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Introduction
We investigate two important issues in the extraction and interpretation of the global 21-cm 
signal. First, we introduce a new parameterization of the global 21-cm signal that provides a 
computationally inexpensive substitute for more sophisticated physical models but is still 
flexible enough to match the shape of physical models rather well. We explore its utility in an 
idealized signal extraction exercise in which the signal and foreground are fit simultaneously 
using a Markov Chain Monte Carlo approach.  Second, with the constraints on the global 21-
cm extrema (“turning points”) from this procedure, we subsequently fit a more 
computationally expensive, but physically-motivated, model, which relates the production rate 
of Lyman-α, Lyman continuum, and X-ray photons to the rate at which gas collapses onto 
dark matter halos exceeding some minimum virial temperature, Tmin. Our results are 
summarized briefly here, and in more detail in two upcoming papers (Harker et al. (2015), 
submitted to MNRAS, Mirocha et al. (2015), accepted for publication in ApJ).
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Part I. Signal Extraction
We follow the Markov Chain Monte Carlo (MCMC) approach of Harker et al. (2012) with a 
few important modifications. Most notably, rather than modeling the global 21-cm signal as a 
spline fit to the “turning points” of the signal, we use a more physically-motivated model 
which treats the evolution of the background Lyman-α intensity, Jα(z), thermal history, Tk(z) 
and ionization history, xi(z), as independent tanh functions, i.e.,

Part II. Constraints on the Physical Model and the IGM
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Conclusions & Ongoing Work

Figure 7: Constraints on (from left to right along the bottom) the volume-filling factor of ionized 
gas, volume-averaged ionization rate, IGM temperature, and heating rate density at the redshift of 

turning point D, which occurs at z=11.75 in our reference model. Input values are denoted by 
black dotted lines in each panel. Color and linestyle conventions are the same as those in Figures 4 

and 6.
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where Aref normalizes each quantity, z0 is the redshift at which each quantity “turns on,” and 
Δz is the redshift interval over which each quantity evolves from negligible values to a 
saturated limit. This model matches the shape of physical models much better than the spline 
approach, and because it is related to physical quantities, also can more easily constrain the 
overall normalization of the signal (see Figure 1 below), e.g., because physical histories 
require Aref=1 for the ionization history.

Figure 1: Comparison of best-fit reconstructed tanh model (dotted cyan) compared to previous spline 
approach (solid blue). The input model, computed with the ARES code, is shown in solid black, and is identical 

to the solid black curve in each panel of Figure 3. The dashed red curve shows the best-fit spline model 
shifted downward such that it matches the absorption minimum of the input signal. The “true” spline 

representation of the input model is shown by the dashed magenta curve. 

Figure 2: Trade-off between number of independent sky regions observed, Nsky, and total integration time, tint, 
as evidenced by the recovered positions of turning points B, C, D (annotated in Figures 1 and 3). The top row 
shows the recovered position in frequency, relative to the maximum-likelihood value, for each of the turning 

points, while the bottom row is the analogous quantity for the amplitude of each feature. Note the difference 
in the scale of the y-axis between the left and right columns. 

With the tanh model, increasing the integration time has a larger effect than increasing the 
number of independent sky regions observed (see  Figure 2 below). This is because of its 
relation to physical quantities, which have well-understood bounds (e.g., xi=1 at the end of 
reionization, the IGM temperature cannot fall below the limit set by the Hubble expansion, 
etc.). For very precise measurements, however, the recovered positions of the turning points 
can be biased (see 1000 hr results in Figure 2). This is driven by degeneracies between the 
signal and foreground at high frequencies (ν > 100 MHz), which can be mitigated by higher 
order foreground models. See Harker et al. (2015) for more discussion of this result.

For the results that follow, we focus only on the 100 
hour constraints for 1 and 2 sky regions presented in 
the previous section. Treating the constraints on the 
turning points as independent Gaussians, we proceed 
to fit a physical model, similar to those presented in 
the literature in recent years (e.g., Furlanetto 2006). 
The star-formation history is related to the rate at 
which gas collapses into dark matter halos, i.e., 

⇢̇⇤(z) / f⇤
df

coll

dt
where fcoll=fcoll(Tmin), and f* is the star formation 
efficiency. Three additional parameters are required 
to convert star formation into Ly-α, Ly-C (i.e., 
ionizing photons), and X-ray photons, which we 
represent with the parameter ξ (see Figure 3). The 
star formation efficiency is absorbed into each ξ 
parameter.

From this fit, we obtain constraints on the 
parameters of the model (see Fig. 4 below), in 
addition to the properties of the IGM as a function 
of time (Figures 6 and 7 at right). Figures 4,6, and 7 all 
show the results of two calculations: the first 
assuming a single pointing for 100 hours (open 
contours), and the second assuming 100 hours split 
between two independent sky regions (filled 
contours). The latter also assumes a more complex 
foreground model, which improves constraints at 
high frequencies and thus primarily constraints on 
ξion (Fig. 4) and the ionization history (Fig. 7)

Our calculations suggest that somewhat modest observations (one or two sky regions and 
100 hours of integration) can constrain physical models quite well, to ~0.1 dex (68% 
confidence) in each dimension (see Figure 4). Constraints on the physical model are 
accompanied by constraints on the IGM (Figures 6 & 7), most notably providing strong 
evidence for the beginning of reionization (panel j in Figure 7), so long as turning point D is 
detected with confidence. It is advantageous to observe multiple sky regions, though the 
improvement beyond 2 sky regions is modest (see Figure 2). Our calculations assumed (i) 
that all three spectral turning points fell within the 40-120 MHz band, (ii) an idealized 
instrument with a flat response and a Gaussian beam, and (iii) model parameters that do not 
vary with redshift. We are currently working on extending these techniques to more realistic 
scenarios, including treatment of the response function and beam pattern of the Dark Ages 
Radio explorer (Burns et al. 2015, in prep.), and more complex physical models including 
feedback.

Figure 3: Basic dependencies of the global 21-cm signal. The black line is the same 
in each panel, representing our reference model, while all solid green (blue) lines 
correspond to a factor of 2 increase (decrease) in the parameter noted in the 

upper left corner, and dashed lines are factor of 10 changes above and below the 
reference value.  The dotted lines show the maximum allowed amplitude of the 
signal (i.e., the amplitude of the signal when xi = 0 and TS >> TCMB), and the 

minimum allowed amplitude of the signal (set by assuming TS = TK = Tad, where 
Tad is the gas temperature in an adiabatically-cooling Universe). Turning points B, 

C, and D are annotated in the lower left panel for reference.

Figure 5: Relationship between parameters ξLW and ξion (panel e in 
Figure 4) and the properties of a stellar population. The cross-

hatched band corresponds to the ratio ξLW/ξion for a pure 50,000 
K blackbody, while the blue and red bands correspond to ξLW/ξion 
values for Salpeter and bottom-heavy stellar initial mass functions 

(IMF), respectively, as computed with starburst99. The width of 
each band corresponds to a factor of 2 change in the escape 

fraction of ionizing radiation, between 10% and 20%.

Figure 6: Constraints on (from left to right along the bottom) the Ly-α background intensity, IGM 
temperature, and heating rate density at the redshift of turning point C. The heating rate density, 
ϵX, is expressed in units of erg / s / cMpc3, while Jα(z) is expressed in units of J21=10-21 erg / s / 
cm2 / Hz / sr. Dotted vertical lines show the input values, which occur at z=19 in the reference 
model. Open contours are 68% (solid) and 95% (dashed) confidence regions for the single sky 

region fit, while filled contours show the results of the multiple sky region fit,, with 68% and 95% 
confidence regions shown in blue and green, respectively. 

Figure 4: Constraints on our 4-parameter reference model. Filled contours in the interior panels are 2-D marginalized posterior PDFs with 68% confidence 
intervals shaded blue and 95% confidence regions in green. Panels along the diagonal are 1-D marginalized posterior PDFs for each input parameter, with 1-σ 

asymmetric error-bars corresponding to the green histograms. Dotted lines denote the input values of our reference model (solid black lines, Figure 1 & 3). 
Annotated best-fit values and error bars along the diagonal are those associated with the filled contours, in which the 100 hours of observation were split 

between 2 sky regions, and the foreground was treated as a 4th order polynomial, rather than 3rd. Panel (e) is investigated in more detail above the diagonal in 
Figure 5.


