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INTRODUCTION

Consider 3 paradoxes, dating back to the ISR epoch. They are resolved by

unitarity screenings.

1) Whereas non screened σtot grows like s∆, σel grows faster, like s2∆ (up to log

corrections). With no screening, σel will, eventually, be larger than σtot.

2) Elastic and diffractive scatterings are seemingly similar. However, the energy

dependence of the diffractive cross sections is significantly more moderate than

that of σel.

3) The elastic amplitude is central in impact parameter b, peaking at b=0.

The diffractive amplitudes are peripheral peaking at large b, which gets larger

with energy.

As we shall see, models confined only to elastic scattering do not incorporate

the full extent of unitarity screenings. Incorporating diffraction, is essential to

a proper estimate of soft scatterings.



S-CHANNEL UNITARITY

The simplest s-channel unitarity bound on ael(s, b) is obtained from

a diagonal re-scattering matrix, where repeated elastic re-scatterings secure

s-channel unitarity. 2Imael(s, b) = |ael(s, b)|
2 +Gin(s, b). Its general solution is

ael(s, b) = i
(

1 − e−Ω(s,b)/2
)

, Gin(s, b) = 1 − e−Ω(s,b). Ω is arbitrary.

The output s-unitarity bound is | ael(s, b) |≤ 2, leading to very large total and

elastic LHC cross sections, which are not supported by TOTEM recent data.

In a Glauber type eikonal approximation, the input opacity Ω(s, b) is real.

It equals to the imaginary part of the input Born term, a IP exchange in our

context. The output ael(s, b) is imaginary.

The consequent bound is | ael(s, b) |≤ 1, which is the black disc bound.

In a single channel eikonal model, the screened cross sections are:

σtot = 2
∫

d2b
(

1 − e−Ω(s,b)/2
)

, σel =
∫

d2b
(

1 − e−Ω(s,b)/2
)2
, σinel =

∫

d2b
(

1 − e−Ω(s,b)
)

.



An illustration of the effects implied by unitarity screenings are shown in

the figure above. It shows the s-channel black bound of unity, and the bound

implied by analyticity/crossing symmetry on the expanding b-amplitude.

Imposing these limits leads to the Froissart-Martin bound

σtot ≤ Cln2(s/s0), s0 = 1GeV 2, C ∝ 1/2m2
π ' 30mb.

C is far too large to be relevant in the analysis of TeV-scale data.

Coupled to Froissart-Martin is MacDowell-Martin bound: σtot
Bel

≤ 18 π σel
σtot
.



Note that the Froissart limit controls the asymptotic behavior of the unitarity

cross section bound, NOT the behavior of the elastic scattering cross section

as such, which can have an arbitrary functional behavior as long as it is below

saturation.

In t-space, σtot is proportional to a single point, dσel/dt(t = 0) (optical theorem).

As we saw, σtot in b-space is obtained from a b2 integration over 2(1 − e−
1
2Ω(s,b)).

Saturation in b-space is, thus, a differential feature, attained initially at b=0

and then expands very slowly with energy.

Consequently, a black core is a product of partial saturation, different from a

complete saturation in which ael(s, b) is saturated at all b.

In a single channel model, σel ≤
1
2
σtot and σinel ≥

1
2
σtot. At saturation, regardless

of the energy at which it is attained, σel = σinel = 1
2
σtot.

Introducing diffraction, will significantly change the features of unitarity

screenings. However, the saturation signatures remain valid.



POMERON MODEL

Translating the concepts presented into a viable phenomenology requires a

specification of Ω(s, b), for which Regge theory is a powerful tool. Pomeron (IP )

exchange is the leading term in the Regge hierarchy.

The growing total and elastic cross sections in the ISR-SPPS range are well

reproduced by the non screened single channel DL IP model in which:

αIP (t) = 1 + ∆IP + α′
IP t, ∆IP = 0.08, α′

IP = 0.25GeV −2.

∆IP determines the energy dependence, and α′
IP the forward slopes.

Regardless of DL remarkable success at lower energies, they under estimate the

TEVATRON and LHC cross sections. This is traced to DL neglect of

diffraction and unitarity screenings initiated by s and t dynamics.

Updated Pomeron models analyze elastic and diffractive channels utilizing s

and t unitarity screenings.



GOOD-WALKER DECOMPOSITION

Consider a system of two orthonormal states, a hadron Ψh and a diffractive

state ΨD. ΨD replaces the continuous diffractive Fock states. Good-Walker

(GW) noted that Ψh and ΨD do not diagonalize the 2x2 interaction matrix T.

Let Ψ1 and Ψ2 be eigen states of T.

Ψh = αΨ1 + βΨ2, ΨD = −βΨ1 + αΨ2, α2 + β2 = 1.

The eigen states initiate 4 Ai,k elastic GW amplitudes (ψi+ψk → ψi+ψk). i,k=1,2.

For initial p(p̄)−p we have A1,2 = A2,1. I shall follow the GLM definition, in which

the mass distribution associated with ΨD is not defined.

The elastic, SD and DD amplitudes in a 2 channel GW model are:

ael(s, b) = i{α4A1,1 + 2α2β2A1,2 + β4A2,2},

asd(s, b) = iαβ{−α2A1,1 + (α2 − β2)A1,2 + β2A2,2},

add(s, b) = iα2β2{A1,1 − 2A1,2 + A2,2},

Ai,k(s, b) =
(

1 − e
1
2Ωi,k(s,b)

)

≤ 1.



GW mechanism changes the structure of s-unitarity below saturation.

• In the GW sector we obtain the Pumplin bound: σel + σGWdiff ≤
1
2σtot.

σGWdiff is the sum of the GW soft diffractive cross sections.

• Below saturation, σel ≤
1
2σtot − σGWdiff and σinel ≥

1
2σtot + σGWdiff .

• ael(s, b) = 1, when and only when, A1,1(s, b) = A1,2(s, b) = A2,2(s, b) = 1.

• When ael(s, b) = 1, all diffractive amplitudes at the same (s,b) vanish.

• As we shall see, there is a distinction between GW and non GW diffraction.

Regardless, GW saturation signatures are valid also in the non GW sector.

• As we saw, the saturation signature, σel = σinel = 1
2σtot, in a multi channel

calculation is coupled to σdiff = 0. Consequently, prior to saturation the

diffractive cross sections stop growing and start to decrease with energy.

This is a clear signature preceding saturation.



CROSSED CHANNELED UNITARITY

Mueller(1971) applied 3 body unitarity to equate the cross section of

a + b→ M 2
sd + b to the triple Regge diagram a + b + b̄→ a + b + b̄. shown above.

The signature of this presentation is a triple vertex with a leading 3IP term.

The 3IP approximation is valid when,
m2

p

M2
sd

<< 1 and
M2

sd
s

<< 1.

The leading energy/mass dependences are dσ3IP

dt dM2
sd

∝ s2∆IP ( 1
M2

sd

)1+∆IP .

Mueller’s 3IP approximation for non GW diffraction is the lowest order of

t-channel multi IP interactions, which induce compatibility with t-channel

unitarity.



a) b)

Recall that unitarity screening of GW (”low mass”) diffraction is carried out

explicitly by eikonalization, while the screening of non GW (”high mass”)

diffraction is carried out by the survival probability (to be discussed).

The figure above shows the IP Green function. Multi IP interactions are

summed differently in the various IP models.

Note the analogy with QED renormalization:

a) Enhanced diagrams, present the renormalization of the propagator.

b) Semi enhanced diagrams, present the pIPp vertex renormalization.



SURVIVAL PROBABILITY

The experimental signature of a IP exchanged reaction is a large rapidity gap

(LRG), devoid of hadrons in the η − φ Lego plot, η = −ln(tanθ
2
).

S2, the LRG survival probability, is a unitarity induced suppression factor of

non GW diffraction, soft or hard: S2 = σscreeneddiff /σnonscreeneddiff .

It is the probability that the LRG signature will not be filled by debris

(partons and/or hadrons) originating from either the s-channel re-scatterings

of the spectator partons, or by the t-channel multi IP interactions.

Denote the gap survival factor initiated by s-channel eikonalization S2
eik, and

the one initiated by t-channel multi IP interactions, S2
enh.

The eikonal re-scatterings of the incoming projectiles are summed over (i,k).

S2 is obtained from a convolution of S2
eik and S2

enh.

A simpler, reasonable approximation, is S2 = S2
eik · S

2
enh.



THE PARTONIC POMERON

Current IP models differ in details, but have in common a relatively large

adjusted input ∆IP and a diminishing α′
IP .

The exceedingly small fitted α′
IP implies a partonic description of the IP which

leads to a pQCD interpretation.

The microscopic sub structure of the IP is obtained from Gribov’s partonic

interpretation of Regge theory, in which the slope of the IP trajectory is related

to the mean transverse momentum of the partonic dipoles constructing the

Pomeron and, consequently, the running QCD coupling:

α′
IP ∝ 1/ < pt >

2, αS ∝ π/ln
(

< p2
t > /Λ2

QCD

)

<< 1.

We obtain a single IP with hardness depending on external conditions.

This is a non trivial relation as the soft IP is a simple moving pole in J-plane,

while, the BFKL hard IP is a branch cut approximated, though, as a simple

pole with ∆IP = 0.2 − 0.3, α′
IP = 0.



GLM and KMR models are rooted in Gribov’s partonic IP theory with a hard

pQCD IP input. It is softened by unitarity screening (GLM), or the decrease

of its partons’ transverse momentum (KMR).

An added bonus of the GLM formalism is its compatibility with N=4 SYM.

GLM and KMR models have a bound of validity, at 60(GLM) and 100(KMR)

TeV, implied by their approximations. Consequently, as attractive as updated

IP models are, we can not utilize them above 100 TeV.

To this end, the only available models are single channel, most of which have a

logarithmic parametrization input. The main deficiency of such models is that

while they provide a good reproduction of the available total and elastic data,

their predictions at higher energies are questionable since diffractive channels

and t-channel screening are not included.



The single IP picture suggested by the updated IP models implies a smooth

transition from the input hard IP to a soft IP . This picture is supported by the

the HERA dependence of λ = ∆IP on Q2 shown in the figure above.



MODEL PREDICTIONS

Updated Pomeron models depend on the adjustment of many free parameters

while the data base they are designed to reproduce is relatively small. This

problem has been addressed differently in each of the relevant models.

In the following I shall present the output of the GLM model and compare it

with the available data in the ISR-AUGER energy range. I shall, also, present

the main outputs of 3 leading models in the TeV-scale.

• GLM and KMR, which are IP models quite similar conceptually, but

different in their approximations and statistical procedures.

• Block and Halzen (BH), which is a representative single channel model

based on a logarithmic parametrization, addressing only the total and elastic

cross sections.
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FIG. 1: A) GLM CROSS SECTIONS



7TeV 14TeV 57TeV 100TeV

GLM KMR GLM KMR GLM GLM KMR

σtot 98.6 97.4 109.0 107.5 130.0 134.0 138.8

σel 24.6 23.8 27.9 27.2 34.8 37.5 38.1

σGW
sd

10.7 7.3 11.5 8.1 13.0 13.6 10.4

σsd 14.88 17.31 21.68

σGW
dd

6.21 0.9 6.79 1.1 7.95 8.39 1.6

σdd 7.45 8.38 18.14

σel+σGW
diff

σtot
0.42 0.33 0.42 0.34 0.43 0.43 0.36

B) IP MODELS PREDICTED CROSS SECTIONS IN THE TEV-SCALE

GLM and KMR σtot, σel, σsd, σdd at 7-100TeV are presented above.

GLM and KMR σtot and σel are compatible.

KMR confine their diffractive predictions to the GW sector.

GLM GW σsd and σdd are larger than KMR.

In both models, the GW components are compatible with the Pumplin bound.



7TeV 14TeV 57TeV 100TeV

GLM KMR BH GLM KMR BH GLM BH GLM KMR BH

σtot 98.6 97.4 95.4 109.0 107.5 107.3 130.0 134.8 139.0 138.8 147.1

σinel 74.0 73.6 69.0 81.1 80.3 76.3 95.2 92.9 101.5 100.7 100.0

σinel

σtot
0.75 0.76 0.72 0.74 0.75 0.71 0.73 0.70 0.73 0.73 0.68

C) UNITARITY SATURATION

The possibility of unitarity saturation, at increasingly high energy, is coupled

to 2 signatures: i) σinel
σtot

= σel
σtot

=0.5, and ii) σdiff=0.

Checking the available experimental cross section data at the TeV-scale, we

get: σinel/σtot = 0.75(CDF ), 0.75(TOTEM), 0.69(AUGER).

These results are supported by the Table above, which compares the outputs

of GLM, KMR and BH at 7-100 TeV.

The 3 models have compatible σinel
σtot

outputs in the TeV-scale which are

significantly larger than 0.5.



The BH model can be applied at arbitrary high energies. The prediction of

BH at the Planck-scale (1.22·1016TeV ) is, σinel/σtot = 1131mb/2067mb = 0.55, which

is below ael saturation.

The persistent growth of the diffractive cross sections predictions indicates that

saturation will be attained (if at all) well above the TeV-scale.

Note that:

GLM 100 TeV predictions are somewhat above the model validity bound.

The analysis of diffraction, is hindered by different choices of signatures and

bounds!
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Our observation that unitarity saturation of the elastic p-p amplitude can not

be attained at realistic energies, does not infer on the probable possibility of a

black core in the p-p amplitude. This option is model dependent. Indeed, the

IP models differ in their estimate of this possible phenomenon.

In the figure above we show the GLM predicted elastic b-amplitudes. As seen,

the increase of ael(b = 0, s) is very slow, and we expect the p-p elastic amplitude

to develop a black core at W ≥ 60TeV .


