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A Hidden Sector

Dark matter searches related by crossing symmetry:
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How Dark Matter talks to the Standard Model
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Exceptions: e.g. SIMP Miracle (1402.5143); DMdm (1312.2618);
Agashe, Cui, et al. (1405.7370). See talk by Yanou Cui.
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Wiggly lines don’t always close well. Sometimes you can adjust them by hand.

I don’t have a good solution for this. One option specifically for semi-circles is here: http:

//bit.ly/1vFCNzi. I think it can be adapted for arbitrary angles. For further discussion, see:
http://bit.ly/12wA4kQ.

3 W Diagrams

⌫e

µ

W

⌫e

e

W�

W+

�

3

capture

annihilation

3

Dark Portals with Light Mediators

x x�

� A0

A0

INDIRECT DIRECT COLLIDER

Standard ModelDark Matter Mediator

� �
�

�
N N

q

q

AN
NI
HI
LA

TIO
N

COLLIDERD I R E C T



f l i p  .  t a n e d o 42u c i  .  e d u@ DARK PHOTONS FROM THE EARTH
4

Renormalizable Portals

Dark Matter Mediator

Standard ModelU(1)’

Standard  
ModelHiggs

Dark Matter Mediator Standard  
Model⌫R

Kinetic 
Mixing

Dark  
Matter

THIS TALK



f l i p  .  t a n e d o 42u c i  .  e d u@ DARK PHOTONS FROM THE EARTH
5

Dark Matter annihilates in ___________________ to

__________,  which are detected by ______________.
SOME PARTICLE(S)

A PLACE

AN EXPERIMENT

dark 
photons

the Earth (or the Sun)

IceCube (or AMS)

CAPTURE& ANNIHILATION: Press & Spergel ’85; Krauss, Srednicki, Wilczek ’86;  
Freese ’86; Griest & Seckel ’87; Gaisser, Steigman, Tilav ’86; Gould (’87,’88,’92) 

DARK PHOTONS: Holdom (PLB 178, 65 ‘86); Batell, Pospelov, Ritz, Shang (0910.1567) 
Delaunay, Fox, Perez (0812.3331); Schuster, Toro, Yavin (0910.1602, 0910.1839); Meade, 
Nussinov, Papucci, Volansky (0910.4160); …

Adapted from J. Feng

Indirect detection of dark matter is:

(UCI Version)
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DM Capture, annihilation to A’
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Minimal Model of Faux-tons
dark U(1)

Kinetic Mixing
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Results of Diagonalization

The arXiv can process TikZ commands so you don’t need to use externalize for this. However,
not all journals will do this. For example, APS journals require image attachments. In this case one
has to use externalize to output the PDFs, then manually go though and insert includegraphics
commands in your manuscript. Sorry, I don’t make the rules.

1.4 Fancy Fonts?

Maybe you want to make diagrams with your crazy fonts. XeLaTeX lets you access local system
fonts for use in LATEX. It’s great for Beamer, but I don’t recommend it in a regular paper. It
doesn’t play well with some useful macros like ‘blackboard math,’ http://tinyurl.com/a28hrle.

1.5 Other resources and options

In addition to the comprehensive PGF/TikZ manual, You can find lots of great TikZ tutorials
using your favorite internet search site. I especially like http://www.texample.net/tikz/. Here
are some TikZ alternatives:

1. Jaxodraw. A simple Java-based interface for drawing Feynman diagrams based on axodraw.sty

(which is what was used to typeset Peskin & Schroeder), http://jaxodraw.sourceforge.net.

2. Feynman Diagram Maker. An even simpler web interface by Aidan Randle-Conde

4
, http:

//www.aidansean.com/feynman/. Recommended if you want something for a quick e-mail, but

perhaps not publication quality.

3. feynmn. An older method based on Metafont. I found it a bit clunky to use and not as flexible as

TikZ, http://www.ctan.org/pkg/feynmf.
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Mixing with Hypercharge
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Dark Photon Bounds

Fradette et al. 1407.0993

2

masses in the MeV-GeV range, and lifetimes long enough
for the decay products to directly influence the physical
processes in the universe following BBN, and during the
epoch of CMB decoupling. These vectors have a para-
metrically small coupling to the electromagnetic current,
and thus an extremely small production cross sections for
e+e� ! V �,

�
prod

⇠ ⇡↵↵
e↵

E2

c.m.

⇠ 10�66 � 10�52 cm2, (4)

where we took E
c.m. ⇠ 200 MeV and the range is deter-

mined by our region of interest,

↵
e↵

⇠ 10�38 � 10�24. (5)

Such small couplings render these vector states com-
pletely undetectable in terrestrial particle physics exper-
iments, and consequently we refer to them as very dark

photons (VDP). As follows from the expression (2) for
the lifetime, the lower limit of the above range for ↵

e↵

is relevant for CMB physics, while the upper limit is im-
portant for BBN.

The production cross section (4) looks prohibitively
small, but in the early Universe at T ⇠ mV every parti-
cle in the primordial plasma has the right energy to emit
V ’s. The cumulative e↵ect of early Universe production
at these temperatures, followed by decays at t ⇠ ⌧V , can
still inject a detectable amount of electromagnetic energy.
A simple parametric estimate for the electromagnetic en-
ergy release per baryon, omitting O(1) factors, takes the
form

E
p.b. ⇠

mV �prod

H�1

T=mV

nb,T=mV

⇠ ↵
e↵

M
Pl

10 ⌘b
⇠ ↵

e↵

⇥ 1036 eV.

(6)
Here the production rate per unit volume, �

prod

, was
taken to be the product of the typical number density
of particles in the primordial plasma and the V decay
rate, ⌧�1

V n�,T=mV . This production rate is active within
one Hubble time, H�1

T=mV
, leading to the appearance of

the Planck mass in (6), along with another large fac-
tor, the ratio of photon to baryon number densities,
⌘�1

b = 1.6 ⇥ 109. One observes that the combination
of these two factors is capable of overcoming the extreme
suppression by ↵

e↵

. Given that BBN can be sensitive
to an energy release as low as O(MeV) per baryon, and
that the CMB anisotropy spectrum allows us to probe
sub-eV energy injection, we reach the conclusion that
the early Universe can be an e↵ective probe of VDP! The
cosmological signatures of the decaying VDP were par-
tially explored in [4, 5], but to our knowledge the CMB
constraints on this model were not previously studied.

In the remainder of this paper, we provide detailed cal-
culations to delineate the VDP parameter regions that
are constrained by BBN and CMB data. In the process,
we provide in Section 2 an improved calculation of the
‘freeze-in’ abundance in the Early Universe (using some
recent insight about the in-medium production of dark

vectors [6, 7]; see also [8]). In Section 3, we explore the
BBN constraints in more detail, including the speculative
possibility that the currently observed over-abundance of
7Li can be reduced via VDP decays. Then in Section 4
we consider the impact of even later decays on the CMB
anisotropies. A summary of the constraints we obtain in
shown in Fig. 1, and more detailed plots of the parame-
ter space are shown in Sections 3 and 4. We finish with
some concluding remarks in Section 5. Several Appen-
dices contain additional calculational details.
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FIG. 1. An overview of the constraints on the plane of vec-
tor mass versus kinetic mixing, showing the regions excluded
due to their impact on BBN and the CMB anisotropies, in
addition to various terrestrial limits [1, 9], including the more
recent limits [10]. These excluded regions are shown in more
detail in later sections.
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Dark Photon Minimal Model
dark U(1)

Kinetic Mixing
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Dark Photon Reach

2

masses in the MeV-GeV range, and lifetimes long enough
for the decay products to directly influence the physical
processes in the universe following BBN, and during the
epoch of CMB decoupling. These vectors have a para-
metrically small coupling to the electromagnetic current,
and thus an extremely small production cross sections for
e+e� ! V �,

�
prod

⇠ ⇡↵↵
e↵

E2

c.m.

⇠ 10�66 � 10�52 cm2, (4)

where we took E
c.m. ⇠ 200 MeV and the range is deter-

mined by our region of interest,

↵
e↵

⇠ 10�38 � 10�24. (5)

Such small couplings render these vector states com-
pletely undetectable in terrestrial particle physics exper-
iments, and consequently we refer to them as very dark

photons (VDP). As follows from the expression (2) for
the lifetime, the lower limit of the above range for ↵

e↵

is relevant for CMB physics, while the upper limit is im-
portant for BBN.

The production cross section (4) looks prohibitively
small, but in the early Universe at T ⇠ mV every parti-
cle in the primordial plasma has the right energy to emit
V ’s. The cumulative e↵ect of early Universe production
at these temperatures, followed by decays at t ⇠ ⌧V , can
still inject a detectable amount of electromagnetic energy.
A simple parametric estimate for the electromagnetic en-
ergy release per baryon, omitting O(1) factors, takes the
form

E
p.b. ⇠

mV �prod

H�1

T=mV

nb,T=mV

⇠ ↵
e↵

M
Pl

10 ⌘b
⇠ ↵

e↵

⇥ 1036 eV.

(6)
Here the production rate per unit volume, �

prod

, was
taken to be the product of the typical number density
of particles in the primordial plasma and the V decay
rate, ⌧�1

V n�,T=mV . This production rate is active within
one Hubble time, H�1

T=mV
, leading to the appearance of

the Planck mass in (6), along with another large fac-
tor, the ratio of photon to baryon number densities,
⌘�1

b = 1.6 ⇥ 109. One observes that the combination
of these two factors is capable of overcoming the extreme
suppression by ↵

e↵

. Given that BBN can be sensitive
to an energy release as low as O(MeV) per baryon, and
that the CMB anisotropy spectrum allows us to probe
sub-eV energy injection, we reach the conclusion that
the early Universe can be an e↵ective probe of VDP! The
cosmological signatures of the decaying VDP were par-
tially explored in [4, 5], but to our knowledge the CMB
constraints on this model were not previously studied.

In the remainder of this paper, we provide detailed cal-
culations to delineate the VDP parameter regions that
are constrained by BBN and CMB data. In the process,
we provide in Section 2 an improved calculation of the
‘freeze-in’ abundance in the Early Universe (using some
recent insight about the in-medium production of dark

vectors [6, 7]; see also [8]). In Section 3, we explore the
BBN constraints in more detail, including the speculative
possibility that the currently observed over-abundance of
7Li can be reduced via VDP decays. Then in Section 4
we consider the impact of even later decays on the CMB
anisotropies. A summary of the constraints we obtain in
shown in Fig. 1, and more detailed plots of the parame-
ter space are shown in Sections 3 and 4. We finish with
some concluding remarks in Section 5. Several Appen-
dices contain additional calculational details.
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FIG. 1. An overview of the constraints on the plane of vec-
tor mass versus kinetic mixing, showing the regions excluded
due to their impact on BBN and the CMB anisotropies, in
addition to various terrestrial limits [1, 9], including the more
recent limits [10]. These excluded regions are shown in more
detail in later sections.
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DM Capture, annihilation to A’

1

2

3 4

DIRECTIONAL 
DISCRIMINATION

EARLIER WORK: Holdom (PLB 178, 65 ‘86); Batell, Pospelov, Ritz, Shang (0910.1567) 
Delaunay, Fox, Perez (0812.3331); Schuster, Toro, Yavin (0910.1602, 0910.1839); 
Meade, Nussinov, Papucci, Volansky (0910.4160); …
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Dark Matter Capture

CAPTURE& ANNIHILATION: Press & 
Spergel ’85; Krauss, Srednicki, 
Wilczek ’86;  Freese ’86; Griest & 
Seckel ’87; Gaisser, Steigman, Tilav 
’86; Gould (’87,’88,’92) capture

DM is captured when elastically scattered dark matter 
has velocity less than the Earth’s escape velocity  

CAPTURE PROCESS ~ DIRECT DETECTION
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Filling the Earth with Dark Matter
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Reach: mχ = 10 TeV

2

masses in the MeV-GeV range, and lifetimes long enough
for the decay products to directly influence the physical
processes in the universe following BBN, and during the
epoch of CMB decoupling. These vectors have a para-
metrically small coupling to the electromagnetic current,
and thus an extremely small production cross sections for
e+e� ! V �,

�
prod

⇠ ⇡↵↵
e↵

E2

c.m.

⇠ 10�66 � 10�52 cm2, (4)

where we took E
c.m. ⇠ 200 MeV and the range is deter-

mined by our region of interest,

↵
e↵

⇠ 10�38 � 10�24. (5)

Such small couplings render these vector states com-
pletely undetectable in terrestrial particle physics exper-
iments, and consequently we refer to them as very dark

photons (VDP). As follows from the expression (2) for
the lifetime, the lower limit of the above range for ↵

e↵

is relevant for CMB physics, while the upper limit is im-
portant for BBN.

The production cross section (4) looks prohibitively
small, but in the early Universe at T ⇠ mV every parti-
cle in the primordial plasma has the right energy to emit
V ’s. The cumulative e↵ect of early Universe production
at these temperatures, followed by decays at t ⇠ ⌧V , can
still inject a detectable amount of electromagnetic energy.
A simple parametric estimate for the electromagnetic en-
ergy release per baryon, omitting O(1) factors, takes the
form

E
p.b. ⇠

mV �prod

H�1

T=mV

nb,T=mV

⇠ ↵
e↵

M
Pl

10 ⌘b
⇠ ↵

e↵

⇥ 1036 eV.

(6)
Here the production rate per unit volume, �

prod

, was
taken to be the product of the typical number density
of particles in the primordial plasma and the V decay
rate, ⌧�1

V n�,T=mV . This production rate is active within
one Hubble time, H�1

T=mV
, leading to the appearance of

the Planck mass in (6), along with another large fac-
tor, the ratio of photon to baryon number densities,
⌘�1

b = 1.6 ⇥ 109. One observes that the combination
of these two factors is capable of overcoming the extreme
suppression by ↵

e↵

. Given that BBN can be sensitive
to an energy release as low as O(MeV) per baryon, and
that the CMB anisotropy spectrum allows us to probe
sub-eV energy injection, we reach the conclusion that
the early Universe can be an e↵ective probe of VDP! The
cosmological signatures of the decaying VDP were par-
tially explored in [4, 5], but to our knowledge the CMB
constraints on this model were not previously studied.

In the remainder of this paper, we provide detailed cal-
culations to delineate the VDP parameter regions that
are constrained by BBN and CMB data. In the process,
we provide in Section 2 an improved calculation of the
‘freeze-in’ abundance in the Early Universe (using some
recent insight about the in-medium production of dark

vectors [6, 7]; see also [8]). In Section 3, we explore the
BBN constraints in more detail, including the speculative
possibility that the currently observed over-abundance of
7Li can be reduced via VDP decays. Then in Section 4
we consider the impact of even later decays on the CMB
anisotropies. A summary of the constraints we obtain in
shown in Fig. 1, and more detailed plots of the parame-
ter space are shown in Sections 3 and 4. We finish with
some concluding remarks in Section 5. Several Appen-
dices contain additional calculational details.
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FIG. 1. An overview of the constraints on the plane of vec-
tor mass versus kinetic mixing, showing the regions excluded
due to their impact on BBN and the CMB anisotropies, in
addition to various terrestrial limits [1, 9], including the more
recent limits [10]. These excluded regions are shown in more
detail in later sections.
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Reach: mχ = 1 TeV
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masses in the MeV-GeV range, and lifetimes long enough
for the decay products to directly influence the physical
processes in the universe following BBN, and during the
epoch of CMB decoupling. These vectors have a para-
metrically small coupling to the electromagnetic current,
and thus an extremely small production cross sections for
e+e� ! V �,

�
prod

⇠ ⇡↵↵
e↵

E2

c.m.

⇠ 10�66 � 10�52 cm2, (4)

where we took E
c.m. ⇠ 200 MeV and the range is deter-

mined by our region of interest,

↵
e↵

⇠ 10�38 � 10�24. (5)

Such small couplings render these vector states com-
pletely undetectable in terrestrial particle physics exper-
iments, and consequently we refer to them as very dark

photons (VDP). As follows from the expression (2) for
the lifetime, the lower limit of the above range for ↵

e↵

is relevant for CMB physics, while the upper limit is im-
portant for BBN.

The production cross section (4) looks prohibitively
small, but in the early Universe at T ⇠ mV every parti-
cle in the primordial plasma has the right energy to emit
V ’s. The cumulative e↵ect of early Universe production
at these temperatures, followed by decays at t ⇠ ⌧V , can
still inject a detectable amount of electromagnetic energy.
A simple parametric estimate for the electromagnetic en-
ergy release per baryon, omitting O(1) factors, takes the
form

E
p.b. ⇠

mV �prod

H�1

T=mV

nb,T=mV

⇠ ↵
e↵

M
Pl

10 ⌘b
⇠ ↵

e↵

⇥ 1036 eV.

(6)
Here the production rate per unit volume, �

prod

, was
taken to be the product of the typical number density
of particles in the primordial plasma and the V decay
rate, ⌧�1

V n�,T=mV . This production rate is active within
one Hubble time, H�1

T=mV
, leading to the appearance of

the Planck mass in (6), along with another large fac-
tor, the ratio of photon to baryon number densities,
⌘�1

b = 1.6 ⇥ 109. One observes that the combination
of these two factors is capable of overcoming the extreme
suppression by ↵

e↵

. Given that BBN can be sensitive
to an energy release as low as O(MeV) per baryon, and
that the CMB anisotropy spectrum allows us to probe
sub-eV energy injection, we reach the conclusion that
the early Universe can be an e↵ective probe of VDP! The
cosmological signatures of the decaying VDP were par-
tially explored in [4, 5], but to our knowledge the CMB
constraints on this model were not previously studied.

In the remainder of this paper, we provide detailed cal-
culations to delineate the VDP parameter regions that
are constrained by BBN and CMB data. In the process,
we provide in Section 2 an improved calculation of the
‘freeze-in’ abundance in the Early Universe (using some
recent insight about the in-medium production of dark

vectors [6, 7]; see also [8]). In Section 3, we explore the
BBN constraints in more detail, including the speculative
possibility that the currently observed over-abundance of
7Li can be reduced via VDP decays. Then in Section 4
we consider the impact of even later decays on the CMB
anisotropies. A summary of the constraints we obtain in
shown in Fig. 1, and more detailed plots of the parame-
ter space are shown in Sections 3 and 4. We finish with
some concluding remarks in Section 5. Several Appen-
dices contain additional calculational details.
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FIG. 1. An overview of the constraints on the plane of vec-
tor mass versus kinetic mixing, showing the regions excluded
due to their impact on BBN and the CMB anisotropies, in
addition to various terrestrial limits [1, 9], including the more
recent limits [10]. These excluded regions are shown in more
detail in later sections.
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dark matter. These were recently examined in Ref. [38], which highlighted that at small dark
photon masses the parametric shape of the exclusion region in the (m

A

, ") plane flattens for
small m

A

when the contact-interaction limit breaks down. Observe that in the m

A

⌧ m

X

limit, the X–nucleon cross section and annihilation rate scale as

�

Xn

⇠ ↵

X

⇢

0

⇠ ↵

X

m

X

h�
ann

vi = ↵

2

X

m
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Reach: mχ = 100 GeV

2

masses in the MeV-GeV range, and lifetimes long enough
for the decay products to directly influence the physical
processes in the universe following BBN, and during the
epoch of CMB decoupling. These vectors have a para-
metrically small coupling to the electromagnetic current,
and thus an extremely small production cross sections for
e+e� ! V �,

�
prod

⇠ ⇡↵↵
e↵

E2

c.m.

⇠ 10�66 � 10�52 cm2, (4)

where we took E
c.m. ⇠ 200 MeV and the range is deter-

mined by our region of interest,

↵
e↵

⇠ 10�38 � 10�24. (5)

Such small couplings render these vector states com-
pletely undetectable in terrestrial particle physics exper-
iments, and consequently we refer to them as very dark

photons (VDP). As follows from the expression (2) for
the lifetime, the lower limit of the above range for ↵

e↵

is relevant for CMB physics, while the upper limit is im-
portant for BBN.

The production cross section (4) looks prohibitively
small, but in the early Universe at T ⇠ mV every parti-
cle in the primordial plasma has the right energy to emit
V ’s. The cumulative e↵ect of early Universe production
at these temperatures, followed by decays at t ⇠ ⌧V , can
still inject a detectable amount of electromagnetic energy.
A simple parametric estimate for the electromagnetic en-
ergy release per baryon, omitting O(1) factors, takes the
form

E
p.b. ⇠

mV �prod

H�1

T=mV

nb,T=mV

⇠ ↵
e↵

M
Pl

10 ⌘b
⇠ ↵

e↵

⇥ 1036 eV.

(6)
Here the production rate per unit volume, �

prod

, was
taken to be the product of the typical number density
of particles in the primordial plasma and the V decay
rate, ⌧�1

V n�,T=mV . This production rate is active within
one Hubble time, H�1

T=mV
, leading to the appearance of

the Planck mass in (6), along with another large fac-
tor, the ratio of photon to baryon number densities,
⌘�1

b = 1.6 ⇥ 109. One observes that the combination
of these two factors is capable of overcoming the extreme
suppression by ↵

e↵

. Given that BBN can be sensitive
to an energy release as low as O(MeV) per baryon, and
that the CMB anisotropy spectrum allows us to probe
sub-eV energy injection, we reach the conclusion that
the early Universe can be an e↵ective probe of VDP! The
cosmological signatures of the decaying VDP were par-
tially explored in [4, 5], but to our knowledge the CMB
constraints on this model were not previously studied.

In the remainder of this paper, we provide detailed cal-
culations to delineate the VDP parameter regions that
are constrained by BBN and CMB data. In the process,
we provide in Section 2 an improved calculation of the
‘freeze-in’ abundance in the Early Universe (using some
recent insight about the in-medium production of dark

vectors [6, 7]; see also [8]). In Section 3, we explore the
BBN constraints in more detail, including the speculative
possibility that the currently observed over-abundance of
7Li can be reduced via VDP decays. Then in Section 4
we consider the impact of even later decays on the CMB
anisotropies. A summary of the constraints we obtain in
shown in Fig. 1, and more detailed plots of the parame-
ter space are shown in Sections 3 and 4. We finish with
some concluding remarks in Section 5. Several Appen-
dices contain additional calculational details.
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FIG. 1. An overview of the constraints on the plane of vec-
tor mass versus kinetic mixing, showing the regions excluded
due to their impact on BBN and the CMB anisotropies, in
addition to various terrestrial limits [1, 9], including the more
recent limits [10]. These excluded regions are shown in more
detail in later sections.
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Direct Detection Plane
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Kinematic Distributions
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Just out of reach

IceCube Collaboration website
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Astrophysical Opportunities
• Acceleration from gravitational pull of the sun  

COMPENSATED BY JUPITER, VENUS? (Gould 1992)  
( More recent simulations: Edsjo et al 2004, Peter 2009)  

• Dark Disk of the Milky Way, Stellar Streams?  
ENHANCEMENT FROM LOW VELOCITY SUBHALOS?  
(Read, et al. 0803.2714, 0902.0009; Purcell, Bullock, Kaplinghat 0906.5348)
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Other targets?
Dark Matter annihilates in ___________________ to

__________,  which are detected by ______________.
SOME PARTICLE(S)

A PLACE

AN EXPERIMENT

dark 
photons IceCube / Fermi

Images: Wikipedia

EARTH MOON SUN JUPITER

[other places?]
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Accumulation in the Sun

J. Feng, J. Smolinsky, FT 1602.01465  
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Optimizing for Signal

Choose: 

decay
capture

annihilation

Earth

Sun Solar Magnetic Field

AMS-02

not to scale

1. maximum e+ solid angle from sun  

2. minimum e+ energy
T O  M I N I M I Z E  B A C K G R O U N D  (NB= 1 )

T O  M A X I M I Z E  S I G N A L
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Signal and Background
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Earth’s Magnetic Field

Assumption: Earth’s magnetic field is mapped

and trajectories can be traced back
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AMS-02 Reach
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masses in the MeV-GeV range, and lifetimes long enough
for the decay products to directly influence the physical
processes in the universe following BBN, and during the
epoch of CMB decoupling. These vectors have a para-
metrically small coupling to the electromagnetic current,
and thus an extremely small production cross sections for
e+e� ! V �,

�
prod

⇠ ⇡↵↵
e↵

E2

c.m.

⇠ 10�66 � 10�52 cm2, (4)

where we took E
c.m. ⇠ 200 MeV and the range is deter-

mined by our region of interest,

↵
e↵

⇠ 10�38 � 10�24. (5)

Such small couplings render these vector states com-
pletely undetectable in terrestrial particle physics exper-
iments, and consequently we refer to them as very dark

photons (VDP). As follows from the expression (2) for
the lifetime, the lower limit of the above range for ↵

e↵

is relevant for CMB physics, while the upper limit is im-
portant for BBN.

The production cross section (4) looks prohibitively
small, but in the early Universe at T ⇠ mV every parti-
cle in the primordial plasma has the right energy to emit
V ’s. The cumulative e↵ect of early Universe production
at these temperatures, followed by decays at t ⇠ ⌧V , can
still inject a detectable amount of electromagnetic energy.
A simple parametric estimate for the electromagnetic en-
ergy release per baryon, omitting O(1) factors, takes the
form

E
p.b. ⇠

mV �prod

H�1

T=mV

nb,T=mV

⇠ ↵
e↵

M
Pl

10 ⌘b
⇠ ↵

e↵

⇥ 1036 eV.

(6)
Here the production rate per unit volume, �

prod

, was
taken to be the product of the typical number density
of particles in the primordial plasma and the V decay
rate, ⌧�1

V n�,T=mV . This production rate is active within
one Hubble time, H�1

T=mV
, leading to the appearance of

the Planck mass in (6), along with another large fac-
tor, the ratio of photon to baryon number densities,
⌘�1

b = 1.6 ⇥ 109. One observes that the combination
of these two factors is capable of overcoming the extreme
suppression by ↵

e↵

. Given that BBN can be sensitive
to an energy release as low as O(MeV) per baryon, and
that the CMB anisotropy spectrum allows us to probe
sub-eV energy injection, we reach the conclusion that
the early Universe can be an e↵ective probe of VDP! The
cosmological signatures of the decaying VDP were par-
tially explored in [4, 5], but to our knowledge the CMB
constraints on this model were not previously studied.

In the remainder of this paper, we provide detailed cal-
culations to delineate the VDP parameter regions that
are constrained by BBN and CMB data. In the process,
we provide in Section 2 an improved calculation of the
‘freeze-in’ abundance in the Early Universe (using some
recent insight about the in-medium production of dark

vectors [6, 7]; see also [8]). In Section 3, we explore the
BBN constraints in more detail, including the speculative
possibility that the currently observed over-abundance of
7Li can be reduced via VDP decays. Then in Section 4
we consider the impact of even later decays on the CMB
anisotropies. A summary of the constraints we obtain in
shown in Fig. 1, and more detailed plots of the parame-
ter space are shown in Sections 3 and 4. We finish with
some concluding remarks in Section 5. Several Appen-
dices contain additional calculational details.
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FIG. 1. An overview of the constraints on the plane of vec-
tor mass versus kinetic mixing, showing the regions excluded
due to their impact on BBN and the CMB anisotropies, in
addition to various terrestrial limits [1, 9], including the more
recent limits [10]. These excluded regions are shown in more
detail in later sections.

3 year live time, 1 BG event

10 9

10 8

10 7

10 6

10

3

10

2

10

1

IceCube Nsig

↵
th

X
=

0

.0
3

5

D

i

r

e

c

t

D

e

t

e

c

t

i

o

n

m� = 1 TeV

Feng, Smolinsky, FT (1602.01465 )

0.005 0.010 0.050 0.100 0.500 1

10-11

10-10

10-9

10-8

10-7

BBN

DIR
ECT  

DETECTIO
N

↵
max

0.005 0.010 0.050 0.100 0.500 1

10- 11

10- 10

10- 9

10- 8

10- 7

: da
rk p

hoto
ns p

rodu
ced

: probability
to detect



f l i p  .  t a n e d o 42u c i  .  e d u@ DARK PHOTONS FROM THE EARTH

0.005 0.010 0.050 0.100 0.500 1

10- 11

10- 10

10- 9

10- 8

SN BLOW AWAY

SN COOLING

LSNDE137

BBN

100
10

1

DIR
. D
ET
EC
TIO

N

DIR. DETECTION

1

AMS

35

AMS-02 Reach

2

masses in the MeV-GeV range, and lifetimes long enough
for the decay products to directly influence the physical
processes in the universe following BBN, and during the
epoch of CMB decoupling. These vectors have a para-
metrically small coupling to the electromagnetic current,
and thus an extremely small production cross sections for
e+e� ! V �,

�
prod

⇠ ⇡↵↵
e↵

E2

c.m.

⇠ 10�66 � 10�52 cm2, (4)

where we took E
c.m. ⇠ 200 MeV and the range is deter-

mined by our region of interest,

↵
e↵

⇠ 10�38 � 10�24. (5)

Such small couplings render these vector states com-
pletely undetectable in terrestrial particle physics exper-
iments, and consequently we refer to them as very dark

photons (VDP). As follows from the expression (2) for
the lifetime, the lower limit of the above range for ↵

e↵

is relevant for CMB physics, while the upper limit is im-
portant for BBN.

The production cross section (4) looks prohibitively
small, but in the early Universe at T ⇠ mV every parti-
cle in the primordial plasma has the right energy to emit
V ’s. The cumulative e↵ect of early Universe production
at these temperatures, followed by decays at t ⇠ ⌧V , can
still inject a detectable amount of electromagnetic energy.
A simple parametric estimate for the electromagnetic en-
ergy release per baryon, omitting O(1) factors, takes the
form

E
p.b. ⇠

mV �prod

H�1

T=mV

nb,T=mV

⇠ ↵
e↵

M
Pl

10 ⌘b
⇠ ↵

e↵

⇥ 1036 eV.

(6)
Here the production rate per unit volume, �

prod

, was
taken to be the product of the typical number density
of particles in the primordial plasma and the V decay
rate, ⌧�1

V n�,T=mV . This production rate is active within
one Hubble time, H�1

T=mV
, leading to the appearance of

the Planck mass in (6), along with another large fac-
tor, the ratio of photon to baryon number densities,
⌘�1

b = 1.6 ⇥ 109. One observes that the combination
of these two factors is capable of overcoming the extreme
suppression by ↵

e↵

. Given that BBN can be sensitive
to an energy release as low as O(MeV) per baryon, and
that the CMB anisotropy spectrum allows us to probe
sub-eV energy injection, we reach the conclusion that
the early Universe can be an e↵ective probe of VDP! The
cosmological signatures of the decaying VDP were par-
tially explored in [4, 5], but to our knowledge the CMB
constraints on this model were not previously studied.

In the remainder of this paper, we provide detailed cal-
culations to delineate the VDP parameter regions that
are constrained by BBN and CMB data. In the process,
we provide in Section 2 an improved calculation of the
‘freeze-in’ abundance in the Early Universe (using some
recent insight about the in-medium production of dark

vectors [6, 7]; see also [8]). In Section 3, we explore the
BBN constraints in more detail, including the speculative
possibility that the currently observed over-abundance of
7Li can be reduced via VDP decays. Then in Section 4
we consider the impact of even later decays on the CMB
anisotropies. A summary of the constraints we obtain in
shown in Fig. 1, and more detailed plots of the parame-
ter space are shown in Sections 3 and 4. We finish with
some concluding remarks in Section 5. Several Appen-
dices contain additional calculational details.
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FIG. 1. An overview of the constraints on the plane of vec-
tor mass versus kinetic mixing, showing the regions excluded
due to their impact on BBN and the CMB anisotropies, in
addition to various terrestrial limits [1, 9], including the more
recent limits [10]. These excluded regions are shown in more
detail in later sections.
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masses in the MeV-GeV range, and lifetimes long enough
for the decay products to directly influence the physical
processes in the universe following BBN, and during the
epoch of CMB decoupling. These vectors have a para-
metrically small coupling to the electromagnetic current,
and thus an extremely small production cross sections for
e+e� ! V �,

�
prod

⇠ ⇡↵↵
e↵

E2

c.m.

⇠ 10�66 � 10�52 cm2, (4)

where we took E
c.m. ⇠ 200 MeV and the range is deter-

mined by our region of interest,

↵
e↵

⇠ 10�38 � 10�24. (5)

Such small couplings render these vector states com-
pletely undetectable in terrestrial particle physics exper-
iments, and consequently we refer to them as very dark

photons (VDP). As follows from the expression (2) for
the lifetime, the lower limit of the above range for ↵

e↵

is relevant for CMB physics, while the upper limit is im-
portant for BBN.

The production cross section (4) looks prohibitively
small, but in the early Universe at T ⇠ mV every parti-
cle in the primordial plasma has the right energy to emit
V ’s. The cumulative e↵ect of early Universe production
at these temperatures, followed by decays at t ⇠ ⌧V , can
still inject a detectable amount of electromagnetic energy.
A simple parametric estimate for the electromagnetic en-
ergy release per baryon, omitting O(1) factors, takes the
form

E
p.b. ⇠

mV �prod

H�1

T=mV

nb,T=mV

⇠ ↵
e↵

M
Pl

10 ⌘b
⇠ ↵

e↵

⇥ 1036 eV.

(6)
Here the production rate per unit volume, �

prod

, was
taken to be the product of the typical number density
of particles in the primordial plasma and the V decay
rate, ⌧�1

V n�,T=mV . This production rate is active within
one Hubble time, H�1

T=mV
, leading to the appearance of

the Planck mass in (6), along with another large fac-
tor, the ratio of photon to baryon number densities,
⌘�1

b = 1.6 ⇥ 109. One observes that the combination
of these two factors is capable of overcoming the extreme
suppression by ↵

e↵

. Given that BBN can be sensitive
to an energy release as low as O(MeV) per baryon, and
that the CMB anisotropy spectrum allows us to probe
sub-eV energy injection, we reach the conclusion that
the early Universe can be an e↵ective probe of VDP! The
cosmological signatures of the decaying VDP were par-
tially explored in [4, 5], but to our knowledge the CMB
constraints on this model were not previously studied.

In the remainder of this paper, we provide detailed cal-
culations to delineate the VDP parameter regions that
are constrained by BBN and CMB data. In the process,
we provide in Section 2 an improved calculation of the
‘freeze-in’ abundance in the Early Universe (using some
recent insight about the in-medium production of dark

vectors [6, 7]; see also [8]). In Section 3, we explore the
BBN constraints in more detail, including the speculative
possibility that the currently observed over-abundance of
7Li can be reduced via VDP decays. Then in Section 4
we consider the impact of even later decays on the CMB
anisotropies. A summary of the constraints we obtain in
shown in Fig. 1, and more detailed plots of the parame-
ter space are shown in Sections 3 and 4. We finish with
some concluding remarks in Section 5. Several Appen-
dices contain additional calculational details.
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FIG. 1. An overview of the constraints on the plane of vec-
tor mass versus kinetic mixing, showing the regions excluded
due to their impact on BBN and the CMB anisotropies, in
addition to various terrestrial limits [1, 9], including the more
recent limits [10]. These excluded regions are shown in more
detail in later sections.
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masses in the MeV-GeV range, and lifetimes long enough
for the decay products to directly influence the physical
processes in the universe following BBN, and during the
epoch of CMB decoupling. These vectors have a para-
metrically small coupling to the electromagnetic current,
and thus an extremely small production cross sections for
e+e� ! V �,

�
prod

⇠ ⇡↵↵
e↵

E2

c.m.

⇠ 10�66 � 10�52 cm2, (4)

where we took E
c.m. ⇠ 200 MeV and the range is deter-

mined by our region of interest,

↵
e↵

⇠ 10�38 � 10�24. (5)

Such small couplings render these vector states com-
pletely undetectable in terrestrial particle physics exper-
iments, and consequently we refer to them as very dark

photons (VDP). As follows from the expression (2) for
the lifetime, the lower limit of the above range for ↵

e↵

is relevant for CMB physics, while the upper limit is im-
portant for BBN.

The production cross section (4) looks prohibitively
small, but in the early Universe at T ⇠ mV every parti-
cle in the primordial plasma has the right energy to emit
V ’s. The cumulative e↵ect of early Universe production
at these temperatures, followed by decays at t ⇠ ⌧V , can
still inject a detectable amount of electromagnetic energy.
A simple parametric estimate for the electromagnetic en-
ergy release per baryon, omitting O(1) factors, takes the
form

E
p.b. ⇠

mV �prod

H�1

T=mV

nb,T=mV

⇠ ↵
e↵

M
Pl

10 ⌘b
⇠ ↵

e↵

⇥ 1036 eV.

(6)
Here the production rate per unit volume, �

prod

, was
taken to be the product of the typical number density
of particles in the primordial plasma and the V decay
rate, ⌧�1

V n�,T=mV . This production rate is active within
one Hubble time, H�1

T=mV
, leading to the appearance of

the Planck mass in (6), along with another large fac-
tor, the ratio of photon to baryon number densities,
⌘�1

b = 1.6 ⇥ 109. One observes that the combination
of these two factors is capable of overcoming the extreme
suppression by ↵

e↵

. Given that BBN can be sensitive
to an energy release as low as O(MeV) per baryon, and
that the CMB anisotropy spectrum allows us to probe
sub-eV energy injection, we reach the conclusion that
the early Universe can be an e↵ective probe of VDP! The
cosmological signatures of the decaying VDP were par-
tially explored in [4, 5], but to our knowledge the CMB
constraints on this model were not previously studied.

In the remainder of this paper, we provide detailed cal-
culations to delineate the VDP parameter regions that
are constrained by BBN and CMB data. In the process,
we provide in Section 2 an improved calculation of the
‘freeze-in’ abundance in the Early Universe (using some
recent insight about the in-medium production of dark

vectors [6, 7]; see also [8]). In Section 3, we explore the
BBN constraints in more detail, including the speculative
possibility that the currently observed over-abundance of
7Li can be reduced via VDP decays. Then in Section 4
we consider the impact of even later decays on the CMB
anisotropies. A summary of the constraints we obtain in
shown in Fig. 1, and more detailed plots of the parame-
ter space are shown in Sections 3 and 4. We finish with
some concluding remarks in Section 5. Several Appen-
dices contain additional calculational details.
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FIG. 1. An overview of the constraints on the plane of vec-
tor mass versus kinetic mixing, showing the regions excluded
due to their impact on BBN and the CMB anisotropies, in
addition to various terrestrial limits [1, 9], including the more
recent limits [10]. These excluded regions are shown in more
detail in later sections.
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Reach on direct detection plane
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Reach on direct detection plane
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Some Interesting Questions

MOON

What would it take for the moon to capture?

Example: inelastic dark matter

X X⇤

N N
X

X⇤

~100 keV

GENERIC IN DARK PHOTON MODEL 
ALSO AVOIDS DIRECT DETECTION BOUNDS
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Some Interesting Questions

Image: CMS e-cal public page

Can we hack a better detector?
… probably not, but curious!

Use CMS tracker to build μ detector
200m2 = 2 stations x 3 layers of 33m2 
Optimistically, about O(10) too small
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Dark Matter annihilates in ___________________ to

__________,  which are detected by ______________.
SOME PARTICLE(S)

A PLACE

AN EXPERIMENT

dark 
photons

the Earth (or the Sun)

IceCube (or AMS)

Summary

• Directional information for background rejection
• Earth/Sun is cold: Sommerfeld resonances
• Interesting but difficult to reach:  

Double track events, Solar A’ decays


