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Abstract of the Dissertation 

Inelastic Neutron Scattering Study of the Intermediate Valence 

Compounds CePd3 and YbAl3 

By 

Victor Roberto Fanelli 

Doctor of Philosophy in Physics 

University of California, Irvine, 2009 

Professor Jon M. Lawrence, Chair 

 

CePd3 and YbAl3 are intermediate valence metals. These systems exhibit a renormalized 

Fermi liquid ground state that evolves towards a high temperature local moment regime. 

Much of the physics of these compounds is believed to be captured by the Anderson 

impurity model, however, the Periodic Anderson model is essential for understanding the 

coherent ground state.  

The objective of this dissertation is to explore in further detail the spin dynamics of 

intermediate valence compounds and discuss the agreement with the predictions of these 

models. We have performed inelastic neutron scattering measurements on single crystals 

of CePd3 and YbAl3, in order to study the energy spectrum of the spin fluctuations and its 

variation over reciprocal space in both regimes. The momentum transfer (Q) dependence 

should reveal the coherent character of the ground state as well as the spatially localized 

 xv



 xvi

spin fluctuations of the high temperature limit. Since most previous neutron scattering 

experiments on intermediate valence compounds were done in polycrystalline samples, 

determination of the Q-dependence has remained open. 

Our results show that the high-temperature response is Q-independent, with a 

Lorentzian quasielastic energy spectrum with a half width Γ = 26.6 meV for CePd3 and Γ 

= 35 meV for YbAl3. This is in agreement with the Anderson impurity model, that 

predicts local moment behavior in this regime.  

The low temperature magnetic response has the basic Kondo-like behavior expected 

by the impurity model. It shows an inelastic Lorentzian spectrum, with characteristic 

energy E0 = 44 meV and Γ = 32 meV for YbAl3, and E0 = 45 meV and Γ = 43.5 meV for 

CePd3, but unlike the impurity model, it reveals some variation with momentum transfer, 

including intensity maxima at zone boundary Q. However, this Q-dependence is only 15 

to 20 percent, much smaller than that predicted by the Anderson Lattice model. We will 

discuss possible reasons to explain this discrepancy. 

In addition, in the case of YbAl3, we confirmed the existence of a new excitation 

beyond the usual Kondo-like scattering in the low temperature regime at 33 meV, which 

appears to represent a local excitation in the hybridization gap. 

 

 
 



 

 

Chapter 1 

 

Introduction 

 

The purpose of this dissertation is to contribute to the understanding of the properties of 

intermediate valence compounds. We have chosen to focus on the spin dynamics of these 

compounds and to explore this dynamics using neutron scattering techniques. 

Rare earth intermediate valence compounds constitute a classic correlated-electron 

problem of a degree of complexity lower than that of the Heavy Fermion or high 

temperature superconductor compounds. It is believed that much of the physics of these 

compounds can be derived from the Anderson Impurity Model, however key features 

require going beyond this model. In general, it is accepted that the Anderson Lattice 

Model is the natural candidate to extend the understanding of the physics in these 

systems. We will analyze our results and test these models. 

Properties like the magnetic susceptibility, specific heat, valence and spin dynamics 

are dominated by spin fluctuations, for which inelastic neutron scattering is the 

appropriate experimental probe. An acceptable amount of research has been done on 

polycrystalline samples but few experiments have been done on single crystalline 

samples. A complete study should involve the exploration of the spin dynamics as a 

function of both energy and momentum transfer over the reciprocal space, requiring 

1 



single crystalline samples of proper quality and size. Since these have been available only 

during the last few years, we have taken advantage of this opportunity to perform a 

systematic study of the spin dynamics of these compounds. 

In the introductory section we briefly review relevant aspects in the field of 

intermediate valence compounds, in the following section we describe the basic 

phenomenological results. Next, we introduce an overview of the theoretical models and 

their results for the quantities of interest. The final section outlines the objectives and the 

organization of this dissertation. 

  

1.1  General Overview 

 

Rare earth elements have the electronic configuration of a filled xenon core, plus z 

bonding or valence electrons in 5d and 6s states and n electrons in the 4f orbitals, that can 

be represented as (5d6s)z 4f n. The number z of valence electrons can be 2, 3 or 4, and the 

number of 4f electrons ranges between 0 and 14. 

When embedded in a solid environment, rare earth (RE) atoms donate bonding 

electrons to wide bands enhancing the binding energy of the solid, while the remaining 

electrons outside the xenon core are in localized 4f states. The valence state of the RE ion 

is usually an integer value, however, some intermetallic compounds of RE show a 

valence with a non-integral value. 

Usually, the energy separation between two integral valence states, that is, between 

one with a configuration consisting of a number n of 4f electrons and z valence electrons 

and another with (z+1) and (n -1) respectively, is of the order of 5 to 10 eV. However, for 

2 



compounds of elements Ce, Sm, Eu, Tm and Yb, this value can be as small as 0 to 2 eV. 

In this case of nearly degenerate bonding states, an interaction that hybridizes the highly 

localized 4f electrons with the conduction bands, can make the RE ions fluctuate between 

the 4f n and 4f n-1 configurations, where the conduction electrons are hopping on and off 

the rare earth sites. 

The Coulomb interaction between the 4f electrons within these orbitals of relatively 

small radius is large, with values ranging from 5 to 10 eV. The resulting Coulomb 

correlation reduces the effective hybridization or hopping rate, that is, the motion in and 

out of the f orbital is slowed down. This rate is related via the Uncertainty Principle to a 

characteristic energy scale for valence/spin fluctuations (hybridization). The scattering of 

the conduction electrons from these slow valence fluctuations leads to a large value of 

effective mass. As discussed further below in section 1.3, this basic scenario –

hybridization of local 4f states with conduction states in presence of strong on-site 

Coulomb interaction– means that the Kondo/Anderson physics is applicable, and the 

characteristic energy scale is then the Kondo scale kBTK. 

  In these compounds, the ground state is therefore a quantum mechanical admixture 

of the 4f n and 4f n-1 configurations, giving rise to a non-integral occupation of the 4f 

orbitals with the same non-integral value for the valence over the different RE sites. This 

case is referred as a homogeneous intermediate valence (IV) system. (In inhomogeneous 

mixed valence compounds, RE atoms on inequivalent sites have different integral 

valences). 

The IV compounds are part of a larger class of compounds, known as valence 

fluctuation compounds that include the Heavy Fermion compounds. Nevertheless, we 
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will restrict our study to those RE compounds that exhibit a distinctly non integral 

valence. These IV compounds typically have moderately enhanced effective masses and 

characteristic Kondo energies that are large enough that crystal field effects can be 

ignored. These systems display a renormalized Fermi liquid behavior and its crossover to 

local moment behavior, and they will give the opportunity to test the applicability of both 

the Anderson Impurity Model (AIM) and the orbitally degenerate isotropic Anderson 

Lattice Model (ALM), two of the most important ones to explore the electron correlations 

in solids. 

 

1.2   Basic Phenomenological Description 

 

Among the measured properties of IV compounds, two limiting behaviors are observed. 

In the high temperature limit, the RE approaches integral valence (trivalent configuration 

for Ce and Yb IV intermetallic compounds) with a local magnetic moment behavior. At a 

characteristic temperature, there is a crossover to the low temperature limit where the 

experimental features correspond to those of a renormalized Fermi Liquid (FL). 

 

1.2.a  Magnetic Susceptibility, Specific Heat and Valence 

 

In this section we will explore the temperature dependence of the susceptibility, specific 

heat and 4f occupation number, all quantities dependent on the spin fluctuations. As 

examples, the experimental results for CePd3 and YbAl3 are presented. It is interesting to 

show both of these intermetallic compounds since the trivalent Yb ion with 4f13 
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electronic structure is the hole counterpart of the trivalent Ce ion with 4f1 electronic 

structure. 

The static magnetic susceptibility χ shows a broad maximum at a temperature Tmax 

between 120 K and 150 K for YbAl3[1] and CePd3[2], as illustrated in figure 1.1(a) and 

(d). At temperatures higher than Tmax, χ shows a Curie-Weiss behavior χ(T)=CJ/(T+θCW), 

where θCW denotes the Curie-Weiss temperature and the Curie constant CJ is given by 

B
2

B
2

JAVJ k3/)1J(JgNC += μ                                        (1.1) 

where NAV is the Avogadro’s number, gJ is the Landé g-factor, µB is the Bohr magneton, 

J is the total quantum angular momentum and kB is the Boltzmann constant. This is the 

local magnetic moment regime. As the temperature is decreased below Tmax, there is a 

crossover to a Pauli paramagnet behavior.  This corresponds to the low temperature 

regime. 

In the high temperature limit, the RE ion valence z is close to an integral value. For 

instance, in this local moment limit, Ce and Yb ions tend to a trivalent valence state with 

an average 4f occupation number nf tending to unity. For Ce ions, the valence z satisfies z 

= (4-nf), whereas for Yb ions, where the occupation number is defined as the number of 

holes in the otherwise full 4f14 shell, this is z = (2 + nf). As temperature decreases, the 

valence fluctuation increases, leading to a non integral value z, with nf
 < 1 (nf = 0.8 for 

CePd3 and 0.75 for YbAl3). Figure 1.1 (b) and (e) illustrates the occupation number nf, 

determined from the near-edge structure in Yb [1] and in Ce [3] by L3 X-ray absorption 

measurements.  

In a similar way to the magnetic susceptibility, the electronic contribution to the 

specific heat Cm(T), resulting after subtraction of a lattice contribution, shows a broad 
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peak around a temperature of the order of Tmax. This contribution to the specific heat is 

shown in figure 1.1(c), plotted as Cm/T for YbAl3[1]. The value Tmax can therefore be 

associated with the crossover temperature between the two regimes. In addition, a large 

value for the linear coefficient of specific heat γ is observed (approximately 40 mJ/mol-

K2 for YbAl3
 and 30 mJ/mol-K2 for CePd3[4] as shown in figure 1.1(f)), evidencing 

quasiparticles of enhanced effective mass m*. The integrated entropy Sm under the 

Cm(T)/T curve (Fig. 1.1(c)) is on the order of the value for the entropy associated with 

spin fluctuation R ln (2J+1), where R is the universal gas constant and 2J+1 is the 

degeneracy (N) of a total quantum angular moment J. In the case of YbAl3 (J=7/2), the 

value for the entropy at room temperature reaches 60% of the expected value (R ln 8) at 

high temperatures, as illustrated in Figure 1.1(c). From this perspective, this “may be 

called the spin-fluctuation contribution to the entropy by the f electrons” in words of C. 

M. Varma [5]. These general features shown in figure 1.1 are observed in almost all 

metallic IV compounds [6]. 

These measured properties support the picture of a Fermi Liquid ground state.  Both 

the Pauli susceptibility and the linear coefficient of specific heat, being proportional to 

the density of energy states at the Fermi level, are therefore exposing a moderate 

enhancement of the effective mass m* that results from the correlated hybridization of 

the local 4f states with the conduction band. For example, the value for m* for YbAl3 

obtained from other experimental techniques[2,7,8], such as de Haas Van Alphen and 

optical conductivity measurements (section 1.2.c), is between 20 to 30 times relative to 

the bare band mass. 
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Figure 1.1: (a), (d) Magnetic susceptibility and the effective moment Tχ /CJ for 
YbAl3[1] and CePd3[2], respectively; (b), (e) 4f occupation number, measured by L3 
X-ray absorption for YbAl3[1] and CePd3[3], respectively. (c) Magnetic contribution 
to the specific heat plotted as Cm/T and the corresponding entropy for YbAl3[1]; (f) 
C/T vs. T2 for CePd3[4]. A value for γ of 30 J/mol-K2 is obtained by extrapolation 
(red line). The lattice contribution was not subtracted in this case. We have included 
the results of NCA calculations (black lines) for the prediction of the Anderson 
impurity model (section 1.3.a), with parameters given in panels (b) and (e). NCA 
calculations for YbAl3 are from reference [1] and those for CePd3 were performed by 
C. H. Booth[9]. 
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1.2.b   Neutron Scattering 

 

Inelastic neutron scattering (INS) has proven to be one of the most useful experimental 

methods for characterizing intermediate valence compounds. INS probes the excitations 

of solids, like the lattice excitations (phonons), the crystal electric field excitations and 

the spin-orbit interaction, the excitations of a magnetically ordered state (magnons), and 

the spin fluctuations of a paramagnetic state. In particular, the magnetic moment of the 

neutron interacts with the moments of the 4f electrons. After subtracting the contributions 

coming from nuclear scattering, phonons and multiple scattering events, the magnetic 

component of the scattering is obtained. It will be shown later that this part of the 

scattering contains the dissipative (imaginary) component of the dynamic susceptibility 

( )E,Q"
r

χ  which depends on both the energy transfer E and the momentum transfer Q
r

 

between the incident neutrons and the sample. 

Few INS studies have been done on single crystals of IV compounds [10-14] with the 

consequence that we have an incomplete knowledge of the spin dynamics evolution over 

the reciprocal space. On the other hand, the numerous neutron experiments on 

polycrystalline IV compounds [15-17] show a crossover between two different regimes. 

In the high-temperature regime, the energy spectrum of χ”(E) reveals a quasielastic 

scattering with a Lorentzian power function representative of a relaxational spin 

dynamics. The half width Γ of the Lorentzian peak has the same energy scale Γ~ kBTmax 

as the temperature for the maximum observed in both magnetic susceptibility and specific 

heat.  On the other hand, in the low-temperature regime, the energy spectrum changes 

towards a damped inelastic Lorentzian. Figure 1.2 shows the magnetic contribution to the 
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intensity for CePd3 at room temperature and at 7 K. These data are in agreement with a 

Lorentzian-like power spectrum, as it will be explained in chapters 2 and 3. At room 

temperature, this spectrum is quasielastic with a half width Γ of value 26.6 meV, whereas 

at 7 K the spectrum is inelastic 1, centered at 53 meV with Γ about 27 meV. 

However, some discrepancies and controversies exist, mainly due to the disagreement 

in the methods used to subtract the non-magnetic contribution to the scattering [13, 14, 

18]. 
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Figure 1.2: Magnetic contribution to the inelastic neutron scattering spectra from 
measurements on CePd3 using the MAPS spectrometer at ISIS, Rutherford Appleton 
Laboratory, (a) at 300 K (section 3.1.b) and (b) at 7 K (section 2.3.a). Black lines are 
Lorentzian fits to quasi-elastic power spectrum at 300 K and to inelastic spectrum at 7 
K, with parameters given in the panels.  

                                                 
1 These results at 7 K are obtained after averaging over a region in the reciprocal space as explained in 
section 2.3.a. 

9 



1.2.c  Scaling in Intermediate Valence Compounds 

   

A very important property of the IV compounds is that the thermodynamic behavior is a 

universal function of a scaled temperature. That is, the zero-temperature magnetic 

susceptibility χ0, the linear coefficient of the specific heat g, and the energies Γ and E0 

from the spin dynamics spectrum scale as follows: 

1/χ0, 1/g, Γ, E0 ∝  kBTmax                                   (1.2) 

Given this scaling, it follows that also the effective quasiparticle mass m* scales as 

1/Tmax. The Curie-Weiss temperature θCW scales with Tmax. 

The mass enhancement is also seen in the coefficient A of the quadratic temperature 

dependence of the resistivity ρ ~ A T2, i.e., there is also a scaling between A and the 

linear coefficient of the electronic specific heat γ known as Kadowaki-Woods (KW) 

relation, which holds for a number of IV compounds[5,6]. 

 

1.2.d  Coherence in Intermediate Valence Compounds 

 

In the low temperature regime of IV metals, there is an onset of coherence over the whole 

lattice as temperature decreases, which is remarkably evident in DC transport 

measurements. This can be illustrated by the electrical resistivity ρ of CePd3 as a function 

of temperature, as shown in Figure 1.3. 
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Figure 1.3. Evolution of resistivity of CePd3 with temperature[4]. Inset: quadratic T-
dependence of resistivity below Tcoh. 
 

 

Starting from the high-temperature local moment limit, ρ increases as the temperature 

decreases, arriving to a maximum, again around a temperature value Tmax. This Kondo-

like behavior can be associated to the increase of the scattering from the 4f magnetic 

moments, as we will discuss further in section 1.3.a below. These scattering centers sit on 

a periodic lattice, therefore, as the temperature keeps decreasing (with the consequent 

demagnetization and diminishing nf) the resistivity starts decreasing, showing a coherent 

character. That is to say, the cooperative character of the scattering from the 4f moments 

is revealed through a Bloch-like resistivity that decreases to zero as the temperature goes 

to zero. In addition, a T2 power law, characteristic of electron-electron scattering in a 

coherent FL, sets in around 10 K and 30 K for the case of CePd3[4] and YbAl3[1] 

respectively. This temperature scale, called Tcoh, can be associated with the appearance of 

a coherent Fermi Liquid ground state. In fact, we will see that in IV compounds, this 
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coherence is strongly associated with the onset of renormalized quasiparticles bands in 

the low temperature FL regime. 

Optical conductivity measurements [7] on YbAl3 below 40 K show a Drude-like 

response corresponding to a heavy quasiparticle effective mass and another peak 

associated to the formation of the hybridization bands (Fig. 1.7). This structure persists as 

temperature goes down, supporting the existence of this coherent ground state with a 

hybridization gap below a scale Tcoh = 40 K. 

While optical conductivity gives evidence for the existence of the hybridization 

gap[7,20], de Haas van Alphen (dHvA) experiments give evidence for the inclusion of 

the f-electrons (usually localized) in the Fermi Surface as itinerant electrons. These dHvA 

experiments also directly exhibit the large enhancement of the effective masses[8, 21]. 

For some IV metals, anomalies are observed in the specific heat and in the magnetic 

susceptibility[1, 16] in the same temperature range Tcoh, so they appear to be associated 

with the onset of coherence. Examples of these features are an upturn in C(T)/T around 

30 K, and an increase of χ(T) below 40 K to a peak around 20 K for the case of YbAl3 

and an upturn in χ(T) below 50 K for CePd3, as shown in Figure 1.1. 

Understanding coherence implies recognizing the effect of including the lattice of 4f 

moments in the theoretical description. As we will see in section 1.3, the model that 

would account for this is the Anderson lattice model, but no complete solution exists yet. 

An excellent probe for the presence of this coherent behavior among the 4f moments 

is measurement of the dynamic susceptibility that carries the information of the spin-spin 

correlations, through inelastic neutron scattering. By means of the study of both the 

dependence in momentum transfer Q and in the energy transfer E of the magnetic part of 
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the neutron scattering function, the evolution of the interactions between localized and 

delocalized electrons can be followed between the low and high-temperature regimes. In 

particular, the onset of coherence would be manifested as a distinct Q-dependence of 

χ”(Q, E) and the renormalized band structure in the FL ground state could be inferred 

from a detailed (Q, E) exploration. The study of the dependence on momentum transfer Q 

is only possible by using adequate single crystal samples. This is the subject of chapters 3 

and 4. 

 

1.3   Theoretical Overview. 

 

In this section, we will present the Anderson impurity model and the Anderson lattice 

model on a simple basis quoting their calculation results to help us understand the 

thermodynamic and transport measured properties which have been presented in the 

previous section on the basis of these models. 

  

1.3.a  The Anderson Impurity Model 

 

The Anderson Impurity Model (AIM) has proven to explain qualitatively and in some 

cases semi-quantitatively most of the phenomenological thermodynamic (but not 

transport) features exposed for IV metals, which is perhaps surprising, since the RE do sit 

on a lattice, rather than having the role of mere “impurities” [18, 22]. This model 

considers the situation of a “magnetic impurity”, as for instance a rare earth atom with an 
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incomplete f-shell, embedded in a metal host. The “Anderson Hamiltonian” [23] is given 

by the sum of four terms: 
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The first term in the Hamiltonian describes the uncorrelated itinerant conduction 

electrons, where k
rε  is the energy dispersion relation for this conduction band with 

and being the creation and annihilation operators for electronic states of 

momentum 

+
σ,kC r

σ,k
C r

k
r

 and spin σ. The second term denotes the energy of the impurity orbital for 

the simple case of a non-degenerate f orbital, with energy Ef, which is the difference 

between the energy of the states 4f1 and 4f0. This term includes the creation and 

annihilation operators  and for an electron at the impurity site, with spin σ. The 

third term represents the cost in energy of having double occupancy at the impurity site 

due to the on-site Coulomb repulsion U. Finally, the last term represents the mixing 

between the conduction band and the impurity orbital, where the matrix element for this 

process is Vk. The hybridization energy for conduction electrons to hop on and off the 4f 

orbitals is Δ~Vk
2ρ(εF), where ρ(εF) is the density of conduction states at Fermi level εF.  

+
σf σf

Typically for the RE, the energy scales involved are: Δ ~ 0.1 eV, Ef ~ 1 eV2, and a 

large U ~ 10 eV, basically suppressing hopping into nf = 2 state3. Consequently, the 

motion in and out of the f-orbital is slowed down from the bare rate Δ/ћ to a renormalized 

                                                 
2 Ef is measured from the chemical potential µ. 
3 This is usually referred as the U = ∞ Anderson model, and the theory is confined in the f 0-f 1 subspace. 
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rate kBTK/ћ, where TK is the Kondo temperature introduced next. Low-energy spin 

fluctuations arise from those virtual charge fluctuations: (nf = 1,↑) goes to (nf = 0) and 

then to (nf = 1,↓), and these create narrow 4f resonance at the Fermi level, the so called 

“Kondo resonance”. 

In the Kondo limit of the Anderson Hamiltonian, where not only the repulsion U is 

much greater than the hybridization energy Δ, but also (εF - Ef ) >> Δ, the charge 

fluctuation to f0 are suppressed, ensuring single occupancy of the impurity site and 

therefore, the model describes a local spin interacting with a band of itinerant electrons 

via an exchange interaction J. The physics of the AIM is the same as that of the Kondo 

model4, derived from (1.3) by a Schrieffer-Wolff transformation [24] to give:    

  ∑∑ += +

k
k,k,k

,k
k S.SJ2CC~H

rr
σσ

σ
ε                              (1.4) 

where S  and 
r

kS
r

are the spin operators for the impurity and for the conduction electron in 

the state k
r

 respectively. The physical reason for obtaining a spin dependence of the 

interaction when taking charge fluctuations into account, is that the Pauli Exclusion 

Principle forbids intermediate states in which the impurity site is occupied by two 

electrons of the same spin orientation. Below the so-called Kondo temperature TK, the 

conduction electrons form a singlet state with the localized spin, quenching the magnetic 

moment.  

 

                                                 
4 Schrieffer and Wolff carried out a canonical transformation and the subsequent diagonalization that 
showed the equivalence between both Hamiltonians. 
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The problem of magnetic impurities is well understood theoretically, with exact 

solutions via the renormalization group approach and via the Bethe Ansatz5. In addition, 

several approximate techniques proved to be useful in calculating the dynamic response 

functions that cannot be calculated via the Bethe Ansatz, like the dynamic susceptibility, 

required for comparison with neutron scattering experimental results. Taking into account 

the degeneracy factor N = 2J + 1, the so called “1/N approximation” or Non-crossing 

approximation (NCA) involves summing subsets of diagrams to low order in 1/N, and 

generates asymptotically exact solutions as N tends to infinity. They work very well even 

for finite values of N such as 6 or 8, those corresponding to Ce 4f1 and Yb 4f13 

respectively[19].  

In the high temperature regime, the AIM predicts a local moment behavior, with well 

localized f-electrons not coupled to the itinerant conduction electrons. The static 

magnetic susceptibility χ has a Curie-Weiss character, reflecting the magnetic moment of 

the partially filled f-shell. The dynamic susceptibility is that of the quasielastic dynamics 

of (free) local moments. The magnetic contribution to the entropy tends to the 

configuration value R ln(2J+1). In this limit, the valence, and therefore the f-occupation 

number tends to an integral value. 

A crossover to the low temperature regime takes place around a scale of order TK. In 

this limit, the hybridization results in a Kondo resonance, that causes an f-contribution to 

the density of states of order ~ 1/kBTK at the Fermi energy εF. The specific heat varies 

linearly with T, and χ approaches a Pauli-like form, becoming almost T-independent. 

Due to the increase of the density of states at εF, the Pauli susceptibility and the specific 

                                                 
5 Solution based on the Ansatz used by Bethe in 1931 for the one-dimensional Heisenberg model, on the 
assumption of a linear dispersion for the conduction electrons. 
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heat linear coefficient γ are also enhanced by a factor TF/TK (where TF is the Fermi 

temperature), this is around two orders of magnitude larger than those of conventional 

metals, with 
F

B

2

T
1kN

2
πγ = in the order of few mJ/mol K2). The valence has a non-

integral value (nf < 1) in this regime. The energy of the system is lowered by kBTK, and it 

is possible to describe this behavior as that of a Fermi Liquid of quasiparticles. At these 

temperatures, the dynamics of the f-spin fluctuations are those of a localized, damped 

oscillator with characteristic energy E0 ~ kBTK given by  

( )
( ) 22

0EE
ET"

Γ+−

Γ
∝

χχ                                                        (1.5) 

This model also shows universality, this is, properties as specific heat, magnetic 

susceptibility χ(T) and spin dynamics spectrum χ”(E) scale as 1/TK, as well as the 

effective quasiparticle mass m*. As stated by its name, the AIM treats systems with dilute 

concentrations of magnetic impurities. However it still gives a good description of the 

valence, specific heat, static and dynamic susceptibility of IV compounds, where the 4f 

ions sit on a periodic lattice, a situation that is far from the impurity limit. The quantities 

mentioned are thermodynamic properties and are dominated by spin fluctuations. 

Therefore, a possible explanation for this notable agreement may reside on the fact that 

the spin fluctuations are of local character in these materials[6]. 

As an illustration of the good agreement between the data and the AIM, a non-

crossing approximation NCA calculation[1, 6] is included in figure 1.1. For the IV metal 

YbAl3 the experimental results for χ(T), C(T)/T and nf(T) qualitatively follows the 

temperature dependence given by the model predictions (Fig. 1.1).  The fit requires just 

three parameters: hybridization amplitude V, excitation energy Ef and background 
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conduction band width W. The first two parameters are chosen to match the T = 0 K 

values of 4f occupation number nf(0) and the susceptibility χ(0). W is obtained from the 

linear coefficient of C(T) of the non-magnetic counterparts compound, in this case LuAl3, 

which is assumed to account for the contribution of the YbAl3 non-magnetic background. 

For the case of YbAl3, the AIM predicts an inelastic Lorentzian lineshape (equation 1.5) 

for the power spectrum of the dynamic susceptibility, with parameters E0 = 40 meV and Γ 

= 22 meV, reasonably close to the experimental values obtained at T = 6 K: E0 = 44 meV 

and Γ = 32 meV (section 4.2).  The values for the parameters are shown in figure 1.1(c). 

A NCA calculation was also performed for CePd3[9], and the results (black line) for the 

predicted χ(T), and nf(T) are also plotted in figure 1.1. The values of the parameters for 

this calculation are included in figure 1.1(e). 

In addition, another IV compound where the AIM predictions describe the 

experimental results in a remarkably good quantitatively manner is YbAgCu4[16]. Figure 

1.4 shows the agreement between the results of the NCA calculations and the measured 

data for χ(T), nf(T) and the spectra of the magnetic contribution to the inelastic neutron 

scattering. 

In contrast, the AIM does not provide a complete explanation for the observed 

transport properties. This is expected on basic grounds for the DC resistivity at low 

temperatures. The AIM predicts a non-monotonic temperature dependence as follows: as 

T goes down, resistivity decreases driven by the decreasing T5 electron-phonon scattering 

contribution. As T reaches values around TK, there is an increase of resistivity due to the 

onset of the Kondo resonance with its resulting spin-scattering of conduction electrons. 

Then, as T continues decreasing the magnetic moment is quenched and resistivity reaches 
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saturation at zero temperature. In fact though, since in IV metals, the 4f ions sit on a 

periodic lattice, Bloch’s law requires that the resistivity must vanish as the temperature 

goes to T = 0 K. These temperature dependences are shown schematically in Fig 1.5. 

 

 

Figure 1.4: From references [16, 3], comparison of experimental measurements on the 
compound YbAgCu4 to NCA calculations for the Anderson impurity model. (a) Magnetic 
susceptibility, (b) 4f occupation number and (c) inelastic magnetic neutron scattering 
results.  
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Figure 1.5: Scheme for the low temperature dependence of the resistivity ρ for both the 
Anderson impurity and Anderson lattice models. 
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1.3.b The Anderson Lattice Model 

 

In section 1.2.d, it was shown that the low temperature resistivity of IV compounds has a 

Bloch-like behavior and goes as ρ~AT2 indicating a Fermi Liquid “coherence” in the 

scattering. To account for these features, a lattice of 4f-ions should be included in the 

theory. One way, is to treat the 4f electrons as itinerant via a band theory, and the other 

way is by means of the Anderson Lattice Model (ALM). The former includes the 

hybridization but not the strong local electron correlations and temperature dependence. 

However it gives ground state properties such as the Fermi surface (FS) geometry. The 

ALM is complementary to the band theory: it naturally includes correlations and 

temperature dependence, but cannot include details of the FS that come from band 

structure calculations. The ALM is an extension of the AIM that assumes a periodic array 

of local magnetic moments, as shown by the Hamiltonian 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

++
+=

↓
+
↓↑

+
↑

+++

+
∑∑

∑∑
,i,i,i,i

,i,k
*
k,k,ik

,k
,i,i

f

i
,k,k

,k
k

ffffU

fCVCfVffE
CC

σσσσ
σ

σσ
σ

σσ
σ

ε
rr

r
rr

r
rH  (1.6) 

 

This model is also known as Periodic Anderson Model (PAM). Here Ef is the 

dispersionless energy for the f-states, and the f+, f operators include a site index i. Ef sits 

slightly below the Fermi level εF of the bare conduction band of width W. As before, the 

hybridization and the strong on-site Coulomb repulsion U terms are also included. The 

bare f-band width Wf is smaller than the hybridization amplitude V.  
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In contrast to the impurity case, there is no exact solution for the Periodic Anderson 

Model6. As a consequence of the strong on-site interaction between f electrons, the 

Coulomb term cannot be treated as a perturbation U.  Several approximations have been 

performed. 

An alternative perturbation theory, called the slave boson approximation, which is 

suitable for the lattice problem, involves a representation of the operators in terms of 

conventional boson and fermion creation and annihilation operators. The physical 

interpretation is to represent the spinless valence state f 0 by a boson that it is created 

when an f-electron hops out of the RE ion and destroyed when a conduction electron 

hops into the RE ion, so that the number operator for the total number of f-electron plus 

bosons is conserved. In the Mean Field approximation, the boson operators are replaced 

by their expectation values. The mean fields are determined by minimization of the free 

energy with respect to these variables. 

These approaches[25-28] show two energy scales. The specific heat has a two-peak 

structure, one at TK for the onset of Kondo resonance and the second at much lower 

temperature that evidences the FL regime[29]. 

Among other methods used, we can mention the variational technique [30], dynamic 

mean field theories, combination of coherent potential approximation and functional 

integral method [31, 32]. All of these approximations have some basic common features. 

At high temperatures, they predict a local moment limit, as in the case of the AIM, with a 

crossover to an enhanced Pauli paramagnetism at low temperatures, this time in a 

                                                 
6 An exact treatment of the one-dimensional Anderson Lattice using a density-matrix formulation of the 
numerical renormalization group, is reported by M. Guerrero, and Clare C. Yu, Phys. Rev. B 51, 10301 
(1995). 
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periodic hybridized band. The ALM predicts a crossover between these regimes which is 

slower than the one predicted by the impurity model[30, 33].  

The ALM calculations agree in the formation of narrow coherent hybridized bands of 

low-energy excitations. These bands are similar to those that would be obtained by 

diagonalization of the non-interacting part of the Hamiltonian (given by the first three 

terms in equation 1.6), that is, by treating the crossing of the wide conduction band with 

the dispersionless f-band for the U = 0 case. This assumes that the strong Coulomb 

repulsion U merely renormalizes the parameters without changing the general behavior 

[34,35]. The renormalized quantities are the effective potential kV~  (to include many-

body effects) and the dressed energy fE~ . The branches  of the quasiparticle spectrum 

are found by standard methods to be given by 

±
k
rω
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⎜
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2
1

rrr εεω                                 (1.7) 

These branches are displayed in figure 1.6. 
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Figure 1.6. Dispersion of the hybridized bands near the Fermi Level. The direct gap has a 
value V~2 . The Coulomb interaction U is assumed to merely renormalize the parameters 
V and Ef. 
 

 

The best evidence for the hybridized gap is given by measuring the optical 

conductivity σ [20]. The spectra of the YbAl3 compound measured[7] over wide ranges 

of energy and T exhibits a narrow Drude peak (response of the free carriers), a 

pronounced mid-infrared peak centered around 250 meV, and the appearance of a strong 

depletion (pseudogap) around 30 meV, below 120 K (in the order of Tmax of YbAl3), as 

shown in figure 1.7. This pseudogap has a shoulder at 60 meV of order kBTK. Below the 

coherence temperature (Tcoh ~ 40K for YbAl3[1]), the pseudogap is clearly observed, 

consistent with a well established hybridization gap.  

Optical transitions (with zero momentum transfer) across the direct gap, as the one 

sketched in figure 1.7, explain the 250 meV peak. These transitions should give a sharp 

threshold at an energy around V~2 . In addition, indirect transition across the gap, can 
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introduce a tail from V~2  down to the value of the indirect gap of order kBTK. Lattice 

disorder, many-body scattering, and phonon assisted excitations may provide the required 

momentum transfer for indirect gap transitions. In figure 1.7(b), the dashed line 

represents the spectrum for σ when only direct transitions are present, and the broadening 

effect of indirect transitions is illustrated by the solid line. The Drude peak arises from 

intraband transitions across the Fermi level, which lies in a region of high density of 

states near the zone boundary of the upper band (figure 1.6). From a generalized Drude 

analysis of the data at 8 K, an effective mass of 30 m0, where m0 is the bare band mass, 

and a scattering rate with quadratic energy dependence as expected for a Fermi-liquid. 

These features and their temperature dependences can be qualitatively understood using 

the ALM.  

 

 

 

 

(a)  

 

 

 

 

Figure 1.7: From reference [7], (a) optical conductivity spectra σ(ω) of YbAl3. The 
vertical arrow indicates the pseudogap around 0.03 eV. (b) Sketch of σ(ω) as expected 
from transitions between the hybridized bands ω±(k). In dashed lines, σ(ω) with only 
direct transitions. 
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The ALM naturally predicts coherence as a result of the periodicity of the lattice. 

Whereas the AIM involves only one scale of energy (kBTK) for the onset of the local 

singlet state and the screening of the local moment, the ALM yields two energy scales, 

one of them being TK, since magnetic moments can still be screened locally, and the 

second scale of energy (kBTcoh) for the formation of a coherent Fermi liquid over the 

whole lattice with a large FS including both the conduction electrons and the f-

electrons[29]. Coherence effects will appear as T decreases, and the transport properties 

are going to be very different between AIM and ALM, with Bloch’s law arising from the 

periodic array of impurities, with a temperature dependence of the resistivity as 

.  2
0 TA+= ρρ

At low temperatures, calculations for the Anderson lattice show the onset of 

quasiparticle hybridization bands. The dynamic spin susceptibility and neutron scattering 

cross sections calculations reveal a highly Q-dependent scattering, consistent with 

interband excitations across the hybridization gap. An inelastic peak is obtained with a 

maximum of intensity when the energy transfer equals the threshold for indirect 

transitions between the regions of large density of states at the zone center and zone 

boundary of the upper and lower bands (Fig. 1.6) and the momentum transfer is at the 

zone boundary, such as to connect these regions.  As Q goes to zone center, i.e., as Q 

decreases, the peak intensity decreases. In the case of IV compounds, where the Fermi 

level does not lie in the gap (i.e., IV metals), an additional contribution to the scattering 

arises from intraband transitions, with a linear Q-dependence, as expected for Fermi 

liquids on basic grounds. 
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A physical simple explanation of the inelastic neutron scattering that includes both 

interband transitions across the hybridization gap as well as intraband transitions is given 

in figure 1.8.  The sum over all excitations from occupied to unoccupied states with 

energy transfer E and momentum transfer Q in a simple two-band model will represent 

the scattering function for intra and interband particle-hole excitations. This is given by 

( ) )Q;E'E,'E(D)'E(f1)'E(f'dE)E,Q(S
rr

+−∝ ∫                           (1.8) 

where D is the joint density of states for both types of transitions between the bands ω+ 

and ω-  given by equation 1.7, and f(E’) is the Fermi-Dirac distribution. We performed a 

simple calculation in a 3-dimensional system, with a basic two-band structure sketched in 

figure 1.8(a). The resulting spectra are shown in figure 1.8(b). The interband spectra 

(circles) of excitations has an intensity peak that is centered at an energy value close to 

the indirect gap for a momentum transfer Q of magnitude equal to 
0a

π , i.e., 

(Brillouin zone boundary). For other values of Q, the peaks move to higher 

energies as Q goes from zone boundary to zone center.  On the other hand, the intraband 

transitions (lines) have a different Q-dependence:  peaks move to smaller energies as Q 

goes from zone boundary to zone center.  

BZQQ
rr
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Figure 1.8: A simple estimation for the spectrum of particle-hole excitations for a basic 
scheme of hybridized bands. Panel (a) displays a dispersionless Ef band (dashed green 
line), a conduction band (blue line), and hybridized bands ω+ and ω- (black line) obtained 
from equation (1.7). The Fermi energy εF and the indirect gap ΔGAP are also shown. The 
values for the parameters used are also included. (b) Spectra for intraband (lines) and 
interband (circles) excitations for momentum transfer in the range between 0 and Q=QZB. 
 

 

 

Real, many-body theoretical calculation of the magnetic dynamic susceptibility, within an 

approximation of the ALM are given in references [30-32,34]. The results are similar to 

those of our simple calculation from figure 1.8(b), in that a two-peak structure is 

obtained: a low energy quasielastic peak, and a high energy broad peak coming from 

intraband and interband excitations, respectively. The results for the scattering function 

S(Q, E) from some of these calculations [18, 20] are shown in figure 1.9. The spectrum of 

S(Q,E) calculated for different values of momentum transfer, shows that the peak for 

           0
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intergap excitations is maximum for momentum transfer Q at zone boundary and moves 

to high energies as Q decreases. On the other hand, the intraband peak position increases 

linearly with momentum transfer Q.  

 

 

 

 

 

 

Figure 1.9: Spectra of S(Q, E) for different values of momentum transfer q, (a) from 
reference [31], and (b) from reference [30]. The high energy peak (interband transitions) 
is maximum for q at zone boundary. The low energy peak (intraband transitions) moves 
to high energies as q increases towards zone boundary. 
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1.4   Objectives and Dissertation Organization 

 

Since most of the neutron scattering experiments on IV compounds were done in 

polycrystalline samples and since single crystals of excellent quality and proper size had 

been available during these last few years, we have an opportunity to measure the 

properties of interest related to spin dynamics. 

In particular we will study the momentum transfer dependence of the magnetic part of 

the neutron scattering to test the predictions of the Anderson Lattice model concerning 

the hybridization gap in the density of states. We will explore the onset of coherence in 

the ground state at low temperatures and we will study the local moment behavior at high 

temperatures to test the prediction from the Anderson Impurity model. We will confirm 

the existence of new excitations beyond the usual Kondo scattering, in the low 

temperature regime of IV compounds for YbAl3. 

The organization of this dissertation is as follows: Chapter 1 has been devoted to a 

description of the general experimental properties of intermediate valence compounds 

and of the basic theoretical background. Calculations from the Anderson impurity model 

and the Anderson lattice model for some quantities were presented, in particular for those 

that depend on spin fluctuations, namely magnetic susceptibility, specific heat and 

dynamic susceptibility. In Chapter 2, the samples growth methods are mentioned, the 

inelastic neutron scattering technique is introduced and the instruments employed are 

described. A method to separate the magnetic from the non-magnetic contribution in the 

scattering intensity is discussed. Chapter 3 and 4 present the inelastic neutron scattering 

results for CePd3 and YbAl3 respectively, with an analysis of the observed features at the 
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low and high temperature regimes of these intermediate valence compounds. Finally, the 

results of this thesis will be given in Chapter 5. These conclusions will stress that the 

magnetic response of these compounds is basically that of the Anderson impurity model, 

with only a moderate momentum transfer dependence resembling the coherent character 

of the ground state predicted by the Anderson Lattice model. 



 

 

Chapter 2 

 

Experimental Techniques 

 

 In this chapter we describe the sample characteristics, and we introduce the 

experimental technique of neutron scattering, with a brief description of the instruments 

used on the measurements and the instrumental configurations. In addition, one of the 

sections is devoted to a method for obtaining the magnetic contribution to the scattering 

in CePd3 by subtraction of the non-magnetic component, obtained from measurements on 

the non-magnetic compound LaPd3. Finally, a note on the multiple scattering and a 

correction due to “spurions” are included at the end of this chapter. 

 

 

2.1 Sample Preparation 

 

The YbAl3 samples used were single crystals grown by the self-flux method[37], by 

precipitation from excess aluminum. Four crystals were used of total mass of 5 grams 

approximately, prepared by Andy Christianson and Eric Bauer at Los Alamos National 

Laboratory. 
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As will be explained latter, to obtain the magnetic response of CePd3, the non-

magnetic analog compound LaPd3 was also prepared, under the assumption that the latter 

has the same lattice dynamics of CePd3. The single crystalline CePd3 and LaPd3 samples 

were prepared by the Czochralski method by Kenneth McClellan and Eric Bauer at Los 

Alamos National Laboratory. In this method, a polycrystalline “charge” is melted in a tri-

arc furnace in an argon atmosphere. A seed crystal mounted on a rod is dipped into the 

molten compound and pulled upwards and rotated simultaneously. By controlling the 

temperature, the rate of pulling and the speed of rotation, a single-crystalline cylindrical 

ingot will grow from the seed. Figure 2.1 shows the samples obtained: a CePd3 crystal of 

0.5 cm of diameter and 5 cm long, with a mass of 17.72 g and a LaPd3 crystal of 0.6 cm 

of diameter and 3 cm long, with a mass of 10.55 g. The LaPd3 sample received a thermal 

treatment (annealing at 950oC for 6 days) to improve the quality of the crystal. Both 

neutron and X-ray diffraction confirmed that the samples were single phase.  

YbAl3, CePd3, and LaPd3 have the cubic CuAu3 crystal structure. The values for the 

lattice parameters a0 (at room temperature) are 0.42 nm for YbAl3, 0.4126 nm for CePd3, 

and 0.4226 nm for LaPd3. 
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Scale: cm 

LaPd3 

CePd3 

CePd3  

LaPd3  

 
Figure 2.1: Single crystals of CePd3 (18 g) and LaPd3 (11 g) grown by the Czochralski 
method. The aluminum sample holders used in both cases for neutron scattering are also 
shown. 
  

 

2.2  Inelastic Neutron Scattering 

 

A neutron scattering experiment involves measuring the intensity of neutrons scattered 

from a beam incident on a sample. The scattering process changes the wave vector of the 

neutron and may change its energy.  From the laws of momentum and energy 

conservation, the momentum transfer Q
r

 and the energy transfer E are given by 

if kkQ
rrr

−=  

( 2
f

2
i

2

fi kk
m2

EEE −=−=
h )                                   (2.1) 

where ik
r

( fk
r

) is the incident (final or outgoing) neutron wavevector, Ei (Ef) is the 

incident (final) neutron energy, h is the Plank’s constant and m is the neutron mass. In 

the case of ki > kf, energy is transferred from the incident neutron to the sample and an 
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excitation is created in the solid. In the opposite case, an excitation is annihilated and the 

scattered neutron gains a quantum of energy. 

The fraction of neutrons from an incident flux onto a scattering system scattered into 

a given solid angle dΩ in the direction fk
r

, with a final energy between Ef and Ef + dE is 

given by the double differential cross section 
dEd

d2

Ω
σ . The neutron acts as a very weak 

perturbation of the scattering system and using the Fermi’s Golden Rule, together with 

the Born approximation for the interaction, the differential cross section[38] is given by  

)E,Q(S
k
kN

dEd
d

i

f
2 r

=
Ω
σ                                                (2.2) 

where N is the number of scattering centers in the sample, and is the scattering 

function. The latter quantity depends on the nature of the particular scattering process. 

The momentum and energy transfer dependent scattering function contains information 

on the time-dependent pair correlation function of the scattering system.  

)E,Q(S
r

The purpose of most neutron scattering experiments is to measure )E,Q(S
r

 to 

determine the microscopic properties of the system under study. For instance, in nuclear 

elastic scattering from a crystal, the scattering function )E,Q(S
r

 will contain the potential 

for the interaction between the neutron and the atomic nuclei at the lattice sites. 

Alternatively, for inelastic phonon scattering, when a neutron creates (or destroys) a 

single phonon, the scattering function )E,Q(Sph

r
 involves the response (frequencies and 

damping) of harmonic oscillator-like modes in the scattering system. The scattering 

function is proportional to the squared dynamic structure factor as expressed by 
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where i is the site index within the unit cell, bi and iR
r

are the scattering length and the 

atomic position of the ith element, and S,iε
r is the polarization vector of the vibration mode 

S. The Debye-Waller factor originates from the thermal average of the atomic 

displacements. For polycrystalline scattering, after averaging over all the possible 

directions of Q , the resulting scattering is proportional to the total scattering cross 

section, that is, coherent plus incoherent scattering, and, in the case of a cubic crystal, is 

proportional to the squared modulus of the momentum transfer[38]:  
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The factor in brackets is related to the thermal population of excitations, and is also 

known as the thermal factor ( )1)E(n +  or Bose factor, G(E) is the phonon density of 

states, and the average of 2).εQ( rr
is taken over all modes with energy E. 

Another example of scattering function )E,Q(S
r

, is the magnetic scattering cross 

section for an isotropic paramagnet[39], given by  
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γσ
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                                       (2.5) 

where ki and kf were defined previously, (γ re)2 is a coupling constant that depends on the 

neutron magnetic moment γ and the classical radius of the electron. Smagn, the magnetic 

scattering function, is the Fourier transform in time and space of the spin-spin correlation 

function. Since the neutron is applying a small perturbation to the spin system, the 
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response of the system is proportional to the spectrum of spontaneous fluctuations 

(fluctuation-dissipation theorem). In other words, the magnetic scattering is just the 

dissipative part of the ( )E,Q
r

-dependent dynamic susceptibility ( )E,Q"
r

χ .  

( )E,Q"
e1

11)E,Q(S Tk/Emagn B

rr
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= −                                   (2.6) 

The imaginary and real parts of the dynamic susceptibility are related by the Kramers-

Kronig relations, and χ” can be rewritten as 

( ) )E,Q(PE)Q(')Q(fE,Q" 2 rr
χχ =                                         (2.7) 

where  is the magnetic form factor, which is the Fourier transform of the 

magnetization spatial density around the atom, and P(E) is a power spectrum which for 

paramagnetic scattering and in the case of excitations with a finite life time[38] has a 

Lorentzian lineshape: 
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Here, ΓQ is the linewidth, that is, the half width at half maximum of the peak and E0 is its 

centroid. The first term in the bracket corresponds to the creation of the excitation and the 

second one, called the anti-Stokes term, the annihilation of it. 

In section 2.3, we will discuss how to separate the magnetic from the non-magnetic 

contributions to the neutron scattering in IV compounds. 
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2.2.a  Neutron Scattering Instruments 

 

In neutron scattering experiments it is crucial to have information about the energy as 

well as the direction of both the incident and scattered beams. Among the different types 

of instruments used to measure the inelastic response of materials, we will briefly 

describe time-of-flight and triple-axis spectrometers. The differences in design between 

these instruments are based on the nature of the neutron sources used.  

Neutron beams are produced in nuclear reactors as well as in the so-called spallation 

sources. In a reactor, a continuous flux of neutrons is the sub-product of the nuclear 

fission reactions, and by means of repeated collisions with moderators, neutrons are 

“cooled” to the required thermal wavelengths. At the High Flux Isotope Reactor (HFIR) 

located at Oak Ridge National Laboratory, the Maxwellian distribution of neutron 

velocities has a maximum between 60 and 80 meV. On the other hand, at spallation 

sources, a heavy metal target is bombarded with a regular sequence of sharp pulses of 

highly energetic protons and pulses of neutrons are created. At ISIS, a spallation neutron 

facility, located at  Rutherford Appleton Laboratory (UK), protons are accelerated to 800 

MeV, and the frequency of neutron pulses is 50 Hz. Moderators are also used to decrease 

the high kinetic energy of the neutrons. 

In the triple-axis spectrometer (TAS), used primarily in reactor facilities, a 

monochromator defines the direction and magnitude of the wave vector for the incident 

beam. This is achieved by Bragg scattering from monochromator crystals. The direction 

and energy of the scattered beam is determined by another monochromator crystal called 
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an analyzer, before entering the neutron detector. This spectrometer is shown 

schematically in figure 2.2(a). The name triple axis comes from the fact that the sample, 

monochromator and analyzer can be rotated, allowing the TAS to probe nearly any 

coordinates in energy and momentum space in a controlled manner. This factor allows 

both for scans of energy transfer at constant momentum transfer Q
r

, and for scans varying 

the components of ( )l,k,h)a/2(Q 0π=
r

 at constant value of the energy transfer. 

In the time-of-flight technique (TOF), a velocity selector, usually called a chopper, 

monochromates the incident neutron beam that next interacts with the sample exchanging 

momentum and energy. A scattered (polychromatic) beam of neutron is then produced 

and collected in an array of detectors covering a wide angular range. Measuring the time 

of flight from the chopper to the detectors determines the final energy of the scattered 

neutrons and the direction of their wave vector fk
r

 is determined through position 

sensitive detectors. TOF spectrometers are able to probe the sample response function 

over a wide portion of reciprocal space simultaneously. A TOF spectrometer is shown 

schematically in figure 2.2(b). 
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(a) Triple-Axis 
Spectrometer 

 

 

(b) Time-of-flight 
Spectrometer 

Figure 2.2: Schematic representation of (a) triple-axis spectrometer and (b) time-of-flight 
spectrometer. 
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TAS is ideal for experiments where information is needed on specific features well 

localized in ( Q
r

, E) space. In contrast, TOF is ideal for studies where large portions of 

( Q
r

, E) space need to be explored. In TOF spectrometers, energy transfer scans at 

constant Q
r

 or reciprocal space surveys at constant E are not possible for a fixed 

orientation of a single crystal sample. From energy and momentum conservation 

(equations 2.1), it can be seen that at a fixed incident wave vector ik
r

, a variation in 

fk
r

entails a variation of both the magnitude and direction of  momentum transfer Q
r

 in 

addition to a variation of the energy transfer. In other words, the three components of Q
r

 

and E are coupled, and only three of these four variables (h, k, l, and E) are independent. 

However, for a sequence of several sample orientations it would be possible to build the 

equivalent constant Q
r

 scans, but with a consequent increment in required beam time[40]. 

 To explore the differences in using both types of spectrometers for the case of the IV 

compound CePd3, figure 2.3 shows the intensity of the scattered neutrons measured by a 

triple-axis spectrometer and by a time-of-flight spectrometer for comparable energy-

transfer ranges and in similar regions in the reciprocal space for the same single-

crystalline sample. Panel (a) in figure 2.3 compares the intensities in units of monitor 

counts (1 mcu ≈ 1s) for (i) raw data for the CePd3 sample collected after 9 hours on the 

HB3 TAS at HFIR, (ii) the “background scattering” measured under identical conditions, 

with the sample removed from the sample container can and (iii) the intensity from the 

CePd3 sample itself, after subtraction of the sample can contribution. In Panel (b), the 

same comparison is held after 12 hours of neutron collection on the MAPS TOF 

spectrometer at ISIS, in a different region of the reciprocal space. Despite the fact that the 
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TAS may sound more efficient than TOF from the point of view of a brighter neutron 

flux incident on the sample, the comparison shows that the triple axis has higher 

background, and lesser statistics when compared to the TOF data. Part of the reason is 

due to the Maxwell profile of the reactor. In the case of CePd3, the energy transfer range 

of interest, between 30 and 80 meV, requires incident neutrons energies between 45 and 

95 meV, with the consequent loss of flux as soon as we move out from the peak of the 

velocity distribution, centered around 70 meV for the case of HFIR. In TAS, the amount 

of aluminum “in the beam” from the monochromator chamber, collimators and other 

elements is larger than in the case of TOF spectrometers. In particular for the HB3 TAS, 

another reason for the large background is the recent enlargement of beam tubes to 

increase the incident flux, when the instrumental shielding has not been upgraded yet. 

On the other hand, at MAPS the high flux region extends to higher energies, the 

detectors and the sample are in the same vacuum space, and consequently the background 

signal is very low. This is the reason why in the case of the intermediate valence 

compounds, with its broad features over large energy scales, TOF has shown to be a 

technique better suited for our purposes. 

In terms of monochromatic flux at the sample, today’s best choppers (as MAPS) 

achieve time averaged flux values in the range 104-105 neutrons cm-2 s-1 at thermal 

energies of 50 meV, to be compared with 108-109 at energies around 35 meV on thermal 

TAS instrument (IN8) at the Institute Laue-Langevin (ILL), in Grenoble, France[40]. 

HFIR flux is comparable to the one at ILL, but centered between 60 and 80 meV. 
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Figure 2.3. Panel (a): TAS raw data for the CePd3 single crystal (close circles), and for 
the empty sample container (open circles). The CePd3 contribution to the intensity 
(triangles) is obtained after subtraction of the empty container scattering. These data were 
measured at 12 K, using neutrons with fixed final energy of 14.7 meV, at constant 
r

,  with reduced ( )( 0,2,2a/2Q 0π= ) qr  at center in the Brillouin zone. Similarly, panel (b): 
TOF intensity for CePd3 (close circles), for the empty sample container (open circles), 
and for the sample (triangles) after subtraction, measured at 7 K, with neutron incident 
energy of 120 meV at ( )( )0,5.0,ha/2Q π= 0

r
, the sample is aligned with its [1, 0, 0] 

direction parallel with the incoming beam wave vector ik
r

. Panel (c): variation of the h-
component of Q

r
with energy transfer. 
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2.2.b  Experimental Setup 

 

The CePd3 and LaPd3 samples were attached to an aluminum sample holder as shown in 

figure 2.1, sealed in a thin-walled aluminum can and pumped to prevent oxidation. They 

were mounted on a closed cycle refrigerator for scans down to 7 K. 

Samples were aligned in a TAS. Knowing the sample structure, and several of its 

Bragg reflections, transverse and longitudinal scans are performed through two or more 

reflections. Neutron scattering showed that the 18g CePd3 sample was a single crystal, 

whereas the 10 g LaPd3 sample was in fact a multi-crystal, composed by three main 

grains aligned within 19 degrees. In the case of YbAl3, four crystals were coaligned with 

a mosaic of 2.5° to attain a total mass of approximately 5 grams. 

TOF experiments were performed on the MAPS spectrometer. The initial energy was 

fixed at 60 and 120 meV.  INS on CePd3 and on LaPd3 was measured at 7 and 300 K, 

whereas YbAl3 was measured at 6, 100 and 300 K. The scattered intensity was 

normalized to a vanadium standard, measured under the same conditions, and is given in 

absolute units: mb sr-1 meV-1 per “magnetic atom” (b = barn = 10-24 cm2, and sr = 

stereoradian).  

TAS experiments were performed on CePd3 and LaPd3 with fixed final energy of 14.7 

meV. Monochromator and analyzer crystals were chosen of pyrolitic graphite PG(002), 

which have a high reflectivity, giving the best intensity. In the last section of this chapter, 

some scans performed with Si (111) monochromators were used to correct for the so 

called λ/2-reflection contamination. The collimators are used before and after each 

scattering event, that is, before and after the monochromator and the analyzer. We used 
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collimators with angular divergence (in minutes of arc) of 48’, 60’, 60’ and 120’ 

respectively. The counting rate is normalized to monitor count units (1 mcu ≈ 1 s). 

The intensity scattered from the sample is obtained after the subtraction of the 

contribution to the scattering from the sample holder and container. These are made from 

(polycrystalline) aluminum. We performed a direct subtraction between datasets 

corresponding to two runs under same experimental conditions: same temperature and 

same energy Ei of the incident neutron beam. One run naturally involved the sample 

(mounted in the container can) and the other one just an empty sample container. 

 

2.3  Magnetic Scattering versus Non-magnetic Scattering 

 

An important step in interpreting the INS spectra is to separate the non-magnetic 

contribution correctly.  Among the methods to estimate the phononic contribution, most 

require both low- and high-momentum transfer data [5-7]. We will use a different method 

based on measuring the scattering intensity of the non-magnetic reference compound. 

In an inelastic neutron scattering experiment, on a TOF spectrometer, we collect the 

scattered intensity from a sample on a bank of position-sensitive detectors. After a time-

of-flight data analysis, the scattered intensity is determined on a 4-dimensional 

configuration space of energy transfer E and the three components of the momentum 

transfer  . Among the different ways to display the data, figure 2.4(a) 

shows the intensity at 8 K averaged over a relative large region in the reciprocal space 

 as a function of energy transfer, for INS on the IV 

compound CePd3 and its non-magnetic counterpart LaPd3 measured on the MAPS TOF 

( )( l,k,ha/2Q 0π=
r
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spectrometer at ISIS. The energy of the incident neutron beam is 120 meV, with the 

sample oriented with its [100] direction parallel to the incident beam. 
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Fig. 2.4: (a) Scattering as a function of energy transfer at 8 K measured on the MAPS 
spectrometer with 120 meV incident neutrons, from CePd3 (black circles), and from 
LaPd3 (red circles). This data correspond to a particular region in the reciprocal space: 

. (b) Intensity color plot in the plane (E, k), at 7 K with 
incident energy of 60 meV, shows the single phonon branches and phonon cut off around 
25 meV.  The color scale gives the intensity in mb/sr-meV units. 
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We can identify different contributions to the scattering in this spectrum. Centered 

around zero-energy transfer is the “elastic peak”, which collects the incoherent nuclear 

scattering. Its full-width at half-height is a measure of the instrumental resolution for the 

given experimental configuration. In the case of incident neutrons with Ei = 120 meV 

(Fig. 2.4 (a)), and 60 meV, the resolution is 9.5 meV and 4.7 meV respectively.  In the 

region between 15 and 20 meV, a peak for the single phonon scattering is noticeable for 
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both compounds. However, between 40 and 80 meV, the scattering of both samples is 

different. It will be shown that this difference will account for the magnetic scattering of 

the CePd3 sample. 

The single phonon scattering is better resolved with an smaller incident energy, as 

seen in the color plot of figure 2.4(b), which is taken with an initial energy of 60 meV. 

This figure displays an intensity plot in the (E, k) plane for -0.2 < l < 0.2  at 7 K and it 

clearly shows acoustic and optic phonon branches at 10 and 20 meV, as well as a phonon 

cut off around 25 meV. For Ei = 120 meV these branches convolute into a single peak. 

Another way to show the scattering is through an “energy-slice” over the Q-space. 

Figure 2.5 shows the distribution of the scattered intensity from CePd3 over the reciprocal 

space spanned by the detector banks, using the same experimental condition as in the 

previous figure. The intensity is integrated over an energy transfer range from 60 to 90 

meV, and it shows a Q-dependence with variations of 20-25% over the (k, l) plane.  

 

2.3.a  Polycrystalline Averaging Approximation 

 

In order to do an initial exploration of the magnetic and non-magnetic contributions to the 

scattering, independently from the Q
r

-dependence mentioned in the last paragraph, we 

will perform a kind of polycrystalline average by integrating the scattered intensity over a 

large portion of the reciprocal space. In particular we will choose the rectangular region 

shown in figure 2.5, and explore the Q
r

-dependence only along the [0, k, 0] direction, 
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and by integrating the intensity over the values of the l component of Q
r

 between -0.25 

and 0.25, the broadest attainable range in the [0 ,0, l] direction.. 

 

 

 
Figure 2.5: Scattering intensity over the (k, l) plane integrated over an energy transfer 
range from 60 to 90 meV, for neutron scattering data taken on CePd3 at 8 K, measured on 
MAPS spectrometer with incident neutron energy Ei of 120 meV. The color scale gives 
the intensity in mb/sr-meV units. 
 

 

The scattered intensity can be treated as composed by three main contributions: 

)Q(f)E(MQ)E(B)E(MS)E,Q(I 22 ++=                                (2.9) 

where the first two terms correspond to the non-magnetic contribution to the intensity.  

The multiple and multi-phonon scattering, represented by MS(E) is built up by the 

addition of the intensity coming from successive single scattering events, like an elastic 
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scattering followed by a single phonon scattering or two (or more) successive single 

phonon scattering events (called multi-phonon) . We will assume that MS is Q-

independent. This assumption is examined in section 2.4. The term B(E) Q2 is the single 

phonon contribution to the scattering with an energy transfer dependent coefficient B(E), 

and with the only Q-dependence being the Q2 law coming from the differential cross 

section for inelastic scattering from single phonons in a cubic single crystal, proportional 

to the total scattering (coherent plus incoherent) (eqn. 2.4). 

The magnetic contribution to the intensity is given by the last term M(E) f 2(Q), where 

M(E) is the magnetic scattering coefficient, assumed to be Q-independent (section 2.4), 

and  is the magnetic form factor (introduced with equation 2.7) for the Ce-4f 

orbital (Ce3+)[41]. An acceptable approximation to the Ce4f form factor reported is given 

by the following equation and plotted in figure 2.6(c). 

)Q(f 2

( )7536.1

f4
Q03.02

Ce
2 e)Q(f −=                               (2.10) 

An example of the different contributions to the intensity as a function of the 

momentum transfer is given in the figure 2.6. The intensity (open circles) of the INS of 

CePd3 at low temperature is plotted as a function of Q
r

, for two energy transfer intervals. 

In figure 2.6, panel (a), the intensity is mainly of non-magnetic character (MS + B Q2) in 

the energy transfer range between 15 to 20 meV, and in panel (b), the magnetic 

contribution  dominates in the interval 55 to 65 meV. )Q(fM 2
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Figure 2.6: Intensity from INS of CePd3 measured on MAPS with Ei=120 meV, at 8 K. In 
each panel, the data are fitted with the equation 2.9 (blue line). The magnetic (green line), 
multiple scattering (black line), and single phonon (red line) contributions are also plotted 
as a function of Q.  (a) Energy transfer interval from 15 to 20 meV and (b) 55 to 65 meV. 
(c) Magnetic form factor for Ce4f as a function of Q. 
 

 

 

 

We assumed in figure 2.6 that the non-magnetic contributions to the scattering for 

CePd3 can be obtained from the non-magnetic analog compound LaPd3. This is a 

standard procedure in neutron scattering [42, 43]. A non-magnetic analog was chosen 

such that it has a lattice structure and lattice dynamics nearly identical to the magnetic 

compound. 

We have proceeded in three steps, as follows. First, we obtained the multiple 

scattering and single phonon scattering contributions to the scattering from LaPd3 at 

different values of energy transfer E. Next, we scaled the values of the coefficient B and 
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MS with a proper factor as discussed further below. Finally, we calculated the magnetic 

contribution to the scattering by fitting the intensity of CePd3 with all the terms of the 

equation 2.9. The values for two of the coefficients in equation (2.9) were set equal to the 

scaled non-magnetic contributions obtained from LaPd3 and the magnetic coefficient M 

was left as free parameter for the fit. 

The low-temperature INS intensity for LaPd3, measured on MAPS with Ei = 120 meV 

at 7 K, as a function of the modulus of the momentum transfer Q, is shown in figure 2.7, 

for different energy-transfer ranges. These data were fitted with the multiple scattering 

and single phonon scattering contributions from equation (2.9), that is:  I = MS + BQ2.  

Only eight of the fifteen energy transfer intervals that were used are displayed in figure 

2.7. In each panel, we included the resulting values for the coefficients MS and B. 

In this manner, we have obtained MS and B from LaPd3 at different values of energy 

transfer E. In order to scale the values in a proper manner, we need to consider in which 

way CePd3 and LaPd3 compounds differ from the point of view of the scattering function. 

To begin with, these samples have a different  number of scattering centers and, from 

equation 2.3, it is clear that the scattering amplitude for these compounds varies 

according to the weight given by the scattering length b for each individual atom in the 

structure factor. Therefore, the scale factor should involve the product of the ratio of the 

sample masses and the ratio of the different scattering cross sections (proportional to the 

square of the scattering lengths) for these compounds.  

The different sample masses were already taken into account, since the intensity 

measurement was calibrated with a vanadium standard (section 2.2.b) and it is expressed 

in absolute units per magnetic atom.  With respect to the cross sections, the single phonon 
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scattering coefficient B and the multiple scattering coefficient MS were assumed to scale 

as the ratio of the total cross section of CePd3 and LaPd3 respectively. The value for the 

scale factor is 0.709 (Table 1).  
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Figure 2.7: INS intensity for LaPd3, measured on MAPS with Ei = 120 meV at 7 K, and 
fit (using equation 2.9) as a function of the modulus of the momentum transfer Q. Each 
panel corresponds to a different energy-transfer interval.  
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Table 1. Neutron scattering cross sections and lengths for La, Ce, Pd, from reference 
[45], and for the compounds CePd3 and YbAl3.  
 

Cross sections 
σcoh 

(barns) 

σinc 

(barns) 

total
scattσ  

(barns) 

σabs 

(barns) 

bcoh  

(fm) 

La 

Ce 

Pd 

LaPd3 

CePd3 

8.53 

2.94 

4.39 

21.70 

16.11 

1.13 

0 

0.093 

1.409 

0.279 

9.66 

2.94 

4.48 

23.10 

16.38 

8.94 

0.63 

6.9 

29.64 

21.33 

8.24 

4.84 

5.91 

25.97 

22.57 

Ratio 

(CePd3/LaPd3) 
0.742 0.198 0.709 0.720 0.869 

 

 

 
In order to obtain the magnetic contribution to the scattering for the CePd3, we have 

fitted the measured intensity as function of Q with the equation (2.9).  The non-magnetic 

contribution terms were given by fixing the coefficients to the scaled values of MS and B 

from LaPd3, and the magnetic coefficient M was treated as a free parameter. Figure 2.8 

displays the low-temperature INS intensity for CePd3, measured on MAPS with Ei = 120 

meV at 8 K, as a function of the modulus of the momentum transfer Q. Each panel shows 

the data at different energy-transfer ranges and the values for the resulting magnetic 

scattering coefficient M, as well as the values used for the coefficients MS and B.  

From the Q-dependence of the intensity in each energy transfer interval (Fig. 2.8), we 

can see that the phonon contribution BQ2 is dominant up to 30 meV, and the magnetic 

contribution  is dominant above 45 meV, as expected from the discussion 

based on figure 2.4(b).  

)Q(f)E(M 2
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Figure 2.8: INS intensity for CePd3, measured on MAPS with Ei = 120 meV at 8 K, and 
fit (using equation 2.9) as a function of the modulus of the momentum transfer Q. Each 
panel corresponds to a different energy-transfer interval.  
 

 

We have then obtained Q-averaged values for the magnetic and the non-magnetic 

components of the INS intensity for CePd3. The results for the low-temperature scattering 

are shown in figure 2.9(a). The magnetic scattering spectrum can be represented by a 
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Lorentzian lineshape (equation 2.8) with a characteristic energy E0 of 53 meV, and half 

width Γ of 27 meV. In addition, we calculated a value for the static magnetic 

susceptibility χDC from the amplitude of this magnetic response, as described in reference 

[44], obtaining a value of 1.3 10-3 emu/mol for 8 K.   

We have also applied this approximation to the 300 K INS measurements on CePd3 

and LaPd3, performed on MAPS with 120 meV incident neutrons. We obtained the Q-

averaged magnetic scattering spectrum illustrated in figure 2.9(b). The non-magnetic 

subtraction below the phonon cut off resulted in a larger uncertainty for the value of the 

magnetic scattering contribution (note the error bars for energy transfers below 20 meV). 

The magnetic scattering spectrum has an inelastic Lorentzian lineshape of characteristic 

energy E0 of 25 meV, 40% lower than that in the low-temperature regime, and χDC (1.24 

± 0.09) 10-3 emu/mol. If a quasielastic Lorentzian form is used, the calculated value for 

the static magnetic susceptibility at 300 K would be (1.51 ± 0.09) 10-3 emu/mol, closer to 

the experimental bulk susceptibility value of 1.49 10-3 emu/mol (Fig 1.1(d)). 

This polycrystalline-averaging method shows that the multiple scattering is in fact a 

large relative fraction of the non-magnetic scattering, a contribution usually not 

considered in previous work. We observe an inelastic Kondo-like magnetic scattering 

with maximum between 50 and 60 meV, the same scale of energy as the Kondo 

temperature for this compound, around (500 - 600) K [13]. As temperature increases, it 

evolves towards a quasielastic lorentzian, and the magnetic scattering amplitude is in 

quantitative agreement with experimental static susceptibility measured in CePd3 (Fig. 

1.1).  
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Figure 2.9: Results from the polycrystalline averaging approximation. (a) Results at 8 K 
for the scaled parameters MS (blue triangles) and B (blue circles) from LaPd3, and the 
magnetic contribution M obtained for CePd3 (black circles) as function of the energy 
transfer. A Lorentzian fit is also included. (b) Magnetic contribution coefficient M 
obtained at 300 K (black circles). Fitting with inelastic (black dashed line) and with 
quasielastic (red dashed line) Lorentzians are also included. 

 55



2.3.b  Extending the Non-magnetic Scattering Subtraction Method 

  

The polycrystalline-averaging approximation has proven that the magnetic contribution 

to the scattering can be obtained in a reliable manner by assuming that the phonon and 

multiple scattering contributions can be given by the energy spectra of the nonmagnetic 

counterpart LaPd3 after a proper scaling. 

To achieve the purpose of this dissertation, that is, to perform a complete study of the 

spin dynamics of the intermediate valence compounds as a function of both energy and 

momentum transfer over the reciprocal space, by neutron scattering experiments, we have 

applied a similar method when Q is not averaged. 

In the analysis of the INS measured on TOF spectrometers to be presented in section 

3.1, we will use a single scaling parameter for LaPd3 spectra, with a value of 0.742, 

which is the ratio of coherent cross sections for CePd3 and LaPd3 (table 1). 

For the case of TAS data analysis to be presented in section 3.2, the scaling factor 

value will come from a combination of the ratio of the sample masses times the ratio of 

the coherent cross sections, as given by 

247.1
70.21
11.16

55.10
72.17

)LaPd(
)CePd(

)LaPd(mass
)CePd(mass

3coh

3coh

3

3 ==
σ
σ                   (2.11) 

In contrast to the TOF scattering intensity, in the case of TAS, the intensity is not given 

in absolute units but it is normalized to monitor counts units, therefore we need to 

explicitly include the ratio of masses. By inspection we considered that the mass in the 

neutron beam is the 100% of the sample mass.  

To verify the value for the scale factor given in equation (2.11), we compared the 

areas under the Bragg’s peak (2, 0, 0) and (0, 2, 0) for CePd3 and LaPd3, respectively, 
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measured on HB3 triple-axis spectrometer at 12 K, with fixed final energy of 14.7 meV 

(Fig. 2.10). The value of the area is proportional both to the mass and the coherent cross 

section. We calculated the areas by simple integration, obtaining a value of (0.014 ± 

0.001) for CePd3 and (0.0077 ± 0.0009) for LaPd3, and a ratio of (1.8 ± 0.1) in the same 

order of magnitude than the ratio obtained from equation (2.11). 
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Figure 2.10: Bragg’s peaks at (2, 0, 0) and (0, 2, 0) for CePd3 and LaPd3, respectively, 
measured on HB3 triple-axis spectrometer at 12 K, with fixed final energy of 14.7 meV.  
 

 

 

2.4 Verifying the Q-independence of the Multiple Scattering 

Contribution  

 

In the polycrystalline-averaging approximation (section 2.3.a), the scattered intensity was 

treated as composed by three main contributions, as seen in equation (2.9). The multiple 

scattering component (that also includes multi-phonon processes), is assumed to be Q-
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independent, that is, it has a magnitude value uniform over different regions in the 

reciprocal space. This hypothesis is based in the following argument. Let’s assume, for 

instance, a two-scattering event, after the first event, the scattered neutron emerges with a 

wave vector 'k
r

, whose direction is unknown, then it suffers a second scattering event and 

is scattered with wave vector fk
r

and collected in a detector of the spectrometer. Since 'k
r

 

can have any orientation in 4π, we can say that the transfer momentums for both events 

( i1 k'kQ
rrr

−= and 'kkQ f2

rrr
−= ) are averaged over the whole 4π. 

We can also verify the Q-independence of MS, by comparing the LaPd3 intensity 

spectrum over the energy transfer range above the phonon cut-off energy threshold. In 

figure 2.11, the INS intensity for LaPd3, (scaled by 0.742), is shown for four different 

regions in Q-space (defined in figure 3.3). For comparison, the spectrum for the CePd3 

intensity is also plotted. The difference between the intensity of CePd3 and the scaled 

intensity of LaPd3, is basically the magnetic scattering from CePd3.  

Within error bars, the intensities from LaPd3 are practically equal in the interval from 

30 to 100 meV. Region 4 is the only one with higher multiple scattering. Since this 

difference is small compared with the magnetic component (CePd3 – 0.742 LaPd3), we 

will neglect this difference, therefore assuming that MS is Q-independent. 
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Figure 2.11: INS intensity for LaPd3, (scaled by 0.742), for four different regions in Q-
space (defined in figure 3.3) measured on MAPS using Ei = 120 meV, at 7 K. For 
comparison, the spectrum for the CePd3 intensity is also plotted. 
 

 

 

 

2.5  Spurion Correction  

 

To analyze the scattering from a sample crystal on a TAS, Bragg scattering is used from 

both the monochromator and the analyzer crystals. High-order wavelength neutrons 

obeying Bragg's law are also scattered and may result in spurious peaks, called 

"spurions". The case of neutrons with half the wavelength of those for the n=1 Bragg 

scattering condition, is called “λ/2 contamination”. There are other kinds of spurion 

processes, including incoherent scattering from the monochromator, or from the analyzer 

crystal. The spurion contamination is particular for the TAS spectrometer. 
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 Our HB3 experiment was performed with the analyzer at fixed final energy of 

14.7 meV condition. When the incident monochromator is set for 58.8 meV (that is, 4 

times 14.7 meV), the analyzer will also accept these same 58.8 meV neutrons, which 

have a wavelength value of λf /2 with respect to λf. These are incoherent elastically 

scattered neutrons and they will be incorrectly analyzed as [4(14.7)-14.7] = 44.1 meV 

inelastically scattered neutrons. 

 The spurion will not be corrected by subtraction of the scaled LaPd3 spectra that 

we assumed represents the nonmagnetic contribution to the scattering of CePd3. The 

reason is that we are using a scaling factor involving the ratio of total scattering cross 

section of CePd3 and LaPd3 and the ratio of sample masses respectively, whereas the 

relative spurion contribution to the CePd3 and LaPd3 is related to the ratio of the 

incoherent cross sections which is more than 3 times greater than the coherent ratio. 

 In order to identify a potential spurion contribution suspected to appear as an 

overestimated intensity at 45 meV, we compared the scattering from the non-magnetic 

counterpart LaPd3 obtained with PG(002) and Si(111) monochromators. With the latter, 

the intensity is lower, but there is no λ/2 contamination, and the 45 meV spurion should 

not be present. Figure 2.12 shows the LaPd3 spectra obtained from constant Q
r

-scans at 

Q
r

 = (2.5, 1.5, 0) and at Q
r

 = (2, 2, 0) using both monochromators. The data from the 

Si(111) data has been scaled to match that from PG(002) between 60 and 65 meV. The 

difference between these spectra is fit with a Gaussian curve. In both scans, the spurion 

was always centered at 47.5 meV.  

 Then, the correction of the spurion is made by subtracting from the LaPd3 spectra 

the Gaussian lineshape obtained in this manner. 

 60



 61

20 30 40 50 60 70
0

10

20

30

40

50

 LaPd3 using PG(002) monochromator
 scaled LaPd3 using Si(111) monochromator
 spurion-corrected LaPd3 

Spurion Correction at Zone Boundary 1  (2.5 1.5 0)

In
te

ns
ity

 p
er

 m
cu

Energy transfer E (meV) 

  

Fit for the spurion

(a)

 

Figure 2.12: LaPd3 spectra obtained from constant Q
r

-scans measured on HB3 with fixed 
Ef = 14.7 meV, at 12 K, using a PG(002) monochromator (red symbols) and a Si(111) 
monochromator (blue symbols). The spectrum measured with the Si(111) 
monochromator has been scaled to match that from the PG(002) in the interval between 
60 and 65 meV. The difference between these spectra is fit with a Gaussian (black dashed 
line). The spurion-corrected LaPd3 spectra are obtained after subtraction of the Gaussian 
lineshape. (a) Scans at Q

r
 = (2.5, 1.5, 0) and (b) scans at Q

r
 = (2, 2, 0). 
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Chapter 3 

 

Inelastic Neutron Scattering Studies in CePd3 

 

 

In this chapter, the results and analysis from a systematic INS study of CePd3 are 

presented. We will look for the dynamic magnetic response of the system in its different 

temperature regimes, i.e., in the high temperature local magnetic moment limit and in the 

low temperature Fermi liquid ground state, emphasizing the Q-dependence of this 

response. 

INS measurement were performed at the pulsed spallation neutron source ISIS of the 

Rutherford Appleton Laboratory on the time-on-flight chopper spectrometer MAPS and 

at the High Flux Isotope Reactor at Oak Ridge National Laboratory on the triple-axis 

spectrometer HB-3. The experiments were done on a single crystalline sample of CePd3 

and on a single crystal of the nonmagnetic counterpart LaPd3 under identical conditions. 
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3.1 Results from the Time-of-flight Spectrometer 

 

Inelastic neutron scattering measurements were performed on the MAPS TOF 

spectrometer with the experimental setup described in section 2.2.b. The initial energy of 

the neutrons was fixed at 120 and 60 meV, and the instrumental energy resolution in each 

case was 4.7 and 9.5 meV respectively. 

A significant result from the experiment at MAPS is the distribution of the magnetic 

contribution to the scattered intensity over momentum transfer space, which is relatively 

uniform at room temperature, whereas it shows a variation in intensity around 25 and 

30% at low temperatures. This Q-dependence at both temperature regimes is illustrated in 

figure. 3.1, where the intensity maps show the variation of the scattering over the 

reciprocal space plane spanned by the detector bank. In this figure, the scattered intensity 

is integrated over the energy transfer range from 50 to 70 meV corresponding to the 

maximum of the magnetic response of the system observed in the low-temperature 

regime (Fig. 1.2b). The magnetic and the non-magnetic contributions were not separated 

from each other on these intensity maps, however, in this energy range, the magnetic 

response is much larger than the nonmagnetic one as described in section 2.3.a.  

In the low-temperature regime (Fig. 3.1a), the intensity has a non-uniform distribution 

with maxima around the Brillouin zone boundary points (QK, QL) = (0, ± 0.5), (± 0.5, 0). 

This is the expected behavior for the Q-dependence of intraband scattering according to 

the Anderson Lattice model, as explained in section 1.3.b. At 300 K (Fig. 3.1b), a 

temperature roughly half of the Kondo temperature for CePd3, the intensity is uniformly 
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distributed over Q. A lack of Q-dependence implies a local character for the spin 

fluctuation as expected at high temperatures in the limit of uncorrelated local moment 

behavior. 

 

 

 
 
Figure 3.1: Scattering intensity over the (k, l) plane integrated over an energy transfer 
range of 50 to 70 meV, for neutron scattering data taken on CePd3 at 7 K (a), and at 300 
K (b), using MAPS spectrometer with incident neutron energy Ei of 120 meV. The color 
scale gives the intensity in mb/sr-meV units. 
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To obtain the magnetic contribution to the scattering, the method explained in section 

2.3.a is used.  That is, we assume the phonon and multiple scattering contributions in 

CePd3 are given by the energy spectra of the nonmagnetic counterpart LaPd3 after a 

proper scaling. In the TOF data analysis, the LaPd3 spectra will be scaled by the factor 

coming from the ratio of the coherent cross sections as discussed in section 2.3.b. The 

value for this scaling factor is 0.742 (table 1). Figure 3.2(a) shows how the scaled 

spectrum from LaPd3 matches the one of CePd3 in the energy transfer range of 10 to 20 

meV, over one of the regions in reciprocal space that will be defined below. That the 

scattering in this energy range corresponds to single-phonon scattering events can be seen 

from the color plot of figure 2.4(b), which is taken at a smaller incident energy Ei = 60 

meV, and hence has better resolution. This figure clearly shows acoustic and optic 

phonons below 20 meV and the phonon cut off around 25 meV. Given this, the difference 

between the CePd3 and the scaled LaPd3 scattering should account for the magnetic 

contribution to the scattering, especially for energy transfer above 25 meV.  

The Q-dependence of the magnetic scattering will be studied by comparing four 

different Q-regions in the plane (QK, QL) = (2π/a0)(k, l), as illustrated in Figure 3.3. 

Region 1 (R1), region 2 (R2), region  3 (R3), and region 4 (R4) are centered around (k, l) 

= (0.5, 0), (0.5, 0.5), (1, 0), and (1.5, 0) respectively. Since the crystal structure of CePd3 

is cubic, and under the assumption of isotropic scattering, we will take advantage of the 

consequent 4-fold symmetry on the plane (QK, QL) to increase data statistics by adding 

equivalent regions. This is performed for four equivalent R1 and four equivalent R2 

regions. The coordinates in reciprocal space for these Q-regions are given in the table 

included in figure 3.3. 
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Figure 3.2: Scattering at 7 K with 120 meV incident neutrons from the CePd3 sample 
(black circles), scaled scattering from LaPd3 (red circles) and the difference (open 
circles), assumed to represent the magnetic contribution to the scattering. This data 
correspond to a particular region in the reciprocal space, called Region 1.  
 
 
 
 
 

Region k                  l 
R1 

 
 
 
 

R2 
 
 
 
 

R3 
R4 

0.25 to 0.75     -0.25 to 0.25 
-0.25 to 0.25     0.25 to 0.75 
-0.75 to -0.25   -0.25 to 0.25 
-0.25 to 0.25    -0.75 to -0.25 

 
0.25 to  0.75      0.25 to 0.75 
-0.75 to -0.25      0.25 to 0.75 
-0.75 to -0.25     -0.75 to -0.25 
0.25 to  0.75     -0.75 to -0.25 

 
0.75 to 1.25     -0.25 to 0.25 
1.25 to 1.75     -0.25 to 0.25  

 
 
Figure 3.3: Regions on the reciprocal plane (k, l) displayed on an intensity map over a 
range of 50 to 70 meV, at 7 K with incident neutrons of Ei = 120 meV. Boundaries of the 
regions and their respective equivalent ones are shown in the table.  
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3.1.a    Low-temperature Regime 

 

After the subtraction of the non-magnetic contribution to the scattering, the magnetic 

contribution Smagn(Q,E) over the different regions of the reciprocal plane (QK, QL) is well 

represented by a single component with a Lorentzian power spectrum: 

( ) ( ) ⎟
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⎞
⎜
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EE
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2
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)e1(
1)E,Q(S

B π
       (3.1) 

 

where the first factor represents the thermal factor (or detailed balance factor), f 2(Q) is 

the magnetic form factor, AL is a constant, Γ is the Lorentzian half-width at half-

maximum, and E0 (the Lorentzian’s centroid) is the characteristic energy of the power 

spectrum. The value of AL is proportional to the static magnetic susceptibility χDC. The 

magnetic contribution of the intensity spectra at the four regions in the reciprocal space is 

shown in figure 3.4. These results were obtained using the MAPS spectrometer with 

incident neutrons of 120 meV at 7 K. In TOF measurements, for a fixed sample 

orientation, momentum transfer and energy transfer are coupled, in other words, only 

three of the four variables E, h, k, l are independent, as discussed in section 2.2.a. The 

variation of the h-component of the momentum transfer with energy transfer is also 

plotted in figure 3.4 for each of the regions in Q-space.  
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Figure 3.4: Magnetic contribution (CePd3 – 0.742 LaPd3) to the intensity spectra at the 
four regions in the plane (k, l), from measurements on MAPS at 7 K with incident 
neutrons of 120 meV. The green lines are fits to an inelastic Lorentzian power spectrum, 
with parameters shown in the figure and in Table 3.1. The variation of the h component 
of Q

r
 with energy transfer (red line) is shown at each region. 

 

 

 

The values for the characteristic energy E0 and the half-width Γ vary over the Q- 

regions with an average of E0 = (45 ± 2) meV and Γ = (43.5 ± 4) meV. After conversion, 

the average value for the static susceptibility is χDC = (1.93 ± 0.2) 10-3 emu/mol. The 

values for these parameters are shown in table 2. Regions 1, 3 and 4 show a reasonable 

agreement with an inelastic Lorentzian lineshape. However, in regions 2 and 3 (and 
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probably also in region 4) there is a small but recognizable oscillation of the magnetic 

component of the intensity mounted on top of the Lorentzian curve, which is of the same 

nature as the one seen in the intensity color plot of figure 3.1a. In other words, in a 

spectra at fixed (k, l), the variation of h with energy transfer E can lead to an intensity 

oscillation with E in a similar way as the color maps at a fixed energy transfer interval ΔE 

manifest the oscillation in intensity as h or k traverses the reciprocal-space area. In all 

cases, below energy transfer values of 25-30 meV, the magnetic contribution obtained 

from the subtraction (CePd3 – 0.742 LaPd3) is less reliable due to the overlap of the 

magnetic scattering with a strong single phonon contribution.  

In figure 3.5(a), the lineshape for the Lorentzians at all regions are overplotted. For 

the comparison, the magnetic intensity has been normalized by dividing out the magnetic 

form factor f 2(Q). The highest peaks of the magnetic contribution to the intensity are 

observed at regions 4 and 1. The values of (h, k, l) at the energy of these peaks, when ΔE 

≈ 60 meV are (1.8, 1.5, 0) and (1.5, 0.5, 0) respectively. Lower intensity-maxima are 

observed at regions 2 and 3, with (h, k, l) = (1.5, 0.5, 0.5) and (1.5, 1.0, 0) respectively. 

The variation of the h component of Q
r

 is also displayed at all regions in figure 3.5(b). 

Summarizing, at low temperatures, the spin dynamics develops a Q-dependence that 

resembles the threshold interband scattering predicted for the Anderson lattice (section 

1.3.b) in the sense that the maximum intensity occurs for momentum transfer Q at zone 

boundary, connecting regions of large density of states in the hybridized band states of 

figure 1.6. While the variation of the magnetic contribution is significant enough to be 

noticeable, it is not at all as drastic as the ALM prediction.  
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Table 2. Values for the characteristic energy E0, the half-width Γ, and static susceptibility 
χDC for CePd3 over the Q-regions, at 8 K and 300 K, as obtained from the fits shown in 
figures 3.4 and 3.6(b). 
 

Q–region T (K) E0                         Γ 
 (meV)           (meV) 

χDC 
(10-3 emu/mol) 

R 1 
R 2 
R 3 
R 4 

Average 
value 

8 
 
 
 

51.9 ± 0.7 
35 ± 6 
41 ± 2 
52 ± 1 
45 ± 2 

35 ± 1      
58 ± 10     
46 ± 3      
35 ± 2      

43.5 ± 4 

1.71 ± 0.04 
2.1 ±  0.2 

2.09 ±  0.09 
1.82 ±  0.09 
1.93 ± 0.2 

All regions 300 0 26.6 ± 0.7   1.98 ± 0.03 
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Figure 3.5: (a) Comparison of the magnetic contribution to the scattering at four regions 
in Q-space, normalized by the magnetic form factor. (b) h-component of momentum 
transfer Q

r
 at each region. These results are obtained from measurements on MAPS at 7 

K with incident neutrons of 120 meV. 
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3.1.b  High-temperature Regime 

 

The magnetic contribution to the scattering at 300 K is obtained again after subtraction of 

the non-magnetic contribution assumed to be represented by the LaPd3 intensity scaled by 

0.742, as shown in figure 3.6(a). This magnetic response shows a Q-independent 

quasielastic energy spectrum with the only Q-dependence being in the magnetic form 

factor f 2(Q). Figure 3.6(b) shows the magnetic part of the intensity normalized by the 

form factor over the four regions in Q-space, all of which can be fitted simultaneously by 

a single quasielastic Lorentzian power spectrum whose parameters do not depend on the 

momentum transfer Q. 

In other words, at room temperature, the magnetic response is characteristic of 

(independent) spatially localized magnetic moments, showing a purely relaxational spin 

dynamics, as expected from the uncorrelated local magnetic moment limit behavior at 

high temperatures. 

The magnetic contribution is given by:  

                                 22
L2

Tk/Emagn E
AE)Q(f

)e1(
1)E,Q(S

B Γ+
Γ

−
= − π

                        (3.2) 

Therefore, the local moment limit is already achieved at this temperature, roughly 50% of 

the Kondo temperature, with a Lorentzian half-width Γ of 26.6 meV, or equivalently, 309 

K. The value for the static susceptibility χDC obtained from Smagn(Q,E) is 1.98 10-3 

emu/mol. These values are shown in table 2. 
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Figure 3.6: (a) Scattering at 300 K, measured on MAPS spectrometer with incident 
neutrons of 120 meV, from CePd3 (black circles), scaled scattering from LaPd3 (red line) 
and the difference (open circles), representing the magnetic contribution to the scattering 
at region 1. The quasielastic Lorentzian fit (green line) is also included. (b) Data for the 
magnetic contribution normalized by the magnetic form factor at four regions in Q-space 
and the correspondent quasielastic Lorentzian fit (green line).  
 

 

3.1.c  Static Magnetic Susceptibility 

 

 The agreement between the value for the static susceptibility χDC obtained from 

Smagn(Q,E) and the value obtained from the bulk χDC measured value is 25%-30% at room 

temperature. This comparison is shown in figure 3.7, where results from an earlier 

experiment from Galera et al.[46] are also included. In this measurement[46], polarized 

neutrons were used, a technique that separate magnetic cross sections from all non-

magnetic scattering processes. But until recently, the polarization process comes at a 
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severe loss of flux, with the consequent poor energy- and Q-resolution, and lower 

statistics.  At 7 K, the average value for χDC obtained from neutrons is (1.93 ± 0.2) 10-3 

emu/mol. At low temperatures, the contribution to the susceptibility coming from the 4f 

electrons is of order 1.6 x 10-3 emu/mol at T = 0 K. The additional upturn below 50 K 

arises from a contribution from the 5d electrons, as seen in form factor measurements 

[47]. In any case, our INS experiments give values for the 4f contribution to the 

susceptibility of the appropriate magnitude. 

 
 
 
 

 
 

Figure 3.7: Comparison between bulk susceptibility[2] (black circles) and the values 
deduced from neutron data. Our TOF data are shown as solid red circles; the value at 7 K 
has been Q-averaged, with the low-temperature values for different regions in Q-space 
are shown as red open circles; values from Galera et al.[46] are shown as blue diamonds. 
The dashed black line represents the estimate of the 4f contribution to the susceptibility. 
The additional upturn below 50 K comes from a 5d electronic contribution[47]. 
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3.1.d  Alternative Method to Obtain the Non-magnetic Scattering 

 is lower than that of 120 meV 

neu

mations for the 

non

n-magnetic scattering for 

YbAl3, where no nonmagnetic analog scattering was measured. 

 

 

We have performed INS measurements on CePd3 with an incident energy Ei of 60 meV, 

at 300 K and 8 K.  Since we have not measured LaPd3 at Ei = 60 meV and 300 K, an 

alternative method to estimate the non-magnetic scattering is by subtracting the 

quasielastic magnetic Lorentzian obtained from the data taken at room temperature, but 

using Ei = 120 meV. After performing this subtraction at regions 1 and 2, we obtained 

three “phonon” peaks near 11, 15 and 21 meV, which showed some dispersion from one 

Q-region to the other. We fitted these peaks with Gaussian lineshapes as shown in figure 

3.8 panels (a) and (b). In this procedure, we assumed that any multiple scattering process 

present (which in fact, for incident neutrons of 60 meV

trons) is included in this non-magnetic contribution.  

To verify the accuracy of this estimation, we scaled down this 3-Gaussian profile 

from 300 K to 7 K via the temperature dependence of the thermal factor, and compared it 

with the 0.742-scaled scattering from LaPd3 measured at Ei = 60 meV and 7 K as shown 

in panels (c) and (d) of figure 3.8. The agreement between these two esti

-magnetic component of the CePd3 scattering spectrum is very good.  

We will use this approach in Chapter 4 to determine the no
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Figure 3.8: Scattering intensity from CePd3 (black circles), measured on MAPS with 
incident neutrons of 60 meV at 300 K, at region 1 (a) and region 2 (b). The magnetic 
component is represented by the quasi-elastic Lorentzian (green line) found in section 
3.1.b, and the non-magnetic scattering (black dashed lines) is found by fitting (blue line) 
the total scattering of CePd3. In panels (c) and (d), the non-magnetic scattering found at 
300 K is scaled down to 7 K (dashed blue line) to compare with the scaled scattering 
from LaPd3 (red circles). 
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3.2  Results from the Triple Axis Spectrometer 

 

We have also measured the spectra at 12 K on the HB3 triple-axis spectrometer, using a 

fixed final energy Ef of 14.7 meV on both CePd3 and LaPd3 samples. Unlike the case of 

the TOF spectrometer, triple-axis scans were performed at a fixed momentum transfer 

. The non-magnetic scattering is assumed to be represented by a 

fraction of the LaPd3 scattering measured under identical conditions. In section 2.3.b, we 

found that a proper scale factor to use for TAS data analysis is 1.25 (equation 2.11), a 

value that takes into account the ratio of sample masses and the ratio of their respective 

coherent cross sections. In addition, an extra spurion correction was performed on the 

LaPd3 scattering data. Spurions involve incoherent elastic scattering events of neutrons 

observed at inelastic energies due to λ/2 contamination of the final beam. The correction 

was explained above in section 2.5. 

( ) )l,k,h(a/2Q 0π=
r

The magnetic contribution to the scattering, obtained after subtraction of the non-

magnetic scattering, as well as the intensity from CePd3 and the scaled scattering from 

LaPd3, are shown in figure 3.9. The intensity is normalized to monitor counts units (1 

mcu ≈ 1s). The energy-scans were performed at )0,5.1,5.2()a/2(Q 0π=
r

, that is, at the 

Brillouin zone boundary and at )0,2,2()a/2(Q 0π=
r

, corresponding to the zone center. 

While the statistics and background scattering are worse than in the TOF measurement 

(figure 2.3), the TAS data are in overall good agreement with the TOF data and hence 

provide confirmation for the basic result. In particular, the magnetic scattering response is 

20-25% larger at zone boundary than at zone center, again following the tendency 

expected from indirect gap transitions in the Anderson Lattice model. Within error bars, 
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an agreement with the Lorentzian lineshape obtained from the TOF data analysis is 

achieved between 25 and 65 meV, as shown in figure 3.9. This comparison is not 

accurate, because the TOF data were not measured at constant Q. 

 

20 30 40 50 60 70
0

20

40

60

20 30 40 50 60 70 80

Energy transfer E (meV)

T = 12 K
Ef = 14.7 meV

 CePd3

 Non-magnetic (scaled LaPd
3
)

 Magnetic contribution 
 Magnetic contribution from TOF data

Zone Boundary (2.5, 1.5, 0)

In
te

ns
ity

 p
er

 m
cu

 

  

(a) (b)Zone Center  (2, 2, 0)

 

 

 

 

Figure 3.9: Inelastic neutron scattering intensity measured with HB3 triple axis 
spectrometer at 12 K with fixed final energy of 14.7 meV, for CePd3 (black circles), 
scaled LaPd3 (red circles), and the difference (blue circles) representing the magnetic 
contribution to the intensity. The intensity is normalized to monitor counts units (1 mcu ≈ 
1s). The magnetic intensity from TOF measurements (green line) is also included for 
comparison. (a) Energy-scan at the Brillouin zone boundary )0,5.1,5.2()a/2(Q 0π=

r
, 

and (b) at the Brillouin zone center )0,2,2()a/2(Q 0π=
r

. 
 

 

3.3  Relevance of the Non-magnetic Scattering 

 

Previous measurements on both single- and poly-crystalline samples of CePd3 have also 

shown a broad, single-ion response centered around E0 ≈ 55 meV and Γ ≈ 40 meV [13, 

17, 46, 48], at low-temperatures, below 12 K. A controversy exists regarding the details 

of the CePd3 spin dynamics response. Shapiro et al.[14] claimed there were two 
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components for the magnetic scattering, a quasielastic Lorentzian of width 3 meV and an 

inelastic one centered at E0 = 16 meV and with a width of 12 meV at 10 K.  In the light of 

the present measurements where the subtraction of the non-magnetic background has 

proven to be critical, we think that Shapiro’s analysis has certainly ignored this 

contribution. Since the TAS scan reported by Shapiro was performed close to the 

Brillouin zone center, at , two facts arise. Firstly, we found that 

the magnetic contribution at zone center is smaller than at zone boundary and secondly, 

at 3 meV, an acoustic phonon mode at that value of 

)1.0,1.0,0()a/2(Q 0π=
r

Q
r

, is reported by C. K. Loong et al. 

in reference [49]. This probably accounts for the 3 meV narrow quasileastic Lorentzian 

that was interpreted as one component of the magnetic scattering in reference [14]. 

A careful determination of the non magnetic scattering helps explaining why 

Shapiro’s results are incorrect. From figures 3.2 and 3.6(a), it is clear that the non-

magnetic scattering, assumed to be represented by a scaled fraction of the scattering of 

LaPd3, constitutes a large fraction of the total scattering, whereas Shapiro et al. had 

assumed a very small and featureless non-magnetic scattering. In figure 3.10, we 

compare our raw data from CePd3 (black circles), LaPd3 (red triangles) and empty sample 

holder (open circles) with the constant background (blue dashed line) assumed in the 

experiment of reference [14]. For the comparison, we used our data from a Brillouin zone 

center point at 12 K, and the intensity has been scaled to match the CePd3 scattering from 

both experiments at the energy transfer E = 25 meV. The results from reference [14] have 

certainly underestimated the non-magnetic contribution to the scattering. 

 78



20 30 40 50 60 70 80
0

20

40

60

80

100

120

Energy transfer E (meV) 

 

  

TAS data close to Zone Center

 Empty can
 Background ref.[14]

In
te

ns
ity

 (a
.u

.)

 

 CePd3

 LaPd3

 

Figure 3.10: Comparison of scattering intensities from our measurements on the TAS 
HB3, using Ef = 14.7 meV, at zone center, and T = 12 K: raw data from CePd3 (black 
circles), LaPd3 (red triangles) and empty sample holder (open circles). The blue dashed 
line represents the background scattering assumed in the measurements on CePd3 from 
reference [14]. The intensity units are arbitrary, chosen such as that at E = 25 meV, the 
CePd3 intensity from both experiments match. 
 

 

3.4  Discussion 

 

Our time-of-flight INS experiments on single-crystalline CePd3 have shown essentially a 

low temperature Kondo-like magnetic response with an inelastic Lorentzian energy 

spectrum with characteristic energy E0 = 45 meV and a half width of 43.5 meV. The 

magnetic contribution to the scattering was obtained by considering that the non-

magnetic component is represented by a proper scaling of the scattering from the 

reference compound LaPd3.  
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In addition the intensity shows a 25-30% variation with momentum transfer, being 

maximum when Q
r

 is at the Brillouin zone boundary points (½, ½, 0).  This Q-

dependence, while consistent with interband scattering across an indirect gap, has not the 

drastic variation with Q as expected from the Anderson lattice model (section 1.3.b). 

Measurements on a triple-axis-spectrometer confirm the TOF results, despite the low 

statistics and the higher background scattering. 

At room temperature, the magnetic scattering has a quasielastic Q-independent 

Lorentzian lineshape, with half width of 26.6 meV, evidencing a spin dynamics of local 

character. The expected high-temperature local moment regime from the Anderson 

impurity model, is setting in at a temperature scale of 50% of TK. 
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Chapter 4 

 

Inelastic Neutron Scattering studies in YbAl3 

 

In this chapter, the results and analysis for the dynamic magnetic response of YbAl3, 

obtained from INS experiments are presented. These measurements were performed at 6, 

100 and 300 K on MAPS time-of-flight spectrometer at the pulsed spallation neutron 

source ISIS of the Rutherford Appleton Laboratory, using incident energies of 60 and 120 

meV.  Four single crystals of total mass approximately of 5 g  were coaligned with a 

mosaic of 2.5°, and oriented with the [1 ,0 ,0] direction parallel to the wave vector ik
r

of 

the incident beam. In the case of YbAl3, we have not measured a nonmagnetic 

counterpart compound1. In order to separate the magnetic contribution to the scattering 

we have followed a procedure based on temperature scaling of the nonmagnetic 

scattering obtained at room temperature. This procedure was shown to give reasonable 

results for CePd3, as shown in section 3.1.d.  

 

 

 

                                                 
1 LuAl3, is not a reliable non-magnetic counterpart because of the large absorption cross section of lutetium, 
associated with a resonance at 140 meV. 

 81



 

4.1  High-temperature Regime 

 

As a first step, we fit the room temperature spectrum taken with Ei = 60 meV and for four 

different regions in the (QK,QL) plane with a combination of a Lorentzian quasielastic 

magnetic component and a nonmagnetic part modeled by three Gaussian-like phonon 

peaks.  We have assumed that the multiple scattering is contained in the 3-peaks 

lineshape and that the empty sample holder contribution is negligible. The result shows a 

Q-independent quasielastic Lorentzian (as the one in equation 3.2) for the magnetic 

scattering with half width Γ = (35.3 ± 1) meV and with an amplitude corresponding to 

χDC = (4.49 ± 0.04) 10-3 emu/mol, in good agreement with previous results[44]. The only 

Q-dependence in the magnetic response is given by the magnetic form factor. These 

results are shown in figure 4.1. The four regions in the reciprocal plane (QK, QL) = 

(2π/a0)(k, l), are illustrated in figure 4.2.  Region 1 (R1), region 2 (R2), region 3 (R3), 

and region 4 (R4) are centered around (k, l) = (0.25, 0), (0.5, 0), (0.25, 0.25), and (0.5, 

0.5) respectively. Since the crystal structure of YbAl3 is cubic, and under the assumption 

of isotropic scattering, we will take advantage of the consequent 4-fold symmetry on the 

plane (k, l) to increase data statistics by adding equivalent regions. The coordinates in 

reciprocal space for these regions are given in the table in figure 4.2. 
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Figure 4.1: INS from YbAl3 (open circles) measured on MAPS with incident energy of 60 
meV, at 300 K at the four regions. The non-magnetic scattering is given by three 
Gaussian-like peaks (magenta line), and the Q-independent magnetic scattering (blue 
line) by a quasi-elastic Lorentzian of width Γ = 35.3 meV, and amplitude correspondent 
to a static susceptibility of 4.49 10-3 emu/mol. The addition of the magnetic and non-
magnetic contributions (red line) matches the experimental data. 
 
 
 
 

Region k                    l  
R1 

 
R2 

 
R3 

 
R4 

0.125 to 0.375    -0.125 to  0.125 
 

 0.375 to  0.625   -0.125 to  0.125 
 

 0.125 to  0.375    0.125 to  0.375 
 

 0.375 to  0.625    0.375 to  0.625 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: Regions on the reciprocal plane (k, l), displayed on an intensity map over a 
range of 40 to 50 meV, at 300 K with incident neutrons of Ei = 60 meV. Boundaries of 
the regions are shown in the table.  
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In the second step, we assume that both single-phonon and multiple scattering 

components vary with temperature as the thermal factor. To obtain the non-magnetic 

scattering from the data taken at 100 K with Ei = 60 meV, we scale down in temperature 

the values for the Gaussian-like non-magnetic scattering obtained at 300 K. After 

subtraction of the temperature-scaled non-magnetic contribution, we obtain a single 

inelastic Lorentzian (as the one in equation 3.1) to represent the magnetic part of the 

scattering in the four Q-regions, as shown in figure 4.3. The parameters of the Lorentzian 

are Q-independent: a half width Γ of 32 meV, characteristic energy E0 of 23 meV and 

amplitude corresponding to a static magnetic susceptibility χDC of 5.13 10-3 emu/mol. 

Next, for the Ei = 120 meV data, we obtain a complete representation of the 

nonmagnetic scattering at 100 K over a transfer energy range up to 100 meV by 

subtracting the Lorentzian magnetic response, as determined from the Ei = 60 meV data 

at 100 K, from the Ei = 120 meV data. The magnetic form factor is recalculated, because 

Q
r

 has different values for a given E when using incident neutrons of 60 or 120 meV.  

The resulting non-magnetic contribution for the four regions in Q-space is displayed in 

figure 4.4 (black dashed line). As a consistency check, it is in relative good agreement 

with the non-magnetic scattering from Ei = 60 meV, scaled down from 300 K to 100 K 

(magenta line). 
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Figure 4.3: INS from YbAl3 (open circles) measured on MAPS with incident energy of 60 
meV, at 100 K at the four regions. Using the non-magnetic scattering scaled from 300 K 
down to 100 K (magenta line), we find a Q-independent inelastic Lorentzian (blue line) 
with width Γ = 32 meV, characteristic energy E0 = 23 meV and amplitude correspondent 
to a static susceptibility of 5.13 10-3 emu/mol. The addition of the magnetic and non-
magnetic contributions (red line) matches the experimental data. 
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Figure 4.4: INS from YbAl3 (open circles) measured on MAPS with incident energy of 
120 meV, at 100 K at the four regions. Subtraction of the inelastic Lorentzian obtained at 
Ei = 60 meV, 100 K (blue line) from the neutron spectra measured at Ei = 120 meV, 100 
K. The difference (black dashed line) should account for the nonmagnetic contribution to 
the scattering at this temperature. For comparison, the non-magnetic scattering obtained 
with Ei = 60 meV, scaled from 300 K down to 100 K (magenta line) is also plotted. 
 

 

4.2  Low-temperature Regime 

 

Finally, we scale the non-magnetic contribution obtained from 100 K down to 6 K by 

means of the thermal factor and subtract it from the neutron scattering data measured at 6 

K, with Ei = 120 meV. As a result, we obtain the magnetic component of the scattering in 

the low-temperature regime. We have performed this subtraction with 6K-spectra at both 
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Ei = 60 and 120 meV, with good consistency between the results for the low-temperature 

magnetic response. This component of the scattering has two inelastic Lorentzian-like 

components, in agreement with earlier results reported for polycrystalline YbAl3 [44, 50], 

and in our earlier results on these single crystals[11]. One of them is a narrow peak 

centered around E0 = (33.2 ± 0.3) meV in all Q-regions, with an average half width Γ of 

(6.4 ± 0.6) meV as obtained from the 120 meV data (with energy resolution 9.5 meV), as 

illustrated in figure 4.5 and E0 and Γ values of (32.9 ± 0.3) and (4.4 ± 0.3) meV from the 

60 meV data (resolution 4.7 meV), as shown in figure 4.6. This peak may be resolution 

limited, and hence inherently narrower than 4.3 meV. The second magnetic component, a 

broad peak centered around 50 meV, has characteristic energy E0 and half width Γ 

varying over the Q-regions with average values of E0 = (44.0 ± 0.5) meV and Γ = (32 ± 1) 

meV respectively. The values for the parameters of the magnetic response of YbAl3 are 

shown in table 3.   

 
 
Table 3. Parameters for the magnetic scattering component of YbAl3. Characteristic 
energy E0, half-width Γ, and static susceptibility χDC over the Q regions, at 6 K, 100 K 
and 300 K. Low-temperature results given for Ei = 120 meV and (*) for Ei = 60 meV. 
 

Q–region T (K) 
Magnetic component #1 

E0                         Γ 
 (meV)           (meV) 

Magnetic component #2  
E0                      Γ 

(meV)          (meV) 
χDC 

(10-3 emu/mol) 

R1 
R2 
R3 
R4 

Average 
value 

6 
 
 
 

43.5 
44.2 
43.8 
44.7 

44.0 ± 0.5 
 

31.6 
34.2 
32.5 
30.9 

32 ± 1 
 

33.0 
33.0 
33.4 
33.5 

33.2 ± 0.3 
32.9 ± 0.3* 

5.9 
7.1 
5.9 
6.8 

6.4 ± 0.6 
4.4 ± 0.3* 

4.72  
4.79  
4.74  
4.84  

4.77 ± 0.05 
 

All regions 100 23 32 ± 1   5.13 ± 0.05 
All regions 300 0 35 ± 1   4.49 ± 0.04 
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Figure 4.5: INS from YbAl3 (open circles) measured on MAPS with incident energy of 
120 meV, at 6 K at the four regions. Using the non-magnetic scattering scaled from 100 
K down to 6 K (black line), we find a magnetic scattering (blue line) composed by two 
inelastic Lorentzian components (dashed blue lines), with characteristic energy E0 of 33 
and 44 meV and half width Γ of 6.4 and 32 meV respectively. 
 
 
 
 
 
 

 88



10 20 30 40 50
0

2

4

6 YbAl3

         Region
 R1 (h, 0.25, 0)
 R2 (h, 0.5,  0)
 R3 (h, 0.25, 0.25)
 R4 (h, 0.5,  0.5)In

te
ns

ity
 (m

b/
sr

/m
eV

) MAPS
Ei = 60 meV
T = 6 K

Energy transfer E (meV)
 

Figure 4.6: INS from YbAl3 (MAPS, incident energy of 60 meV), at 6 K at the four 
regions.  The magnetic excitation has a characteristic energy E0 of 32.9 meV and a half 
width Γ of 4.4 meV. The width is basically equal to the instrumental resolution. 
 
 
 

To illustrate the Q-dependence of this magnetic response, figure 4.7(a) displays an 

intensity color plot in the E versus k plane for -0.2 < l < 0.2 at T = 6 K. In the energy 

transfer range between 28 and 38 meV, the scattering component centered around 33 

meV is essentially independent of Q
r

. On the other hand, the component centered around 

44 meV, shows a Q-dependence, being maximum at the zone boundary where k = 0.5, as 

seen from the color variation in the range between 40 to 55 meV. Figure 4.7(b) shows the 

magnetic scattering spectra normalized by the magnetic form factor at 6 K for the 

different regions in Q-space. All the regions have basically the same 33 meV peak, 

whereas the 44 meV peak has the largest intensity at region R3, the one closest to a zone 

boundary point. A new region, R5, centered around (k, l) = (1, 0) thus being the closest to 

the Brillouin zone center, is also included and shows a lower magnetic response around 

45 meV. The intensity maps of figures 4.7(c) and 4.7(d) correspond to intervals of energy 

transfer of (32.5 ± 2.5) meV and (50 ± 5) meV, respectively and show, in a similar 
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manner, both the relative uniform intensity of the narrow magnetic component as well as 

the enhancement of the intensity of the broad magnetic component at (0.5, 0.5) points. 

 

 

Figure 4.7: INS on YbAl3 measured on MAPS with Ei =120 meV at T = 6 K. (a) Intensity 
color plot in the E versus k plane for -0.2 < l < 0.2. (b) Magnetic component of the 
scattering spectra normalized by the magnetic form factor for the different regions in Q-
space. The position in energy transfer of the two magnetic components is indicated by the 
grey shadings. The coordinates (k, l) for regions 1 to 4 are given in figure 4.2, and the 
region R5 has (k, l) = (1, 0). The h component for these regions is plotted in the lower 
panel, in units of (2π/a0) versus energy transfer. Intensity maps versus (k, l) for energy 
transfer in the range (c) 30 to 35 meV and (d) 45 to 55 meV. 
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There is an excellent agreement between the value for the static susceptibility χDC 

obtained from Smagn(Q,E) and the value obtained from the bulk χDC[1], as shown in figure 

4.8, where we compare our results with the bulk experimental measurements and with the 

NCA calculations from reference [1]. The estimated values for the static susceptibility 

χDC are shown in table 3. 
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Figure 4.8: Comparison between bulk susceptibility[1] (open circles)  and the values 
deduced from neutron data for YbAl3 (solid red circles). The results of the NCA 
calculation (black line) from reference [1] are also included.  
 

 

4.3  Discussion 

 

Our INS experiments on single-crystalline YbAl3 have shown that a broad magnetic 

scattering with a half width of the order of 32 meV, evolves from a quasielastic Q-

independent Lorentzian lineshape at 300 K, characteristic of a high-temperature local 

moment regime towards an inelastic Lorentzian form as the temperature decreases. At 

100 K, the magnetic scattering has an inelastic power spectrum, centered at 23 meV and 
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with a width of 32 meV. This spectrum is Q-independent. At 6 K, the characteristic 

energy of this response has a value of 44 meV, in correspondence to the Kondo energy 

scale of this compound. The variation with Q
r

, while consistent with interband scattering 

across an indirect gap, is similar to that found for CePd3, in the sense that there is not a 

drastic variation with Q as expected in the Anderson lattice model (section 1.3.b), but 

only a 20% enhancement at the Brillouin zone boundary.  

In addition, in this low-temperature regime, an additional narrow peak occurs in the 

INS at (33.0 ± 0.5) meV, the same energy as the minimum in the optical conductivity 

(figure 1.8). In other words, it occurs on the same scale as the hybrization gap. This 

feature is independent of Q
r

 over a large fraction of the Brillouin zone, and seems to give 

evidence of a spatially-localized excitation laying inside the hybridization gap. This 

excitation cannot arise from intraband Fermi surface scattering due to its Q-independence 

and its large energy scale. The origin of this excitation remains as an open question. 
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Chapter 5 

 

Conclusions 

 

 

The low-temperature magnetic scattering of these intermediate valence compounds, 

CePd3 and YbAl3, evidence a spin dynamics with the basic behavior expected from the 

AIM, that is, a broad Kondo-like Lorentzian peak, centered at an energy value around TK. 

In addition, the dynamic susceptibility develops a Q-dependence that resembles threshold 

interband scattering in one sense, namely that the maximum intensity occurs for 

momentum transfer Q at the zone boundary, connecting regions of large density of states 

in the two hybridized band scheme. As discussed further below, however, the variation of 

the intensity lineshape of the magnetic contribution with transfer momentum, is not at all 

as drastic as the ALM predictions shown in figure 1.9. The 60 meV excitation in CePd3 at 

low temperatures is similar to the 50 meV one in YbAl3: most intense at zone boundary, 

but no large shift of spectral shape with Q, as shown in figures 5.1(a) and 3.4 for CePd3 

and in figures 5.1(b), and  4.5 for YbAl3. 

In the case of YbAl3, an additional magnetic excitation is found at low temperatures. 

A sharp peak is observed at 33 meV, a value close to the energy of the minimum in the 

optical conductivity (Fig.1.7 a), with little variation of intensity over (k, l) as shown in 
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figure 4.7, panels (a) and (b). The lack of Q-dependence suggests a localized excitation; 

the fact that it occurs at the energy of the minimum in the optical conductivity suggests 

the excitation is in the middle of the hybridization gap. 

The characteristic energies E0 from the neutron data are in good agreement with the 

Fermi-liquid relations [13, 51] linking γ and χ(T=0) with TK:  )T3/(nk K
f2

B
2πγ =   and 

)T3/(n)0( K
f2μχ =  where . Assuming values <nf> = 0.77 and 0.75 

from CePd3 and YbAl3 respectively (Fig. 1.1), obtained from LIII absorption 

measurements [1,3] and using for TK the values of E0 (45 ± 8) and (44.0 ± 0.5) meV, and 

for J and gJ, the values 5/2, 6/7 and 7/2, 8/7, in the order given,  we predict γ = (41 ± 7) 

and (42.9 ± 0.5) mJ mol-1K-2 and χ(0) = (1.2 ± 0.2) and (3.78 ± 0.05) 10-3 emu/mol, for 

CePd3 and YbAl3 respectively, in acceptable agreement with the experimental values as 

shown in figure 1.1 panels (a, c, d, and f). 

2
B

2
J

2 )1J(Jg μμ +=

At room temperature, which is an appreciable fraction of the Kondo temperature TK 

of these compounds, the magnetic scattering for both CePd3 and YbAl3 shows a Q-

independent quasi-elastic Lorentzian lineshape characteristic of a local moment, 

evidencing a purely relaxational spin dynamics with Γ= 26.3 meV for the case of CePd3 

and 35.3 meV for the case of YbAl3. This is in agreement with the high-temperature 

regime predicted by both the Anderson Impurity and Periodic Anderson models, as stated 

in section 1.3. 
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Figure 5.1 Scattering intensity distribution over the (k, l) plane. Intensity maxima are 
observed at zone boundary points. (a) Intensity of CePd3 at 7 K, integrated over an 
energy transfer range: 50 < E < 70 meV. (b) Intensity of YbAl3 at 6 K, integrated over 
an energy transfer range: 45 < E < 55 meV. 

 

 

With respect to the broad inelastic peaks around 60 meV and 50 meV for CePd3 and 

YbAl3, respectively, the evolution of their lineshape with temperature is very similar to 

that predicted by calculations based upon the AIM [52]. At low temperatures, the 

magnetic contribution to the scattering has the inelastic Lorentzian energy spectrum 

given by equation (3.1), while at room temperature the magnetic response has the 

quasielastic Lorentzian spectral lineshape given by equation (3.2). In addition, this 

quasielastic Lorentzian is Q-independent already at 300 K, denoting the spatially-local 

character of the magnetic moments in this regime. The scattering evolves between these 

two lineshapes as temperature increases.  

Our results for the magnetic response in CePd3 (and also in YbAl3) are in excellent 

agreement with calculations from Cox et al.[52,53] for the temperature dependence of the 
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dynamic susceptibility of valence-fluctuating Ce compounds, based on the Anderson 

impurity model by means of a 1/N expansion. Figure 5.2(a) displays the imaginary part of 

the dynamic susceptibility χ”(E,T) scaled by its peak value, versus energy scaled by the 

peak position of χ”. In the mentioned calculations, the energy scale is T0, the position of 

the Kondo resonance peak in the 4f density of states, which is proportional to the Kondo 

temperature. For T > T0, the expected power spectrum has a quasielastic Lorentzian form 

(black line). At 300 K, corresponding to T/T0 ≈ 0.5 and 0.6 for CePd3 and YbAl3, the fits 

of our results for the magnetic scattering (red and blue open circles), already overlap this 

T0-lineshape. At 6 K and 7 K (T/T0 ≈ 0.013 for CePd3 and YbAl3) our results (blue and 

red closed circles) approach the calculated curve for T/T0 = 0.014 (dashed black line). 

Experimental results for INS on CePd3 performed by Galera et al.[48] at 5 K (black 

circles) are also included in figure 5.2(a), for comparison reasons. In addition, the 

temperature evolution of Emax, the energy of the peak of χ”(E,T), for CePd3 and YbAl3 is 

in reasonable accord with the predictions of Cox et al.[52, 53], as illustrated on figure 

5.2(b). The values for T0 for YbAl3 and CePd3 are obtained by matching the low-

temperature value of Cox’s calculated lineshape with our data. 
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Fig. 5.2.(a) Imaginary component of the dynamic susceptibility scaled by its peak 
value vs. energy scaled by the peak position of χ” for several temperatures. Fits from 
measurements on MAPS spectrometer for YbAl3 (blue symbols) and CePd3 (red 
symbols) and experimental results for CePd3 at 5 K from reference [48] are shown for 
comparison. AIM calculations at low temperatures T/T0 =0.014 (dashed line) and the 
standard quasielastic behavior at T=T0 (black line) are from reference [52]. (b) 
Temperature evolution of the energy of the peak of the dynamic susceptibility 
normalized by T0. Calculation based on the AIM [52] (black line) and values obtained 
from INS on CePd3 (red symbols) and YbAl3 (blue symbols). 

 

 

The Anderson impurity model thus works fairly well in describing the spin dynamics 

response measured by INS on CePd3 and YbAl3 and its temperature dependence (Fig. 

5.2). Nevertheless, the observed 15-20% variations of intensity with Q are much smaller 

than those predicted by the Anderson Lattice model, as shown by the calculations of 

Aligia and Alascio[31] and of Brandow[30] on figure 1.9. 

The weak dependence on momentum transfer relative to the Anderson lattice model is 

also observed in other compounds.  A number of valence fluctuation systems, spanning a 

wide range of characteristic energies, show a similar Kondo-like spectral response: an 

inelastic Lorentzian with very weak Q-dependence relative to the predictions of the 
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ALM. This is the case of the compounds YbInCu4[12], and CeInSn2 [10] that show a 

variation of around 15-20% of the magnetic contribution to the intensity, being stronger 

at zone boundary, just as in the case of CePd3 and YbAl3. 

A particular contradiction found is that the Lorentzian fits seem to indicate no gap in 

the scattering, a feature which, based on figure 1.9, should be more noticeable for the Q = 

0 transitions.  The magnetic contribution to the scattering CePd3, measured on HB3 TAS 

over a constant-Q scan at zone center (Fig. 3.9(b)) does not seem to show a gap, at least 

above the phonon cut off. One explanation for not seeing the gap is a possible overlap of 

intra and inter-band transitions over the energy transfer range. 

There are several possible reasons for the significant failure of the applicability of the 

Anderson lattice model to the spin dynamics of the IV compounds. One is that the band 

structure is more complex than just two hybridized bands. There may be significant 

regions of momentum transfer Q where the 4f bands above and below the Fermi level are 

very flat, leading to the same excitation energy being observed over a broad range of Q. 

However, these bands remain to be calculated. Furthermore, there are four examples 

where measurements on single crystals show this weak Q-dependence and this Kondo 

impurity-like behavior: YbAl3, CePd3, and YbInCu4 and CeInSn2, and it is improbable 

that they all have the same band structure. 

Among the Anderson Lattice calculations, the slave boson approximation is a mean 

field (MF) calculation, Brandow[30] applies a variational version, and the calculation of 

Aligia and Alascio[31] is a version of effective MF. These do not necessarily get the 

excitations correctly. As is true for uncorrelated band theory, we might expect the mean 
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field treatment to be correct close to the Fermi energy but to poorly estimate excitation 

energies away from the Fermi level. 

In addition, there is a finite lifetime effect that leads to the broadening of the 

otherwise sharp features. Excitations taking place around the Fermi level, with almost 

zero energy differences, have infinite lifetime. In contrast, in the case of interband 

excitations, away from Fermi level, the lifetime is certainly finite, and this could be the 

reason for a smearing of the otherwise sharp threshold for the interband excitations. 

Other possible reasons include phonon assisted transitions; these destroy the unique 

relation between energy transfer E and momentum transfer Q. Finally, there may be 

significant overlap of the intraband Fermi Liquid excitations with the interband 

transitions. We are uncertain about the energy scales of the former, which may extend 

above 10 meV.  

 The similarity to AIM predictions suggests that the excitations are much like 

localized Kondo fluctuations. The 33 meV excitation in YbAl3 is a clear warning that 

there can be highly local excitations in the renormalized band ground state. In his 

calculation, Brandow[30] included a localized “moment-unbinding” excitation, not 

derived from the Anderson Periodic Hamiltonian, but in an ad hoc manner. It involves an 

onsite valence fluctuation from the hybridized state (screened local moment) into the 

non-hybridized 4f1 (magnetic) state. In this manner, a two-peak structure of the 

susceptibility and specific heat should be observed, similar to the low temperature 

anomalies reported by Cornelius, et al. [1]. Whether or not this approach is correct, it 

appears that the excitations in the Anderson lattice may be much more like those of an 

Anderson impurity than has been previously recognized. 
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