next up previous
Next: About this document ...

Physics 215A
Midterm
Fall, 1999

Problem 1
Let $\vert a_1\rangle$ and $\vert a_2\rangle$ be two states with $\langle a_i\vert a_j\rangle =\delta_{ij}$. A Hamiltonian is given by

\begin{displaymath}H=\vert a_1\rangle\beta\langle a_2\vert+\vert a_2\rangle\beta\langle a_1\vert\, ;\
\end{displaymath}

$\beta$ is a real number.
a.
Find the eigenvectors of H as combinations of the two states $\vert a_i\rangle$ and their corresponding eigenvalues.
b.
Suppose at t=0 the system is in the state $\vert a_1\rangle$. Write down the state vector for t>0.
c.
What is the probability of finding the system in state $\vert a_2\rangle$ at time t>0?

Problem 2
Sometimes it is convenient to approximate a situation by using a complex potential

\begin{displaymath}V(x)=V_R(x)-iV_I(x)\, ,
\end{displaymath}

with VR and VI real. We find that $\partial\rho(x,t)/\partial t +
\partial j(x,t)/\partial x $ is no longer equal to zero. What is it equal to?

Problem 3
a.
If $\vert E\rangle$ is an eigenstate of the Hamiltonian H, show that

\begin{displaymath}\frac{\partial}{\partial t} \langle E\vert{\cal O}\vert E\rangle
=0\, ,
\end{displaymath}

for any operator ${\cal O}$ (not depending explicitly on time).
b.
For

\begin{displaymath}H=\frac{P^2}{2m}+V(X)
\end{displaymath}

evaluate $\partial (XP)/\partial t$.
c.
Using the two results above we can show that

\begin{displaymath}\langle E\vert\frac{P^2}{2m}\vert E\rangle =
c\langle E\vert X\frac{\partial V}{\partial X}\vert E\rangle\, ,
\end{displaymath}

where c is a constant. Derive the above and find c?


 
next up previous
Next: About this document ...
Myron Bander
2000-03-22