Mathematica Workshop Assignment 1

- (1) Look up the N function. Use it to evaluate the following numbers to 30 digits:
 - (a) $e^{\pi^{1/2}} \ln(128!)$
 - (b) $\cos(e^{32})$
- (2) Compute 50! (that's 50 factorial). Now, evaluate it to 5 digits using the function N. Notice that even though 50! is an integer, applying N on it represents it as a real number. This is true even if you use enough digits of precision. Try it with the integer 1 using 10 digits of precision.
- (3) Which is bigger: e^{π} or π^e ? Rather than numerically evaluating the two expressions and then comparing the resulting numbers yourself, try having Mathematica compare them by using an inequality to derive a truth value (for instance, 1 < 2 returns True). Also try testing the following equality (which is false): e = 2.718281828459. (Note that = stands for assignment and == stands for equal in Mathematica.) Can you explain the result? Try looking up Equal for help.
- (4) Look up Expand, Factor, Simplify, and ExpandAll.
 - (a) Fully expand $\frac{(x-a)(x-b)}{(x-c)(x-d)}$ and then factor the result to recover the original input.
 - (b) Fully expand $(x + y)^2 + (x + y)^{-2}$. Then recover the initial result.

Finally transform it into a single fraction.

- (5) Look up the D function for differentation. Evaluate the following expressions:

 - (a) $\frac{d}{dx}(x^y)$ (b) $\frac{d}{dy}(x^y)$ (c) $\frac{d}{dx}f(x)g(x)$ (d) $\frac{d}{dx}f(g(x))$

Notice that for the last two expressions *Mathematica* returns the product rule and the chain rule for differentiation.

- (6) Let $u = e^x \cos y$. Verify the following:

 - (a) $\frac{d^2 u}{dx dy} = \frac{d^2 u}{dy dx}$ (b) $\frac{d^2 u}{dx^2} + \frac{d^2 u}{dy^2} = 0$
- (7) Look up the Integrate function. Evaluate the following expressions:
 - (a) $\int x^y dx$
 - (b) $\int x^y dy$
 - (c) $\int x^2 e^{-x} \cos(x) dx$
 - (d) $\int_0^1 x^2 (1-x)^3 dx$

Verify the results of the first three parts by checking that differentiation returns the integrands.

Mathematica Workshop Assignment 2

- (1) Look up ExpToTrig and TrigToExp. Check the following formulas by applying the appropriate function to the left hand sides of the equations. (Recall that in Mathematica, we use I rather than i to represent the square root of -1.)
 - (a) $e^{iz} = \cos z + i \sin z$

 - (b) $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ (c) $\sin z = \frac{e^{iz} e^{-iz}}{2}$
- (2) Use TrigExpand to find formulas for $\cos(5\theta)$ and $\sin(5\theta)$ in terms of $\cos\theta$ and $\sin\theta$. You can also derive trig identities such as the one involving cos(x + y).
- (3) Look up the Series function. Find the third-order Taylor series about x = 0 for the following functions:
 - (a) f(x)
 - (b) f(g(x))
 - (c) arctanh(x)
 - (d) $(1+x)^n$
 - (e) $\int_0^x e^{-t^2} dt$
- (4) Look up the Plot function. Then plot the following functions:
 - (a) $\sin(1/x)$ for $x \in (-1, 1)$
 - (b) $\sin(x)\cos(2x)\sin(3x)\cos(4x)$ for $x \in (0, \pi)$
 - (c) $e^{-x} \cos(2x)$ for $x \in (0,\pi)$
- (5) Look up section 1.7.1 of the Mathematica book on defining functions. It gives the squaring function as an example: £[$x_1 := x^2$. Let phi = $\frac{1+\sqrt{5}}{2}$ and define a function fib(n) to be $\frac{1}{\sqrt{5}}$ (phi^n - (-1/phi)^n). What are the values of this function for n from 0 to 10? They should be integers.
- (6) Look up the ReplaceAll function. It is usually used as an operator (/,) consisting of a slash and then a period. Here is an example: Sin[x]/.x->5 evaluates Sin[5]. Define a variable fib2 to be the same expression as above:
- $\frac{1}{\sqrt{5}}$ (phi^n (-1/phi)^n) where phi = $\frac{1+\sqrt{5}}{2}$. Now you can evaluate the expression by substituting for n in fib2. Do so for some values between 0 and 10 and make sure they agree with the values from the last problem.
- (7) Look up the Solve and FindRoot functions. Find the roots of the equation $x^5 + x + 1 = 0$. You can also evaluate them numerically to see more comprehensible results. Compute the sum and product of the roots; how do these relate to the equation? Now try finding the roots of $x^5 + x + 3 = 0$. Mathematica cannot find them symbolically but can approximate them.

Mathematica Workshop Assignment 3

- (1) Look up NIntegrate. Numerically evaluate $\int_0^1 \int_0^1 \int_0^1 \frac{1}{(1+x^2+y^2+z^2)^2} dx dy dz$.
- (2) Read about lists (and vectors and matrices) in section 1.8 of the *Mathematica* book. Also look up the functions Det, Inverse, and Eigenvalues. Consider the general 2-by-2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Find its determinant, inverse, and eigenvalues.
- (3) Look up DSolve and follow the link to the *Mathematica* book for more information. Consider the differential equation $y''(x) + k^2 y(x) = 0$.
 - (a) Solve the equation for the general solution.
 - (b) Solve it with the initial conditions y(0) = y0 and y'(0) = v0
 - (c) Solve it with the boundary conditions y(0) = y0 and y(1) = y1
- (4) Look up NDSolve and follow the link to the *Mathematica* book for more information. Solve the differential equation $y'(x) 2\sin(x) y(x) = 0$ with y(0) = 1. Evaluate y(x = 8). Plot the solution in the interval (0, 10).
- (5) Solve the nonlinear equation for the pendulum

$$\frac{d^2}{dt^2}\,\theta(t) + \frac{g}{l}\,\sin\theta(t) = 0$$

for g/l = 1 and for time t from 0 to 20. For initial conditions, choose $\theta(0) = \pi/2$ and $\theta'(0) = 0$. Plot the solution. Superimpose it with the plot of the solution for the linear equation that is good for small oscillations:

$$\frac{d^2}{dt^2}\,\theta(t) + \frac{g}{l}\,\theta(t) = 0.$$

- (6) Look up the package Calculus Vector Analysis in the Help menu under Add Ons, Standard Packages. Load the package. Work in Cartesian coordinates unless otherwise noted.
- (a) Let $f = x^2 y + xz$. Find its gradient. Find the directional derivative of f at (1, 2, -1) in the unit direction parallel to the vector (2, -2, 1). Find the Laplacian of f.
 - (b) Let V = (x, y, z). Find its divergence and curl.
 - (c) Calculate the volume contained by a sphere in 3-space using spherical coordinates.
- (d) Find the Jacobian determinant for going from spherical to Cartesian coordinates and from cylindrical to Cartesian coordinates. Do they look familiar?