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Hi-T	SuperconducJng	FCs	
rs	to	7	cm	
τd	to	250	ms	
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Take-away	points	

•  Research	aimed	at	small	(1-10	MW),	clean,	fusion	reactors		
						for	niche	applicaJons.	

•  Flux	conservaJon	is	criJcally	important.	
	 	Wall	(PMI)	interacJons	should	be	minimized.	
	 	Separatrix	should	be	well	away	from	wall.	

•  Fueling	techniques	criJcally	important.	

•  Stable	discharge	duraJons	(250	ms)	exceed	105	τAlfven.	

•  RotaJng	interchange	modes	stabilized	by	gas	puffing.	



Outline	
•  Long	pulse:	to	250	ms	
•  SuperconducJng	flux	conservers	(Hi-T	SC	FCs)	
•  RMFo	heaJng	of	the	PFRC-2	
•  Gas	puffing:	refueling	

The	PFRC-2	

3	An	FRC	embedded	in	an	axisymmetric	tandem	mirror	
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Why	long	pulse	–	what	is	long	pulse?	

RF	Jmes	scales	

Instability	Jme	scales	

CD/InducJve	Jme	scales	

Energy	Jme	scales	

Ash	exhaust/reactor	Jme	scales	

LHD	 Tilt	 Interchange	

PMI	

PFRC-2	

1/f0	 Q/f0	

Anom											Classical	

Now																																							Reactor	



•  1988	ANS	(J.	Plasma	Phys.	40,	127)	t	=	15	ms	
•  1989	Flinders	(Pl.	Phys.	Cont.	Fus.	32,	575)	t	=	50	ms		
•  1991	Flinders	(Rev.	Sci.	Instr.	62,	1787)	t	=	40	ms	
•  1995	Flinders	(Pl.	Phys.	Cont.	Fus.	37,	209)	t	=	50	ms	
•  2009	Prairie	View		(PRL	102,	255004)	t	=	40	ms	
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Other	long-pulse	FRCs	

•  2015	TriAlpha	(Nature	6,	6897)		t	=	7-15	ms	
	

No	flux	conservers	
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High-Temperature	Superconductor	FCs	



•  CharacterisJcs	
–  Frequency	=	8.025	MHz	
– Odd	parity	
–  Pforward	to	25	kW	(200	kW);	Preflected	~	¼%	
–  Pabsorbed	~	35-75%	Pf	
– Duty	factor	1%	

•  Predicted	benefits	
–  Closed	field	lines	
–  Electron	heaJng		

•  Swanson	presentaJon	
–  Ion	heaJng	(ωRMF~ωci)	
–  Plasma	stabilizaJon	
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RMFo	heaJng	of	the	PFRC-2	

PFRC-2	count	rates	~	0.01	of	PFRC-1’s	
PFRC-2	power	density	~	0.1	of	PFRC-1’s	



•  Density	stays	~constant	throughout	pulse.	
•  Gas	puff	only	increases	ne	briefly.	
•  Temporary	reducJon	in	ne	fluctuaJons.		
•  Midplane	Hα	rises,	stays	high	long	aqer	gas	puff.	

–  Recycling	off	room	temperature	FCs	(τFC~	3	ms	@	70F)	8	

ne	behavior	with	room-temperature	FCs	

Pf	~	10	kW,	IH	=	100	A	Gas	puff	

2e12/cc	

Prefill	H2		
~	2e13/cc	
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Behavior	with	SC	FCs	at	LN2	temperature:	(τFC	=	1	s)	

Pulse	length	scan	

Density	rapidly	decays	

Gas	puff!	

FluctuaJons	suppressed	longer	
Absorbed	RMF	power	

Density	fla?op	from	2	ms	gas	puff	persists	for	10s	to	100s	ms	

Hα		
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10	kHz/div,	po	=	0.66	mT,	Pf	=8	kW	
10	

Behavior	low-f	ne	fluctuaJons	with	SC	FCs	(LN2)	
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Effect	of	gas-puff-Jme	on	ne	with	SC	FCs	(LN2)	

t0	=	0.1	ms	
	 2	ms	
	
7	ms	
	

20	ms	
	

40	ms	
	

Line–average	density	 Absorbed	RMF	power	

InjecJng	too	early	decreases	density	plateau	duraJon	

0												10													20													30											40												50ms	
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Effects	of	gas	puffs	in	end	cell	

ne	

Hα

-Pend	cell	

Paddle	current	

Pa	

Paddle	

0																20																40															60	ms			

3e17	H+/s	

For	this	case	Hα	increases.	
	
Gas	puff	sJfles	ion	flow	to	paddle.	

IniJal	pump	out	of	end	cell.	
Gas	puff	raises	pressure	in	end	cell	

3e-5T	 Pf		=	10	kW;	IH	=	130	A	

200kHz/div	

5MHz/div	

FFT(Ipaddle)	

fLH	

fci	



•  RMF	efficiently	ionizes	central	cell	gas	in		<	0.2	ms.	
•  With	Hi-T	SC	FCs,	plasma	flows	into	end	cells	unJl	
density	in	central	cell	falls,	increasing	RMF	penetraJon	
~	T5/4/n1/2.	

•  Good	heaJng	occurs,	promoJng	full	RMF	penetraJon.		
•  Current	drive	&	re-distribuJon:	FRC	forms		
	 						L/R|cl~	2	ms				while						L/R|anom~	20	µs	

•  Confinement	improved	because	FRC	formed.	
•  Subsequent	gas	puff	penetrates	low-density	FRC	
plasma,	is	ionized	throughout,	and	decorates	the	
already	established	FRC	field	pa?ern.	

•  Long	pulses,	via	SC	FCs,	were	necessary	to	see	this	
wall-influenced	behavior.	 13	

Working	model	of	density	behavior	



•  Profile	effects	
–  Is	density	increase	due	to	axial	contracJon	or	improved	
confinement?	

– Need	full	ne,	Te,	Ti	profiles	
– Separatrix	existence	and	shape	
– SOL	parameters,	including	flows	

•  The	role	of	hydrogen	implantaJon	in	the	walls	
•  Ion-electron	&	ion-neutral	drag	
•  CD	efficiency	
•  Higher	field,	higher	power:	ion	heaJng	
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Open	quesJons	(immediate)	



Summary:	Long-pulse	RC	discharges	
•  Flux	conservaJon	is	criJcally	important.	
	 	Wall	(PMI)	interacJons	should	be	minimized.	
	 	Separatrix	should	be	well	away	from	wall.	

•  Gas	fueling	technique	has	been	essenJal.	
•  Stable	discharge	duraJons	exceed	105	τAlfven.	
•  RotaJng	interchange	modes	stabilized	by	gas	puffing.	
•  A	posteriori,	surprising	long-pulse		behavior	jusJfies	

our	decision	to	built	Hi-T	SC	FCs.	
•  Niche	applicaJons	

–  Spacecraq	propulsion	(planetary	defense,	exploraJon)	
–  Forward	deployment	
– Distributed	power	grid	
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AddiJonal	slides	
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What	is	odd	parity?	Symmetry	under	mirror	reflecJon	

Odd Even 
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Closed	vs	open	field	lines	

Even parity                                      Odd parity  

Open field lines are ones that intersect a material object or leave the device. 
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Better confinement 



Closed field lines work – higher Te 
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Roach and Cohen (2007) 

1.	RMFo	electron	heaJng-	Lsp	(PIC)	code	
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LSP simulation between 120 
and 150 eV Maxwellian, but with 
broader energy tail 

Fully self consistent, fully electromagnetic 

Welch and Cohen (2010) 



21	Cohen and Glasser (PRL 2000)

• Ion  heating (Ω = ωR/ωci) 
 Threshold 
 Saturation 

• Heating to temperatures relevant for aneutronic fuels    
 0.1 < |ωR/ωci| < 2 
 BR/Ba < 0.01 

• Gradient in heating efficiency may allow tuning for isotopes 

BR = 128 G 

Cohen, Landsman, Glasser (PoP 2007)

Predicted	ion	heaJng:	r	=	10	cm,	κ	=	5,	Be	=	20	kG	



Milroy	

Evidence	for	closed	field	lines	

Even	parity	

Odd	parity	

250 ms long pulse 

Separatrix Fluctuation spectrum 
measured by probe 

1st	Goal:	to	close	field	lines,	form	a	separatrix	and	improve	confinement	

τ ~	105	τA	
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FRC options:   The size-field plane 

FRCs 
Choices 
1.  Fuel 
2.  Beta 
3.  Configuration 
4.  Heating method 

 
Nature 
1.  τE  
2.  Size 
3.  Stability 
4.  Fusion power 

Compressed  
       Helion 
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ITER	

Instability	problems	


