CONNECTING 21 CM OBSERVATIONS TO THEORETICAL MODELS

Jonathan Pober NSF Postdoctoral Fellow Brown University

Preparing for the 21 cm Revolution October 2, 2015

Photo Credit: Peter Wheeler, ICRAR

So You Want To Constrain Some Theory

Real Space

Power Spectrum

Pober et al. (2014)

Foregrounds: Theory and Practice

Predicted

Observed

Morales & Wyithe 2010

The Wedge (To Scale)

- Real instruments do not probe k_{\parallel} and k_{\perp} on equal scales
 - 100 kHz resolution $\rightarrow k_{\parallel,max} \sim 5$ h/Mpc
 - 300 m baseline $\rightarrow k_{\perp,max} \sim 0.15$ h/Mpc
- 21 cm experiments probe line of sight k modes
- Wedge exacerbates issue

Line of Sight Modes

- Observed power spectrum is in *redshift* space – not isotropic
- Anti-correlation between density and ionization fields can *decrease* line of sight power
- Potential for "wedge" bias if not accounted for (Jensen *et al.* 2015)

Parsons et al. 2014

Sensitivity Limits

 Parsons *et al.* 2014: Δ²(k) < 1681 mK² (z = 7.7)

- Parsons *et al.* 2014:
 Δ²(k) < 1681 mK²
 (z = 7.7)
- Ali *et al.* 2015: Δ²(k) < 502 mK² (z = 8.4)

- Parsons *et al.* 2014: Δ²(k) < 1681 mK² (z = 7.7)
- Ali *et al.* 2015: Δ²(k) < 502 mK² (z = 8.4)

Quantitative limits on IGM temperature: T_{spin} > 10 K

- Parsons *et al.* 2014: Δ²(k) < 1681 mK² (z = 7.7)
- Ali *et al.* 2015: Δ²(k) < 502 mK² (z = 8.4)

Potential that observed galaxies cannot heat IGM to level required

Pober et al. 2015

- Parsons *et al.* 2014:
 Δ²(k) < 1681 mK²
 (z = 7.7)
- Ali *et al.* 2015: Δ²(k) < 502 mK² (z = 8.4)
- HERA 331:
 Δ²(k) ≤ 1 mK²

adapted from Mesinger, Ewall-Wice & Hewitt 2014

Sensitivity Limits $\zeta = 10$ • Parsons et al. 2014: $\Delta^2(k) \; [\mathrm{mK}^2]$ $\Delta^{2}(k) < 1681 \text{ mK}^{2}$ (z = 7.7) $k \, [h \mathrm{Mpc}^{-1}]$ $T_{\rm vir} = 10^3 \,{\rm K}$ • Ali *et al.* 2015: $\Delta^2(k) \; [\mathrm{mK}^2]$ $\Delta^{2}(k) < 502 \text{ mK}^{2}$ 10 (z = 8.4) $k [h Mpc^{-1}]$ $R_{\rm mfp} = 3 \text{ Mpc}$ • HERA 331:

 $\Delta^2(\mathbf{k}) \leq 1 \text{ mK}^2$

Parsons *et al.* 2014:
 Δ²(k) < 1681 mK²
 (z = 7.7)

Ali *et al.* 2015: Δ²(k) < 502 mK² (z = 8.4)

HERA 331:
 Δ²(k) ≤ 1 mK²

adapted from Greig & Mesinger 2015

- Parsons *et al.* 2014:
 Δ²(k) < 1681 mK²
 (z = 7.7)
- Ali *et al.* 2015: Δ²(k) < 502 mK² (z = 8.4)

• HERA 331: Δ²(k) ≤ 1 mK²

adapted from Mesinger, Ewall-Wice & Hewitt 2014

Intermediate Sensitivity Science

$$\delta T_b(\nu) \approx 9x_{\rm HI}(1+\delta)(1+z)^{\frac{1}{2}} \left[1 - \frac{T_{\rm CMB}(z)}{T_S}\right] \left[\frac{H(z)/(1+z)}{\mathrm{d}v_{\parallel}/\mathrm{d}r_{\parallel}}\right] \mathrm{mK}$$

k = 0.1520 3.6 3.2 Spin Temperature 15 $\log_{10}[\mathrm{mK}^2]$ 10 1.2 5 0.4 0.8 0.0 0.2 0.6 1.0**Neutral Fraction**

 Limits on T_{spin} can only improve so much

• ... and how cold do we expect the IGM to be any way?

Pober et al. 2015

Do We Know What To Do With A Detection?

- 21CMMC is a *huge* step forward
- Framework for incorporating other constraints... but what is the common ground?
- How well do ζ, T_{vir,min}, & R_{mfp} capture reionization?

Would You Believe A Detection?

Preparing for the 21 cm revolution

- The future for 21 cm studies is bright
 - New techniques
 - Better understanding of systematics
 - Drastic sensitivity increases
 - First framework for recovering physics (21CMMC)
- A detection would be *transformative*
 - What will it take to be conclusive?
- What is the near term science?
 - Is there more to be learned from improved upper limits?
 - What is the science from a first detection?