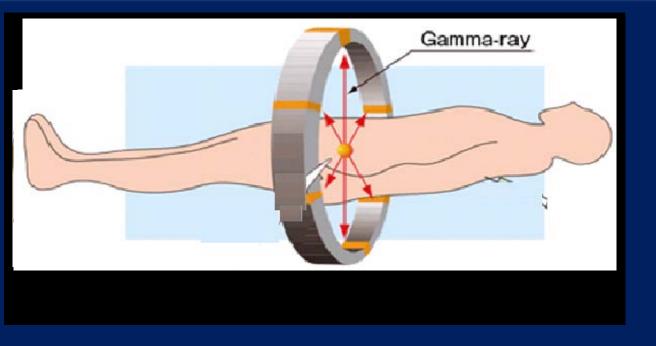


Molecular Imaging With PET

Farhad Daghighian, Ph.D. President Prescient Imaging Ilc January 26, 2018

Definition of Molecular Imaging:

Cells function by bio-chemical reactions.


By monitoring these bio-chemical reactions we can diagnose the disease early

On-Set of disease starts by molecular Disorder

Then, Months Later

Anatomic Changes Appear

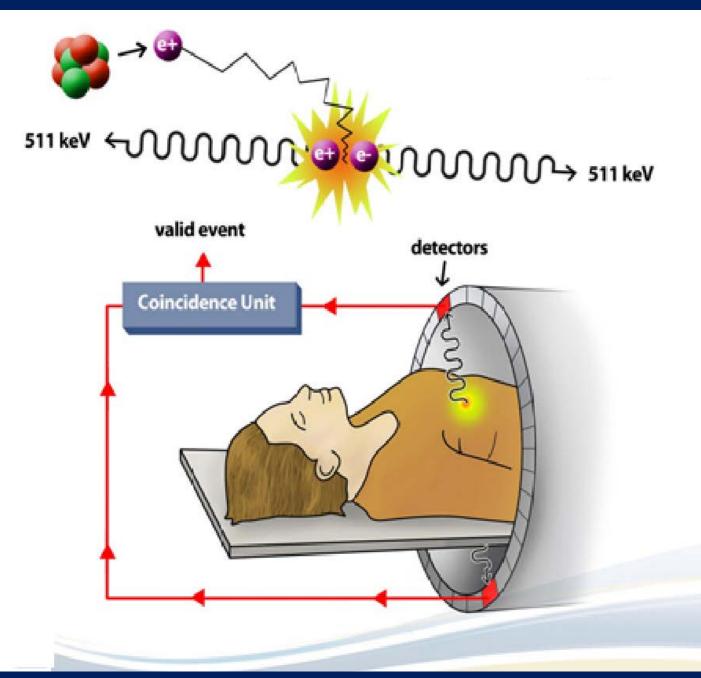
• Molecular or Bio-chemical Imaging = PET

- PET is based on uptake of abnormal cells of tagged tracer compounds. Pico-mole sensitivity
- Specific tracers with uptake in cancer, infection, endocrine, Heart disease, Brain disorders....
- Metabolic markers, Neuro-receptor, antibodies, DNA synthesis, Gene reporter......

Anatomic Imaging:

- X-ray, X-ray CT, MRI, Ultrasound
- You can CT a dead body and you can see anatomy!
- Anatomic Imaging does not show live chemical reactions that Molecular Imaging or PET reveals.

Hybrid Imaging: PET-CT, PET-MRI to correlate molecular image with anatomy

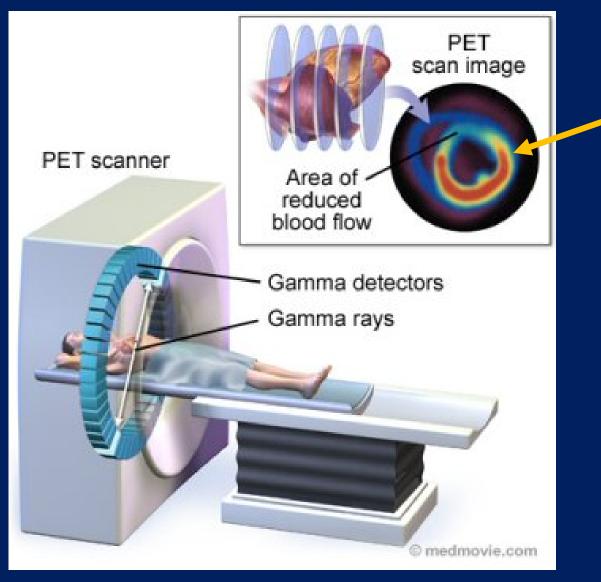


PET Provides:

- Early detection
- early knowledge of effectiveness of therapy
- pre-knowledge of which therapy is the most effective for a particular patient
- 37% of cancer treatments in USA has been changed based on PET results
- Gold Standard of Blood Perfusion into the heart's muscle and Brain
- Gold Standard of Imaging Aging Brain- Amyloid and tau protein

PET Imaging Is an essential part of modern Medicine

The main elements of biological molecules have positron emitting isotopes:


O-15 C-11 N-13 F-18 (replacing H in molecules)

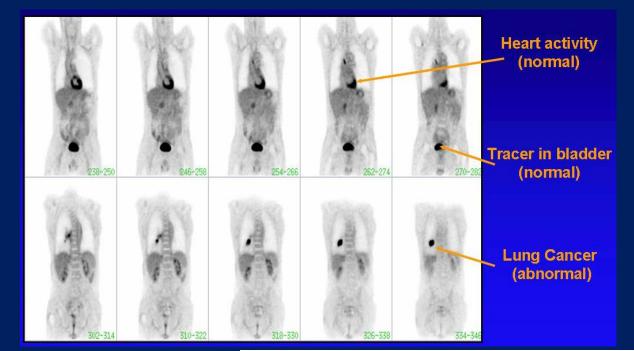
molecules can be radiolabeled

injected into the Body in small quantities

trace the physiologic functions

N-13 Labeled NH3 Showing Blood Perfusion

Cyclotron and Medical Isotope Production


All Isotopes for PET are Produced by Cyclotrons

		Particle beam			Isotope	reaction	Yield
		Туре	Energy MeV	Current			mCi/microA
				MicroA	F-18	O-18 (p, n) F-18	110
СТІ	RDS-111	H+	11	50	F-18	Ne-20 (d, α) F	51
СТІ	RDS-112	H+	11	50	C-11	N-14 (p, α) C-11	40
IBA	Cyclone 10/5	H+ / H-	10/5	60/35	N-13	O-16 (p, α) N-13	7
IBA	Cyclone 18/9	H+ / H-	18/9	80/35	0-15	N-14 (d, n) O-15	50
GE	MINItracer	H+	9.6	50	0-15	N-15 (p, n) O-15	47
GE	PETtracer	H+ / H-	16.5/8.5	75/60			
EBCO	TR 13/19	H+ / H-	13, 19/9	150			

Most of applications of PET are for detection of cancer with injection of F-18 Flourodeoxy-glucose.

Fixed to Floor Requires a 300 sq.ft. room Weigh > 5000 lb

There are 5000 PET scanners worldwide, rate of increase of this number ~ 8% per year World Health Organization requires 1 PET scanner per 0.5 million people. There are ~ 700 medical Cyclotrons worldwide Most of applications are for detection of cancer with F-18 Flourodeoxy-glucose F-18 has 109 min half life it can be distributed to a radius of 50 miles from the cyclotron

This is not possible for O-15 (2 min), N-13 (10 min), and C-11 (20 min). Requiring the Cyclotron and PET being in the same building Many important biochemical are labeled with these short lived isotopes

Routine application of PET is hampered by:

Large footprint Heavy weight high cost of PET scanners High cost of cyclotrons

Almost All PET Scanners

And All Cyclotrons

Are Installed In the Basements of Hospitals!

To Harness Full Potential of PET

Both PET Scanner and Isotope-Producing Accelerator

Should Be Portable and affordable

Mission of *Prescient Imaging LLC* Expand The reach of PET Imaging

BBX[™]: portable PET scanner designed for breast, brain, and extremity imaging.

Vertical-PET[™] : whole-body PET scanner ideal for cardiac imaging on patients in seated position. It can image patient for accurately and increase patient throughput.

P-Arm[™] : portable and open-able PET scanner ideally suited for use in an operating room, radiation therapy monitoring, and minimally invasive procedures.

The Mission of the Prescient Imaging LLC:

Harness the Full Potential of Molecular Imaging.

PET and Isotope-Producing Accelerators Must be Readily Accessible

Future

To Harness Full Potential of PET Isotope-Producing Accelerator Should Be Portable and Affordable Specification of the desired proton accelerator for production of short-lived isotopes

- Proton Energy:
- Current of the proton Beam:

between 8 to 15 MeV from 1 to 40 micro-Amp

- Continuous Operation for at least 5 min.
- Electric input: 110 V AC, 20 Amp Max.
- Size: less than 8x8x8 ft. or 2.5x2.5x2.5 m
- Cost of parts and labor: less than \$100,000.

