

Fusion-Enabled Pluto Orbiter and Lander

US-Japan CT 2016

August 22-24

Michael Paluszek Princeton Satellite Systems, Inc.

Outline of Talk

- Electric propulsion
- Pluto mission overview
- Mission design
- Spacecraft design
- DFD overview and status
 - FRC with odd-parity RF heating
 - D 3 He fuel
- DFD subsystems
- Work in progress and conclusions

Simulation of DFD Pluto Approach

Supported by NASA Innovative Advanced Concepts Program under award NNX16AK28G

Electric Propulsion

Specific Power

- Plot on right based on work done assuming direct insertion
- Other electric propulsion systems
 - Solar not applicable to outer planet missions
 - Fission Electric

Destination: Pluto Orbit

Put a spacecraft in orbit around Pluto, power a lander using optical transmission, return high-definition video – and get there in only **4 years**!

Pluto Mission

- Deliver payload 1000 kg of orbiter and lander
- 1158 L of ³He for the entire mission
- Arrives in just 4 years
- Provides 2 MW of electrical power
 - Beam 30 kW down to lander
- Launch mass can be accommodated by almost any launch vehicle
- ³He fuel can be purchased in sufficient quantities now from available suppliers

Pluto Mission Comparison

Parameter	New Horizons	DFD Mission
Travel time to Pluto	9.5 years	4 years
Delta-V	290 m/s	70,000 m/s
Power at Pluto	200 W	2,000,000 W
Data rate to Earth	1 kbit/s	> 1,000,000 kbit/s
Fuel	Plutonium	D- ³ He
Trajectory	Jupiter Swingby	Direct
Mission type	Flyby	Orbit
Lander	No	Yes

Bottom Line: You can't do the proposed mission to Pluto with any other technology.

Mission Outline

- Earth departure
- Acceleration Coast Deceleration
 - Depends on available thrust
- Insertion into Pluto flyby orbit
- Orbit insertion
- Orbit operations
 - Lander deployment
 - Pluto observations
 - Lander power from orbit

Spacecraft

PrincetonSATELLITE

- Wide range of scientific instruments for Pluto orbit survey and a lander
- Large radiators for waste heat rejection
- Cylindrical structure is sun shade with MLI
- Optical communications for HDTV bandwidth to Earth
- Fully autonomous guidance, navigation and control

Comparison with Hubble Space Telescope

Guidance, Navigation and Control (GN&C)

GN&C

- Optical navigation used throughout
 - Reduces reliance on Deep Space Network
 - Provides continuous updates during burns
 - Operates in heliocentric or Pluto centric modes
- Reaction wheels for attitude control
- Steered plasma plumes for pitch and yaw momentum unloading and control during burns
- Attitude control thrusters for roll control and unloading

UKF is Unscented Kalman Filter

Departure from Earth

• Two options

- Direct insertion into heliocentric trajectory
- Departure from LEO
- Direct insertion (rocket put: the vehicle directly into heliocentric orbit) requires Delta IV Heavy class launcher
 - \$350M launch cost
- Departure from low earth parking orbit
 - \$60M launch cost
 - Requires additional fuel
 - Allows for on-orbit checkout

Simulation of DFD Pluto Vehicle near ISS prior to departure

Departure Trajectory

- Assume ISS orbit
 - Allows astronaut checkout prior to departure
- Burn along velocity vector
 - Not optimal
- 40 N thrust assumed
- Orbit becomes hyperbolic in 7.5 days
 - e is orbit eccentricity
 - > 1 is hyperbolic
- Major cost savings
- On-orbit checkout reduces mission risk

Arrival at Pluto

- Optimal trajectory
 - Uses MATLAB's fmincon
 - Brute force direct method
 - There are other methods
 - Two dimensional problem
 - Inequality constraint on acceleration magnitude
 - Starts in flyby hyperbola
 - Uses twice the velocity change of an impulsive burn at closest approach

Princeton Field Reversed Configuration (PFRC)

- RF heating with rotating magnetic fields naturally limits reactor size
 - Plasma radius in range 20-40 cm
 - Power of 1-10 MW is ideal for space
- Confinement with superconducting coils
- Ultra low radiation

- Linear configuration allows for configuration as a rocket engine
- Flow more D⁺ to augment thrust
- Exit via magnetic nozzle
- Variable exhaust velocity
 - 50 to 20,000 km/s
 - $P = 0.5 Tu_e/\eta$, thrust ~ 10-50 N

Status of PFRC Development

- Princeton Plasma Physics Laboratory performing experiments with Dept. of Energy funding
 - Concluded PFRC-1 a, b, c in 2011
 - PFRC-2 operating now; goal to demonstrate keV plasmas with pulse lengths to 0.3 s
 - Computational studies on plasma detachment in nozzle
- Princeton Satellite Systems performing mission and trajectory design, space balance of plant studies under IR&D and now NIAC

-	Four	joint	PPPL,	/PSS	patents
---	------	-------	-------	------	---------

Machine	PFRC-1	PFRC-2	PFRC-3A	PFRC-3B
Objectives	Electron Heating	Ion Heating	Heating above 5 keV	D-He3 Fusion
Fuel	н	н	н	D-3He
Goals/ Achievements*	3 ms pulse* 0.15 kG field* e-temp = 0.3 keV*	0.1 s pulse* 1.2 kG field i-temp = 1 keV	10 s pulse 10 kG field i–temp = 5 keV	10 s pulse 80 kG field i-temp = 50 keV
Plasma Radius	4 cm	8 cm	16 cm	16 cm
Time Frame	2008-2011	2011-2017	2018-2022	2022-2026
Cost	\$2M	\$4M	\$25M	\$25M

Princeton**SATELLITE**

Heat Recycling

- Brayton cycle heat engine
 - Heat high pressure gas to do work
- Used in High Temperature Gas Cooled Fission Reactors
- Helium working fluid
- Paired compressor/turbine sets with counter-rotating turbines and compressors
- Common shaft for compressor, turbine and generator
- Need for multiple compressor and turbine stages and recuperator to be determined
- Large radiator wings

Superconducting Coils Designed for Space

- Alpha Magnetic Spectrometer-02
- Looking for anti-matter and dark matter
- Cooled with superfluid helium

Superconducting Coils

- Eight discrete coils in a 4 m machine
 - Some ripple which would be reduced by the plasma field
- Axial field compatible with HTS and NbTi LTS
- Forces between coils are 5.7×10^6 N

Power Generation and Distribution

- Power generated by a 3 phase axialflux Halbach Generator
 - Distribution is 3 phase to RF drive
 - 98% efficient at design point
 - AC/DC converters and 3 phase to one phase converters as needed
- A very small Halbach motor/ generator developed at Princeton Satellite Systems for an Army satellite

Driver configured as motor

Radio-Frequency Heating

- Odd-parity rotating magnetic field
- Class E power RF amplifiers
 - Transistor operates as on on/off switch
 - Load network shapes waveform so that the current and voltage do not simultaneously peak thus minimized power dissipation (P = IV)

Thrust Vectoring

- 1 to 2 degree deflection needed to point thrust vector through the center of mass
- Options
 - Fixed steering coils after the magnetic nozzle
 - Gimbaled engine
 - Moving mass

Field lines as deflected by a steering coil

Instrumentation and Control

- Triply redundant
- Radiation hard processors
 - BAE 5545 Multi-Core
 - For deep space environment
- Plasma measurements
- Power system measurements
- Interacts with the spacecraft control system
- Uses PPPL Central Instrumentation and Control System (CPCS) data handling system
 - Based on EPICS, Experimental Physics Industrial Control System
 - SpaceWire used for networking

Structure

- Handles launch loads and superconducting coil loads
 - Engine and spacecraft must undergo shock and vibration testing

PrincetonSATELLITE

- Fuel slosh is a consideration
- Delta IV
 - Launch loads are typically 5-6 g axial
 - Sinusoidal vibration
 - Thrust: 1.27 cm 5 to 6.2 Hz, 1 g 6.2 to 100 Hz
 - Lateral: 0.7 g 5 to 100 Hz
 - Acoustic
 - Shock at separation

Thrust Augmentation

- H or D is used as a **propellant** it flows along the magnetic field lines outside of the separatrix; scrape-off layer (SOL) e- are heated by the fusion products that are ejected into the SOL; e- energy transferred to ions in plume expansion
- This reduces the exhaust velocity of the fusion products from 25,000 km/s to ${\sim}50$ km/s and increases thrust to ${>}20$ N
- Thrust/I_{sp} is adjustable based on rate that gas is injected into the gas box
- The exhaust plume is directed by a magnetic nozzle, consisting of a throat coil and nozzle coils to accelerate the flow.

Startup

- Fusion engine needs to be started and restarted in space
 - Initiate nuclear fusion
 - Charge the superconducting coils
 - Roughly 100 seconds of power required
- $\bullet\,$ Employs combustor burning D_2 and O_2 carried onboard
 - D₂O can be recycled via electrolysis
 - We have power to spare

Fuel Storage

- Store cryogenic deuterium and helium-3
- Super-insulated tanks and propellant lines
 - Uses Multi-layer Insulation (MLI)
- Cryocoolers to recycle vapor that is not needed for propulsion
 - Same cryocoolers used for coil cooling

NASA Zero Boil-off Experiment

Vacuum Vessel

- Presents first wall to plasma
 - Must minimize contamination
- Supports instrumentation
- Keeps spacecraft debris and outgassing outside the fusion chamber
- Pressure differential very small

Shielding

- Protect from neutrons and radiation
 - Superconducting coils are susceptible to neutron damage
- Bremsstrahlung and synchrotron radiation must be recycled for the RMF drive
 - Absorbed by tungsten lining the reactor cooling tubes
- Boron Carbide for neutron shielding
- Some shielding may be required for the payload and for operation in low-earth orbit near astronauts
- Want to minimize shielding
 - Reduces specific power
 - Increases radius of superconducting coils

Other Missions

Mission	Cost (%B)	Flight (Years)	DFD Flight (Years)	DFD Savings (\$B)	Reference
Enceladus Orbiter	1.9	9.5	1.0	0.14	[7, 8]
Jupiter Europa Orbiter	4.7	6.0	1.0	0.10	[7, 9]
Uranus Orbiter and Probe	2.7	8.0	2.0	-0.03	[7, 10]
Venus Climate Mission	2.4	0.4	0.1	-0.32	[7, 11]
Neptune Orbiter	?	16.0	2.0	0.70	[12]
Jupiter Icy Moon Orbiter	16.3	10.0	1.0	1.57	[13]
Pluto Orbiter (REACTIONN)	2.4	5.2	4.0	0.23	[6]
Interstellar Probe Mission	?	15.0	6.8	0.18	[14]

Mars human orbital mission

Conclusions/Work in Progress

- Specific power is critical
 - Thrust power to mass
 - Total electric plus thrust power to mass
- Thrust/mass determines trip time
- Mass of all subsystems needs to be quantified
- Writing a design document
 - Preliminary design level of information
 - Will allow design to critical design level in next phase

