The Birds and the Bs

A Case Study of $B_s \rightarrow \mu^+ \mu^-$ in the MSSM

Flip Tanedo

Based on Phys.Rev.D79:055006,2009 In collaboration with A. Dedes, J Rosiek.

TASI 2009 Student Talk June, 2009

Flip Tanedo, Cornell University/CIHEP The Birds and the Bs: $B
ightarrow \mu \mu$

VS LAL Leads ORL 1-0

Los Angeles Lakers

TOP STORIES TOP VIDEOS

Domination Game

Kobe and the Lakers ruled Game 1. Daily

- TrueHoop » Magic meltdown » Nelson'
- Experts » Simmons » Scouts Inc. » Ho
- Denton: Superman's mission » Magic
- Adande: Mamba's moment » Bynum v
- Magic page » Lakers page » Poll: Who
- Blogs: Magic Daily » Forum Blue & Ge

SERIES DETAILS

(1) LAKERS LEAD (3) MAGIC, 1-0

1	2	3	4	5	6
Final Ma ▶ Lal	gic kers		75 100		4. Pietr PTS: 14 AST: 0 REB: 3
Recap Box S Play I	o » Score » By Play :	*			C. Bryan PTS: 40 AST: 8 REB: 8

Complimentarity & Flavor Physics

B-mesons: state-of-the-art flavor laboratories

Meson	Mass	Mean lifetime
B_d^0	5.280 GeV	1.53 ×10 ^{−12} s
$B_s^{r 0}$	5.370 GeV	$1.44 imes 10^{-12} s$

B-factories 'traditionally' run at $\Upsilon(4S)$ resonance, which produce B_d , but not B_s .

- B-mesons have just the right mass and width to allow us to measure their CP phase.
- Asymmetric *B*-factories allow us to measure the different branching ratios of *B* and \overline{B} mesons.

Strategy: Search for BSM in FCNC *B*-decays.

$$b \longrightarrow s s$$

Where do we look for penguins?

Where do we look for penguins? Antarctica.

Flip Tanedo, Cornell University/CIHEP The Birds and the Bs: $B
ightarrow \mu \mu$

Where do we look for penguins? Antarctica. Very little background, penguin is dominant fauna.

Where do we look for SUSY penguins? $B_s \rightarrow \mu^+ \mu^-$. Very little background, penguin is dominant process.

Flip Tanedo, Cornell University/CIHEP The Birds and the Bs: $B
ightarrow \mu \mu$

Very little background

The Standard Model background is suppressed by...

- **Loop**: no tree-level contribution, $(16\pi^2)^{-1}$
- **FCNC**: 'GIM' suppression, $|V^{\dagger}V|_{bs}$
- Helicity: Lepton mass insertion, m_{μ}/M_{B_s}

Channel	Expt.	Bound (90% CL)	SM Prediction
$B^0_s ightarrow \mu^+ \mu^-$	CDF II	$< 4.7 imes 10^{-8}$	$(4.8 \pm 1.3) imes 10^{-9}$
$B^0_d o \mu^+ \mu^-$	CDF II	$< 1.5 imes 10^{-8}$	$(1.4\pm0.4) imes10^{-10}$
$B^0_s ightarrow \mu^+ e^-$	CDF II	$< 2.0 imes 10^{-7}$	pprox 0
$B^0_d o \mu^+ e^-$	CDF II	$< 6.4 imes 10^{-8}$	pprox 0

Clean dilepton signal, only hadronic uncertainty is f_B. 'Ideal' for LHC.

Penguin is the dominant process

In the MSSM, the **Higgs-penguin** mediated $B_s \rightarrow \mu^+ \mu^-$ diagram is sensitive to tan β . Recall: tan $\beta = v_u/v_d$.

$$\begin{pmatrix} \overline{s}_{R} & \overline{b}_{R} \end{pmatrix} \begin{pmatrix} m_{s} & 0 \\ y_{b} \in v_{u} & m_{b} \end{pmatrix} \begin{pmatrix} s_{L} \\ b_{L} \end{pmatrix}$$
s-b mixing:

 $\sin\theta\approx y_b\epsilon v_u/m_b\approx\epsilon\tan\beta$

$$y_{b,\ell} = rac{m_{b,\ell}}{v_d} \propto rac{1}{\coseta} \stackrel{\taneta\gg1}{\longrightarrow} aneta$$

Amplitude is enhanced by $\tan^3 \beta$.

The standard model background...

The standard model background... and SUSY at large tan β $Br(B_s \rightarrow \mu\mu) \approx 5 \cdot 10^{-7} (\tan \beta / 50)^6 (300 \text{ GeV} / M_{A^0})^4$ Motivation: Grand unification, mSUGRA + $(q - 2)_{\mu}$

But what about **low** tan β ?

But what about **low** tan β ?

No photon penguin by Ward identity.

- Higgs penguin no longer dominant
- One has to consider interference with other diagrams
- Possibility: cancellation below SM prediction?

Low $\tan\beta$ scan

Scan over MSSM parameter space with respect to SM prediction and experimental limit, taking into account existing experimental bounds.

Mass insertion parameterizes flavor violation: $\delta^{IJ}_{QXY} = \frac{(M_Q^2)_{XY}^{\omega}}{\sqrt{(M_Q^2)_{XX}^J(M_Q^2)_{YY}^J}}$

Funnel region: Pseudoscalar and axial contributions cancel, scalar contribution is negligible; e.g. models where MSSM is extended with an additional light *CP*-odd Higgs.

LHCb 'benchmark' process

Potential... 'Signal' in 1Y 'Discovery' in 3Y

Implications on **LHCb** upgrade? $(B_s \text{ or } B_d?)$

General purpose detectors...

Flip Tanedo, Cornell University/CIHEP The

The Birds and the Bs: $B \rightarrow \mu \mu$

Conclusion: Lessons

Theory

- There is life outside of Minimal Flavor Violation (MFV)
- … though perhaps only minimal life?
- We can model-build beyond MFV; e.g. Flavorful SUSY
- Our numerical code is available

Experiment

- Keep an eye out for a measurement of $B_s
 ightarrow \mu \mu$
- Non-discovery at SM limit could hit at low tan β, beyond-MFV
- Need to think about LHCb upgrade scenarios

Range of input parameters for numerical scan

Parameter	Symbol	Min	Max	Step
Ratio of Higgs vevs	$\tan \beta$	2	30	varied
CKM phase	γ	0	π	$\pi/25$
CP-odd Higgs mass	M_A	100	500	200
SUSY Higgs mixing	μ	-450	450	300
SU(2) gaugino mass	M ₂	100	500	200
Gluino mass	M ₃	3 <i>M</i> 2	3 <i>M</i> 2	0
SUSY scale	M _{SUSY}	500	1000	500
Slepton Masses	$M_{\widetilde{\ell}}$	$M_{\rm SUSY}/3$	$M_{\rm SUSY}/3$	0
Left top squark mass	$M_{\tilde{O}_{i}}$	200	500	300
Right bottom squark mass	$M_{\tilde{b}_{R}}$	200	500	300
Right top squark mass	$M_{\tilde{t}_{R}}$	150	300	150
Mass insertion	$\delta^{13}_{dLL}, \delta^{23}_{dLL}$	-1	1	1/10
Mass insertion	$\delta^{13}_{dLR}, \delta^{23}_{dLR}$	-0.1	0.1	1/100

Constraints used in numerical scan

Quantity	Current Measurement	Experimental Error
$m_{\chi_1^0}$	> 46 GeV	
$m_{\chi^{\pm}}$	> 94 GeV	
$m_{\tilde{b}}^{\tilde{n}_1}$	> 89 GeV	
$\tilde{m_t}$	> 95.7 GeV	
m_h	> 92.8 GeV	
ϵ_{K}	$2.232 \cdot 10^{-3}$	$0.007 \cdot 10^{-3}$
$ \Delta M_{K} $	$3.483 \cdot 10^{-15}$	$0.006 \cdot 10^{-15}$
$ \Delta M_D $	$< 0.46 \cdot 10^{-13}$	
ΔM_{B_d}	3.337 · 10 ⁻¹³ GeV	0.033 · 10 ⁻¹³ GeV
ΔM_{B_s}	116.96 · 10 ⁻¹³ GeV	0.79 ⋅ 10 ⁻¹³ GeV
$Br(B o X_{s}\gamma)$	$3.34\cdot10^{-4}$	$0.38\cdot 10^{-4}$
${\sf Br}(K_L o \pi^0 u ar u)$	$< 1.5 \cdot 10^{-10}$	
${\sf Br}({\cal K}^+ o\pi^+ uar u)$	1.5 ⋅ 10 ^{−10}	1.3 · 10 ⁻¹⁰
Electron EDM	$< 0.07 \cdot 10^{-26}$	
Neutron EDM	$< 0.63 \cdot 10^{-25}$	

Calculation: Effective Operators

The effective Hamiltonian can be written as

$$\mathcal{H} = \frac{1}{(4\pi)^2} \sum_{X,Y=L,R} \left(C_{VXY} \mathcal{O}_{VXY} + C_{SXY} \mathcal{O}_{SXY} + C_{TX} \mathcal{O}_{TX} \right)$$

Writing flavor indices I, J, K, L, the operators are

$$\mathcal{O}_{VXY}^{JJKL} = (\overline{q^{J}}\gamma^{\mu}P_{X}q^{I})(\ell^{L}\gamma_{\mu}P_{Y}\ell^{K})$$
$$\mathcal{O}_{SXY}^{JJKL} = (\overline{q^{J}}P_{X}q^{I})(\ell^{L}P_{Y}\ell^{K})$$
$$\mathcal{O}_{TX}^{JJKL} = (\overline{q^{J}}\sigma^{\mu\nu}P_{X}q^{I})(\ell^{L}\sigma_{\mu\nu}\ell^{K})$$

Calculation: Factorization

The hadronic and leptonic parts of the matrix element factorize: $\langle \ell, \ell' | \mathcal{H}_{eff} | B(p) \rangle = \sum_{i=ops} \langle \ell, \ell' | \mathcal{O}_L^i | 0 \rangle \langle 0 | \mathcal{O}_Q^i | B(p) \rangle$

Definition of the decay constant, fB

$$egin{aligned} &\langle 0|ar{b}\gamma_{\mu}P_{L,R}s|B(p)
angle &= \mprac{i}{2}p_{\mu}f_{B}\ &\to \langle 0|ar{b}P_{L,R}s|B(p)
angle &= \pmrac{i}{2}rac{M_{B}f_{B}}{m_{b}+m_{s}} \end{aligned}$$

Note that there are no tensor $(\bar{b}\sigma^{\mu\nu}s)$ operators by antisymmetry. $f_{\rm R}$ contains all the hadronic muck; look it up from non-perturbative methods (i.e. lattice).

Leptonic decay: don't have to worry about jets, inclusive decays, etc.

Calculation: Amplitude

We can now write the amplitude in terms of form factors $\mathcal{M} = F_S \overline{\ell} \ell + F_P \overline{\ell} \gamma_5 \ell + F_V p^{\mu} \overline{\ell} \gamma_{\mu} \ell + F_A p^{\mu} \overline{\ell} \gamma_{\mu} \gamma_5 \ell$ In terms of the Wilson coefficients, these are

$$F_{S} = \frac{i}{4} \frac{M_{B_{s}}^{2} f_{B_{s}}}{m_{b} + m_{s}} (C_{SLL} + C_{SLR} - C_{SRR} - C_{SRL})$$

$$F_{P} = \frac{i}{4} \frac{M_{B_{s}}^{2} f_{B_{s}}}{m_{b} + m_{s}} (-C_{SLL} + C_{SLR} - C_{SRR} + C_{SRL})$$

$$F_{V} = -\frac{i}{4} f_{B_{s}} (C_{VLL} + C_{VLR} - C_{VRR} - C_{VRL})$$

$$F_{A} = -\frac{i}{4} f_{B_{s}} (-C_{VLL} + C_{VLR} - C_{VRR} + C_{VRL})$$

Calculation: Branching Ratio

$$\begin{split} \mathcal{B}(B_{s}^{0} \to \ell_{L}^{-} \ell_{K}^{+}) &= \frac{\tau_{B_{s}}}{16\pi} \frac{|\mathcal{M}|^{2}}{M_{B_{s}}} \sqrt{1 - \left(\frac{m_{\ell_{K}} + m_{\ell_{L}}}{M_{B_{s}}}\right)^{2}} \sqrt{1 - \left(\frac{m_{\ell_{K}} - m_{\ell_{L}}}{M_{B_{s}}}\right)^{2}} \\ |\mathcal{M}|^{2} &= 2|F_{s}|^{2} \left[M_{B_{s}}^{2} - (m_{\ell_{L}} + m_{\ell_{K}})^{2}\right] + 2|F_{P}|^{2} \left[M_{B_{s}}^{2} - (m_{\ell_{L}} - m_{\ell_{K}})^{2}\right] \\ &+ 2|F_{V}|^{2} \left[M_{B_{s}}^{2}(m_{\ell_{K}} - m_{\ell_{L}})^{2} - (m_{\ell_{K}}^{2} - m_{\ell_{L}}^{2})^{2}\right] \\ &+ 2|F_{A}|^{2} \left[M_{B_{s}}^{2}(m_{\ell_{K}} + m_{\ell_{L}})^{2} - (m_{\ell_{K}}^{2} - m_{\ell_{L}}^{2})^{2}\right] \\ &+ 4\operatorname{Re}(F_{s}F_{V}^{*})(m_{\ell_{L}} - m_{\ell_{K}}) \left[M_{B_{s}}^{2} + (m_{\ell_{K}} + m_{\ell_{L}})^{2}\right] \\ &+ 4\operatorname{Re}(F_{P}F_{A}^{*})(m_{\ell_{L}} + m_{\ell_{K}}) \left[M_{B_{s}}^{2} - (m_{\ell_{L}} - m_{\ell_{K}})^{2}\right] . \end{split}$$

Flip Tanedo, Cornell University/CIHEP The

The Birds and the Bs: $B
ightarrow \mu \mu$

Calculation: $B_s \rightarrow \mu^+ \mu - \text{ at low } \tan \beta$

For the case $\ell_{\mathcal{K}} = \ell_L = \mu$, the amplitude-squared is

$$|\mathcal{M}|^2 pprox 2M_{B_q}^2 \left(|F_S|^2 + |F_P + 2 m_\mu F_A|^2 \right)$$

where we have also taken $m_{\mu}/M_B \rightarrow 0$.

The minima of this comes from two cases,

(1)
$$F_P + 2m_\ell F_A \approx 0, F_P \gg F_S$$

(2) $|F_S| \approx |F_P| \approx |F_A| \approx 0.$