
EM Qualifying Exam Fall 2015

1. A spherical shell is made of a conducting material, and has inner radius a and outer radius b. The sphere is

centered at the origin. The shell therefore occupies the region a < r < b, with no material in the region r < a or

r > b. A point charge q is placed at the point (0, 0, c) with c < a i. e. the charge is in the interior part of the shell,

but off-center.

Find

(a) the electric field everywhere

(b) the charge distribution on the inner surface of the conducting shell

(c) the charge distribution on the outer surface of the conducting shell.

An exact solution is preferable, but failing that, try and find a solution in the form of an infinite series.

2. A cube is made of a magnetized material. The cube has side length L. The sides are oriented along the coordinate

axes with one corner at the origin, and three other corners are at (0, 0, L), (0, L, 0), (L, 0, 0). For 0 < x ≤ L/2 the

magnetism is ~M = M0x̂ and for L/2 < x ≤ L the magnetism is ~M = −M0x̂.

Find an expression for the magnetic field H everywhere.

3. A pendulum is made of a bob of mass M hanging from a string of length L. The bob also carries a charge q.

The pendulum is displaced from the equilibrium position by a very small angle θ, and is allowed to oscillate about

the minimum. Estimate how much energy is lost in each oscillation.

4. Two circular wires are oriented in the x−y plane. One circular wire of radius R is centered at (0, R, 0) while the

second wire, also of radius R, is centered at (0, −R, 0). They touch at the origin and the whole configuration looks 
like a figure 8. The first loop carries a current I flowing clockwise while the second loop carries a current I flowing 
anticlockwise. Find the electric and magnetic fields far away from the origin.  Use spherical coordinates.













Quantum Mechanics Ph.D. Qualifying Exam (Fall 2015)

I. Denote by E0 the ground state energy of a quantum mechanical anharmonic oscillator, with
Hamiltonian

H =
p2

2m
+
k

2
x2 + λx4

Here the parameter k can be both positive or negative.
a) Set λ = 1

6
and sketch the potential energy

versus x for three cases: (1) k > 0, (2) k = 0 and (3) k < 0.
b) For k > 0 find an expression for E0(k) which is accurate
to lowest order in λ.
c) For k = 0, construct a simple variational estimate of E0. Evaluate
this by taking h̄ = m = 1 and λ = 1

6
.

d) Take h̄ = m = 1 and λ = 1

6
. Find the leading

behavior for E0(k) when k ≪ 1 and the next correction.
e) For h̄ = m = 1 and λ = 1

6
, use the results you have found

to plot E0(k) versus k for −3 ≤ k ≤ 3. Label the axes.
Useful integrals:

∫ ∞

0

x2ae−r2x2

dx =
1 · 3 · 5 · · · (2a− 1)

2a+1r2a+1

√
π

II. A quantum-mechanical system is described by the Hamiltonian

H = ω (a†a+ b†b)

where the operators a and b obey aa† − a†a = 1 and bb† + b†b = 1. The operators a and b are
supposed to be independent of each other, so the two a’s commute with the two b’s. The eigenstates
of the Hamiltonian are

|na, nb〉 =
1√
na!

(a†)na(b†)nb |0, 0〉

with na any nonnegative integer, and nb = 0, 1.
(a) Define the operator Q = b†a. Show that QQ†+Q†Q = βH and determine β. Set Q = Q1+ iQ2

and Q† = Q1 − iQ2 and express QiQj +QjQi in terms of H.
(b) Show that Q|1, 0〉 is proportional to |0, 1〉.
(c) Can the operator b be represented by a suitable combination of Pauli matrices? Show explicitly
why, or why not.

III. For times t ≤ 0, a particle which moves in one dimensions resides in the ground state of the
infinitely deep square well potential

V (x) =

{

0, for − d
2
≤ x ≤ + d

2
;

∞, for |x| > d
2
.

At time t = 0, an electric field parallel to the x axis is switched on, with time dependence

E(t) = E0 exp(−t/τ) .



Regard the electric field as very weak. This introduces into the Hamiltonian the perturbation

V (x, t) = −eE(t)x .

(a) Derive an expression for finding the particle in the n-th excited state of the potential well, at
time t = ∞. Express your answer in terms of the appropriate matrix element between the ground
state wave function ψ0(x) and that ψn(x) of the n-th excited state, i.e. do not waste time evaluating
this matrix element.
(b) From what you know about the nature of the ground state and the excited states of this
potential, discuss selection rules that apply to this problem.

IV. In the 1S configuration of positronium (e+ - e−), interactions between the electron and
positron magnetic moments serves to remove the spin degeneracy that would otherwise occur. The
effect can be represented by a weak perturbation

H ′ = λ σ1 · σ2 ,

where λ > 0 and σ1 and σ2 are the electron and positron Pauli spin operators.

a) Compute the level separation between the singlet and the triplet states in the 1S configuration.

b) An external magnetic field B0 is applied. Graph the energies of the eigenstates in the 1S
configuration versus the magnetic field. Give the formula in terms of λ and B0.
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1. Fermi Gas Model of a Nucleus. A simple picture of an atomic nucleus is to imagine that it is a sphere filled with
a degenerate Fermi gas of nucleons moving freely within the nuclear volume. Consider a nucleus containing Z protons
and N neutrons, and let A = N +Z denote the total number of nucleons. Each nucleon may be in one of two different
spin states. The energy levels of the nucleus can be approximated by those of a 3D square well whose side is the same
as the nuclear radius, given by R = R0A

1/3 where R0 = 1.2 fm. Assume that protons and neutrons see an identical
potential well and work at T = 0.

(a) Determine the Fermi momenta p
(N)
F , p

(Z)
F of the neutrons and protons, respectively, in terms of N,Z and A.

(b) Obtain a formula for the total kinetic energy of the nucleons.

(c) Heavy nuclei have an excess of neutrons. Assuming that the excess is small relative to the total number of nucleons,
show that the total energy can be approximately expressed in the form

Etot(N,Z) ≈ aEF
(
A+ b

(N − Z)2

A

)
(1)

where EF is the Fermi energy of the protons (or the neutrons) alone in the symmetric case for which N = Z = A/2,
and a, b are constants; determine a, b.

(d) Using the fact that a nucleon has a mass of 938 MeV, compute EF and hence the ‘asymmetry energy’ abEF above.

2. The Recombination Epoch. Consider an extremely dilute gas of partially ionized atomic hydrogen, such as occurred
in the early universe. The binding energy of an electron and proton in the atomic ground state is ε ≈ 13.6 eV. Assume
that this dilute plasma is neutral, with equal numbers of electrons and protons, and that everything is close to thermal
equilibrium: in other words, we have

e+ p ⇀↽ H (2)

Let ne, np, nH respectively denote the densities of electrons, protons, and hydrogen atoms. You will use statistical
mechanics to infer the density of protons and electrons in the early universe.

(a) The equilibrium described by (2) is assumed to occur at constant temperature and pressure. Under these conditions,
use the extremization of an appropriate free energy to obtain a condition that relates the equilibrium value of an
intensive state variable for e, p and H.

(b) Use the results above to determine a formula for the ratio nenp/nH . (Leave your answer in terms of T, ε, funda-
mental constants and the electron mass.) This is known as the Saha equation.

(c) If the fraction of ionized atoms is 1/2, then ne, np, nH are not independent. How are they related? Use this and
the result of part (b) to obtain a formula for the density of protons np in the early Universe.

(d) For ε/(kBT ) = 100, give a numerical density, in units of m3, correct to the nearest order of magnitude.

Make and justify any appropriate approximations that will simplify your calculation.

3. Defects in a Crystal. In a crystal lattice, a defect is created when an atom hops from a lattice site to an interstitial
site. The ground state is a configuration with no defects. However, when the lattice is in equilibrium at a finite
temperature T , defects appear spontaneously.

Consider the case where the number of atoms N is equal to the number of lattice sites and the number of possible
interstitial sites is Ni (of the same order as N). Consider the thermodynamic limit where N,Ni → ∞ at constant
Ni/N = ρ. The energy required to create a defect is ε. Denoting by K the number of defects, let n = K/N be their
density.

(a) Compute the entropy S as a function of the defect density n and the interstitial fraction ρ.

(b) Obtain a formula that yields the density of defects as a function of temperature, n(T ). You may leave the result
as an implicit expression relating some function f(n, ρ) to a function of ε and T .

(c) Give an explicit expression for n(T ) in the limit T → 0, and also in the limit of very high temperature, kBT � ε,
where it takes simple forms.

(d) Compute the defect contribution to the heat capacity in the limit T → 0, and sketch the result.
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Possibly Useful Information

• The fundamental thermodynamic identity, valid for reversible, quasi-static processes, is

dE = TdS + J · dx + µ · dN.

Here, E is the internal energy, T and S denote the temperature and the entropy, J, x are vectors of generalized forces
and displacements, and µ, N are vectors that describe the chemical potentials and particle number of the different
species. For the case of an ideal gas with a single species, we may take J = −P , x = V and find

dE = TdS − PdV + µdN.

• The different thermodynamic potentials for the ideal gas are given by

E (internal energy)

H = E + PV (enthalpy)

F = E − TS (Helmholtz free energy)

G = H − TS (Gibbs free energy)

G = E − TS − µN (grand potential)

• The differential changes in the thermodynamic potentials are obtained by using the Liebniz rule (d(AB) = AdB+BdA)
in conjunction with the thermodynamic identity.

• The different ensembles that we consider are summarized in the following table:

Ensemble Macrostate (M) p(µs) Normalization

Microcanonical (E,x, N) δ∆(H(µs)− E)/Ω S(E,x, N) = kB ln Ω

Canonical (T,x, N) exp(−βH(µs))/Z F (T,x, N) = −kBT lnZ

Gibbs Canonical (T,J, N) exp(−βH(µs) + βJ · x)/Z G(T,J, N) = −kBT lnZ
Grand Canonical (T,x, µ) exp(−βH(µs) + βµN(µs))/Q G(T,x, µ) = −kBT lnQ

Here, p(µ) is the probability of microstate µs (note the subscript that distinguishes it from µ, the chemical potential),
H(µs) is the Hamiltonian that assigns energy to the microstates, δ∆(x − E) is a delta function that ensures that
x ∈ (E − ∆, E + ∆), and β = 1/kBT . The different thermodynamic potentials are labeled consistent with their
definition above. Ω is the number of microstates, Z is the partition function, Z is the Gibbs partition function and Q
is the grand partition function; the grand canonical ensemble is written for a single species. As usual, to obtain results
for the ideal gas, we set x = V , J = −P .

• The quantum partition function is obtained by computing the trace of the density matrix , Z = tre−βH, taking care
to compute the trace in a basis that appropriately incorporates the particle statistics. This makes it frequently more
convenient to compute the properties using the grand canonical ensemble.

• The Bose-Einstein and Fermi-Dirac distributions describe the occupancy of single-particle energy levels εk by bosons
and fermions, respectively. Using η = ±1 for bosons and fermions, we have

〈n(εk)〉 =
1

eβ(εk−µ) − η


