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1. Experimental Motivation 

 Neutron rate measurements on C2-U experiment consistently 

show anomalously high values, ~102 higher than theoretical 

thermonuclear calculation, indicating a fast-ion tail for 

background deuterium.  

 Other measurements (FIR) suggest a beam-driven ion-cyclotron 

mode is cause of fast-ion tail and is most active at FRC radius 

of 45 cm. Mode is high-phase velocity and non-destructive, 

similar to wakefield phenomenon.  

 1D implicit PIC simulations reproduce fast-ion tail. 

 Mode onset can be catalyzed by RF-maintained modulation 

(“bunching”) of beam density1.  

 

  

2. Simulation Setup 

Plasma Parameters 
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𝑩𝟎 𝑻𝒊,𝒆 𝑻𝒃 𝜽𝒌 

0.075 T  200 eV 500 eV 10∘ 

• Implicit PIC code LSP—allows high-beta plasmas to be 

simulated very fast 

• Uniform background magnetic field 𝐵0 

• Background uniform plasma of deuterons and heavy electrons 

𝑚 = 20𝑚𝑒  

• Plasma parameters mimic 45 cm in C2-U FRC 

• 1D domain near-parallel to 𝐵0 (also wave propagation angle) 

• Hydrogen ion beam initialized with drift parallel to 𝐵0 

6. Summary and Future Work 

• 1D PIC simulations can reproduce fast-ion tails—and therefore increased 

neutron rate—through beam-driven modes and others. 

• By seeding the beam with a spatial density modulation at a particular 

wavenumber 𝑘, the onset of a particular mode can be catalyzed significantly, 

though most successfully for modes with narrow 𝑘 range.  

• RF techniques could be used in experiment to form and maintain ion beam 

modulation and wakefield, sustaining the high-energy Higgs’ plasma state.  

• More constraining data is obtained from experiment will clarify the theoretical 

picture of enhanced neutron production and narrow the possible modes.  

• For future work, 2D, and possibly even 3D, PIC simulations can give a more 

physically accurate picture of beam-driven modes.  
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3. Theory 

4. Simulation 

5. Simulation in B. Richter Vision 

 Semi-analytical solver of linear 

dispersion tensor. 

 For 45 cm parameters, right-hand 

resonant mode2 is fastest-growing 

on deuteron cyclotron frequency. 

 Mode derives from right-handed 

beam resonance condition 

 Mode generates fast-ion tail in 

nonlinear interaction via cyclotron 

acceleration. 

 Robust fast-ion generation despite 

weak coupling between right-

handed wave and ions. 

 Robust mode growth followed by 

development of fast-ion tail after delay 

 Reactivity grows by ~102 

 Mode activates extended portion of right-

handed Alfven mode (whistler), but is 

dominant at deuteron cyclotron 

fundamental.  

 Sub-dominant backwards-propagating 

mode present as well. This mode may be 

related to left-handed beam resonance 

condition. 

Fast-Ion Tail 𝒕 𝝉𝒊 = 𝟐𝟎  

Setup 

 Original idea of Burton Richter to use “bunched” beams1 

 Beam density given sinusoidal spatial modulation 

according to formula in plot (right) 

• 𝑛𝑏
0 is base beam density, 𝑛𝑏

1 is amplitude of modulation 

• 𝑘𝑚 is wave-vector of fastest-growing mode 

Discussion 

• Mode grows substantially more quickly than in un-

modulated case, but saturation level is unchanged 

• Wakefield and RF could sustain modulation, maintaining 

plasma in non-equilibrium Higgs’ state.  

• Most applicable to narrow resonances in 𝑘; mode that 

form large respond weakly to single modulation 𝑘 

Plasma Parameters 

𝑩𝟎 𝑻𝒊,𝒆 𝑻𝒃 𝜽𝒌 𝜽𝒃 

0.04 T  500 eV 500 eV 70∘ 70∘ 
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