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The 21-cm Line in Cosmology
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The 21-cm Global Signal Reveals the Birth &

Characteristics of the First Stars & Galaxies
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B: ignition of first stars C: heating by first black holes D: the onset of reionization

—== === uncertainties in 1St star models
—== === uncertainties in 1St black hole models

Adapted from Pritchard & Loeb, 2010, Phys. Rev. D, 82, 023006;
Mirocha, Harker, & Burns, 2015, Ap], in press, arXiv:1509.07868.



Observational Approaches for Detection of Global

21-cm Monopole

Single Antenna Small, Compact
Radiometers Interferometric Arrays

- EDGES (Bowman & Rogers)

Vadantham et al.
« SARAS (Patra et al.) « Mahesh et al.

«  LEDA (Greenhill, Bernardi et al.) Presley, Parsons & Liu

« SCI-HI (Peterson, Voytek et al.) Subrahmanyan, Singh et al.

* BIGHORNS (Sokolowski et al.) Challenges include cross-talk

- DARE (Burns et al.) among antenna elements, mode-
coupling of foreground continuum
sources into spectral confusion,
sensitivity.

Challenges include systematics
arising from stability issues,
accurate calibration, polarization
leakage, foregrounds.



Foregrounds: Major Challenge

« Earth’s lonosphere (e.g., Vedantham et al. 2014; Datta et al. 2015; Rogers et al. 2015;
Sokolowski et al. 2015)

o Refraction, absorption, & emission

o Spatial & temporal variations related to forcing action by solar UV & X-rays => 1/f or
flicker noise acts as another systematic or bias.

o Effects scale as v2 so they get much worse quickly below ~100 MHz.

 Radio Frequency Interference (RFI)
o RFI particularly problematic for FM band (88-110 MHz).

o Reflection off the Moon, space debris, aircraft, & ionized meteor trails are an issue
everywhere on Earth (e.g., Tingay et al. 2013; Vedantham et al. 2013).

o Evenin LEO (108K) or lunar nearside (106 K), RFI brightness Tj is high.

* Galactic/Extragalactic

o Mainly sypchrotrop with expected smooth spectrum (~3r4 order log polynomial,
log T, = ;0 ailog (\:}() , although it is corrupted by antenna beam; e.g., Bernardi et al. 2015).

o EDGES finds spectral structure at levels <12 mK in foreground at 100-200 MHz.

* Other Foregrounds - lunar thermal emission & reflections; Jupiter; Recombination lines.



Extraterrestrial Foregrounds

1) Milky Way synchrotron
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Can we detect the strongest spectral feature in the

presence of the Galactic foreground?

50 Residual for 112 mK signal at 67 MHz

— 6th order fit
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-Haslam map with spectral index assumed constant
-Convolved with frequency dependent Gaussian beam
-Added Gaussian absorption trough

-Fit log-log polynomial on [40,50]uU[100, 120]

-1000 hrs integration for DARE
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Parameterizing the 21-cm Model

| === Ares reference

=== (Offset TP fit
True TPs
tanh fit

| === Turning point fit |-
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Harker, Mirocha, Burns, & Pritchard (2015), MNRAS, submitted.
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Previous studies
parameterized signal from
just the 3 Turning Points.

A more physically-motivated
approach to model the Ly-q,
IGM thermal, & ionization
history is a tanh model:

A;Ef {1 +tanh[(zo —z) /Az]}

Significantly improves
extraction of 21-cm signal
from Foregrounds, reducing
biases.



Signal Extraction using MCMC
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For details see Harker et al. (2012), MNRAS, 419, 1070;

End-to-end extraction results using

EMCEE for DARE instrument parameters:
1000 hr, 4 sky regions.

This technique captures degeneracies & covariances between
parameters, including those related to signal, foregrounds,
& the instrument.

DARK AGES RADIO EXPLORER and Harker et al. (2015), MNRAS, SllbmlttEd. DARK AGES RADIO EXPLORER



Characterizing the First Stars & Galaxies

Using an MCMC statistical framework, the
Galactic foreground is fit along with the
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Global Experiments have the potential to bound the properties (e.g., mass, spectra)
of the first generation of stars, black holes, & galaxies for the first time (0.1-0.2 dex).

See poster by Mirocha, Harker, & Burns;
Mirocha, Harker, & Burns (2015), Ap/, in press, arXiv:1509.07868. 10



Constraints on Turning Points: # Sky Regions &

Integration Time
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Increasing the integration time has a much more substantial impact than
increasing the # of sky regions. Bias for Turning Point D persists due to
degeneracy with Foreground spectral shape.

Harker, Mirocha, Burns, & Pritchard (2015), MNRAS, submitted. 1



Summary and Conclusions

The Global 21-cm Monopole signal is a powerful 0 4030 20° "
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tool to explore the first luminous objects in the | ; R
Universe and their Environs at z>10. o A

Parameterizing the 21-cm signal with a tanh
function is (1) more physically motivated, (2)
improves the extraction of the signal relative to
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Possible observational strategy: Observe fewer 048 My W

carefully selected sky regions (colder, smoother)
for longer integrations.

MCMC fits set meaningful constraints on Ly-q,
ionizing, & X-ray backgrounds along with
minimum virial temperatures of halos.

Nested Sampling codes have the potential to
measure the structure in the beam-convolved
Foreground & differentiate between different
physical model of the first galaxies.
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