HEAV DIEN HOOPERON **A STATUS REPORT "AFTER THE HIGGS"**

Submitted to PRD [arXiv:1404.6528]

Flip Tanedo UCIRVINE

with M. Abdullah, A. DiFranzo, T. Tait, A. Rajaraman, A. Wijangco Santa Fe 2014 Workshop: LHC After The Higgs 4 July 2014

Heavy Hidden Hooperon 1404.6528

Some assumptions

Dark Matter Exists

& couples to the Standard Model $\Omega_{\chi}h^2 \approx \frac{0.1 \text{ pb } c}{\langle \sigma_{\text{end}} v \rangle}$

Assume: Dirac DM χ , thermal relic

See, e.g. Fady Bishara's talk for non-thermal example

How Dark Matter talks to the Standard Model

Exceptions: e.g. SIMP Miracle (1402.5143); DMdm (1312.2618); Agashe, Cui, et al. (1405.7370). See talk by Yanou Cui.

Flip Tanedo flip.tanedo@uci.edu

Heavy Hidden Hooperon 14

1404.6528

¹/47

Light from Dark Matter

Exceptions: e.g. RH neutrino portal, see lan Shoemaker's talk.

Flip Tanedo flip.tanedo@uci.edu

Light from Dark Matter: Shape Matters

40 GeV DM annihilating to SM pairs

Extracted from Pythia via PPPC4DMID, Cirelli et al. 1012.4515

Where to look: Galactic Center

Also look at dwarf spheroidals: $m_{\chi} > 10$ GeV for $\chi \bar{\chi} \rightarrow b \bar{b}$ (1310.0828) NASA/IPL-Caltech/ESO/R. Hurt

Flip Tanedo flip.tanedo@uci.edu

Heavy Hidden Hooperon 1404.6528

The γ -ray excess

Goodenough & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian et al. (1011.4275, 1207.6047, 1402.4090), Boyarsky et al. (1012.5839); Gordon & Macias (1306.5725); Daylan et al. (1402.6703). + more recent model building papers

Flip Tanedo flip.tanedo@uci.edu

Heavy Hidden Hooperon 1404.6528

Same ballpark as thermal relic σ (if s-wave)

Goodenough & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian et al. (1011.4275, 1207.6047, 1402.4090), Boyarskiy et al. (1012:5839); Gordon & Macias (1306.5725); Daylan et al. (1402.6703). + more recent model building papers

Some Recent Hooperon models

- Higgs Portal: Okada & Seto 1310.5991, Ipek et al. 1404.3716
- EFT: Huang et al. 1310.7609; Alves et al. 1403.5027
- Coy DM: Dolan et al. 1401.6458
- Simplified Models: Berlin et al. 1404.0022; Izaguirre et al. 1404.2018
- Flavored: Agrawal, Lin, et al. 1404.1373; Agrawal, Gemmler, et al. 1405.6709.
- On-Shell Mediator: Dolan et al. 1404.4977; FT, Rajaraman, et al. 1404.4977; 1404.5257; Martin et al. 1405.0272
- UV Models: Kyae & Park 1310.2284; Berlin et al. 1405.5204; Agashe, Cui, et al. 1405.7370; Cheung et al. 1406.6372; Huang et al. 1407.0038.

Also: see talks by Jong-Chul Park and Tongyan Lin.

Systematic Uncertainties

Multiple independent analyses, but all based on FERMI diffuse BG

Images adapted from Abazajian et al. 1402.4090

Flip Tanedo flip.tanedo@uci.edu

1404.6528

Systematic Uncertainties

Multiple independent analyses, but all based on FERMI diffuse BG

Images adapted from Abazajian et al. 1402.4090

Flip Tanedo flip.tanedo@uci.edu

Millisecond Pulsar Alternative

Hooper et al. 1010.2752, 1110.0006; Abazajian et al. 1011.4275, 1207.6047 1402.4090 Wharton et al. 1111.4216, Yuan et al. 1404.2318, Mirabal 1309.3248 n.b.: Hooper et al. 1305.0830

LMXB morphology is spot on degenerate with DM for γ -ray excess

Flip Tanedo flip.tanedo@uci.edu

Heavy Hidden Hooperon 1404.6528

Flip Tanedo flip.tanedo@uci.edu

Contact Interactions

$$\mathcal{O} = \frac{1}{\Lambda^2} \left(\bar{\chi} \Gamma_{\chi} \chi \right) \left(\bar{b} \Gamma_b b \right)$$

Parameterization in Goodman et al. 1008.1783; see Alves et al. 1403.5027 for Hooperon fit

Heavy Hidden Hooperon

Generically, contact interactions tightly constrained Require: *s*-wave annihilation

D2
$$(\bar{\chi}\gamma_5\chi)(\bar{q}q)$$

D4 $(\chi\gamma_5\chi)(q\gamma_5q)$

- D5 $(\bar{\chi}\gamma^{\mu}\chi)(\bar{q}\gamma_{\mu}q)$ D6 $(\bar{\chi}\gamma^{\mu}\gamma_{5}\chi)(\bar{q}\gamma_{\mu}q)$
- D6 $(\bar{\chi}\gamma^{\mu}\gamma_5\chi)(\bar{q}\gamma_{\mu}q)$ D7 $(\bar{\chi}\gamma^{\mu}\chi)(\bar{q}\gamma_{\mu}\gamma_5q)$
- **D8** $(\bar{\chi}\gamma^{\mu}\gamma_5\chi)(\bar{q}\gamma_{\mu}\gamma_5q)$

D9
$$(\bar{\chi}\sigma^{\mu\nu}\chi)(\bar{q}\sigma_{\mu\nu}q)$$

D10 $(\bar{\chi}\sigma^{\mu\nu}\gamma^5\chi)(\bar{q}\sigma_{\mu\nu}q)$

DI2
$$(\bar{\chi}\gamma_5\chi) G_{\mu\nu}G^{\mu\nu}$$

DI4 $(\bar{\chi}\gamma_5\chi) G_{\mu\nu}\tilde{G}^{\mu\nu}$

See analysis in Alves et al. 1403.5027 for detailed analysis

Generically, contact interactions tightly constrained Require: *s*-wave annihilation

Mono-jet Mono-jet

LUX (SI direct detection) Related to D8 Related to D5 Mono-jet, XENON100 (SD)

UV completion? UV completion?

Spectrum Spectrum

See analysis in Alves et al. 1403.5027 for detailed analysis

Generically, contact interactions tightly constrained Require: *s*-wave annihilation

See analysis in Alves et al. 1403.5027 for detailed analysis

Generically, contact interactions tightly constrained Require: s-wave annihilation

Flip Tanedo flip.tanedo@uci.edu

Exceptions

Contact \mathcal{O} Exceptions:

- I. Majorana DM: $\bar{\chi}\gamma^{\mu}\chi = 0$
- 2. Tuning of chiral couplings (e.g. $Z\ell^+\ell^-$)
- 3. Non-decoupled mediator: $m_{med} < heavy$

Simplified Models

Renormalizable, capture physics of mediator (1105.2838)

Simplest example: Coy Dark Matter Dolan et al. 1401.6458

Systematic studies: Chicago 1404.0022 Perimeter 1404.2018

Simplified Models

Simplified models describe the $m_{\rm med}$ < decoupling regime See Berlin et al. 1404.0022 and Izaguirre et al. 1404.2018 for a detailed survey of off-shell Simplified Hooperons. See Boehm et al. 1401.6458 for a prototype.

Model	DM	Mediator	Internetions	Elastic	Near Future Reach?	
Number	DW		Interactions	Scattering	Direct	LHC
1	Dirac Fermion	Spin-0	$\bar{\chi}\gamma^5\chi, \bar{f}f$	$\sigma^{5}\chi, \bar{f}f = \sigma_{SI} \sim (q/2m_{\chi})^{2} \text{ (scalar)}$		Maybe
1	Majorana Fermion	Spin-0	$\bar{\chi}\gamma^5\chi, \bar{f}f$	$\sigma_{SI} \sim (q/2m_{\chi})^2 \text{ (scalar)}$	No	Maybe
2	Dirac Fermion	Spin-0	$\bar{\chi}\gamma^5\chi, \bar{f}\gamma^5f$	$\sigma_{SD} \sim (q^2/4m_n m_\chi)^2$	Never	Maybe
2	Majorana Fermion	Spin-0	$\bar{\chi}\gamma^5\chi, \bar{f}\gamma^5f$	$\sigma_{SD} \sim (q^2/4m_n m_\chi)^2$	Never	Maybe
3	Dirac Fermion	Spin-1	$\bar{\chi}\gamma^{\mu}\chi, \bar{b}\gamma_{\mu}b$	$\sigma_{SI} \sim \text{loop (vector)}$	Yes	Maybe
4	Dirac Fermion	Spin-1	$\bar{\chi}\gamma^{\mu}\chi,\bar{f}\gamma_{\mu}\gamma^{5}f$	$\sigma_{SD} \sim (q/2m_n)^2$ or $\sigma_{SD} \sim (q/2m_\chi)^2$	Never	Maybe
5	Dirac Fermion	Spin-1	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi, \bar{f}\gamma_{\mu}\gamma^{5}f$	$\sigma_{\rm SD} \sim 1$	Yes	Maybe
5	Majorana Fermion	Spin-1	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi, \bar{f}\gamma_{\mu}\gamma^{5}f$	$\sigma_{\rm SD} \sim 1$	Yes	Maybe
6	Complex Scalar	Spin-0	$\phi^{\dagger}\phi, \bar{f}\gamma^{5}f$	$\sigma_{SD} \sim (q/2m_n)^2$	No	Maybe
6	Real Scalar	Spin-0	ϕ^2 , $\bar{f}\gamma^5 f$	$\sigma_{SD} \sim (q/2m_n)^2$	No	Maybe
6	Complex Vector	Spin-0	$B^{\dagger}_{\mu}B^{\mu}, \bar{f}\gamma^5 f$	$\sigma_{SD} \sim (q/2m_n)^2$	No	Maybe
6	Real Vector	Spin-0	$B_{\mu}B^{\mu}, \bar{f}\gamma^{5}f$	$\sigma_{SD} \sim (q/2m_n)^2$	No	Maybe
7	Dirac Fermion	Spin-0 (t-ch.)	$\bar{\chi}(1 \pm \gamma^5)b$	$\sigma_{\rm SI} \sim \text{loop} (\text{vector})$	Yes	Yes
7	Dirac Fermion	Spin-1 (t-ch.)	$\bar{\chi}\gamma^{\mu}(1 \pm \gamma^5)b$	$\sigma_{SI} \sim \text{loop} (\text{vector})$	Yes	Yes
8	Complex Vector	Spin-1/2 (t-ch.)	$X^{\dagger}_{\mu}\gamma^{\mu}(1 \pm \gamma^5)b$	$\sigma_{SI} \sim loop (vector)$	Yes	Yes
8	Real Vector	Spin-1/2 (t-ch.)	$X_{\mu}\gamma^{\mu}(1 \pm \gamma^5)b$	$\sigma_{\rm SI} \sim \text{loop (vector)}$	Yes	Yes

Table from 1404.0022

Simplified Hooperons + on-shell mediators

But: the $m_{\rm med}$ < heavy regime also includes $m_{\rm med}$ < m_{χ} i.e. mediator is accessible as an on-shell annihilation mode

- Can be dominant mode
- Separates λ_{DM} from λ_{SM}
- Admits limit $\lambda_{\rm SM} \ll \lambda_{\rm DM}$
- Hides indirect detection signal from direct det. & collider bounds

this talk

Application to Hooperon: FT et al. 1404.6528 See also Dolan et al. 1404.4977 and Martin et al. 1405.0272

Previously: axion portal (Nomura & Thaler, 0810.5397), cascade annihilation (+ Mardon, Stolarski 0901.2926)

On-Shell Simplified Models

Requirements:

 $m_{V,\varphi} > 2m_b$ $\lambda_{\text{DM}} \sim 1$ $\lambda_{\text{SM}} \ll 1$

On-Shell Simplified Options

Further Requirements:

$$2m_{\chi} > \begin{cases} 2m_V & \text{for a spin-I mediator} \\ 3m_{\varphi} & \text{for a spin-0 mediator} \end{cases}$$

Dominance over off-shell

$m_{\text{DM}} \approx \mathbf{n} \times (40 \text{ GeV})$ n=2(3) for spin-1(0) $\lambda_{\text{DM}} \approx 0.35 (1.25)$ for spin-1(0)

More final states requires smaller $\langle \sigma v \rangle_{ann}$ for signal flux m_{χ} sets injection energy, larger for more final states

Boosted mediators

The boost of the on-shell mediator shifts the primary (and hence photon) spectrum.

Top: $\chi\bar{\chi} \to 3\varphi$ Bot: $\chi\bar{\chi} \to 2V$ n.b. similar to Kaustubh Agashe's talk

Heavy Hidden Hooperon 1404.6528

Range of spectra

For bin data D_i and model spectrum S_i :

goodness of fit =
$$\sum_{i} \left(\frac{\log D_i - \log \left(\lambda_{dm}^{2n} S_i \right)}{\log(0.2D_i)} \right)^2$$

Warning: This is not a χ^2 fit & these are not 1σ errors.

Heavy Hidden Hooperon 1404.6528

Best fits

Flip Tanedo flip.tanedo@uci.edu

Heavy Hidden Hooperon 1404.6528

Bounds on SM interactions

Bounds on SM interactions

Indirect: Antiprotons?

PAMELA p^+ bounds: currently not constraining. Maybe AMS-02...

... but large propagation uncertainty, still lots of wiggle room.

See talk by Jong-Chul Park (1404.3741). Also: recently, 1406.6027 presents stronger bounds from p^+ , e^+ , radio

Collider: mono-b

See talk by Tongyan Lin, (1303.6638).

See Daylan et al. 1402.4090 (EFT), Izaguirre et al. 1404.1373 (simplified model). Mono-object analyses: UCI (1005.1286, 1008.1783, 1108.1196), Fermilab (1005.3757, 1103.0240), others.

Conservative estimate: $m_q/M_*^3 \rightarrow \lambda_{\rm DM} \lambda_{\rm SM} s^{-1}$.

Simplified model > EFT: Graesser, Shoemaker, et al. (1107.2666, 1112.5457); UCI (1111.2359); Busoni et al. (1307.2253); Dolan, et al. (1308.6799).

Flip Tanedo flip.tanedo@uci.edu

Heavy Hidden Hooperon 1404.6528

Collider: search for the mediator

Prototype: gauged $U(I)_B$, bounds from LEP (Carone, Murayama)

Bound $\lambda_{SM} \lesssim 1$. See also Dobrescu & Yu 1306.2629, Dobrescu & Frugiuele 1404.3947. See Queiroz & Shepherd 1403.2309, Burgess et al. 1103.4556 for mixing bounds.

Heavy Hidden Hooperon 1404.6528

Collider: search for the mediator

Open question: what about $\varphi \rightarrow \gamma \gamma$? e.g. search for lepto-phobic, gauge-phobic "Higgs" at LHC?

Courtesy of D. Whiteson. 2γ with $p_T > 20$ GeV and $|\eta| < 2.4$.

Direct Detection

Viability of a Thermal Relic

 $2 \rightarrow 2$ Hooperon: $\langle \sigma v \rangle$ in right ballpark for thermal relic (s-wave)

$$\Omega_{\chi} h^2 \approx \frac{\mathbf{6} \times 10^{-26} \text{ cm}^3/s}{\langle \sigma v \rangle_{\text{ann.}}}$$

$$\left(\Omega_{\chi}h^2\right)_{\rm obs.}=0.12$$

 $2 \rightarrow n$ SM particles has $n \times \text{ larger } \langle \sigma v \rangle$:

$$\frac{d\Phi(b,\ell)}{dE_{\gamma}} = \begin{bmatrix} n \frac{\langle \sigma v \rangle_{\text{ann}}}{8\pi m_{\chi}^2} \end{bmatrix} \frac{dN_{\gamma}}{dE_{\gamma}} \left[\int_{\log} dx \, \rho^2 \left(r_{\text{gal}} \left(b, \ell, x \right) \right) \right]$$

 $m_{\chi}^2 \approx n^2 ({\rm 40~GeV})^2 \Rightarrow \langle \sigma v \rangle_{\rm ann} \approx n \langle \sigma_{b\bar{b}} v \rangle$

So: can we still get $\Omega_{\chi}h^2$ from freeze-out?

Vector Mediator as Thermal Relic

Ballpark of thermal relic σ $\langle \sigma v \rangle_{ann.}$ between 3 – 10 ×10⁻²⁶ cm³ s⁻¹ Vector mediator works for Dirac χ

Flip Tanedo flip.tanedo@uci.edu

Spin-0 Mediator as Thermal Relic

Scalar mediator is more difficult,

- I. $\langle \sigma v \rangle_{\rm ann} = 3 \times \langle \sigma v \rangle_{b\bar{b}}$
- 2. p-wave irreducible contributions

Is there any way to same thermal freeze out?

Millisecond Pulsar Partial Alternative?

Hooper et al. 1010.2752, 1110.0006; Abazajian et al. 1011.4275, 1207.6047 1402.4090 Wharton et al. 1111.4216, Yuan et al. 1404.2318, Mirabal 1309.3248 n.b.: Hooper et al. 1305.0830

LMXB morphology is spot on degenerate with DM for γ -ray excess

Flip Tanedo flip.tanedo@uci.edu

Heavy Hidden Hooperon 1404.6528

Flip Tanedo flip.tanedo@uci.edu

Heavy Hidden Hooperon 1404.6528

Model Building

Spin-I Mediator

Prototype is gauged U(1)_B, expect universal coupling to quarks. Exception? ρ -like states in composite Higgs? (Contino et al. 1109.1570)

$$\begin{array}{l} \textbf{Spin-0 Mediator} \\ \mathcal{L}_{\varphi\text{-sm}} = \frac{\lambda_u y_{ij}^u}{\Lambda} \varphi H \cdot \bar{Q} u_R + \frac{\lambda_d y_{ij}^d}{\Lambda} \varphi \tilde{H} \cdot \bar{Q} d_R + \frac{\lambda_\ell y_{ij}^\ell}{\Lambda} \varphi \tilde{H} \cdot \bar{L} \ell_R \end{array}$$

Recent UV completion through 'Higgs-portal'-portal: Ipek et al. 1404.3716

Exception? $\chi \bar{\chi} \rightarrow \varphi_1 \varphi_2$ is *s*-wave on-shell (Nomura & Thaler 0810.5397) See also Agrawal et al. 1404.1373 for flavored DM.

Flip Tanedo flip.tanedo@uci.edu

Pre-conclusion: on-shell mediators

med.	Mass [gev]		Interaction		Coupling			
spin	m_{χ}	$m_{\sf mes.}$	DM	SM	λ_{dm}	λ_{sm}	Relic?	
spin-0	110	20	γ^5	1	1.2	< 0.08	MSP?	
"	,,	"	γ^5	γ^5	"	$< 0.02^{*}$	"	
spin-1	45	14	γ^{μ}	γ_{μ}	0.18	$< 10^{-6}$	$\gamma = 1.3$	
"	,,	"	$\gamma^{\mu}\gamma^5$	$\gamma_{\mu}\gamma^{5}$	"	< 0.004	"	
,,	,,	"	$\gamma^{\mu}\gamma^{5}$	γ_{μ}	,,	< 0.006	"	
,,	,,	"	γ^{μ}	$\gamma_{\mu}\gamma^{5}$,,	< 0.02	"	

spin-1 assumes universal coupling to quarks, spin-0 is *b*-philic * est. mono-*b* projected, all other bounds from direct detection

- Combined with on-shell mediators, there is a range of Hooperon masses (both lighter and heavier than usual)
- Framework to parametrically separate indirect signal from direct/collider bounds

Moving forward: Now what?

FERMI analysis in progress! What to think about now?

I Bounds

- See Jong-Chul's talk
- e.g. last week, Bringmann et al. 1406.6027

II Morphology

e.g. black hole distortion of DM profile in dwarfs (1406.2424) and the galactic center (1406.4856)

III Spectrum

Generalize DM templates; feeds into fit

Spectrum

Recall: 'signal' spectrum matters for fit.

Full astrophysical fit for non-standard DM decays $(\chi\chi \rightarrow 4, 6 \text{ SM}, \chi\chi \rightarrow tc)$. In progress, FT with Nic Canac.

Left image adapted from Abazajian et al. 1402.4090

Playing with the Spectrum

See FT et al. 404.6528, Martin et al. 1405.0272, and FT work in progress.

- Data: *bb* residual, for comparison only. Need to re-fit!
- Can bend spectra (e.g. interpolate between au and b spectra)
- Mixture with hard spectra (leptons) can access DM masses below conventional Hooperon

Self-Interacting Dark Matter?

This framework contains all the pieces for SIDM

See talk by Ian Shoemaker.

Non-trivial fit: small scale structure sets m_V light and $m_{\chi}(m_V)$

 dN_γ/dE_γ is more subtle near $m_V\sim\Lambda_{\rm QCD}$. Work in progress with Hai-Bo Yu. Figure from Tulin et al. 1302.3898

Electron spectrum?

 γ spectrum from electrons is usually too hard. But (1405.7928):

Inverse Compton spectrum from electrons injected 1 Myr ago from a source of $E = 4 \times 10^{52}$ erg for different diffusion indices.

Conclusion

Diffuse γ -Ray Excess: maybe DM, maybe pulsars.

Comprehensive simplified model analyses for $\chi\bar{\chi} \rightarrow 2$ SM.

On-shell mediators separate indirect from direct/collider searches.

Think about morphology and spectrum.

Official FERMI analysis soon!

Independent of 'Pass 7 FERMI diffuse background' used by other groups. Look for: spectrum, systematic errors.

Back-up Slides (for posting to the web)

$$m_{\chi} = 75 \text{ GeV}$$

 $m_{V} = 29 \text{ GeV}$
 $\lambda_{\text{DM}} = 0.27$
 $\text{Br}(V \rightarrow 2b) = 100\%$

 $m_{\chi} = 45 \text{ GeV}$ $m_{\varphi} = 14 \text{ GeV}$ $\lambda_{\text{DM}} = .18$

Cascade smears spectrum

Flip Tanedo flip.tanedo@uci.edu

Dominance over off-shell

Flip Tanedo flip.tanedo@uci.edu

Indirect: on-shell contamination

Indirect: on-shell contamination

Flip Tanedo flip.tanedo@uci.edu