

On the way to extreme light

Alexander LITVAK

Institute of Applied Physics, Russian Academy of Sciences

A Celebration of Toshiki Tajima's 70th Birthday

26 January 2018

Mega Science Projects in Russia

- 1. Tokamak Fusion Reactor IGNITOR
- /TRINITY, Troitsk, Moscow region/
- 2. High-Flux Neutrons Research Nuclear Reactor PIK
- /Inst. Nuclear Physics, Gatchina, St-Petersburg/
- 3. Fourth-Generation Synchrotron-Radiation Light Source /Kurchatov Inst./
- 4. Electron-Positron Collider Super C-Tau Factory /Budker Inst/
- 5. Nuclotron-Based Ion Collider Facility/Dubna, Moscow region/
- 6. Exawatt Laser Facility XCELS/IAP RAS, Nizhny Novgorod /

²⁰¹⁸ 200 Petawatt Infrastructure

12 channels, 15 PW each, 400 J, 25 fs, 910 nm, intensity 10^{25} W/cm²

Host Institute: IAP RAS

IAP RAS is one of the largest and most successful institutions of the Russian Academy of Sciences.

Scientific studies are provided by about 1500 employees, about 580 of whom are scientists, including 6 Academicians and 10 Corresponding Members of RAS, around 120 Doctors and 260 Candidates of Science. About one third of the scientists are people younger than 35.

Main fields of research:

High power microwave electronics Plasma physics and plasma technologies Laser physics and photonics Radiophysical methods of diagnostics and remote sensing Wave processes in geophysics Nonlinear dynamics Physics of condensed matter and nanoscience Material science

XCELS: Why in Nizhny Novgorod?

One of the biggest industrial, research, educational, and cultural centers of the Russian Federation

Pioneer works of the IAP team in laser optics:

•3rd Russian laser and 1st based on domestic crystal

•Averaged ponderomotive force, self-focusing, beat-wave excitation of plasma oscillations, relativistic nonlinear optics, OPA, phase-conjugation, awarded by USSR State Prizes

•First petawatt OPCPA laser in the world

2018 XCELS Basic Technologies

Petawatt PEARL facility at IAP: 0.56 PW 43 fs

Factory of large aperture KDP and KD*P crystals at IAP

Petawatt FEMTA-LUCH facility in Sarov

How to maximize field intensity at a given power?

Rule of thumb for coherent combining of several beams:

To maximize the electric field at focusing point, radiation of several combining beams should reproduce configuration of **phase conjugated dipole radiation field**

I. Gonoskov, A. Aiello, S. Heugel, and G. Leuchs, Phys. Rev. A (2012)

Minimum focusing volume: $V_{d_{\pi}}$

 $V_{dp} \approx 0.032 \lambda^3$

Converging dipole wave as an exact solution of Maxwell equations:

$$\mathbf{E} = -\nabla \times \nabla \times \mathbf{Z}, \quad \mathbf{H} = -\frac{1}{c} \nabla \times \dot{\mathbf{Z}} \qquad \mathbf{Z} = \hat{\mathbf{z}} \frac{d}{R} [g(t + R/c) - g(t - R/c)]$$
$$\mathbf{E}(0, t) = \hat{\mathbf{z}} \frac{4d}{3c^3} \ddot{g}(t) \qquad \mathbf{H} = 0 \qquad g(\tau) = e^{-(\tau^2/D^2) \ln 4} \sin(\omega\tau)$$

A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, A. Sergeev, PRL (2014)

43.3 MeV proton beam

No.	Reference	energy $W_{\rm L}$ (J)	duration τ (fs)	Irradiance $I_0 (W \text{ cm}^{-2})^a$	Contrast	Target and thickness (µm)	Incidence angle (°)	energy $\mathcal{E}_{p(i)}$, (MeV/nucleon)
1	Snavely et al (2000)	423	500	3×10^{20}	1×10^4	CH 100	0	58
2	Krushelnick et al (2000b)	50	1000	5×10^{19}		AI 125	45	30
3	Nemoto et al (2001)	4	400	6×10^{18}	5×10^{5}	Mylar 6	45	10
4	Mackinnon et al (2002)	10	100	1×10^{20}	$1 imes 10^{10}$	AI 3	22	24
5	Patel et al (2003)	10	100	5×10^{18}		Al 20	0	12
6	Spencer et al (2003)	0.2	60	7×10^{18}	1×10^{6}	Mylar 23	0	1.5
7	Spencer et al (2003)	0.2	60	7×10^{18}	1×10^{6}	AI 12	0	0.9
8	McKenna et al (2004)	233	700	2×10^{20}	1×10^{7}	Fe 100	45	40
9	Kaluza <i>et al</i> (2004)	0.85	150	1.3×10^{19}	2×10^{7}	Al 20	30	4
10	Oishi et al (2005)	0.12	55	6×10^{18}	1×10^{5}	Cu 5	45	1.3
11	Fuchs et al (2006)	10	320	6×10^{19}	1×10^7	Al 20	0 and 40	20
12	Neely et al (2006)	0.3	33	1×10^{19}	$1 imes 10^{10}$	Al 0.1	30	4
13	Willingale et al (2006)	340	1000	6×10^{20}	1×10^{5}	He jet 2000		10
14	Ceccotti et al (2007)	0.65	65	5×10^{18}	1×10^{10}	Mylar 0.1	45	5.25
15	Robson et al (2007)	310	1000	6×10^{20}	1×10^{7}	Al 10	45	55
16	Robson <i>et al</i> (2007)	160	1000	3.2×10^{20}	1×10^{7}	Al 10	45	38
17	Robson <i>et al</i> (2007)	30	1000	6×10^{19}	1×10^7	Al 10	45	16
18	Antici et al (2007)	1	320	1×10^{18}	1×10^{11}	Si ₃ N ₄ 0.03	0	7.3
19	Yogo <i>et al</i> (2007)	0.71	55	$8 imes 10^{18}$	1×10^{6}	Cu 5	45	1.4
20	Yogo <i>et al</i> (2008)	0.8	45	1.5×10^{19}	2.5×10^{5}	Polyimide 7.5	45	3.8
21	Nishiuchi et al (2008)	1.7	34	3×10^{19}	2.5×10^{7}	Polyimide 7.5	45	4
22	Flippo et al (2008)	20	600	1.1×10^{19}	1×10^{6}	Flat-top cone Al 10	0	30
23	Safronov et al (2008)	6.5	900	1×10^{19}		AI 2	0	8
24	Henig et al (2009b)	0.7	45	5×10^{19}	1×10^{11}	DLC 0.0054	0	13
25	Fukuda <i>et al</i> (2009)	0.15	40	7×10^{17}	$1 imes 10^6$	CO ₂ +He cluster jet 2000		10
26	Zeil et al (2010)	3	30	1×10^{21}	2×10^8	Ti 2 μ m	45	17
27	Gaillard et al (2011)	82	670	11.5×10^{20}	1×10^9	Flat-top cone Cu 12.5	0	67.5

2018 Laboratory astrophysics: accretion processes *laser plasma expansion across* B₀

- B = 10 T
- The source of the turbulence in accretion discs (α -models)
- Plasma dynamics at the edge of accretion discs etc.

2018 Laboratory astrophysics: accretion processes *laser plasma expansion across* B₀

- Fast-growth small-scale instabilities develop at the plasma-magnetic field boundary
- Possible source of the turbulence in accretion discs (α -models)
- Modeling the topology of plasma flows in the vicinity of different astrophysical objects (hot Jupiters etc.)

2018 Gyro-devices

Extraordinary high CW and average power at mm and submm wavelengths

Main applications:

- ECW systems for plasma fusion installations (50- 200GHz/1MW) Recent achievement – $T_e = 1$ keV in the mirror trap (Budker Inst.)
- Technological applications (ceramics sintering, CVD diamond films, 24-80 GHz/3-60kW)
- Plasma physics and plasma chemistry

(ion sources, neutron sources...)

 Point- like source of EUV for nano-lithography based on THz gaseous discharge (0.3 THz/ 100 kW)

Operating

mode

Gyrotrons for plasma fusion installations

140 / 105 GHz, 1 MW, 300 s gyrotron system test at NFRI -140 GHz: power 950 kW (855 kW at load after line) -105 GHz: power 800 kW (715 kW at load after line)

ITER

KSTAR

<u>140/105 GHz</u> 1 gyrotron – delivered 1 gyrotron – is under production

production

140/105 GHz

2 gyrotrons – delivered

1 gyrotron – is ordered

1 gyrotron – is under

<u>170 GHz</u> 8 gyrotrons – to be delivered as components of self-sufficient RF sources

> GYCOM MW / 3 -1000 s gyrotrons

1MW / 3 -1000 s gyrotrons for ECRH and current drive

<u>140 GHz</u> 1 gyrotron – delivered 1 gyrotron – is under production

140 GHz 2 gyrotrons – delivered <u>105 GHz</u> 2 gyrotrons – delivered 2 gyrotrons – is under production 1 gyrotron – is ordered

