z) and ψ̃(z̄) boundary conditions, the story is exactly the same for the
right-movers.

We now have to choose our projection. Indeed, we have a few choices to make: for the left-
and the right-moving sectors, we independently must choose which (−)F eigenstate to projet out
of both the NS and the R sectors. We’ve chosen our signs such that (−)F |0〉NS = −|0〉NS, i.e.
tachyon is projected out – both for the left- and right-movers. This corresponds to choosing the
NS+ sector for both the left- and right-movers. Now we still have some choices:

Left Right
NS+ NS+

IIB R+ R+
IIB’ R− R−
IIA R+ R−
IIA’ R− R+

To the left we’ve written some characters which should look familiar to those who peek at hep-th.
These are names for different kinds of superstring theories. The primed and unprimed theories are
physically equivalent because they are related by chirality and if we say our theory has some fixed
chirality, we cannot distinguish between + chirality and − chirality without additional structure.
Thus, for example, in type IIB theories we can have vacuum states like |0〉+R ⊗ |0〉

+
R while IIB’

theories can have |0〉−R ⊗ |0〉
−
R vacuum states. These are equivalent up to chirality.

Other superstring theories. IIA and IIB theories are not the only superstring theories.
Let’s mention some of the others briefly. Heterotic theories are another type of superstring
theory that will be of interest to us later in these notes. Alternately, we could consider type
0A and 0B theories. We shall define these using another notation. Let us write our thories in
terms of the possible pairs of left and right boundary conditions (L,R). In this notation

IIA = (NS+,NS+), (NS+,R−), (R+,NS+), (R+,R−) (7.61)

IIB = (NS+,NS+), (NS+,R+), (R+,NS+), (R+,R+). (7.62)

One should note that IIA and IIB are related by (..., R−) → (..., R+). These boundary
conditions were chosen to eliminate the tachyon. Alternately we could have chosen different
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boundary conditions, the 0A and 0B theories,

0A = (NS+,NS+), (NS−,NS−), (R+,R−), (R−,R+) (7.63)

0B = (NS+,NS+), (NS−,NS−), (R+,R+), (R−,R−). (7.64)

These theories are modular invariant but they do not project out the tachyon and do not
have target spacetime supersymmetry. For this reason we will ignore them for the remainder
of these lectures. For now we shall choose to ignore the gaping hole in our list, the type I
theories (which we haven’t defined), since they will show up when we discuss open strings and
D-branes.

Let’s now flesh out the low-energy states of our type II theories. We can write this out in terms
of the choices we can make for the (left-mover)⊗(right-mover) ground states. For IIA theories, we
have ψi−1/2|0〉NS

or
|0〉+R

⊗
ψ̃j−1/2|0〉NS

or
|0〉−R

 . (7.65)

Similarly, for IIB theories, ψi−1/2|0〉NS

or
|0〉+R

⊗
ψ̃j−1/2|0〉NS

or
|0〉+R

 . (7.66)

We can work out SO(8) representations of our fields, recalling that SO(9,1)→SO(8) when we look
at physical states, e.g. if we go to light cone gauge. As mentioned in Section 7.5, our states
arrange themselves into tensors of three types of eight-dimensional representations of SO(8): the
vector 8V , and two spinors 8 and 8’ according to

8V ψi1/2|0〉NS

8 |0〉R+

8′ |0〉R−

Now we just have to compute the relevant tensor products of these representations in terms of
irreducible representations. This is the usual “representation theory for physicists” game that we
play.

8V ⊗ 8V NS-NS IIA,B
8⊗ 8 R-R IIB
8⊗ 8′ R-R IIA
8V ⊗ 8 NS-R IIA

R-NS IIB
8V ⊗ 8′ NS-R IIA
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This corresponds to doing the usual tensor product decompositions for group representations.
The 8V ⊗ 8V representation is particularly straightforward since this is the product of vector
representations. We can write this two-tensor as cij and decompose it into a symmetric and
antisymmetric piece: cij → sij + aij. The symmetric piece can, in turn, be decomposed into a
scalar trace and a traceless symmetric tensor,

cij →
(
sij − 1

8
sii

)
+ aij +

1

8
sii. (7.67)

This is now written in terms of irreducible representations. Counting dimensions, we know that
c contains 8 × 8 = 64 degrees of freedom, while the symmetric (antisymmetric) tensors contain
8(8± 1)/2 degrees of freedom. Separating the trace, we get

8V ⊗ 8V = 35⊕ 28⊕ 1. (7.68)

Another handy way of writing this is 8V ⊗8V = (2)+[2]+[0], where we’ve written the parenthesis
for symmetric indices and square brackets for antisymmetric indices. Now one should stop and
think: ah, a symmetric traceless tensor, an antisymmetric tensor, and a scalar. Where have I
heard that before? That’s right: these are just our old friends: the graviton gij, the antisymmetric
Bij, and the dilaton Φ. This is just like the bosonic string, except now these states come from
D = 10 fermion operators acting on the NS left- and right-moving ground states.

Neat. That was just the appetizer. Let’s get to the real work and consider the states with
spinor indices. Given our previous revelation, we can already expect that one of these ought to
correspond to the gravitino. Let’s start with the 8V ⊗ 8. We write a state as |ζ〉i where the i
indexes the vector 8V index while the α indexes the spinor 8. We can construct an irreducible
representation by constructing

|ζ〉 αi Γiαβ′ , (7.69)

where we recall that the Γ converts indices of one chirality (8, α) to the other (8′, β′). Thus the
state above is in the 8′ representation. We now state without proof that this is as far as we can
go, so that our decomposition is

8V ⊗ 8 : 64→ 8′ ⊕ 56. (7.70)

The 56 is an irreducible vector-spinor irreducible representation which we write as Ψ α
i . By parity

the 8V ⊗ 8′ has the same structure,

8V ⊗ 8′ : 64→ 8⊕ 56′, (7.71)

where write the 56′ as Ψ̃ β′

i .
The next object to calculate is 8 ⊗ 8. Fortunately, we already know how to tensor together

spinors in quantum field theory. For example, we know from 4D QFT that we can write a fermion
bilinear as a linear combination of Γ matrices sandwiched by fermion bilinears; these relations are
called Fierz identities. Thus for spinors ζ and χ, we can write something like

ζ ⊗ χ ∼
∑

ζ̄Γ[µ1···Γµm]χ, (7.72)
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where the sum is over suitable values of m so that each term is an m-form. These are irreducible
fields, so what we find is

8⊗ 8 = [0] + [2] + [4]+ = 1 + 28 + 35+, (7.73)

where we make use of the handy notation for antisymmetrized indices that we introduced above.
For example, the [2] refers to an antisymmetric two-index tensor, a[ij], while the [4]+ refers to an
antisymmetric four-index tensor, c[ijk`]. The subscript + refers to a self dual representation, which
turns out to be the correct irreducible representation. Explicitly, the 35+ is a field C4 such that
∗dC4 = dC4. This should sound plausible since d(4-form) is a 5-form and in D = 10 a 5-form can
be self-dual. In the same way, we can write

8′ ⊗ 8′ = [0] + [2] + [4]− = 1 + 28 + 35−, (7.74)

where now the − subscript refers to the anti-self dual. Finally, the tensor product of the different-
chirality representations gives

8⊗ 8′ = [1] + [3] = 8V + 56T , (7.75)

where the subscript T is a reminder that this is a tensor representation, not one of the vector-
spinors above.

Let’s review what we’ve done. We started with the 8V ,8 and 8′ reps. We ended up decomposing
the relevant tensor products into the irreducible representations

1, 8V , 35, 56,
35+, 56′,
35−, 56T

We can write this out to more clearly compare the IIA and IIB low-energy spectra:

NS-NS bosons R-NS and NS-R fermions R-R bosons

IIA: (1⊕ 28⊕ 35) ⊕ (8⊕ 56′) ⊕ (8′ ⊕ 56) ⊕ (8V ⊕ 56+)

Φ, Bij, gij λβ,Ψ
β′

i λ̃β′ , Ψ̃
β
i C1, C3

IIB: (1⊕ 28⊕ 35) ⊕ (8′ ⊕ 56) ⊕ (8′ ⊕ 56) ⊕ (1⊕ 28⊕ 35+)

Φ, Bij, gij λβ′ ,Ψ
β
i λ̃β′ , Ψ̃

β
i C0, C2, C4

We remark that the NS-NS sector is universal; it is the same for the IIA and IIB theories. This
makes senes because the only difference between IIA and IIB is the right-moving groundstate:
|0〉−R for IIA and |0〉+R for IIB. The λs are dilatinos while the Ψs are gravitinos (as promised); each
comes in pairs. Note that the IIA theory has fermion pairs of opposite chiralities while the IIB
theories have fermion pairs that come in the same chirality. The important feature of this is that
IIB theories are chiral. One final observation is that IIA theories have odd-number forms (C1, C3)
while the IIB theories have even-number forms (C0, C2, C4).

Let’s make two more important points: first, the only assumption that we made to get to
our IIA and IIB theories was that we wanted to project out the tachyon. This was a choice but,
as we saw from our argument of modular invariance, it was a choice that we had to make one
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way or another. Thus what we have found the ground state spectrum of the most general one-
loop consistent theory. Next, note that we never considered the states coming form the bosonic
X fields. We saw that the graviton (and friends) came from the NS-NS sector with worldsheet
fermion operators. The massless X fields are projected out by the GSO projection so that the
lightest X excitations live at the string-scale and do not participate in our low-energy action.

So many fields! Now a ‘big picture’ remark. Our ground state spectrum has a disturbingly
large number of fields. We understand some of them, but what’s going on with these p-
forms? One might question what role these fields play in the low energy effective theory of a
realistic string set up. The big picture is that we’ll have to compactify our target spacetime
into something called a Calabi-Yau manifold. If the Calabi-Yau is ‘empty’ then there are
typically hundreds of massless fields with only gravitational coupling. These fields are called
moduli and are very strongly constrained experimentally. To avoid these constraints, we can
turn on fluxes, i.e. vacuum expecation values of the p-forms. This tends to make the moduli
go away. This leads us to the current topic of flux compactifications. One open question is
whether or not a generic string compactification can have no moduli.

8 Superstring actions

Now we’ve met and acquainted ourselves with IIA and IIB superstrings. What shall we do with
this? All we’ve done in the previous section is reproduce the ground state spectrum. This is nice,
but what we really want are the interactions of these states. Recall the bosonic case: all the neat
stuff happened when we looked at the string sigma model. In fact, this something we picked up
when we learned 4D rigid SUSY: it was easy to construct the supersymmetric spectrum by just
using the SUSY algebra. The interactions were the non-trivial part: these are what required a
Lagrangian.

Now we’d like to build a superstring action, at least for the low-energy states. In fact, what we
really want is a supersymmetric action that is the low-energy effective theory associated with our
string theory. In fact, since we know that the metric is one of our fields, what we really really want
is a supergravity action. Supergravity predates string theory by about a decade and many of the
subject’s heroes worked out several classic results in the field which we will use here. The detailed
derivation of these results are generally unenlightening for our present discussion of SUGRA as
the low-energy theory of strings so we will not provide rigorous proofs (if any at all).

8.1 Counting supercharges

One such classic result is that in D = 4 the largest supersymmetry algebra is N = 8. This is
because larger algebras would gives us massless fields with spin greater than 2; starting with a
base a state of spin s, acting with N supercharges gives a state with spin |s − N /2| since each
supercharge reduces the spin by 1/2. The highest spin state is minimized by taking s = N /2 so
that if we only restrict to fields of spin no more than 2, we must choose N = 8.

Why do we restrict to fields with spin ≤ 2? For rather general reasons, it is very difficult to
construct a consistent theory of interacting spin > 2 fields. The heuristic reason is that such fields

73



do not have a conserved current to which they can couple. For example, the graviton can couple
to the stress-energy tensor (a symmetric two-index tensor), but no higher-index current naturally
occurs in our theories. A more thorough discussion can be found in Weinberg, volume 1 [16]. For
our purposes we shall assume that no consistent interacting theory of spin > 2 exists so that we
only need to consider theories with fields of spin no more than 2. This, in turn, restricts us to
theories which, in 4D, have no more than N = 8 supersymmetry.

This D = 4, N = 8 SUSY algebra contains 8 × 4 = 32 supercharges. Thus any higher
dimensional supersymmetric theory which is supposed to give a realistic 4D theory must live in
a dimension which admits spinors with at most 32 elements. (Note the difference between the
total number of components in a spinor versus the number of spinors.) For example, one might
consider a supersymmetric theory in D = 12. The minimal representation of the Dirac algebra
in 12 dimensions is a 64 component spinor. This means that the SUSY generators must have at
least 64 components so that there is at least 64 supercharges. This gives us more than N = 8 in
4D and so D = 12 theories cannot give us consistent 4D theories by assumption.

8.2 The D = 11 Cremmer-Julia-Scherk action

We thus are led to theories with D ≤ 11. In the 80s and early 90s people studied supersymmetry
in D ≤ 11 as a mathematical curiosity. The results below about D = 10, 11 have thus been known
for some time. It wasn’t until much more recently, however, that we have learned that D = 11
SUGRA is in fact rather special: it corresponds to the low energy theory of M-theory.

The D = 11 spinor has 32 components and has a unique supersymmetric action, the Cremmer-
Julia-Scherk action. For simplicity we’ll write out only the bosonic terms. The fermionic terms
follow from supersymmetry. In fact, since we already know that the fermions do not give con-
tributions to the low-energy theory (they are inherently quantum and do not obtain vevs in the
classical limit), then the bosonic terms are really all that we care about about. The action is

S11 =
1

2κ2
11

∫
d11x
√
−G

(
R− 1

2
|F4|2

)
− 1

2κ2

∫
d11xA3 ∧ F4 ∧ F4 + fermions. (8.1)

κ2
11 is the 11D gravitational coupling and sets the overall length scale and does not represent some

additional one-parameter freedom in choosing the theory. In other words, this action really is the
unique D = 11 SUGRA action. (We say this with conviction but without proof.) If we stopped
at the R term, then we would have an action for 11-dimensional gravity. F4 = dA3 is a 4-form so
that the |F4|2 term is the generalization of the usual gauge field strength. The A3 ∧ F4 ∧ F4 term
is a Chern-Simons term.

On the origin of p-forms. We’ve seen from the string picture that antisymmetric p-form
fields come from the decomposition of tensor products of spinors into irreducible representa-
tions. Given that we propose the Cremmer-Julia-Scherk action is the most general D = 11
SUGRA action to give sensible 4D physics, one might ask about the origin of the A3 3-form
in this field theory. This again comes from a tensor product of spinors, but this time coming
from products of supercharges acting on a state. See Weinberg Vol. III for more details [17].
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8.3 The D = 10 Type IIA and IIB SUGRA actions

We can take (8.1) to be a fact. What can we do with it? Well, we could repeat the analysis for
D = 10 via a dimensional reduction procedure. In ten dimensions, it turns out that instead of a
single unique action, there are two possible SUGRA actions with the necessary 32 supercharges (as
befitting a theory that came from a D = 11 theory with 32 supercharges). Perhaps unsurprisingly,
they are called type IIA and type IIB supergravity and are the low-energy limits of type IIA
and IIB string theory. (Historically the SUGRA theories were known first and lent their names
to the string theories.)

We start with our eleven-dimensional theory with a Majorana generatorQα, a real 32-component
spinor. We can reduce2 this to IIA via

Qα → Q(1)
α +Q

(2)
α′ (IIA). (8.2)

In terms of representations, Q(1) is a 16 and Q(2) is a 16′ of SO(9,1). These go to the 8 and 8′ of
SO(8) in light-cone gauge. Each of these are 10D Majorana-Weyl spinors. As we’ve noted before,
these are spinors of opposite chirality. Alternately, we could reduce to IIB via

Qα → Q(1)
α +Q(2)

α (IIB), (8.3)

where now the Q(2) is also a 16 and the model is chiral (note that both indices are now unprimed).
Let us review our field content. Note, in particular, the primes on the IIA fermion indices

which denote a different chirality.

IIA
gij Bij Φ

C1 C3 Ψi
s Ψ̃i

s′ λs λ̃s′

IIB C0 C2, C4 Ψi
s Ψ̃i

s λs λ̃s
graviton 2-form dilaton p-forms gravitinos dilatinos

The action for the IIA theory is

SIIA =
1

2κ2
10

∫
d10x
√
−Ge−2Φ

(
R + 4∂µΦ∂µΦ− 1

2
|H3|2

)
− 1

4κ2
10

∫
d10x
√
−Ge−2Φ

(
|F2|2 + |F̃4|2

)
− 1

4κ2
10

∫
B2 ∧ F4 ∧ F4 + fermions. (8.4)

The three lines correspond to the NS-NS sector, the R-R sector, and the Chern-Simons term which
couples the two. The field strengths are

F2 = dC1 F̃4 = dC3 − C1 ∧H3 H3 = dB2. (8.5)

It is typical to write Fp+1 to mean the field strength coming from the exterior derivative of an

a-form Ca and F̃p+1 to mean the same field strength with an additional term of the form Ca ∧H3.
One shouldn’t confuse this with a Hodge dual.

2Here we perform a dimensional reduction where we compactify the extra dimension into a circle and take
the radius to zero so that only the zero-mode survives.
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The IIB action is analogous with the replacements

C1, C3 −→ C0, C2, C4

opposite chirality −→ same chirality.

We find

SIIB =
1

2κ2
10

∫
d10x
√
−Ge−2Φ

(
R + 4∂µΦ∂µΦ− 1

2
|H3|2

)
− 1

4κ2
10

∫
d10x
√
−Ge−2Φ

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
− 1

4κ2
10

∫
C4 ∧H3 ∧ F3 + fermions. (8.6)

The new tilde-fields are

F̃3 = F3 − C0 ∧H3 (8.7)

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3. (8.8)

We note that there’s one subtlety: we have to impose ∗F̃5 = F̃5, i.e. that the F̃5 field is self-dual.
The other field strengths are defined following the convention above.

Let us make a few remarks. The IIA/B supergravity action above has a UV divergence. The
IIA/B superstring theory which has IIA/B SUGRA as its IR limit, is well-behaved in the UV.
We say that IIA is the UV completion of IIA/B SUGRA. This action gives the same S-matrix
elements as IIA string amplitudes with massless modes. The quantum (i.e. loop) corrections to
the SUGRA theory should be interpreted as gS corrections, as we discussed in Section 6.3. This
theory, however, will never give α′ corrections. This will become interesting when we study black
hole microstates which do get α′ corrections.

In the back of our minds we imagine that if we can relate F4 and F̃4, then we can understand
the relation between D = 10 and D = 11. For example, we could take the S11 action and
dimensionally reduce on a circle to get SIIA/B. Witten showed that S11 is a ‘real theory’ on its
own. This set up is extremely suggestive of the existence of some string-like theory which gives
S11 at low energies. In other words our 11D action is the low-energy effective action of M-theory
without sources. We’ll see this soon.

In terms of the big picture, there is a lot of technical work that goes into an honest derivation
of the results above. One can spend a lot of time—as they did in the 80s and early 90s—doing
more with these theories, but the point is that all of the relevant results for us can be distilled
into relatively simple classical actions. In practice, most people just take these actions and solve
the equations of motion.

9 Calabi-Yau compactifications

The next step is to search for supersymmetric string vacua with four uncompact dimensions. We
need more than just supersymmetric actions, we need to find supersymmetric configurations (i.e.
states).
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10 Dp-branes and T-duality
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A Notation and Conventions

There’s a joke that I used to tell in this section. I would say that particle physicists use the metric
(+,−,−,−), general relativists use the metric (−,+,+,+), while string theorists use the metric
(+,+,+,+,+,+, · · · ). Well, I guess it’s not a joke anymore. Our conventions will try to follow
those in Polchinski [2, 3]. Worldsheet (two-dimensional) indices will typically be written with
lower-case Greek letters from the beginning of the alphabet (α, β, · · · ) while target spacetime
indices will typically be written with lower-case Greek letters from the middle of the alphabet
(µ, ν, · · · ). Occasionally we will write a Kronecker delta with only one argument, e.g. δm+n; in
this case the other argument is understood to be zero.

B Conformal field theory basics

This section is based on notes from a previous version of the course given in 2008
which focused on a more traditional introduction to bosonic string theory. It also
borrows heavily from the text by DiFrancesco, et al. [11] and lecture notes by Tong
[7], Ginsparg [12], and Schellekens [13].

Conformal invariance is a symmetry (of an action) under gµν(x)→ Λ(x)gµν(x), i.e. it is an
invertible transformation of the coordinates xµ → x′µ that preserves angles (because the metric is
preserved up to a scaling). In basic string theory our primary interest is the conformal group in
two dimensions since we are interested in the conformal field theory (CFT) on the worldsheet. We
will see that 2D CFTs are rather special in ways that become very useful if one were interested in
calculating string scattering amplitudes. However, for a general background and because we will
eventually become interested in the AdS/CFT correspondence and higher dimensional conformal
field theories, we will first review general properties of CFTs before specializing to the case D = 2.
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B.1 The conformal group in D dimensions

To better understand the elements of the conformal group, let us study how the metric changes
under a general coordinate transformation xµ → xµ + εµ(x). To leading order in ε, the metric
changes as

δgµν = g′µν − gµν = −∂µεν − ∂νεµ. (B.1)

Imposing that this variation must generate an infinitesimal conformal transformation we obtain

∂µεν + ∂νεµ = f(x)gµν =
2

D
∂ · ε gµν , (B.2)

where we’ve fixed the prefactor of gµν by requiring the traces of each side are equal. For simplicity
let us now assume a flat metric, gµν = ηµν . One may now take an additional derivative ∂ρ of this
equation and permute indices to obtain (see chapter 4.1 of [11])(

ηµν∂
2 + (D − 2)∂µ∂ν

)
∂ · ε = 0. (B.3)

Restriction to flat space. In two dimensions, our choice gµν = ηµν is not actually a re-
striction. A general two dimensional metric is given by three functions (each of its diagonal
elements, and one off-diagonal which is related to the other by symmetry). We can use dif-
feomorphism invariance, which gives us two ‘functions-worth’ of freedom, to go to conformal
gauge where g12 = 0 and g11(x) = g22(x) so that the metric is gµν ∝ ηµν . Then it is easy to
use a Weyl transformation to bring us back to the flat space metric everywhere. In the case
of higher dimensions, our analysis here only holds for non-gravitational theories on flat space.

Together (B.3) and (B.3) imply that for D > 2 ε(x) is at most quadratic in x,

εµ(x) = αµ + bµνx
ν + cµνρx

νxρ. (B.4)

The constant term αµ is easily understood as a translation in spacetime. Substituting the linear
bµν term into (B.2) we obtain

b(µν) =
2

D
bρρηµν (B.5)

so that bµν is the sum of an antisymmetric part and a pure trace,

bµν = ληµν + ωµν . (B.6)

These are also rather familiar spacetime transformations: dilation by λ and rotations (Lorentz
transformations) ω. Sometimes authors will refer to dilations as ‘dilatations,’ but this sounds like
a Don King-ism (“Dilatations are the most splendiferous transformations in the world!”). Finally,
the cµνρ term can be shown to satisfy

cµνρ = ηµρbν + ηµνbρ − ηνρbµ (B.7)
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for some parameter bµ = (1/d)cρρµ. This is a new kind of transformation that one might not be
familiar with from a first field theory course. It is called a special conformal transformation
(SCT) and can be interpreted as the sequence of transformations:

inversion ◦ translation by bµ ◦ inversion, (B.8)

where inversions take xµ → xµ/x2. Together these transformations are the generators of the
D-dimensional (D > 2) conformal group. Let us summarize their generators and finite forms:

translation Pµ = −i∂µ x′µ = xµ + aµ

dilation D = −ixµ∂µ x′µ = λxµ

Lorentz Lµν = i (xµ∂ν − xν∂µ) x′µ = Λµ
νx

ν

SCT Kµ = −i
(
2xµx

ν∂ν − x2∂µ
)

x′µ =
xµ − bµx2

1− 2b · x+ b2x2
.

We remark that we are, of course, implicitly assuming that the fields themselves do not trans-
form under a conformal transformation so that we are only studying the transformation on space-
time. Indeed, we know that for general field theories the fields must transform: this is the content
of the renormalization group. For good reviews connecting the renormalization group and scale
transformations see chapter 3 of [18], Stevenson [19], or Hollowood [20]. We will construct appro-
priate representations of the fields under the conformal transformations in the following section.

First, however, let us write the conformal algebra satisfied by the generators above. They can
be calculated straightforwardly.

[D,Pµ] = iPµ (B.9)

[D,Kµ] = −iKµ (B.10)

[Kµ, Pν ] = 2i(ηµνD − Lµν) (B.11)

[Kρ, Lµν ] = i(ηρµKν − ηρνKµ) (B.12)

[Pρ, Lµν ] = i(ηρµPν − ηρνPµ) (B.13)

[Lµν , Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ). (B.14)

If one stares at this algebra long enough, one will notice that these can be arranged into a more
compact form:

Jµν = Lµν J(−1)µ =
1

2
(Pµ −Kµ) J(−1)µ = DJ0µ =

1

2
(Pµ +Kµ) , (B.15)

with all of the Js antisymmetric in their indices. Here we have used the P,D, and K generators
to extend the Lorentz algebra to Jab with a, b ∈ −1, 0, · · ·D. Thus if we work in a spacetime
with p spacelike directions and q timelike directions (Rp,q), then the conformal algebra is precisely
SO(p+1,q+1). We will almost always work in Wick-rotated coordinates so that the Lµν generate
D-dimensional rotations. In this case the conformal algebra is SO(D+1,1).

We remark that the usual Poincaré group with dilations form a subgroup of the conformal
group. It turns out, however, that any consistent scale-invariant quantum field theory also is
conformally invariant.
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B.2 Representations of the conformal group in D dimensions

Let’s now proceed to play a familiar game, the method of induced representations. This is how we
determine the field representations of an extended spacetime symmetry. We study the subgroup
of the conformal symmetry which preserves the origin x = 0. We can then form representations
of this group (or, more properly, the universal cover of this group) and translate the generators
to other positions on spacetime.

In the usual case of the Poincaré group we would define the matrix representation of the Lorentz
group (the subgroup that leaves the origin invariant), this is just a choice of spin representation:
Lµν |x=0 = Sµν . This only holds at the identity, but can be translated to any point in spacetime
via

eix·PLµνe
−ix·P = Sµν − xµPν + xνPµ. (B.16)

Here we’ve used the Poincaré algebra and the Hausdorff formula for operators,

e−ABeA = B + [B, a] +
1

2!
[[B,A], A] +

1

3!
[[[B,A], A] , A] + · · · . (B.17)

The punchline is that we now have a representation of the Poincaré group generators on all of
spacetime,

Pµ = −i∂µ (B.18)

Lµν = i (xµ∂ν − xν∂µ) + Sµν . (B.19)

Now let’s summarize the results of this procedure applied to the conformal group, whose
identity-preserving subgroup is composed of Lorentz transformations, dilation, and special con-
formal transformations. For details see [21]. We define the representations of these generators at

the origin: Sµν under Lorentz transformations, ∆̃ under scaling, and κµ under special conformal
transformations. These representations must obey the relevant commutators of the conformal
algebra. The remaining commutators give us a way to translate the generators via the Hausdorff
formula. In addition to (B.18) and (B.18), we end up with

D = −ixν∂ν + ∆̃ (B.20)

Kµ = κµ + 2xµ∆̃− xνSµν − 2ixµx
ν∂ν + ix2∂µ. (B.21)

Now there’s a nice little simplification. Requiring that our fields transform as irreducible
representations of the Lorentz group, then Schur’s lemma tells that any operator which commutes
with Sµν must be a multiple of the identity with respect to the spin indices. This means that κµ
must vanish. Further, Λ̃ is just a number which is equal to −i∆, where ∆ is the usual scaling
dimension of the field. That is to say, under x → λx, Φ(x) → Φ′(x′) = λ−∆Φ(x). Note that Λ̃
is not Hermitian, a reflection that representations of dilations on classical fields are not unitary.

For conformal transformations that take gµν(x) → Λ(x)gµν(x), we may write the scale factor
Λ(x) in terms of the Jacobian of the transformation,∣∣∣∣∂x′∂x

∣∣∣∣ = Λ(x)−d/2. (B.22)
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Thus a spinless field transforms under a conformal transformation as

φ(x)→ φ′(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆/D

φ(x). (B.23)

This is straightforward since the field is irreducibly spinless so has no Lorentz transformation and
κµ vanishes. The scaling factor in the above equation is just the transformation that one obtains
for dilation. This exhausts the subgroup that preserves the origin. A field which transforms
according to (B.23) is called quasi-primary.

B.3 The energy-momentum tensor in D dimensions

If conformal invariance is a symmetry of a field theory, then Noether’s theorem tells us that
there should be a conserved conformal current. It should be no surprise that this current is the
stress-energy (or energy-momentum) tensor since we already know that translations are part of
the conformal group. Let’s review the basic features that might already be familiar from field
theory.

There’s a useful trick for deriving the stress energy tensor that holds for any theory. We shall
closely follow the presentation by Tong [7]. Let us start in flat space, gµν = ηµν . We can derive
the conserved current associated with a symmetry by temporarily promoting the transformation
parameter to a spacetime field ε → ε(x). Under a symmetry transformation with this faux-
spacetime-dependent parameter, the action must change as

δS =

∫
ddx Jµ∂µε(x). (B.24)

This is clear since δS = 0 when ε is constant. Now the important part: when the equations
of motion are satisfied δS = 0, eve for non-constant ε(x). This is tautologically true since the
equations of motion are nothing more and nothing less than the minimum of the action. Thus
when the equations of motion are obeyed—i.e. classically—we know that Jµ is a conserved current
∂µJ

µ = 0.
Consider translations (which are certainly a subset of conformal symmetries), xµ → xµ + εµ.

We promote the transformation parameter to a function of the spacetime εµ → εµ(x). Now
here’s another trick: let us additionally promote the flat metric to a dynamical background metric
ηµν → gµν(x). Now we can interpret the spacetime-dependent translation as a diffeomorphism.
The upshot is that we can keep the theory invariant by making a corresponding transformation
on the metric,

δgµν = ∂µεν + ∂νεmu. (B.25)

The key insight to gain from this is that the δgµν transformation must change the action in such
a way that it counteracts the change from the spacetime-depenedent translation. Thus the δS
coming from a spacetime-dependent translation must just be minus the change in the action
coming from (B.25),

δS = −
∫
ddx

∂S

∂gµν
δgµν = −2

∫
ddx

∂S

∂gµν
∂µεν . (B.26)
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This is precisely the form that we wanted in (B.24) to identify the Noether current, which of
course is simply proportional to the energy-momentum tensor Tµν .

That’s great, but we haven’t really learned anything new yet. The key difference between
ordinary field theories and conformal field theories is that in the latter case the energy-momentum
tensor can typically be made traceless. This is easy to see for conformal transformations (B.2)

δgµν = f gµν (B.27)

so that

δS =

∫
ddx

∂S

∂gµν
δgµν ∝ −

∫
ddx f T µµ. (B.28)

Let us make two important remarks. First, scale transformations tend to be anomalous in quantum
field theories. (This is again related to the renormalization group.) Next, we have seen that the a
traceless the energy-momentum tensor implies (at least classically) conformal invariance. However,
it is not true that conformal invariance necessarily implies a traceless energy-momentum tensor
because the variation f(x) ∝ ∂ · ε(x) is not an arbitrary function, c.f. the form of εµ(x) in (B.4).
This is closely related to the statement that a scale and Poincaré invariant field theory must also,
under certain conditions, be conformally invariant. (See, for example, chapter 4.2.2 of [11].)

B.4 Correlation functions in D dimensions

In conformal theories the only physical objects are correlation functions of the fields. It is perhaps
worth noting that in most of the CFT literature, the term field needn’t necessarily refer to the
fundamental fields of the theory (i.e. those with their own path integral), but more generally can
refer to any local construction of those fields and their derivatives. These correlation functions
are, in a sense, the only things that one can calculate in a CFT.

Let us review the transformation of correlation functions under a general spacetime transfor-
mation.

〈φ(x′1) · · ·φ(x′n)〉 =
1

Z

∫
[dφ] φ(x′1) · · ·φ(x′n)e−S[φ] (B.29)

=
1

Z

∫
[dφ′] φ′(x′1) · · ·φ′(x′n)e−S[φ′], (B.30)

where we’ve just changed the path integral variable. Invoking (B.23),

=

∣∣∣∣∂x′∂x

∣∣∣∣−n∆/D

〈φ(x1) · · ·φ(xn)〉. (B.31)

More generally for different fields, each with their own scaling dimension,

〈φ1(x′1) · · ·φn(x′n)〉 =

∣∣∣∣∂x′∂x

∣∣∣∣−∆1/D

· · ·
∣∣∣∣∂x′∂x

∣∣∣∣−∆n/D

〈φ(x1) · · ·φ(xn)〉. (B.32)

We can use conformal symmetry to constrain the form of these correlation functions. In two
dimensions we will see that this turns out to be a very powerful constraint.
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