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OUTLINE

Motivation: Compare scaling in U vs Ce and Yb paramagnetic heavy Fermions (HF) 

Are spin fluctuations (SF) of itinerant 5f electrons different than SF for local 4f moments?

Low-T Scaling: (0)  and  ~ 1/Tsf

where  = Cmag/T is the linear coefficient of specific heat 

(0) is the low temperature susceptibility 

kBTsf is the characteristic energy for spin fluctuations

kBTsf = Emax , the maximum in the inelastic magnetic neutron scattering spectrum χ’’(E)

 The (Wilson) ratio (0)/ and the product Emax  are constants.

(but depend on the f-orbital degeneracy   NJ = 2J+1)  

Compare data to a rough phenomenology of  low temperature scaling

(spin fluctuation  with degeneracy NJ at energy kBTsf)

and to T-dependent scaling of Kondo/Anderson impurity model (K/AIM): 

Rare earth (RE) HF: Low-T scaling good;  K/AIM good for for T- dependence of (T) 

and C(T) and E-dependence of χ’’(E). (Example: YbFe2Zn20) 

U- HF: Low-T scaling not so good ; K/AIM poor for (T) and C(T); badly overestimates 

the entropy. (Example: UCo2Zn20 and URu2Zn20)

Fix up low-T scaling for U-HF:

Subtract out estimated  contribution to  from antiferromagnetic (AF) fluctuations 

Since paramagnetic moment and associated entropy are not well-known for itinerant 5f 

compounds, estimate NJ from  measured high-T Curie  constant.

How good is this? What does theory have to say?



General scaling behavior: UCo2Zn20 vs. 

URu2Zn20
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(2K)Co / (2K)Ru = 2.63 (2K)Co / (2K)Ru = 3.01 Emax(Ru) / Emax(Co) = 2.84

(Tmax)Co / (2K)Ru = 2.93

Approximate factor of three scaling:  and  scale as 1/kBTsf = 1/Emax.



Poor but happy phenomenology of scaling

NJ = 2J +1 degenerate magnetic excited state at E = kBTsf

(the characteristic energy for spin fluctuations) 

Nonmagnetic singlet ground state

Damped oscillator spin fluctuations

(Fermionic, with ’’~ E at small E)

’’(E) = (0)E(/)

(E-E0)
2+ 2

E0 = kBTsf;  = SF damping rate

Van Vleck-like susceptibility 

(0) ~ CJ/Tsf at low T; (T) ~ CJ/(T+Tsf ) at high T

CJ = g2J(J+1)B
2/3kB

Csh: like Schottky

but Fermionic, so C ~ T at low T

(CK: Kondo approximation)

“Rough Approximation”:

“Half the spin entropy by Tm
C  ”: Tm

C = ½ R ln(2J+1) 

Together with   Tm
C  ~ 1/3 Tsf (as for Schottky)

 Tsf = 3/2 R ln(2J+1)
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Scaling in Kondo/Anderson Impurity Model:

 Low energy Kondo resonance on a scale kBT0

 Universal behavior of Cm(T),  (T) and ”(E). 

 Scaling dependent on orbital degeneracy NJ =  2J + 1.

 Rajan’s (Coqblin-Schrieffer) results for low-T scaling [1]:

0 = JR / 3T0

0 = (2J + 1)CJ / 2 T0

Cox’s results (NCA) for the neutron scattering cross section:

Emax = 1.36To
Cox = 1.36(T0 / 1.15) = 1.18 T0.

Depends on J, 4f occupation nf  (degree of intermediate valence).

We assume Emax = T0 is valid to 20%

V. T. Rajan et al., Phys. Rev. Lett., 51, 308 (1983).

D. L. Cox et al., J. Magn. Magn. Mater., 54, 333 (1986).



Low T Scaling in Ce, Yb and U compoundsLow T scaling laws:

1)  Emax

Rough: (3/2)R ln(2J+1)

Kondo:  (/3) R J

J       Rough    Kondo

1/2 8.6 4.35

5/2 22.3      21.75

7/2 25.9      30.45

9/2 28.7      39.15

2) W = (2R/3CJ) (0)/

Rough: (22/9)/ln(2J+1)

Kondo: (1+(1/(2J))

J       Rough    Kondo

1/2 3.15 2.00

5/2 1.22       1.20

7/2 1.05       1.14

9/2 0.95       1.11

Note: Rough Approximation gives values close to Kondo for Emax and W



Temperature dependence of  and Cm for different J [Rajan]

Energy dependence of the dynamic susceptibility at different temperatures. 

neutron is the peak position Emax [Cox]. 

Temperature-dependent scaling in Kondo model



The validity of the AIM for the rare earth 4f 

compound YbFe2Zn20
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Susceptibility and specific heat:

Symbols: Data for Cmag(T) and (T) 
(M. S. Torikachvili et al., PNAS, 104, 9960 (2007).)

Red line:  Kondo (Rajan) for J=7/2.

Neutron scattering (Christianson):

Low T peak in ’’(E)

Emax = 1.18 T0= 82K= 7 meV.

Red line: ”(E)/ ”(Emax) was as 

determined from Fig. 4 of Cox

 Only one adjustable parameter (T0)    

(T0 = 69.2 K.)

WOW!
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YbFe2Zn20 compared to UCo2Zn20

Susceptibility, specific heat coefficient are very similar in magnitude and 

temperature dependence; neutron spectra have very similar Emax.

Since Kondo works so well for YbFe2Zn20, we next examine how it works for UCo2Zn20

Note: URu2Zn20 and YbFe2Zn20 are good candidates for studying the K/AIM in periodic f compounds. The f-atom 

content is less than 5% of the total number of atoms, the shortest f-atom/f-atom spacing is ~ 6Å, and the f-atom is 

surrounded by a nearly-spherical cage of Zn atoms (in cubic site symmetry) which yields small crystal field splitting.



K/AIM Scaling for UCo2Zn20 and URu2Zn20:

Use Rajan and measured value of 

For each J, estimate T0 (called TK in  the table) from  = JR / 3T0.

For J= 5/2 and 9/2, use the free ion value Curie constant for CJ. 

(For J = ½, use the measured low temperature Curie constant.) 

Determine 0 = (2J + 1)CJ / 2 T0  and Emax = 1.18T0 – given in table for each J

J=9/2 values for 0 and Emax are close to experiment: K/AIM scaling good at low T?

Fix J = 9/2, fix T0 at the values given above.

Calculate the full T- dependence for χ and  using Rajan’s curves

(use Cox for the E-dependence of χ’’(E)/χ’’(Emax))



AIM predictions for the temperature dependence 

of (T) Cmag(T) and Smag(T) in the J = 9/2 case:
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AIM predictions for the energy dependence of 

”(E) / ”(Emax):
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Summary so far:

- - Kondo scaling, at both low and intermediate temperature, works extremely well 

for certain rare earth (RE) HF compounds. (YbAgCu4; YbFe2Zn20)

-- For UAl2, USn3, UPt3 and UBe13 either W = (2R/3CJ) (0)/ or Emax  is wrong,     

i.e. too small or too large for J = 9/2 (or 8/2) low-T scaling. 

For these uranium compounds, the susceptibility is always in the range 

0.01 emu/mol, even though the specific heat  varies by an order of magnitude

(from 0.1 to1 J/mol-K2).

-- J = 9/2 Low-T Kondo scaling works well for UCo2Zn20 and URu2Zn20, but

the temperature dependence predicted by Kondo theory for J = 9/2, has serious 

problems:

Theoretical values of the peak temperature for Cmag(T) are higher than 

observed in the experiment.

Experimental entropy is much smaller than predicted.

(For UCo2Zn20 the choice J = ½ gives a better fit to the specific heat maximum temperature and entropy and fits 

(0) but seriously underestimates the neutron peak energy Emax Since this is the fundamental scale kBTsf, this is 

a serious failure.)
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What’s wrong with U-HF low-T scaling?

1) High temperature paramagnetic moment/ entropy

In cerium and Yb HF compounds, the high temperature 

“effective moment” T tends to the (Hund’s Rule) free 

ion (local moment) value   CJ = g2J(J+1)B
2/3kB and the 

entropy tends to R lnNJ where NJ = 2J+1 is the 

degeneracy of the moment.

For some uranium HF compounds, T approaches the 

Hund’s Rule value at high T, but for others the 

paramagnetic moment appears to be seriously 

suppressed from the free ion value. 

For UPt3, T tends towards the L=0, S=1 value, as 

though L is completely quenched as in transition metals.
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The Curie constant and the entropy enter the 

scaling laws (in the rough approximation) as

Emax  ~ (3/2)R lnNJ and W = (2R/3CJ) (0)/

Hence we might improve agreement with 

scaling by using better values for CJ and NJ.

Problem: For Hund’s Rule J or for L=0 S=1 

(or 3/2), we know how to determine CJ and NJ

but for partially quenched L, what is NJ?

Neutron form factor 

measurements 

(Lander) show that 

the orbital moment is 

much smaller than the 

Hund’s rule value in 

such compounds as 

UNi2 and UFe2



What’s wrong with U-HF low-T scaling? (continued)

2) Antiferromagnetic fluctuations in uranium compounds

In addition to the spin fluctuation peak at Emax ~ 10 - 20 meV several U-HF compounds exhibit a 

low energy peak at EAF  1 meV with a Q-dependence characteristic of antiferromagnetic (AF) 

fluctuations near a quantum critical point (QCP) for a transition into a nearby AF phase.

Example: UPt3

Main spin fluctuation at Emax ~ 6 meV

This shows a moderate Q-dependence – a little larger at the zone boundary

AF fluctuation at EAF ~ 0.2 meV

Sharp Q-dependence: narrow peak near (1/2, 0, 1)

Peak in intensity  near TN = 5K, disappears above 20K



What’s wrong with U-HF low-T scaling? (continued)

2) (continued) AF fluctuations and the specific heat:

Such AF fluctuations can contribute to the low temperature specific heat, enhancing 

it above the value expected from the scaling relation  = (/3) R J/ Emax. Assuming 

that the susceptibility is not strongly affected by AF fluctuations, this means that the 

Wilson ratio of /  will be much smaller, and the product Emax much larger, than 

expected.

To correct for this, we can try to separate C/T into two regions: a low temperature 

region (say T < 10 K) where C/T increases rapidly with decreasing temperature due 

to AF fluctuations, and a region at higher temperature (say 10 < T < 20 K) where 

the linear coefficient HiT corresponds to the value arising from the spin fluctuation 

at Emax = kBTsf.


tot

 = 
HiT

 + 
AF


AF

C
/T
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C = 1.62 emu-K/mol

 = 125 K

Example: UBe13

(0) = 0.015 emu/mol

 = 1.1 J/mol-K2

Emax = 13 meV  150 K



W = (2R/3CJ) (0)/ = 0.23

Emax  = 165 J/mol-K

But for  HiT = 0.1825 J/mol-K2

W = (2R/3CJ) (0)/HiT = 1.38

Emax HiT = 27.4 J/mol-K

Notes:

a)These values are much closer to the expected      

values in the rough approximation for the J = 

9/2 case where W = 1.11 and  Emax  = 28.7.

b) Use of the J = 9/2 Curie constant appears  

reasonable at high T. 

The Curie Weiss   Emax/kB.

c)The AF fluctuations account for most of  at

low-T, affecting  only below 8 K and 

generating only 25% of R ln2. 

Neutrons see AF ~ 1-2 meV for T < 20 K
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Example: UAl2

(0) = 0.004 emu/mol

 = 0.14 J/mol-K2

Emax/kB = 243K

 for J = 9/2 (C = 1.62 emu-K/mol)

W = (2R/3CJ) (0)/ = 0.48

Emax  = 34 J/mol-K

But for  HiT = 0.07 J/mol-K2

and CHiT = 1.2 emu-K/mol

 W = (2R/3CJ) (0)/HiT= 1.30

Emax HiT = 17.0 J/mol-K

Notes:

a) The Curie constant is smaller than the  J = 4 or 9/2 

value (1.62 emu-K/mol) but a little larger than the 

L=0 S=1 g =2 value of 1.00 emu-K/mol. 

b) If we take this to mean that the degeneracy NJ is a 

little larger than 3, then Emax  should be a bit larger 

than 13.7 (the rough appx J = 3 value) and W should a 

bit smaller than 1.5 (the Kondo J=3 value)

c) The Curie Weiss  = 250 K, the low temperature

Tsf = 300K  in (T) = (0) (1-(T/ Tsf)
2) and the low-T 

value of CHiT/ (0) all correspond to Emax/kB

d)    The AF fluctuations have not been seen by neutrons. 

We assume they arise below 10K and account for half 

of the low-T  ; they generate entropy of order only 

5% of R ln2. 
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Example: UPt3

(0) = 0.009 emu/mol

 = 0.45 J/mol-K2

Emax/kB = 70 K

 for J = 9/2 (C = 1.62 emu-K/mol)

W = (2R/3CJ) (0)/ = 0.34

Emax  = 31.5 J/mol-K

But for  HiT = 0.225 J/mol-K2

and CHiT = 1 emu-K/mol

W = (2R/3CJ) (0)/ HiT= 1.10

Emax HiT = 15.7 J/mol-K

Notes:

a) The Curie constant is equal to the L=0 S=1 g =2 value 

of 1.00 emu-K/mol. 

b) If we take this to mean that the degeneracy NJ is3, 

then Emax  should be 13.7 (the rough appx J = 3 

value) and W should a bit smaller than 1.5 (the Kondo 

J=3 value).

c) The Curie Weiss  = 60 K, and the low-T value of 

CHiT/ (0)  = 111 K correspond to Emax/kB

d)    As shown above, the AF fluctuations arise below 

20K; they account for half of the low-T  ; they 

generate entropy of order 20% of R ln2. They do not

peak at TN = 5 K.



Antiferromagnetic uranium compounds:

Compounds such as U2Zn17 exhibit antiferromagnetic order with healthy (~ 1 B) magnetic 

moments. These compounds show both critical scattering from the AF fluctuations on a small (~ 1 

meV)  scale and demagnetizing spin fluctuations on a larger energy scale (~ 10 meV). In both cases, 

there is a large linear coefficient of specific heat as T  0 in the AF phase. We assume that this 

arises from the high energy spin fluctuation, and analyze the specific heat and scaling laws in a 

similar manner as in UBe13 and UAl2 by trying to separate the contribution of the AF fluctuations 

from the low-T specific heat.
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Example: U2Zn17 : An HF antiferromagnet

max = 0.0125 emu/mol

Hi = 0.55 J/mol-K2

Lo = 0.20 J/mol-K2

Emax/kB = 100 K

 for J = 9/2 (C = 1.62 emu-K/mol)

W = (2R/3CJ) (0)/Lo = 1.05

Emax Lo = 20 J/mol-K

Notes:

a) The high-T behavior of T suggests free 

ion f2 (or f3) behavior. A Curie Weiss law 

with  = 100 K and C(f2) is close to the 

data and corresponds to Emax/kB = 100K.

b) The AF fluctuations (AF ~ 1 meV) 

appear above TN = 9.7K; the AF ordering 

wipes out more than half of the low-T  . 

The entropy at TN is close to R ln2.

c) If we use Hi in the scaling laws, then 

W = 2.88 and Emax Lo = 55 J/mol-K; both 

values are much too large. If we use Lo, 

then the Wilson ratio is good but Emax Lo

is a little small. The AF transition has 

removed some (but not most)   of the 

entropy that is associated with the 100K 

spin fluctuation, which remains as a large 

linear coefficient below TN.



Repairing low-T scaling in U-HF compounds:

1) Separation of AF contribution to C/T: In UBe13, UPt3 and UAl2, the values of 

the Wilson ration W and the scaling product Emax  can be brought in line with the 

rough scaling approximation if we use the value of specific heat coefficient HiT 

extrapolated for 10 < T < 20 K. We assume that the upturn in C/T below 10K is 

due to AF fluctuations, carrying only a fraction of R ln2 for entropy. 

2) Estimating the moment degeneracy: In correcting these scaling parameters, 

we have to estimate the moment degeneracy NJ. We use the measured High T Curie 

constant CHiT. Since, for UPt3 and UAl2, CHiT is of order of the L=0, S=1, g=2 

value, we assume that the degeneracy NJ that goes in the formulae for W and Emax

is of order 3 – or, rather, considerably less than the f2 (f3) Hund’s rule values 9-10.

3) Validity in U antiferromagnets: The procedure also seems to be valid in 

U2Zn17, where there is AF order at 10 K, and where there are both low energy scale 

AF fluctuations and higher energy scale spin fluctuations seen by neutrons. We 

attribute the large coefficient of specific heat seen for 0 < T < TN to the presence of 

high energy scale spin fluctuations in the AF phase.



How good is all this?

1) No distinction between itinerant and local moment low-T scaling: The main 

ingredients of the “rough approximation” are the energy scale for and the degeneracy of the 

spin fluctuations. As such, the low-T scaling that it predicts does not distinguish between 

itinerant and local spin fluctuations.  To distinguish the two cases, we need to look elsewhere 

– e.g. in the Q-dependence of the spin fluctuations. For the main (higher energy) spin 

fluctuation in uranium compounds, this has only been accomplished for UPt3. Direct 

comparison with appropriate rare earths would be very compelling: e.g. UCo2Zn20 vs 

YbFe2Zn20 or USn3 vs CeSn3.

2) Difficulty of direct determination of magnetic specific heat: We have assumed the 

rough approximation to be valid on the 25% level.  To test it directly would require 

measuring the specific heat over the range 0 < T < Emax/kB, and showing  that the full 

Rln(NJ) entropy is generated on this scale. Unfortunately it is difficult to subtract the 

nonmagnetic contribution to the specific heat accurately for T > 20K, since this involves a 

small difference between two large numbers, e.g. C(UCo2Zn20) – C(ThCo2Zn20) .

3) UCo2Zn20 as a strong violation of the rough approximation: The spin fluctuation 

energy in this compound is small enough (60-70K) that most of the expected  Rln10 entropy 

should be observed for T < 20K, but the observed entropy is much smaller than this. If a 

smaller moment degeneracy  than NJ = 10 in the spin fluctuation peak is at the origin of the 

discrepancy then why does the J = 9/2 scaling work at low T? And, why does the high 

temperature Curie constant CHiT  appear to approach the J = 4 or J = 9/2 value? 



How good is all this (continued) 

4) What is the moment degeneracy associated with the spin fluctuation? 

We need to better understand the relation between CHiT, L/S, and the degeneracy  

for these itinerant uranium systems. One way to determine the high temperature 

moment: use the neutron sum rule iS(Q,E) dQ dE  ~  J(J+1)

5) Proof needed that the low-T upturn in C/T is due to AF fluctuations: 

The existence of AF correlations in compounds such as UAl2 and USn3 remain to 

be demonstrated by neutron scattering.  In compounds such as UPt3, and U2Zn17

where neutrons have seen the AF fluctuations,  it remains to be seen whether the 

upturn in the specific heat correlates quantitatively with the temperature 

dependence of the AF fluctuations seen in neutrons, by comparing the spectral 

weight in these fluctuations to the weight in the upturn in C/T).

6) U-HF ~ RE intermediate valence, but AF fluctuations never seen in RE-IV: 

The spin fluctuation peaks seen in χ’’(E) in the range 5-20 meV in uranium HF 

compounds are very similar in lineshape and energy scale to what is seen in 

intermediate valence cerium and ytterbium compounds.  AF fluctuations are only 

seen in cerium HF compounds that have very large specific heat coefficients and 

very small spin fluctuation energies Emax ~ 1-2 meV.  AF fluctuations are never seen 

in RE-IV compounds.

Perhaps, due to the itineracy of the 5f ’s,  the intersite f-f coupling energy J is larger 

relative to kBTsf for U compounds than for Ce and Yb IV compounds, so that AF 

order can exist in the U  compounds, where it is not seen for RE-IV.



What does theory have to say?

Three kinds of theory are appropriate here:

1) Band theory: Norman,  Albers  and collaborators investigated UPt3 and found:

a)  The theory gets the lattice constant and the Fermi surface topology correctly

b) The measured specific heat is enhanced over the calculated band value by m*/mb = 22 

c) The dHvA experimental mass enhancements are in the range m*/mb ~ 12-29 with an average 

enhancement 18 for eight branches.

d)  After rescaling the energy axis  by an enhancement factor 

of 20 (EE/20), the  calculated dynamic susceptibility 

peaks at an energy twice as large as experiment.

e) The theory does correctly predict that ’’(E) is largest at 

the (0,0,2) zone boundary.

f) The theory strongly overestimates the magnitude of the 

ordered moment – giving      0.27 B compared to the 

experimental value 0.02 B. It also does not see any 

enhancement at the ordering wavevector (2/3 a, 0, 2/c).

The point here is that adding an ad hoc Stoner enhancement to 

band theory gets the specific heat and the dynamic 

susceptibility in the right ballpark, and hence comes close 

(within a factor of 2) to the measured low-T scaling Emax. 

A key problem is that the band theory is not expected to be reliable for 

excitations or at finite temperatures. For example, the band theory has 

uncoupled j =5/2 bands, which may not be appropriate, especially for 

calculating the Curie constant.
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Theory Comments, continued

2) “SCR” theory: This widely used approach, due to Moriya, amounts to a mean field 

phenomenology of an AF transition near a QCP. Its starting point is a local spin fluctuation 

susceptibility

L(E) = L/(1-iE/L)

which then is subjected to site-site exchange  coupling JQ

(Q,E) = L(E) / (1 – JQ L(E))

The assumption is made that (Q,0) will diverge at the QCP; a finite value of (Q,0) is 

related to the “control parameter” or distance from the QCP. A small number of parameters 

is required to characterize the behavior.

This has been recently applied to USn3. It gives appropriate scaling between  and Emax . 

Hence, the low value of Emax observed for this compound may be due to AF fluctuations. 

(The Curie constant suggests that NJ may also be small.) The theory assumes that the 5 meV 

peak seen in the neutron scattering is due to AF fluctuations, and predicts a bare spin 

fluctuation at 560 K (48 meV). The appropriate Q-dependence for a 5 meV AF peak, as well 

as the existence of the 48 meV peak need to be confirmed by neutrons. 



Theory comments, continued:

3) Anderson/Kondo Lattice:  Many versions. The theory can, in principle, handle large 

orbital degeneracy. However, it is not equipped to handle realistic 5f band dispersion. It 

serves best as a qualitative guide as to how the correlations work.

A speculation: 

--We showed above that the K/AIM worked very well for rare earth compounds such as 

YbAgCu4 and YbFe2Zn20, but was poor for the temperature dependence of UCo2Zn20 and 

URu2Zn20. 

--We remind the listener that in the early days of Kondo physics, strong efforts were made 

to have Kondo impurities in such compounds as Au1-xFex on the ppm level. The argument 

was made – and experimental evidence given – that higher levels of impurities led to d-d 

coupling J and spin glass or magnetic order. 

--The fact that K/AIM works so well for rare earth IV compounds  suggests that the 

intersite f-f coupling is very small for these compounds, relative to kBTsf, presumably due 

to the fact that the 4f electrons are so localized. Under these circumstances, the 

Kondo/Anderson Lattice gives results close to K/AIM behavior. 

--For uranium compounds, however, the spatial extent of the 5f orbits should result in 

larger intersite coupling. Perhaps this leads to a situation where the Kondo/Anderson 

lattice does not look like the K/AIM, and perhaps this is at the root of the discrepancy seen 

between the K/AIM predictions and the temperature dependence of UCo2Zn20 and 

URu2Zn20.


