Particle physics applications with Extragalactic background light

Louis Strigari Kavli Institute for Particle Astrophysics and Cosmology Stanford University

The View from 5 AU: Measuring the Diffuse Sky Brightness from the Outer Solar System March 25, 2010 Irvine, CA

Particle dark matter

 Vast literature on WIMP annihilation prospects for Fermi, ACTs
 Lines from WIMP/sterlie neutrino decays in keV-GeV regime [e.g. Watson et al. 2006, Cembranos, Feng, Strigari, 2007, Yuksel & Kistler 2007, Yuksel et al. 2008, Bertone et al. 2007]

Axion mass constraints

- Thermal $(m_a > 0.01 \text{ eV})$ or non-thermal $(m_a < 0.01 \text{ eV})$
- Astrophysical and Cosmological limits
 - Stellar energy-loss limits [Raffelt, 1996]
 - Diffuse background radiation [Turner 1987, Overduin & Wesson 1993]
 - Hot dark matter (ma < 1 eV) [Hannestad et al. 2008, Melchiorri et al., 2007]
- Model dependence in constraints: Possible window in the eV regime if the coupling to photons is suppressed [e.g. Moroi & Muryama 1998]

Particle data group

Axion lines from clusters

Bershady et al 1991, Ressell 1991

$$\tau = 6.8 \times 10^{24} \xi^{-2} m_{\rm a.eV}^{-5} \text{ s}$$

- Rest frame axion decay line of 24,800 Angstrom/ma,ev (1+z)
- Axions accrete onto clusters even if they are not the dominant DM component.
- Phase-space considerations likely make clusters a better target than the MW (Ressell 1991)
- Modern constraints on mass profiles from gravitational lensing

D. Grin et al. 2007

Standard model neutrinos

- Mass matrix characterized by 3 mass splittings and one phase
- Mass limits from laboratory and from cosmology, [Seljak et al. 2006, Lesgourgues & Pastor 2006]

$$\sum_{i} m_i < (0.17 - 2.0) \text{ eV}$$

Neutrino lifetime

Neutrino source	L/E	$ au/m~({ m s/eV})$
Accelerator Atmosphere Sun	30 m / 10 MeV 10 ⁴ km / 300 MeV 500 s / 5 MeV	$ \begin{array}{r} 10^{-14} \\ 10^{-10} \\ 10^{-4} \end{array} $
Supernova AGN	10 kpc / 10 MeV 100 Mpc / 1 TeV	10^{5} 10^{4}

Beacom & Bell 2002

10⁻¹

1

Mirizzi et al. 2007

Decays probe the parameter space of lifetime/mass

 10^{22}

Relic neutrino clustering

- Depending on mass, neutrinos would cluster around seed galaxy and clusters
- Clusters may then be ideal targets for radiative decay lines

Conclusions/Prospects

- Prospects for constraining new physics with EBL
- Spectroscopy would be sensitive to lines from neutrino or axion decays
- Improve on Spitzer IRS results: more sensitivity and more targets

