Suppressed Ion-Scale Turbulence and Critical Density Gradient in the C-2 Field-Reversed Configuration

L. Schmitz (UCLA, TAE) with C. Lau, D. Fulton, I. Holod, Z. Lin, (UCI), T. Tajima, M. Binderbauer, H. Gota, B. Deng, J. Douglass (TAE) and the TAE Team

Norman Rostoker Memorial Symposium August 24-25, 2015 Irvine, CA

Goal of FRC Turbulence/Transport Studies: Active Profile, Boundary, and Transport Control

Outline

Introduction

Experimental fluctuation/turbulence studies in the C-2 FRC

- Gyrokinetic Modeling: FRC core and boundary fluctuations
- Critical gradients, core/SOL transition and barrier effects

Summary

FRC Geometry / C-2 Parameters

Typical C-2 Parameters

	FRC Core	SOL
Density (10 ¹⁹ m ⁻³)	2-4	0.5-2
T _i (eV)	600-1000	≤250
T _e (eV)	≤ 150	30-80
B _e (Gauss)		≤ 1200
Sep. Radius (cm)	35-45	
Neutral Beam Power	≤4 MW	

FRC Radial and Parallel Transport

Schematic and Principle of Doppler Backscattering Diagnostic (DBS)

ñ/n: local density fluctuation level ñ(r)/n(r) vs. k_{θ} - here k_{θ} ~ 0.5-12 cm⁻¹ ($k_{\theta}\rho_{s}$ ~1-40) **ExB velocity** from Doppler shift of backscattered signal: $\omega_{Doppler} = v_{turb} k_{\theta} \sim v_{ExB} k_{\theta}$

•
$$v_{ExB} \sim \omega_{Doppler} / 2k$$

Radial Density Profile and DBS Probing Radii

Density Fluctuations Peak Outside Separatrix Very Low Fluctuations in FRC Core

- Fluctuation levels peak outside the separatrix
- Very low fluctuation levels in the FRC core

FRC Core Plasma: Unique Inverted Wavenumber Spectrum

- FRC Core: Decreased Fluctuations; Inverted Spectrum at low kρ_s
- Spectrum extends to kρ_e > 0.3: Only unstable electron modes!

- SOL: Ion and electron-scale modes
- Broad exponential spectrum: (ñ/n)² ~ exp (-0.32 k_θρ_s)

Outline

Introduction

Experimental fluctuation/turbulence studies in the C-2 FRC

Gyrokinetic Modeling: FRC core and boundary fluctuations

Critical gradients, core/SOL transition and barrier effects

Summary

GTC (Gyrokinetic Toroidal Code) Simulations

First-principles, integrated microturbulence simulations; adapted for FRC geometry (Boozer coordinates): Useful for predictive modeling and reduced transport models

Input: Experimental (measured) or calculated FRC equilibria

Gyrokinetic or kinetic ions, kinetic electrons Local/global simulations, electromagnetic effects Fokker-Planck-collisions

Presented here: Results from linear, electrostatic flux-tube simulations, separate calculations for the FRC core and SOL

Future work: Coupled SOL/core, kinetic ions, nonlinear runs

Simulation Geometry, Parameters

Core and SOL local simulation: Realistic C-2 Equilibrium Periodic boundary conditions in z and θ Gyrokinetic ions (D) and electrons, $v_{e,i}$ *=v/ $v_{transit}$ <<1

FRC-Core: Ion Modes Suppressed via FLR Effects, only Electron Modes Unstable

 Spectrum extends to k_θρ_e > 0.3: matches linearly unstable k-range Dominant electron modes; ion modes weak/absent due to FLR* effects: *Rosenbluth, Krall and Rostoker, NF Suppl. pt1, 143 (1962)

Ballooning Structure with/without Collisions

L. Schmitz Norman Rostoker Memorial Symposium B[T] 0.05

0.04

0.03

0.02

0.01

Local Gyrokinetic SOL Simulations

SOL: Exponential Wavenumber Spectrum; Unstable Ion Modes

Driving Gradients Differ in FRC Core and SOL

Outline

Introduction

Experimental fluctuation/turbulence studies in the C-2 FRC

Gyrokinetic Modeling: FRC core and boundary fluctuations

Critical gradients, core/SOL transition and barrier effects

Summary

ExB Shear Increases the SOL Critical Gradient

Density profile time history

- Radial density gradient increases after ~0.5 ms (SOL is depleted)
- SOL fluctuation increase once critical density gradient is exceeded
- Fluctuation decrease once ExB shearing rate increases exceeds the turbulence decorrelation rate:

 $ω_{E \times B} > Δω_D$ (Biglari, Diamond, Terry, Phys. Fluids B1,1989)

The radial correlation length decreases with increasing ExB shear

TRI ALPHA ENERGY

Measured Critical Gradient and Calculated Core Linear Threshold from GTC

Measured SOL Critical Density Gradient Similar to Predicted Linear Instability Threshold

Core-SOL Coupling: Evidence for Radial Transport Barrier

- Radial turbulence correlation length $λ_r \le ρ_i$
- No evidence of sustained extended radial structures or streamers

 λ_r reduced just outside R_s : Evidence of radial transport barrier.

Shear decorrelation just outside the separatrix:

$$\omega_{E\times B} > \Delta \omega_{D}$$

(Biglari, Diamond, Terry, Phys. Fluids B1,1989)

Summary

- C-2 FRC core: Ion modes stable due to FLR effect; only electron modes unstable (driven by electron temperature gradient and curvature)
- Moderate, larger-scale ion-mode SOL turbulence observed/predicted; driven by the radial density gradient.
- Strong evidence of radial transport barrier in the SOL.
 No experimental evidence of sustained large-scale radial structures/streamers (radial correlation length λ_r < ρ_i)
- Observed critical SOL density gradient compares well with predicted linear instability threshold; compatible with required reactor SOL width

Thank you for your attention!

