next up previous
Next: About this document ...

Physics 215A
Final
Fall, 1999
Open book, open notes.
Relevant Clebsch-Gordan coefficients and spherical harmonics are attached.


Problem 1 [15 points]

A wave function of some particle of mass m moving in one dimension is

\begin{displaymath}\psi(x,t)=f(x,t)e^{ikx}\, ,
\end{displaymath}

with f(x,t) a real, positive function of position and time.
a.
Using the continuity of current, relate $\partial f(x,t)/
\partial x$ to $\partial f(x,t)/\partial t$.
b.
Using the result above, find the most general form for f(x,t).


Problem 2 [10 points]

Let $\Psi (t)$ be a two component wave function,

\begin{displaymath}\Psi(t)=\left(\begin{array}{c}
\psi_1(t) \\
\psi_2(t)
\end{array}\right)\, ,
\end{displaymath}

satisfying the wave function

\begin{displaymath}i\hbar \frac{\partial\Psi}{\partial t}=H\Psi\, ,
\end{displaymath}

with H a hermitian, 2x2 matrix. Show that if

\begin{displaymath}\Psi^{\dag }(0)\Psi(0)=\vert\psi_1(0)\vert^2+\vert\psi_2(0)\vert^2=1\, ,
\end{displaymath}

then

\begin{displaymath}\Psi^{\dag }(t)\Psi(t)=\vert\psi_1(t)\vert^2+\vert\psi_2(t)\vert^2=1\, ,
\end{displaymath}

for any time t; namely, normalization is maintained. Problem 3 [15 points]

The Hamiltonian for a magnetized rotator in an external magnetic field is

\begin{displaymath}H=\frac{ L^2}{2I}-\frac{\mu}{\hbar} BL_z\, .
\end{displaymath}

I is the moment of inertia, $\mu$ is the magnetic moment and B is the magnetic field. Li are the angular momentum operators
a.
What are the eigenvalues of this Hamiltonian?
b.
If the wave function of this system at t=0 is

\begin{displaymath}\psi(\theta,\, \phi;\, t=0)=\sqrt{\frac{3}{4\pi}}\sin\theta\sin\phi\, ,
\end{displaymath}

what is $\psi(\theta,\, \phi;\, t)$ for $t\ge 0\,$?
c.
At t=0, find the expectation value of Lz and Lz2 in the state of part b above.


Problem 4 [10 points]

An electron is in an l=1 state. The total angular momentum is j=1/2 and the z component is $-{\hbar}/2$.
a.
Write out the wave function as a sum of the states $\vert l=1,m_l;s=1/2,m_s\rangle$.
b.
What is the expectation value of ${\hbar}\sigma_z/2$ in this state?



 
next up previous
Next: About this document ...
Myron Bander
2000-03-22