

arXiv: 1201.1293, 1211.soon

Hip Tanedo Cornell (**Jniversity**

In collaboration with C. Csáki, R. Houtz, & J. Terning

Perimeter Institute Particle Physics Seminar, 13 Nov 2012

Stealthy Composite Stops

Physics of the early LHC

Great for the Standard Model... ... not much for new physics

What ever happened to naturalness ? supersymmetry ?

Flip Tanedo pt267@cornell.edu

LHC vs. SUSY

LHC vs. SUSY

Flip Tanedo pt267@cornell.edu

/41

What it looks like:

Low-scale supersymmetry is dead. SM is tuned?

What this is really telling us:

There aren't 6 degenerate squarks or an EW-scale color octet that decay to missing energy. If SUSY exists, then it has an interesting spectrum.

Minimally natural SUSY

The relevant question is:

Can SUSY still solve the Hierarchy problem? (subject to LHC constraints on spectrum)

Yes. 'Natural SUSY'

Papucci, Ruderman, Weiler (1110.6926), Brust, Katz, Lawrence, Sundrum (1110.6926), Kats, Meade, Reece, Shih (1110.6444). Dimopoulos, Giudice (hep-ph/9507282), Cohen, Kaplan, Nelson (hep-ph/9607394)

Just keep the superpartners we need for naturalness, allow others to decouple at low energies.

Minimally natural SUSY

Ingredients:

- I. Light stops
- 2. Light Higgsinos
- 3. Not-too-heavy gluinos
- 4. Light-ish EW-inos
- 5. Decouple the rest

A slight complication

Natural SUSY vs. $m_h = 125 \text{ GeV}$

Tree level contribution from *D*-term quartic

$$m_{h,\text{MSSM}}^2 = \frac{m_Z^2 c_{2\beta}^2}{m_Z^2 c_{2\beta}^2} + \frac{3m_t^4}{4\pi^2 v^2} \left[\log\left(\frac{M_S^2}{m_t^2}\right) + \text{mix} \right]$$

$$m_{h,\text{NMSSM}}^2 = m_Z^2 c_{2\beta}^2 + \lambda^2 v^2 s_{2\beta}^2 + \text{loops}$$

Flip Tanedo pt267@cornell.edu

$m_h = 125 \text{ GeV}$ tuning in the MSSM vs NMSSM

Hall, Pinner Ruderman (1112.2703)

41

Light stops: direct production

$${\widetilde t} o b W^+ \chi^0 \quad {
m vs.} \quad t o b W^+$$

- **3 body**, *lightish stop*: Decay via off-shell top Can use $m_{\ell b}$ distributions. Chou & Peskin hep-ph/9909536
- **2 body**, *heavyish stop*: Decay via on-shell top Can make use of the MET distribution. Fermilab group 1205.5805
- **1 body**, stealth stop: $m_{\chi^0} \ll m_{\tilde{t}}$, looks like $t\bar{t}$ "Blind spot" in current analyses Katz, Meade, Reece, Shih 1110.6444

Other: Displaced decays, stoponium, flavor violation

Light stops

Experimental limits on direct pair production

ATLAS: 1208.4305, 1209.2102, 1208.1447, 1208.2590, 1209.4186

Light stops

estimated reach with 20/fb @ 8 TeV

Daniele Alves, Implications of LHC results for TeV-scale physics, CERN 2012

UV Models: Light Stops \leftrightarrow compositeness

Warped / Emergent / Accidental SUSY

Supersymmetrize the Randall-Sundrum picture:

Warped fermion masses → squark spectrum Gherghetta hep-ph/0302001; Maryland/Hopkins 0909.5430, 1110.6670

Deconstructed SUSY

Deconstruct previous picture:

Generic feature: conventional unification difficult. Craig, Green, Katz 1103.3708; See also Craig, McCullough, Thaler 1203.1622

SUSY Pseudo-Goldstone Higgs

SUSY Minimal Composite Higgs

Derivative couplings of Higgs to strong sector, Yukawas from mixing with elementary states. Higgs potential different from non-SUSY case.

Gripaios, Redi 1004.5114

UV Models: Light Stops \leftrightarrow compositeness

Flip Tanedo pt267@cornell.edu

Seiberg Duality

Conformal window: SQCD with F flavors and N colors is dual to a magnetic theory with F flavors and n = F - N colors.

Magnetic theory: dual quarks & mesons with Yukawa interaction

See, e.g., Strassler hep-th/0309149

Can the W and Z be composite? e.g. ρ meson: massive, spin-I resonance

Abbot & Farhi ('81): model via complementarity No explanation for electroweak couplings

Seiberg duality ('95): emergent magnetic gauge group **Komargodski** ('11): magnetic gauge fields $\Leftrightarrow \rho$

Attempts: Maekawa & Takahashi ('96), Maekawa & Sato ('96), Sannino ('11)

Magnetic Yukawa coupling: $\bar{q}Mq$. Flavor groups:

 $SU(8)_1 \supset SU(3) \times SU(3) \times SU(2)_{R,1}$ $SU(8)_2 \supset SU(3)_G \times SU(3) \times SU(2)_{R,2}$

Accommodates SM spectrum + extra pair of Higgses + junk

$$q = \begin{pmatrix} t_n \\ b_n \end{pmatrix}_L, \begin{pmatrix} c_n \\ s_n \end{pmatrix}_L, H_u, H'_d$$
$$\bar{q} = \begin{pmatrix} \nu_{\ell,i} \\ \ell_i \end{pmatrix}_L, \begin{pmatrix} u_n \\ d_n \end{pmatrix}_L, H_d, H'_u$$

Features:

- $U(1)_Y \in$ anomaly-free diagonal flavor generators
- Decoupling junk by introducing elementary conjugates $(\bar{V}, \bar{C}, \bar{X})$ automatically cancels anomalies.
- B & L conserved; R-parity accidental

One big problem:

Expect magnetic coupling to be much stronger than EW couplings.

e.g. residual strong coupling between nucleons

Difficulties with a fully composite EW sector

$$y \sim \frac{\Lambda_{\rm el}}{|\Lambda|} \lesssim 4\pi \quad \Rightarrow \quad g_{\rm mag}^{-2}(\Lambda_{\rm el}) = \frac{F}{8\pi^2} \frac{\Lambda_{\rm el}}{|\Lambda|} \approx \frac{F}{31}$$

Poetically: original vs. 'realistic' RSI (Suggests a solution!)

Partial Compositeness

Craig, Stolarski, Thaler 1106.2164; Csáki, Shirman, Terning 1106.3074

Work around: mix with elementary states i.e. pull brane-localized fields into the bulk

... but need additional link fields $\mathcal{H}, \overline{\mathcal{H}}$.

$$\begin{split} \mathrm{SU}(2)_{\mathrm{el}} \times \mathrm{SU}(2)_{\mathrm{mag}} & \xrightarrow{\mathcal{H}} \mathrm{SU}(2)_L \\ & \frac{1}{g^2} = \frac{1}{g_{\mathrm{comp}}^2} + \frac{1}{g_{\mathrm{elem}}^2} \end{split}$$

Minimize matter content: only Higgs and 3rd generation composite

McSSM

Minimal Composite Supersymmetric SM

41

$$\begin{aligned} \mathsf{SU}(6)_1 &\supset \mathsf{SU}(3)_c \times \mathsf{SU}(2)_{\mathsf{elem}} \times \mathsf{U}(1)_Y & q = Q_3, \mathcal{H}, H_d \\ \mathsf{SU}(6)_2 &\supset \mathsf{SU}(3)_X \times \mathsf{SU}(2)_{\mathsf{elem}} \times \mathsf{U}(1)_Y & \bar{q} = X, \bar{\mathcal{H}}, H_u \end{aligned}$$

$$\begin{aligned} \left(V \quad U \quad \bar{\mathcal{I}} \right) \left(X \right) \end{aligned}$$

$$W \sim \begin{pmatrix} Q_3 & \mathcal{H} & H_d \end{pmatrix} \begin{pmatrix} E & G+P & \phi_u \\ R & \phi_d & S \end{pmatrix} \begin{pmatrix} \bar{\mathcal{H}} \\ H_u \end{pmatrix}$$

- Decouple $V, U, \phi_{u,d}, R \Rightarrow$ cancels $SU(2)_{elem} \& SU(3)_c$ anomalies
- X & E: $SU(2)^2_{mag} \times U(1)_Y$ anomaly $\rightarrow SU(2)^2_{elem} \times U(1)_Y$
- ... cancels upon adding remaining SM elementary fermions
- Lose: accidental *R*-parity

Tune electric theory with mass terms to give P, S tadpoles

$$\begin{split} W \supset & yP(\mathcal{H}\bar{\mathcal{H}} - \mathcal{F}^2) + yS(H_uH_d - f^2) + yQ_3H_u\bar{t} + y\mathcal{H}EX \\ & \uparrow & \uparrow & \uparrow & \uparrow \\ & SU(2)_{\text{elem}} \times SU(2)_{\text{mag}} & \text{'NMSSM'} & \text{Yukawa} & \text{Anomaly} \end{split}$$

- elem \times mag \rightarrow L gives heavy W', Z' 'KK gauge bosons'
- \sim RS deconstruction, but no anarchic flavor
- Tuning: $\mathcal{F} \gg f$, \tilde{g} contribution to m_h^2 (~10%),

SUSY across a duality

Last ingredient for full theory: SUSY breaking terms Csáki, Randall, Terning 1201.1293

Tool: analytic continuation into superspace Cheng & Shadmi th/9801146, Arkani-Hamed & Rattazzi th/9804068

Idea: $SUSY \Rightarrow$ soft terms in electric theory

- Parameterize as superspace spurions
- Promote spurions to superfields
- These exhibit a $U(1)_A$ background symmetry
- Can use this to determine LO magnetic soft terms

SUSY across a duality

$$\mathcal{L}_{\text{elec}} = \int d^4\theta \ Q^{\dagger} Z Q + \bar{Q}^{\dagger} Z \bar{Q} + \int d^2\theta S \mathcal{W}^2 + \mu_f \bar{Q} Q$$

$$\mathcal{L}_{\text{mag}} = \int d^4\theta \; \frac{M^{\dagger} Z^2 M}{\Lambda^2} + \frac{q^{\dagger} Z^{N/(F-N)} q}{\Lambda^{(4N-2F)/(F-N)}} + (q \to \bar{q}) \\ + \int d^2\theta \; S \tilde{W}^2 + \frac{y M q \bar{q}}{\Lambda_h^{b/(F-N)}} + \mu_f M$$

$$m_M^2 = 2 \frac{3N - 2F}{b} m_{\text{UV}}^2$$
 $m_q^2 = -\frac{3N - 2F}{b} m_{\text{UV}}^2$

4

Up to noncalculable $\mathcal{O}(m_{\rm el}/\Lambda)$ corrections,

- Pick $m_{\mathsf{el}} \sim \mathcal{O}(\mathsf{TeV})$; sets M_3
- + $\Lambda \sim 5\text{-}10$ TeV; sets $m_{\rm comp} \sim \mathcal{O}(100~{\rm GeV})$
- ... sets $M_1 \sim M_2 \sim A$
- $\tan \beta \sim \mathcal{O}(1)$

End up with large mixing, light stop

Sample spectrum: stealth stop

Sample spectrum: stop NLSP, heavier neutralino

Push N_1 heavier

- Decouple more sparticles
- $N_1 \to t + \tilde{t}_1$
- \tilde{t}_1 still light, limited MET

Sample spectrum: minimal gauge mediation

- $m(N_1) < m(\tilde{t}_1)$: MET
- Heavy \tilde{g} , $\tilde{q}_{1,2}$
- Reduced rate for CMSSM-type signal
- $\begin{array}{ccc} N_1 & \textbf{88 GeV} & \rightarrow \gamma + \tilde{G} \\ \tilde{t}_1 & \textbf{191 GeV} & \rightarrow t^* + N_1 \\ N_2 & \textbf{192 GeV} \\ N_3 & \textbf{291 GeV} \\ C_1 & \textbf{350 GeV} \end{array}$

Sample spectrum: high duality scale

Many directions for direct \tilde{t} production

e.g. Fermilab 1205.5805, Harvard 1205.5808, Hopkins/MIT 1205.5816, · · ·

What can we do with a class of UV models?

- Identify common features of complete models
- Look for signals not necessarily present in simplified models
- Use McSSM spectra as benchmark models

McPhenomenology: multileptons

McPhenomenology: multileptons

1/4

McPhenomenology: multileptons

- Safe at 7/8 TeV, 20/fb
- Rescale backgrounds for 14 TeV reach using NLO σ Backgrounds are non-trivial, reducible contribution hard to simulate
- Pile up? Should be well approximated by 8 TeV data.
- 14 TeV with 20/fb: 8 signal + '0 background' in preferred high-H_T, high-MET bin

Conclusions and directions

Model building

- McSSM: class of light stops models via Seiberg duality
- To do: leftover tuning in fermion spectrum, tadpoles
- To do: $R\mbox{-}parity\mbox{, flavor, dark matter, unification}$

Phenomenology

- parameters \rightarrow NMSSMTools \rightarrow MG/Pythia/PGS
- Ongoing: 4ℓ , 3ℓ reach at 14 TeV
- To do: effect of additional states from UV theory