

pB11-reactor: trends and physics issues

S.Putvinski For TAE team

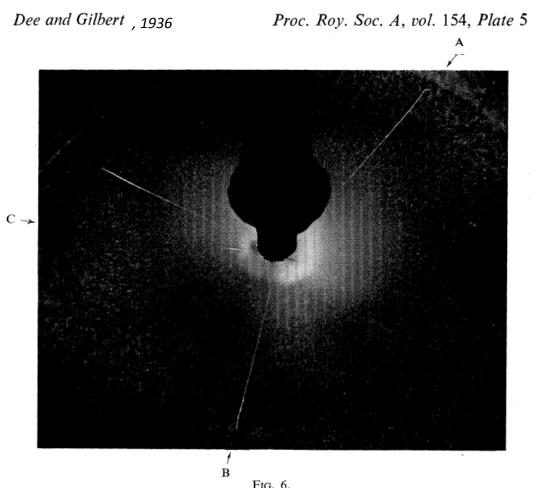
OUTLINE

- New cross section for pB¹¹
- Optimization of plasma and device parameters
- Physics issues for reactor
 - Gas/recycling control
 - Plasma fueling
 - Ash control requirements
 - Energy conversion

TAE goal is development of pB¹¹ fusion

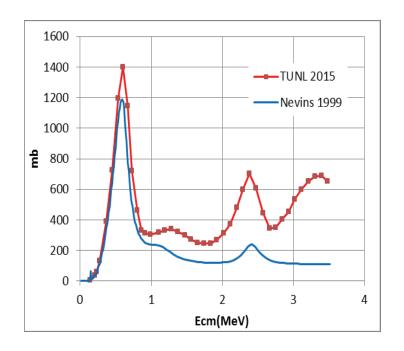
${}^{1}H + {}^{11}B = {}^{4}He + {}^{4}He + {}^{4}He$

Advantages:


- No neutrons (almost), no neutron damage of the wall
- No Tritium breeding is required
- Fuel is benign and widely available (¹¹B abundance 80%)
- Low activation of plasma facing components

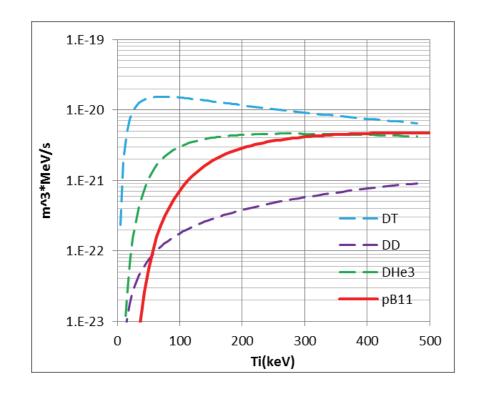
Difficulties:

- High plasma temperature is required
- The required $n\tau$ is larger than for other fuels
- Sensitive to He ash


pB¹¹ cross section and α spectrum has a long history

The most cited study is: H. Becker, C. Rolfs, H. Trautvetter, Z. Phys. A 327 (1987) 341.

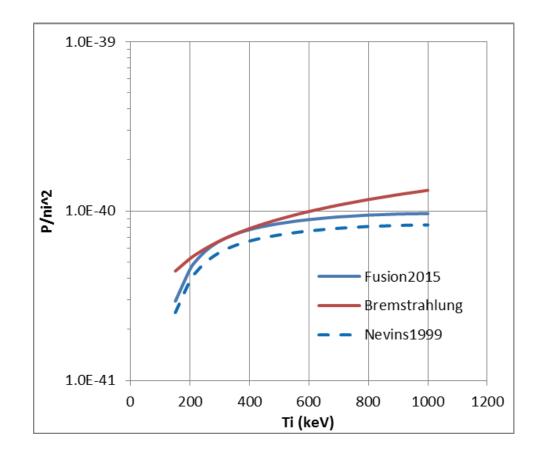
New pB¹¹ cross sections from TUNL


M.C.Spraker, et al. J. Fusion Energy, 2011

S.Stave, et al., Phys. Let. B, 696(2011)26

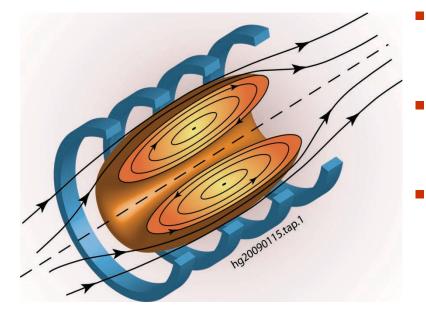
"Updated reaction rate calculations of pB11B", M.H. Sikora,H.R. Weller, *Duke University and TUNL*, June, 2015

- pB¹¹ cross section have been re-measured at TUNL facility (uncertainty 3.5%). It is higher than previously assumed
- α-particle spectrum is also different from widely accepted (after H. Becker, et al., Z. Phys. A 327 (1987) 341)


pB¹¹ fuel has good reactivity

- Maximum fuel reactivity, <σv>*E_{fusion}, of pB¹¹ is high:
 - Only 3 times less than DT,
 - Comparable with DHe³,
 - 5 time higher than DD

pB11 fuel requires higher temperature to achieve high reactivity


pB11 can have higher Q than previously concluded

- Ignition of pB11 fuel is possible with new cross sections
- Optimum ion temperature is in the range 200-400 keV

Neutral Beam Driven Field Reversed Configuration

- FRC opens a unique pass to high temperature plasma
- Very low magnetic field -> low synchrotron radiation
- Confinement scaling predicts plasma confinement time increases with plasma temperature

$$n\tau \sim (rB)^{\alpha}T^{\gamma}$$

Two step optimization of design point

Optimization of plasma parameters to estimate Q

Optimization of device parameters

OD model

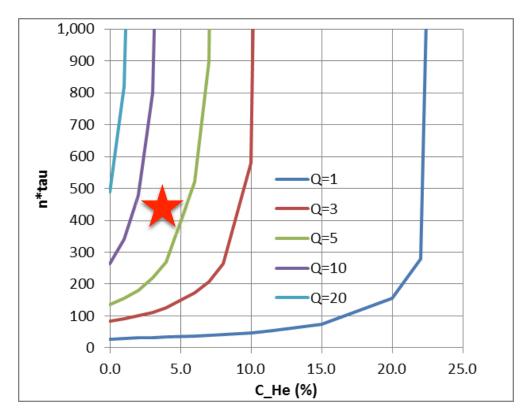
- Power balance equations for ions and electrons
- Total power balance to evaluate NB power:

$$P_{fus} + P_{NB} = P_{brem} + P_{conv}$$

Electron power balance to evaluate T_e:

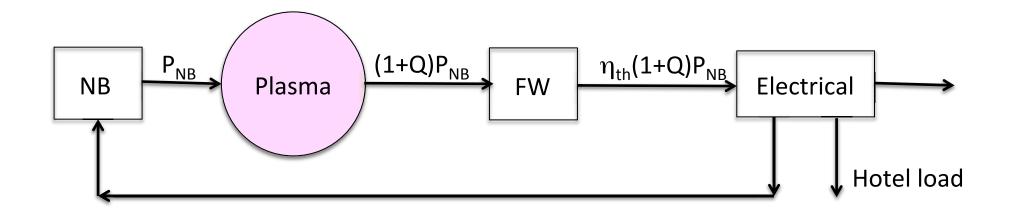
$$P_{fus,e} + P_{aux,e} + P_{ie} = P_{brem} + P_{conv,e}$$

• Convective loss: $P_{conv} = n\eta T/\tau_p$ with $\eta_i = 1.5$, $\eta_e = 5.5$



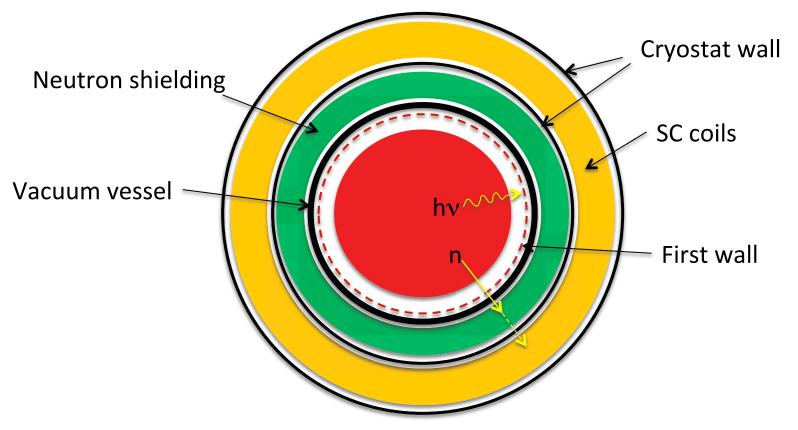
Fusion gain, Q

- All powers ~ n_i² -> density drops from balance equations
- Essential plasma parameters
 - Ion temperature, T_i
 - Boron concentration, $C_B = n_B/n_i$
 - He ash concentration, C_{He} = n_{He}/n_i
 - n_iτ_p
- T_i and C_B are optimized to maximize $Q = P_{fus}/P_{aux}$
- Optimum values: T_i ~ 330 keV, C_B ~ 0.12 -0.14.


Maximum Q of pB11 fuel vs $n\tau_p$ and C_{He}

- There is lethal He concentration, C_{He}, for each Q
- Ignition is possible but requires very high $n\tau_{p}$

Q = P_{fus}/P_{NB} > 3 is required for Plasma Energy Generator (PEG)



$$P_{el} = P_{NB} \{ (Q+1)\eta_{th} - 1/\eta_{NB} - \eta_{hotel} \}$$

To get net electrical power Q > 3 (at $\eta_{th} = 40\%$, $\eta_{NB} = 0.7$, $\eta_{hotel} = 0.15$)

Optimization of PEG device

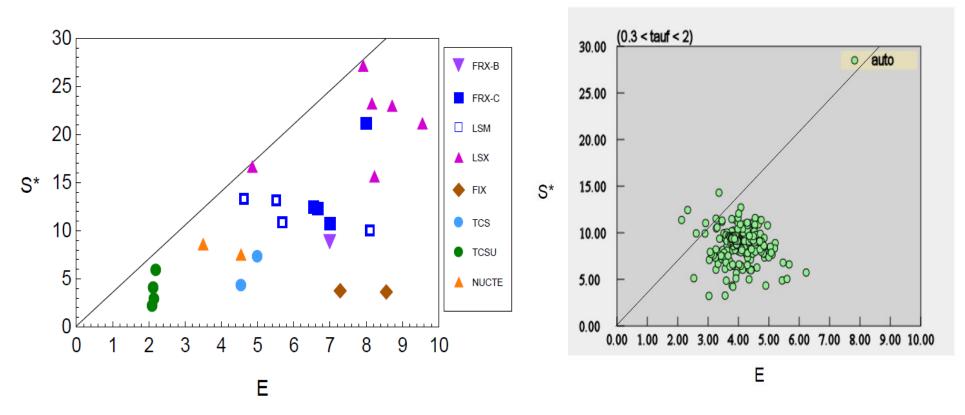
- 80% of fusion power in form of 100-200 keV photons from Bremstrahlung
- 0.1% of fusion power in from of 1-2 MeV neutron from secondary reaction α(B¹¹,n)N¹⁴
- Constrain: Δ = shielding + other shells + gaps ~ 0.4-0.5 m

Optimization of PEG device

• At fixed temperature $n \sim B^2$ and fusion power scales as:

$$P_{fus} \sim V_{pl} n^2 \sim r_s^3 n^2 E \sim B^4 r_s^3 E$$

- Increase of magnetic field improves economics
- Field is limited by SC technology
- Plasma radius, $r_s > 2\Delta$, for efficient use of magnetic field



Stability constrain S*/E

- Traditional FRC's have density limit S*/E < 3.5 S*/E~ $r_s/\rho_L E \sim r_s B/ET^{1/2} \sim n^{1/2}/E$
- Economics drives to higher fusion power density, p_{fus} ~ n²,
 i.e. to density limit
- TAE confinement scaling predicts $n\tau_p \sim rTB \sim S^*T$
- The higher S* -> the larger n\u03c6, the larger power density -> the better economics
- Reactor shall operate close to the density limit. Plasmas with large elongation are preferable for the reactor

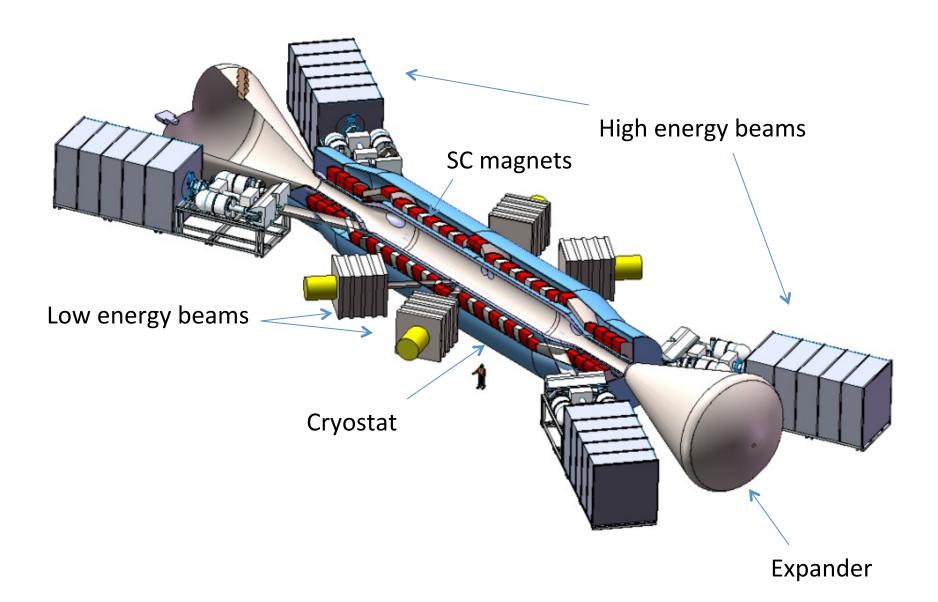
Plasma stability limit

- Tilt mode stability S*/E < 3.5</p>
- Present database limited by E < 10, S* < 27</p>
- NB driven FRC's with high pressure of beam ions are expected to be more stable.

DEMO-lite, DEMO-E, and Commercial PEG

	DEMO -lite	DEMO-E	CPEG
Plasma radius, rs (m)	0.80	1.20	1.25
Magnetic field (T)	6.0	6.0	8.0
Fusion power (MW)	40	200	1000
Q	3	5.20	7.00
NB power in plasma (MW)	40	40	140
Net electrical power (MW)	NA	34	380
Required $n\tau_p$ (10 ²¹ s/m ³)	10	30	40
Confinement margin for TAE scaling ^{*)}	5.6	5.2	6.8
Ash concentration (%)	<10	4.00	3.00

^{*)}Confinement margin = τ_p (scaling)/ τ_p (required)



DEMO-lite (ITER type)

- Demonstration of Q > 1(3) with pB¹¹ fuel at pulse length up to 500 s
- No electrical power production
- Does not require high efficiency of NB's
- Cold, water cooled wall
- Assumed parallel development of efficient NB's, hot wall technology, direct energy convertors, etc

DEMO-lite

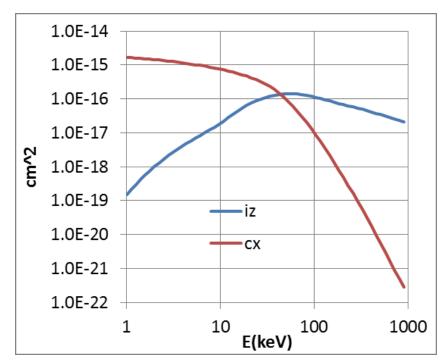
DEMO-lite plasma parameters

Q	3	1
Required $n\tau_p$ (s/m^3)	1.0E+22	4.5E+21
Ash concentration (%)	5	10
lon density, n _i (10^20m-3)	1.42	1.44
Fusion power (MW)	45	44
Radiation power (MW)	49	49
Convective loss (MW)	12	38
Proton beam power (MW)	10.8	22.5
Boron beam power (MW)	4.3	5.8
RF power (MW)	0	15
Confinement time (s)	100	31
Confinement margin ^{*)}	5.6	18
S*/E	3	3
S*	43	43

^{*)}Confinement margin = τ_p (scaling)/ τ_p (required)

Physics issues for the reactor

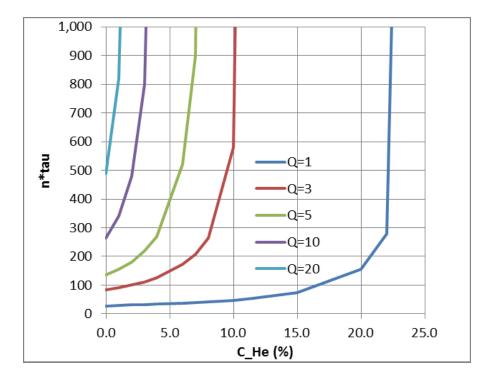
- Gas/recycling control
- Plasma fueling
- Ash control requirements
- Energy conversion


Core plasma fueling is required

- Hydrogen can be fueled solely by NBs
- Boron core fueling must to be developed. Viable candidates are
 - Injection of Compact Toroids (CT)
 - Boron ion beams (developed earlier by TAE)
 - Boron NB's 500-700 keV to penetrate into core (based positive ion technology)
- Tests with two component plasmas at C-2W

Gas handling is much easier in FTC

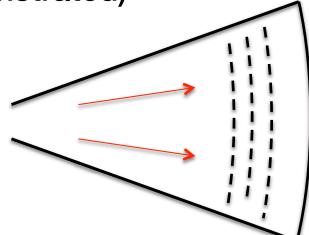
- At T ~ 300 keV CX cross section is very small. No CX loss for NB or hot plasmas
- Neutral ionization length is < 1 cm. No neutral can penetrate in SOL plasma


Gas handling in divertors

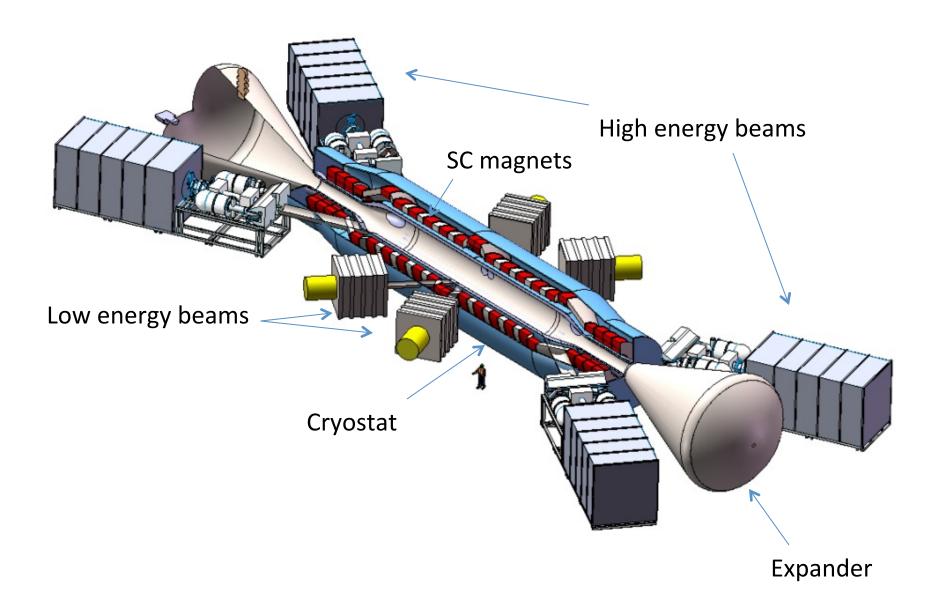
Fueling and exhaust composition

	Fueling (%)	Exhaust (%)
Protons	67	29
Borons	33	5
He	0	66

- Total exhaust rate G ~ 10²⁰ 1/s
- It is much easier to achieve required gas condition
 - The required pumping speed ~250 m³/s (compare with 2000 m³/s in C2W!)
 - Predominantly He with Hydrogen and Boron impurities


Ash control is critical for pB¹¹

- Without ash control: $C_{He} \sim 70-80\%$ resulting in a very low Q
- It takes about 100 s to build up ash
- High Q requires very efficient ash control
- Required ash concentration < 5%</p>


Energy conversion

- 80% of fusion energy goes to the side wall in form of x-rays (~150keV). Converted in electricity by a thermal cycle (50% efficiency)
- Convective energy loss into expanders (20% of fusion power) can be converted electrostatically in expanders
- Ions are accelerated by gradB and electric potential in the convertors to $E_{\parallel} \sim 1.2$ -1.5 MeV with $E_{perp} < 10 \text{ keV}$
- Technology developed for mirror machines in 70th (85% efficiency demonstrated)

DEMO-lite

Summary

- Higher Q ~ 6-8 is possible with new cross sections
- Many physics and engineering challenges to address but no stoppers
- C-2W will address some of the critical physics issues. A parallel R&D work is equally important

