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Why, Where and How much reconnection
(FRC merging formation/ ST rec. heating)

heats ions and electrons?
TS-3, TS-4, UTST, MAST based on UK-J collaborations

Significant rec. heating of 1ons mast T; > 1keV
1) 2D T, and T, measurements Ts-3, MAST
2) Ion acc./heating in downstream MASTTS-3, PIC, Solar

3) Electron heating at X-point mMAsT, T8-3, PIC

4) Scaling of reconnection heating masT, 15-3

5) Merging formation of high-T/beta tokamak mast

ST rec. heating : Ono et al. PPCF’12, PRL’11, POP’15, POP’93
FRC rec. heating: Ono, Kawamori et al. PRL’05, PRL’96, PFR’86




Univ. Tokyo-Culham Merging/ Reconnection Experiment
1986~ TS-3 (R=0.2m) 2000~ TS-4 (R=0.5m) N [Q
2006~UTST (R=0.45m)
for physics and application of reconnection heating
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Number of merging/ reconnection experiments is over 10 now.
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Advantages of merging formation
over the conventional 6 -pinch
formation of FRC:

(1) slow formation (elimination
of fast capacitor bank).

(2) highly efficient and stable
formation proces

(3) initial 1on heating of merging

(4) applicability of center OH coil
for current-drive and heating.

(5) elongation control

spheromaks

Bon

Mering of Two
Spheromaks
with Opposite Bt

dd/dt

Formation of FRC
(Merging Method)

Current Amplification/
Heating of FRC
(OH Coil Method)

Translation Coil ) .
Translation to Burning Section

Y. Ono et al., Plasma Physics and Controlled Nuclear Fusion Research 1992



Merging Formation

of FRC 1n 1990
IE=6

Significant 1on

heating of no-guide
field reconnection

Y. Ono et al., PRL 1996



Current- Amplification

of FRC in 1993 7s-3 Sm
The current of FRC :
is doubled by center-| L
solenoid coil. S
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Y. Ono et al., Plasma Physics and Controlled Nuclear Fusion Research 1992



Watanabe (NIFS) PFR’00 made the 2D MHD simulation of
couterhelicity merging spheromaks, including its heating effect.




FRC Merging Formation T
|

in 2009 1s-3

Significant ion heating in
downstream of
reconnection outflow.

-
The heated ions are
confined inside the
reconnected closed
fluxes.
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ST Rec. Heating 1S-3 —

1) Down-stream ([)
heating of ions

2) X-point heating
of electrons

High power heating
suppresses paramag.
B,, increasing beta.
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ST Rec. Heating 1S-3

In the downstream, hot T, spot, steep | _ |
. . . >
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B,..2 -Scaling of Rec. Heating - High-B, .. Merging Exp.

B,..2-scaling for direct ion heating by reconnection
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B,..2 -Scaling of Rec. Heating » High-B, .. Merging Exp.

Up-scaled Reconnection Experiment in MAST
>10° R _ >10°
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The MAST plasma has
1D measurements of T; and T, : [ Jower collisionality R~10

1) 32¢ch. Ion Doppler, 1’) NPA | apd higher reconnecting
2) 200ch. Thomson scattering B field than TS-3 and TS-4.

From MAST data (UKAEA, Gryaznevich)



MAST: Visible light image of two merging tokamaks
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High B,., Merging in MAST | | Significant Ion Heating in MAST Rec.

MAST Reconnection Exp.
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Initially, T, and T, profiles have a
double and a single peaks, respectively
but finally have triple peaks due to
1on-electron relaxation.
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Energy Flow during Reconnection with high B,

TS-3 High Guide field B~5B

rec’

B tz() (cf. No-Guide field: Ono PRL96)

Magnetic Energy Dissipation = 1, 1

TIon Acceleration Vion = Vporarr.

Outflow Energy

damping mechanisms?

Shock-like (pile-up) & viscosity

v

Ion heating Energy
=~ (.88, 0.85

>>

Current Sheet Heating
[ JE*Javar=0.09,0.10

Small localized
electron heating

Electron heating
Energy = 0.07, 0.07




High B,.. Merging in MAST

B,..2-scaling for direct ion heating by reconnection
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Summary and Conclusions

1) Reconnection outflow heats 1ons significantly in

two downstream regions. —)>Rec. heating of FRC/ST

2) Electron heating occurs locally at X-point inside
current sheet.

3) Ion heating power >> Electron heating power
4) The ion heating energy (T, ) increases with B__ 2.

» FRC formation by two spheromak with opposing Bt.

The rec. heating in MAST heats 1ons to 1.2keV and
electrons to 0.8keV due to 1ts higher B, . ~0.15T

»High R exp. 1s important to solve electron heating of rec.

»;)irept ion heating by rec. is a promising method for
heating 1ons > 10keV for fusion plasmas.




