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Content

High intensity frontier of lasers: large energy; high fluence;
ultrashort: Following Gerard’s talk

2-step Laser Conversion (Gerard’s talk):
1PW Opt. Laser = 10PW Opt. Laser = 1EW X-ray Laser
30fs, 40J, 1eV 3fs, 30J, 1eV 0.3as, 0.3J, 10keV

LWFA at solid density (Porous nanomaterials)
10keV photon: n_, = 10%° /cc---- solid density n =1023/cc
wakefield energy gain = 2mc? a, (n_./n) = a,? TeV

Reaching out to X-ray crystal optics and nanotechnology
X-ray (y-ray) optics, nonlinear optics in vacuum----self-focus;
porous nano materials

Nature (Blackhole jets): create extremely strong EM pulse
provides robust extreme acceleration (ZeV) and y-ray bursts



Laser Wakefield (LWFA):
nonlinear optics in plasma
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Theory of wakefield toward extreme energy
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Earlier works of X-ray crystal acceleration

-X-ray optics and fields (Tajima et al. PRL,1987)

-Nanocrystal hole for particle propagation (Newberger, Tajima, et al. 1989, AAC; PR,..)
-particle transport in the crystal (Tajima et al. 1990, PA)
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Abstract A Fokker-Planck model of charged particle transport
in crystal channels which includes the effect of strong

accelerating -gradients has been developed? for application to
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An ultimate linac structure is realized by an appropriate crystal lattice (superlattice) that serves as a

PACS sumbers: 52.75.Di, 41.80.~y. 61 .30 Mk

An approach to the attainment of ever higher energies
by extrapolating the linac to higher accelerating fields,
higher frequencies, and finer structures is prompted by
several considerations, including the luminosity require-
ment which demands the radius of the colliding-beam
spot be proportionately small at high energies: a,
=x " "Phe(fN) T12Pe T where f, WV, P, and ¢ are the
duty cycle, total number of events, beam power, and
beam energy, respectively. This approach, however, en-
counters a physical barrier when the photon energy be-
comes of the order hw=ha,=nc a*=30 ¢V (a=the
fine-structure constant), corresponding to wavelength
(scale length) 2==500 A: The metallic wall begins to ab-
sorb the photon strongly. where w, is the plasma fre-
quency corresponding 1o the crystal electron density. In
addition, since the wall becomes not perfectly conducting
for hw= mec’a’, the longitudinal component of ficlds
becomes small and the photon goes almost straight into
the wall {a soft-wall regime). As the photon energy hw
much exceeds me*a® and becomes 2 mie *a, however, the
metal now ceases to be opaque. The mean free path of
the photon is given by Bethe-Bloch theory as /, = (3/2%x)
xag ‘e 'n : :

"he/ZR)"?, where ag is the Bohr ra-
dius, n the electron density, Z .y the effective charge of
the lattice ion, and A the Rydberg energy

In the present concept the photon energy is taken at
the hard x-ray range of hw=mc e and the linac struc-
ture is replaced by a crystal structure, e.g., silicon or
GaAs-AlAs. (A similar bold endecavor was apparently
undertaken by Hofstadter already in 1968.') Here the
crystal uxis provides the channel through which accel-

erated particles propagate with minimum scaltering
(channeling®) and the x rays are transmitted via the
Bormann effect (anomalous transmission™*) when the x
rays (wavelength &) are injected in the xz plane with a

“irised waveguide for x rays. High-energy (=40 keV) x

5 are inpected into the crystal at the

angle 10 cause Bormann anomalous transmission, yiclding slow-wave accelerating fields. Particles
(e.g., muons) are channeled along the crystal axis,

where b is the transverse lattice constant and later @ the
longitudinal lattice constant (@=b) (see Fig. 1). The
row of lattice ions (perhaps with inner-shell electrons)
constitutes the “waveguide™ wall for x rays, while they
also act as periodic irises 1o generate slow waves. A su-
perlattice® such as GeSiy-.S; (in which the relative
concentration ¢ ranges from 0 to | over 100 A or longer
in the longitudinal = direction) brings in an additional
freedom in the crystal structure and provides a small
Brillouin wave number &k, =2x/s with s being the period-
icity length. We demand that the x-ray light in the crys-
tal channel walls becomes a slow wave and satisfies the
high-energy acceleration condition

wf(k, +k)=¢, (2)

where @ and k; are the light frequency and longitudinal
wave number,

The encrgy loss of moving particles in matter is due to
ionization, bremsstirahlung, and nuclear collisions. We
can show® that a channeled high-energy particle moving
fast in the z direction oscillates in the xy plane according
to the Hamiltonian
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X-ray LWFA in crystal suggested

X-ray Laser Wakefield Accelerator in crystal:
LWFA pump-depletion length:

Lo ™ Oy (c/w,) (wy/w), ), (a,=eE, /mcw,)

LWFA energy gain
gy =2a,>mc?(n_/n,),

Here, n_,=10%, n,= 1023, a,~ 30 (pancake laser pulse with the Schwinger intensity, with
focal radius assumed the same as optical laser radius. Could be greater if we
further focus by optics, or nonlinearity, or if we not limit the intensity at
Schwinger. see below)

The vacuum self-focus power threshold
P..= (45/14) cEZ Aol (E5 : Schwinger field)

Schwinger fiber acceleration in vacuum:
(no surface, no breakdown)

/l/%///‘@l\\ X Vacuum photon dispersion relation with focus
w=cV(kl+<k,,>>)

perp

/\/\ The vacuum dispersion relation with fiber self-modulation
/’“\/"'\

w/(k,+k)=c  (k,=21/5s)

W (Tajima and Cavenago, PRL, 1987)



Porous Nanomaterial

Porous alimina on Si substrate
Nanotech. 15, 833 (2004)




Y. Shin (2014)

Beam-driven wakefield on a chip
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THEXAC (Transformative
High Energy X-ray Acceleration in Crystal):
Collaboration [UCI, Stanford (SLAC), Fermilab, NIU, EP,

ELI-NP, Aarhus U., LeCosPa] formed
What we’d like to do initially at FACET

* Detect and quantify wakefield excitation in crystal
* SLAC FACET provides dense bunches of positrons
— better channeling than e, less scattering of channeled beam
— dense bunches can excite wakefields
 FACET has a spectrometer or the channeled particles
— wake excitation => energy loss (can detect < 0.1% E-loss)
— the y-ray spectrum should also indicate this.

e Synergy with SLAC FACET E212 (Uggehroj) and ESTest Beam T513
(Wienands)



Wakefield excitation by electron (or positron) beam (vs. by X-ray pulse)

Wakefield Acceleration
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Wakefield excitation and witness bunch that is accelerated

Bunch Head

(Driver)
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In collaboration with E212 (Uggerhoj)

Placement of Crystal

12C T513 stage
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Fermilab efforts on crystal wakefield acceleration

16" Advanced Accelerator Concept Workshop (AAC2014)

R J]r S5

TeV/m Nano-Accelerator
Current Status of CN =Channe£mg Acceleration Expﬂm

INorthern lllinois Center for Accelerator and Detector Development (NICADD), Department of Physics, Northern Illinois University

2Fermi National Accelerator Laboratory (FNAL)



Ultrahigh Energy Cosmic Rays § '°° Flixesist Cosiiio ey
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* Distance:3.4Mpc

 Radio Galaxy
— Nearest
— Brightest radio source

Elliptical Galaxy

Black hole at the center w/
relativistic jets




Formation of extragalactic jets
from black hole accretion disk




Astrophysical wakefield acceleration:
Superintense Alfven Shock in the Blackhole Accretion Disk
toward ZeV Cosmic Rays ( a,~ 10°-1019, large z)

Magnetic field lines
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Wakefield £
VS.

Ponderomotive

Acceleration 0

wavebreak (1D or 2D)
in higher g,
- wakefield
less important

=20

Ponderomotive-driven
Acceleration more
robust (a,>>1)

a, ~ 10610 in AGN BH
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Phys.Rev. STAB, 18, 024401 (2015).
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Comic ray acceleration and y-ray emission

Wmax
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log m EPJ 223, 1113(2014)




E*dN/dE [GeV em 2 57!

Blazar shows anti-correlation

between 7y burst flux and spectral index

Blazar: AO0235+164
M~ 108 M

Sun

Rise time < week (less than a unit),
Period between bursts ~> 10 weeks
Spectral index => 2

Flllx‘pllur(ﬂul?l( ‘s 1:

- all quantitatively consistent with Wakefield theory
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Again, Anti-correlation even in a bigger blazar

Blazar: 3C454.3
M~ 10°M

Sun

Same anti-correlation as
A00235+164

The rise time and burst periods
a lot longer (by an order of
magnitude)

Quantitative agreement and
correct scaling with Blazar mass
(Ebisuzaki/Tajima)
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Conclusions: from zeptoscience to ZeV
A new direction of ultrahigh intensity: zeptosecond lasers
EW 10keV X-rays laser from 1PW optical laser

X-ray LWFA in porous crystal: accelerating gradient 1-10TeV/
cm, accelerating length 1-10m, energy gain per stage PeV; mini-
accelerators (mm-m; portable) for GeV, TeV, PeV (and beyond)

Crystal nanoengineering: s.a. nanoholes, arrays, focus optics

Zeptosecond nano beams of electrons, protons (ions), muons
(neutrinos), coherent y-rays to very high energies over mm to m

Start of zeptoscience; Start of Blazar accelerators

Mother Nature shows LWFA is a ubiquitous natural process of
particles acceleration (i.e. gamma ray bursts (GRB) and cosmic
ray acceleration)

From smallest (nm) wakefield acceleration in (porous) solid to
largest (M Parsec) Blazars (Active Galactic Nuclei--AGN)
acceleration (ZeV)



