FLIGHT OF THE WARPED PENGUINS

Phys. Rev. D83, 073002 arXiv:1004.2037

Pheno 2011, 10 May 2011

Warped Penguins

- UV finite 5D loops
- Anarchic flavor in Randall-Sundrum
- Defying anarchy in $\mu
 ightarrow e \gamma$
- Remarks on current work

Finiteness: naïve dimensional analysis

4D Naïve:
$$\int d^4k \, \Delta_F \gamma^\mu \Delta_F \Delta_B \sim \log(\Lambda)$$

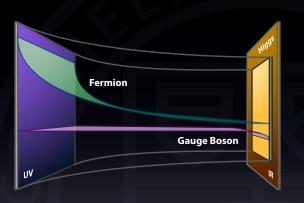
Really log divergent? No, finite. Here's why:

- Gauge invariance: $q_{\mu}\mathcal{M}^{\mu}=0$.
- Lorentz invariance: $\int d^4k \, \frac{k}{k^{2n}} = 0.$

Indeed,
$$\mathcal{M}_{4\mathrm{D}}\sim\Lambda^{-2}.$$
 Suspect that $\mathcal{M}_{5\mathrm{D}}\sim\Lambda^{-1}$ compactification shouldn't affect UV 5D Bulk, i.e. $d^4k\to d^5k$

Turns out to be correct, but brane fields make this very subtle. See our paper for the gory details

Lepton Flavor Violation


Crimpin' our free-wheeling model-building ways

$$\operatorname{Br}(\mu \to e \gamma)_{\mathsf{SM}} = 0$$

Current bound: Br $(\mu \rightarrow e \gamma) < 1.2 \times 10^{-11}$ MEGA, LAMPF

Later this year from MEG: $(\mu
ightarrow e \gamma) < 1.5 imes 10^{-12}$

Anarchic Flavor in RS

$$Y_{ij}^{(4D)} = f_i Y_{ij}^* f_j$$

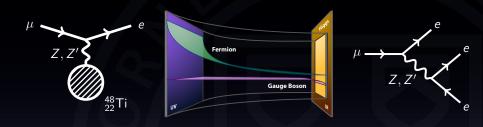
$$f_i = \sqrt{\frac{1-2c_i}{1-(R/R')^{1-2c_i}}}$$

Anarchy: Y_{ii}^* are all $\mathcal{O}(Y_*)$ with arbitrary phase.

Lepton Flavor Violation

Controlled by two dominant parameters

Flavor is dominantly controlled by: Y_* and M_{KK}



$$\mathcal{M}_{\text{loop}} \sim \left(\frac{1}{M_{\text{KK}}}\right)^2 f_L Y_*^3 f_{-E}$$

$$\sim \left(\frac{1}{M_{\text{KK}}}\right)^2 Y_*^2 m$$

Lepton Flavor Violation

Two dominant parmeters

$$\mathcal{M}_{\mathsf{tree}} \sim \left(rac{1}{\mathit{M}_{\mathsf{KK}}}
ight)^2 \left(rac{1}{\mathit{Y}_{\scriptscriptstyle{ar{\mathsf{V}}}}}
ight)$$

If we increase Y_* , must maintain SM mass spectrum

- \Rightarrow push fermion profiles to UV
- \Rightarrow Less overlap with the FCNC part of the Z

Complementary tree- and loop-level bounds

Possible tension between tree- and loop-level processes

• Tree-level bound:
$$\left(\frac{3 \text{ TeV}}{M_{KK}}\right)^2 \left(\frac{2}{Y_*}\right) < 0.5$$
, 1.6 (Custodial)

• Penguin bound:
$$\left| aY_*^2 + b \right| \left(\frac{3 \text{ TeV}}{M_{\text{KK}}} \right)^2 \le 0.015$$
What the heck is this?

Can test anarchic flavor ansatz.

Operator analysis of $\mu \rightarrow e \gamma$

Match to 4D EFT:

$$R'^{2} \frac{e}{16\pi^{2}} \frac{v}{\sqrt{2}} f_{L_{i}} \left(a_{k\ell} Y_{ik} Y_{k\ell}^{\dagger} Y_{\ell j} + b_{ij} Y_{ij} \right) f_{-E_{j}} \overline{L}_{i}^{(0)} \sigma^{\mu\nu} E_{j}^{(0)} F_{\mu\nu}^{(0)}$$

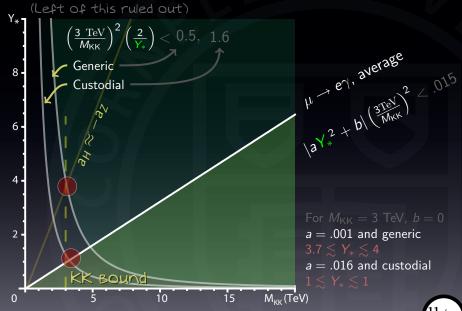
- Y_{ij} is a spurion of U(3)³ lepton flavor
- Indices on a_{ij} and b_{ij} encode bulk mass dependence

Flavor structure

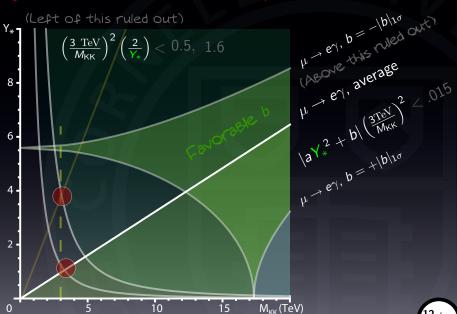
- $a_{ij} Y_{ik} Y_{k\ell}^{\dagger} Y_{\ell j}$ gives a generic contribution Depends 'only' on Y_* and M_{KK}
- New: $b_{ij}Y_{ij}$ is aligned up to structure of b_{ij} $f_iY_{ij}f_j\sim m_{ij}$, so this term is almost diagonal in the mass basis

 This depends on the particular flavor structure of the anarchic Y

Leading order diagrams



Three coefficients (a_H, a_Z, b) with arbitrary relative signs Defined $aY_*^3 = \sum_{k,\ell} a_{k\ell} Y_{ik} Y_{k\ell}^{\dagger} Y_{\ell j}$ and $bY_* = \sum_{k,\ell} (U_L)_{ik} b_{k\ell} Y_{k\ell} (U_R^{\dagger})_{\ell j}$


So, 'just calculate' these: (many details in paper)

We use 5D position/momentum space—no cutoff ambiguity

Representative Bounds: b = 0

Representative Bounds: $b \neq 0$

Further directions and conclusions

- $\mu \to e \gamma$ in a warped extra dimension:
- Finite at one-loop, suspect perturbative
- Near tension between loop- and tree-level bounds on Y_* , M_{KK}
- Sensitive to specific structure of anarchic matrices

Open questions:

- $b \rightarrow s \gamma$ penguin and heavy flavor structure in progress with M. Blanke, B. Shakya, Y. Tsai
- Two-loop contribution and perturbativity
- Effect of loop-level brane-localized terms

Thanks!