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Foregrounds: Theory and Practice AA48CH05-Morales ARI 23 July 2010 15:26
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Figure 10
Illustration of the k-space measurement space of an HI interferometer. The instrument measures the
intensity in k-space cells, with the power spectrum (PS) intensity and uncertainty per cell described by
Equations 16, 17, and 18. For epoch of reionization (EoR) measurements, the PS intensity is averaged within
|k| annuli (blue curved regions). The maximum k⊥ is set by the longest antenna baseline, and the
perpendicular width of the cells is 1/FoV (field of view). The maximum k∥ is the inverse of the frequency
resolution and is typically much larger than the maximum angular wavenumber. The line-of-sight length of
the cells is set by the inverse of the bandwidth for intensity mapping instruments; and for EoR observations,
bandwidth is further limited by the !z ≈ 0.5 cosmic evolution limit. Finally, foreground contamination
removes the first few k∥ modes (see Section 3.4).

For 21-cm intensity mapping experiments, the question is a bit more complex. Because the
theory of structure formation is much more mature, there is a common set of cosmological pa-
rameters ("#, "ν , ns, etc.). These parameters map into both the symmetric and asymmetric terms
of the PS in different ways (Equation 6). The standard solution is to perform a Fisher matrix
analysis for specific proposed instruments (e.g., Visbal, Loeb & Wyithe 2009) to show the pa-
rameter constraints and degeneracies of the proposed observations. However, an HI instrument
designer has some freedom over both the range of scales measured and their angular distribution—
by varying the antenna layout, the signal-to-noise distribution in the 3D k-space can be tuned
(Figure 10). k-space Fisher plots, as shown in Figure 11, can help the designer of an intensity
mapping instrument maximize the sensitivity to the parameters of interest, while helping break
parameter degeneracies.

So far we have discussed PS sensitivity exclusively, but there are a number of science applications
such as Stromgren sphere imaging, non-Gaussian EoR statistics, topology/nonstationary EoR
statistics, and cross-correlation with smaller area optical surveys that benefit from imaging—a
signal-to-noise >1 per mode (corresponds to phase uncertainty on the mode less than ∼1 radian).
This is in direct tension with the PS measurements—in the PS, you maximize sensitivity by
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The Wedge (To Scale) 
• Real instruments do not probe k|| and 
k⊥ on equal scales 

 
•  100 kHz resolution è k||,max ~ 5 h/Mpc 
 
•  300 m baseline è k⊥,max ~ 0.15 h/Mpc 

• 21 cm experiments probe line of sight 
k modes 

• Wedge exacerbates issue 
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The wedge bias 3

is the power spectrum measured in the EoR window defined by
some µmin.

3 SIMULATIONS

To study the wedge bias on the 21-cm power spectrum, we use a
set of semi-numerical reionization simulations carried out on top
of a numerical N -body simulation. The N -body simulation was
performed with CUBEP3M (Harnois-Déraps et al. 2013). This code
calculates gravitational forces on a particle-particle basis for small
distances and on a mesh for longer distances. We used 69123 par-
ticles of mass 4 ⇥ 107 M� on a 138243 mesh, which was later
downsampled to 6003 cells. The total size of the simulation vol-
ume was 500/h = 714 cMpc along each side. The minimum dark
matter halo mass used in the simulation was 2.02⇥ 109 M�.

The reionization part of the simulations was carried out with a
modified version of the semi-numerical code described in Choud-
hury et al. (2009) and Majumdar et al. (2014). This code calculates
the ionization state of the intergalactic medium by comparing the
average number of ionizing photons entering in a cell with the av-
erage number of neutral hydrogen atoms in it. A cell is considered
ionized if it is possible to find a sphere of some radius around it
within which the number of ionizing photons exceeds the number
of neutral hydrogen atoms.

We use two different models for assigning ionizing fluxes to
our dark matter halos. In the fiducial model, the ionizing flux is
proportional to the halos mass, Mh:

N�(Mh) = Nion
Mh⌦b

mp⌦m
, (4)

where Nion is the number of photons leaving the halo per baryon in
collapsed objects and mp is the mass of a hydrogen atom. The total
number of ionizing photons is not conserved in this scheme due
to the overlapping of ionized regions (Zahn et al. 2007). We tune
the value of Nion at different redshifts to compensate for this and
also to make sure that the resulting reionization history follows the
same trend as the evolution of the mass averaged collapsed fraction
with redshift. Our results (Section 4) are sensitive mainly to neutral
fraction rather than redshift, and so we will present our results as a
function of x̄HI for the remainder of the paper.

The second model, which we will refer to as the “massive
sources” model, has N� / M2

h , with the proportionality constant
tuned to give the same reionization history as the fiducial model.
This model assigns higher fluxes to more massive sources, resulting
in fewer and larger ionized bubbles. These two models were chosen
to provide two very different examples of reionization topologies.
The resulting reionization history (which is the same for both mod-
els) is shown in Figure 3.

After running the reionization simulations, we combine the
density fields from the N -body simulations with the ionization
fields to get the 21-cm brightness temperature, making the simpli-
fying assumption that the spin temperature is much higher than the
temperature of the cosmic microwave background (CMB). Finally,
we convert the output from real space to redshift space, using the
methodology described in Jensen et al. (2013). All simulations use
the cosmological parameters from WMAP five year data release:
h = 0.7, ⌦m = 0.27, ⌦⇤ = 0.73, ⌦bh

2 = 0.0226 (Komatsu et al.
2009).
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Figure 3. The mass averaged mean neutral fraction as a function of redshift
in our simulations.
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Figure 4. The spherically-averaged power spectrum measured in full k
shells (solid lines) and outside the wedge only (dashed lines). The results are
shown for the fiducial model for µmin = 0.5 (left panel) and µmin = 0.95
(right panel).

4 RESULTS

To illustrate the bias that occurs when measuring the spherically-
averaged 21-cm power spectrum in the EoR window, we calculate
the power spectrum from our simulated 21-cm volumes, both for
the full volume and for a window defined by some value of µmin.

Figure 4 shows the power spectra for the fiducial model. It
is clear from this figure that when we restrict the measurement
to certain µ values, we overestimate the power spectrum early in
the reionization process and underestimate it later on. Since the
redshift-space distortion effect varies with redshift (see e.g. Mao
et al. 2012), so will the wedge bias. The bias is most pronounced
on large scales (small values of k) and, as expected, becomes more
significant in the case of a smaller EoR window (higher µmin).
Problematically, increased bias at high redshift obscures the char-
acteristic rise and fall signature in the 21-cm power spectrum.

Figures 5 and 6 show the bias, i.e. (�2
s,window � �2

s)/�
2
s,

when estimating the redshift-space power spectrum in the EoR win-
dow, for our two different reionization models. The bias is positive
early on, with the EoR window power spectrum over-estimating
the true redshift-space power spectrum by around 100 per cent. At
x̄HI ⇡ 0.8, the bias turns negative and then becomes fairly in-
significant in the later stages of reionization (less than 20 per cent
for all k modes even for µmin = 0.95). The change in sign is due
to the increased anti-correlation between matter density and ioniza-
tion fraction (see e.g. Mao et al. 2012; Jensen et al. 2013; Majumdar
et al. 2013).

The first, positive, peak in the bias is slightly more pronounced
and occurs a little later in the fiducial model than in the massive
sources model. The second, negative peak is almost absent in the
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Line of Sight Modes 

• Observed power 
spectrum is in redshift 
space – not isotropic 

• Anti-correlation between 
density and ionization 
fields can decrease line 
of sight power 

• Potential for “wedge” 
bias if not accounted for 
(Jensen et al. 2015) 

Pober 2015 

Jensen et al. 2015 
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Sensitivity Limits 
• Parsons et al. 2014: 
Δ2(k) < 1681 mK2          

(z = 7.7) 

Parsons et al. 2014 

Limits require some degree 
of IGM heating 
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Quantitative limits on IGM 
temperature: Tspin > 10 K 
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Potential that observed 
galaxies cannot heat IGM 

to level required 
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Sensitivity Limits 
• Parsons et al. 2014: 
Δ2(k) < 1681 mK2          

(z = 7.7) 

• Ali et al. 2015:       
Δ2(k) < 502 mK2             

(z = 8.4) 
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Δ2(k) ≤ 1 mK2  
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Is there a near-term 21 cm science 
“wasteland”? 



Intermediate Sensitivity Science 

• Limits on Tspin can only 
improve so much 

• … and how cold do we 
expect the IGM to be 
any way? 
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observational campaigns to detect the spatial power spectrum of 21 cm fluctuations from the Epoch

of Reionization (EoR).

Initial measurements from a 32-element PAPER instrument in 2011 were recently used to

place an upper limit on the 21 cm power spectrum at redshift 7.7 (Parsons et al. 2014). This

upper limit was stringent enough to place constraints on the temperature of the IGM, requiring

some mechanism for heating the intergalactic gas, and ruling out a universe which had cooled

adiabatically down to z = 7.7. The goal of the present work is to expand on this analysis by using

the more stringent upper limit in our companion paper (Ali et al.), and by using a more physically-

motivated, simulation-based framework for interpreting the measurement in terms of IGM physics.

We review the measurements of Ali et al. in §2, and outline our methodology and framework in §3.

We present our constraints on the IGM temperature in §4, and discuss their physical implications

in §5. We conclude in §6. Unless otherwise stated, all calculations assume a closed ⇤CDM universe

with ⌦m = 0.27, ⌦⇤ = 0.73, and h = 0.7.

2. Data and Measurements

Here I will review Zaki’s results.

3. Methodology

As a way of placing these results in the context of a large and uncertain parameter space, we

use the following ansatz. We identify three parameters as being the dominant driver of the 21 cm

power spectrum amplitude and shape: the global average spin temperature of the emitting gas

(which at these redshifts is set by the kinetic temperature of the gas), the global neutral fraction,

and the temperature of the cosmic microwave background at the redshift of the measurement. We

discuss the validity of this assumption below, but first we outline the role of these three parameters

in setting the power spectrum amplitude.

It is worthwhile to keep the brightness temperature contrast between the 21 cm signal and the

CMB (�Tb) in mind as we discuss the e↵ect of various parameters:

�Tb(⌫) ⇡ 9xHI(1 + �)(1 + z)
1
2


1�

TCMB(z)

TS

� 
H(z)/(1 + z)

dvk/drk

�
mK, (1)

where xHI is the global neutral hydrogen fraction, z is the redshift, TCMB is the temperature of

the cosmic microwave background, TS is the spin temperature, H(z) is the Hubble parameter, and

dvk/drk is the gradient of the proper velocity along the line of sight (Furlanetto et al. 2006). If

we define a fractional brightness temperature perturbation, �21(~x) ⌘ [�Tb(~x)� ¯�Tb]/ ¯�Tb, the power

spectrum, P (~k), is given by the ensemble average of the square of the spatial Fourier transform of



Do We Know What To Do With A 
Detection? 

•  21CMMC is a huge 
step forward 

•  Framework for 
incorporating other 
constraints… but 
what is the 
common ground? 

• How well do ζ, 
Tvir,min, & Rmfp 
capture 
reionization? 

21CMMC: astrophysics from the 21 cm EoR signal 4253
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Figure 3. The recovered constraints from 21CMMC on our three parameter EoR model parameters for a single (z = 9) 1000 h observation of the 21 cm PS
obtained with HERA (red curve) and the SKA (blue curve). In the diagonal panels, we provide the 1D marginalized PDFs for each of our EoR model parameters
(ζ 0, Rmfp and log10(T Feed

vir ), respectively) and we highlight our fiducial choice for each by the vertical dashed line. Additionally, we cast our ionizing efficiency,
ζ 0, into a corresponding escape fraction, fesc, on the top axis (simply using the fiducial values in equation 2). In the upper-right panel, we provide the 1D
PDF of the recovered IGM neutral fraction where the vertical dashed line corresponds to the neutral fraction of the mock 21 cm PS observation (x̄H I = 0.71).
Finally, in the lower-left corner we provide the 1 (thick) and 2σ (thin) 2D joint marginalized likelihood contours for our three EoR parameters (crosses denote
their fiducial values, and the dot–dashed curves correspond to isocontours for x̄H I of 20, 40, 60 and 80 per cent from bottom to top).

additional 25 per cent modelling uncertainty. It is immediately ob-
vious that LOFAR will have difficulty discriminating among various
models, having to rely on the largest scales close to the foreground-
dominated regime. HERA and the SKA on the other hand should
be able to recover meaningful constraints on EoR parameters, with
the large-scales limited by the additional 25 per cent modelling
uncertainty we include. On smaller spatial scales, SKA performs
considerably better than HERA.

3.2 Single epoch observation of the 21 cm PS

21 cm experiments have coverage over a large bandwidth (e.g.
50–350 MHz for the SKA allowing for observations to z ! 28).
However, foregrounds and high data rates can limit the coverage to
narrower instantaneous bandwidths. Hence, we begin by analysing
an observation at a single redshift (assuming our fiducial bandwidth
of 8 MHz), before moving on to a broader bandpass observation.
We restrict our analysis to only second-generation 21 cm exper-
iments, HERA and the SKA, since with a single bandwidth the

first-generation instruments will only achieve a marginal detection
at best (e.g. Mesinger et al. 2014; Pober et al. 2014; see also Fig. 2).

In Fig. 3, we compare the outputs of 21CMMC for both HERA
(red curve) and SKA (blue curve) for an assumed single z = 9
observation of our fiducial 21 cm PS with a total integration time
of 1000 h. In this figure, and for the remainder of this work we
assume uniform priors on all recovered parameters within their
allowed ranges outlined in Section 2.1. The dashed vertical lines
denote the mock observation values. Across the diagonal pan-
els of this figure we provide the 1D marginalized PDFs for each
of our EoR parameters. In the top-right panel, we provide the
marginalized 1D PDFs of the IGM neutral fraction. Additionally,
we choose to renormalize all 1D PDFs to have the peak probability
equal to unity to better visually emphasize the shape and width of
the recovered distribution. In the lower-left corner of Fig. 3, we
show the 2D joint marginalized likelihood distributions. In each
panel, the cross denotes the location of our fiducial EoR param-
eters. For each, we construct both the 1σ and 2σ contours (thick
and thin lines, respectively), by computing a smoothed 2D his-
togram of the entire MCMC sample and estimating the likelihood

MNRAS 449, 4246–4263 (2015)

 at U
niversity of W

ashington on Septem
ber 25, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

Greig & Mesinger 2015 



First detection(s) 
• 100 to 200 MHz 
probes z ~ 6 – 13 

• Sky noise dominated 
•  Tsky ∝ (freq.)-2.55 

• Power spectrum noise 
(mK2) at 200 MHz is up 
to 35 times larger than 
at 100 MHz Ø > 10σ detection at 50% ionization 

Ø No significant detection of peak 



Would You Believe A Detection? 

• Every published 
21 cm limit 
detected 
something 

diagonal, this reduces to simple inverse variance weighting
with the variance on modes outside the EoR window or in
the k∥ ∼ 0.45 hMpc−1 line set to infinity.
In Fig. 9 we show the result of that calculation as a

“dimensionless” power spectra Δ2ðkÞ≡ k3PðkÞ=2π2. We
choose our binning such that the window functions
(calculated as in [13] from our covariance model) were
slightly overlapping.
Our results are largely consistent with noise. Since noise

is independent of k∥ and k ≈ k∥ for most modes we
measure, the noise in Δ2ðkÞ scales as k3. We see deviations
from that trend at low k where modes are dominated by
residual foreground emission beyond the horizon wedge
and thus show elevated variance and bias in comparison to
modes at higher k. Since we do not subtract a bias, even
these “detections” are upper limits on the cosmological
signal.
A number of barely significant detections are observed at

higher k. Though we excise bins associated with the k∥ ∼
0.45 hMpc−1 line, the slight detections may be due to
leakage from that line. At higher z, the feature may be due

to reflections from cables of a different length, though some
may be plausibly attributable to noise. Deeper integration is
required to investigate further.
Our best upper limit at 95% confidence is Δ2ðkÞ <

3.7 × 104 mK2 at k ¼ 0.18 hMpc−1 around z ¼ 6.8. Our
absolute lowest limit is about 2 times lower than the best
limit in [13], though the latter was obtained at substantially
higher redshift and lower k, making the two somewhat
incomparable. Our best limit is roughly 3 orders of
magnitude better than the best limit of [13] over the same
redshift range, and the overall noise level (as measured by
the part of the power spectrum that scales as k3) is more
than 2 orders of magnitude smaller. This cannot be
explained by more antenna tiles alone; it is likely that
the noise level was overestimated in [13] due to insuffi-
ciently rapid time interleaving of the data cubes used to
infer the overall noise level.
Although one cannot directly compare limits at different

values of k and z, our limit is similar to the GMRT limit [8],
6.2 × 104 mK2 at k ¼ 0.50 hMpc−1 and z ¼ 8.6 with 40 h
of observation, and remains higher than the best PAPER
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FIG. 9 (color online). Finally, we can set confident limits on the 21 cm power spectrum at three redshifts by splitting our simultaneous
bandwidth into three 10.24 MHz data cubes. The lowest k bins show the strongest “detections,” though they are attributable to
suprahorizon emission [26] that we expect to appear because we only cut out the wedge and a small buffer (0.02 hMpc−1) past it. We
also see marginal “detections” at higher k which are likely due to subtle bandpass calibration effects like cable reflections. The largest
such error, which occurs at bins around k∥ ∼ 0.45 hMpc−1 and can be seen most clearly in Fig. 8, has been flagged and removed from all
three of these plots. Our absolute lowest limit requiresΔ2ðkÞ < 3.7 × 104 mK2 at 95% confidence at comoving scale k ¼ 0.18 hMpc−1
and z ¼ 6.8, which is consistent with published limits [8,12–15]. We also include a simplistic thermal noise calculation (dashed line),
based on our observed system temperature. Though it is not directly comparable to our measurements, since it has different window
functions, it does show that most of our measurements are consistent with thermal noise. For comparison, we also show the theoretical
model of [71] (which predicts that reionization ends before z ¼ 6.4) at the central redshift of each bin. While we are still orders of
magnitude away from the fiducial model, recall that the noise in the power spectrum scales inversely with the integration time, not the
square root.
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Figure 8.12: One dimensional power spectra for the two polarizations of the high sub-band

(z ⇡ 6.5). The line colors are the same as for Figure 8.10, except that the solid black

theoretical model is for x
i

= 0.96.

646 G. Paciga et al.

Figure 11. Power as a function of the total wavenumber k =
√

k⊥
2 + k∥

2. Each point represents a different (k⊥, k∥) pair; there is no binning in k. Colours
indicate the number of SVD modes removed; 0 (blue), 4 (green), 8 (red), 16 (cyan) and 32 (purple) are shown. The boxed region at k ≈ 0.5 is shown inset,
with nearby points each of the three marked k spread out slightly for clarity. The best limit at 2σ is (248 mK)2 at 0.50 h Mpc−1 achieved with four SVD modes
removed. The solid line shows the predicted 3D power spectrum from Iliev et al. (2008) assuming a 30 mK signal.

correction, making this measurement an upper limit on the actual
21 cm signal.

5 C O N C L U S I O N

Using an SVD as a foreground removal technique and a simulated
signal to quantify the loss of a real 21 cm signal the SVD may
cause, we have calculated an upper limit to the H I power spectrum
at z = 8.6 of (248 mK)2 at k = 0.50 h Mpc−1. The k⊥ component
was found using the median power in annuli of the (u, v) plane,
while a Hermite window was used to sample the k∥ direction. This
is in contrast to our previous work with a piecewise-linear filter
which operated only in the frequency direction and carried with it
an implicit k∥ window.

This limit is dependent on the method one chooses to calculate
the transfer function between the real 21 cm signal and the observed
power. Both the k⊥ and k∥ behaviour of the foreground filter chosen
needs to be taken into account. While the semi-Hermite method
chosen uses a simulated signal with power in a limited k∥ window,
and may miss interactions between the SVD filter and the signal
over larger k∥ bands, we believe it to give the most reliable estimate
of the transfer function and a suitably conservative estimate on the
final upper limit.

Had we instead used the full Hermite approach described, this
limit would have been (260 mK)2. That this second approach gives a
similar value suggests that this limit is a fairly robust one. The differ-

ence can likely be attributed in part to the simplifying assumptions
necessary when deriving the analytical Hermite windowing func-
tion. We also consider the current result to be more robust than that
reported previously in Paciga et al. (2011). While the previous limit
was considerably lower, this can be accounted for by many factors;
the different k scale, the change in foreground filter, several minor
changes in the analysis pipeline detailed in Section 2 and most sig-
nificantly the fact that this is the first time a transfer function has
been used to correct for signal lost in the foreground filter. Without
such a correction, our best upper limits with the SVD foreground
filter may have been incorrectly reported as low as (50 mK)2.

This limit still compares favourably to others established in the
literature which are of the order of several Kelvin (e.g. Bebbington
1986; Ali et al. 2008; Parsons et al. 2010). Recently, after submission
of our paper, PAPER (Parsons et al. 2013) claimed an upper limit
of (52 mK)2 at k = 0.11 h Mpc−1 and z = 7.7. However, it is
not documented whether signal loss from their primary foreground
filtering step (their section 3.4) has been accounted for and so it is
not clear how to compare their result to ours. LOFAR has begun
publishing initial results from reionization observations, but have
so far focused on much longer scales (ℓ ≈ 7500) (Yatawatta et al.
2013).

In Paciga et al. (2011), we considered a model with a cold inter-
galactic medium (IGM), a neutral fraction of 0.5 and fully ionized
bubbles with uniform radii. In such a model, this current limit
would constrain the brightness temperature of the neutral IGM to
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Preparing for the 21 cm revolution 
•  The future for 21 cm studies is bright 

•  New techniques 
•  Better understanding of systematics 
•  Drastic sensitivity increases 
•  First framework for recovering physics (21CMMC) 

• A detection would be transformative 
•  What will it take to be conclusive? 

• What is the near term science? 
•  Is there more to be learned from improved upper limits? 
•  What is the science from a first detection? 


