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The pinch-off of a two-dimensional region of inviscid fluid is investigated using numerical and
analytical techniques. We find that pinch-off occurs when a sufficiently deformed 2D drop is
released from rest. The asymptotic collapse of the pinching region is characterized by an anomalous,
nonrational similarity exponent «, indicating the existence of self-similarity of the second kind.
Numerical solutions of the boundary integral equations show that the height of the pinch region
shrinks faster than the width, so that the singularity can be described by a slender approximation.
The partial differential equations obtained from this approximation are solved and are consistent
with the full boundary integral methods. Furthermore, by casting the partial differential equations
into similarity form, we solve a nonlinear eigenvalue problem to obtain the value of the similarity
exponent, a=0.6869+0.0003. © 2007 American Institute of Physics. [DOL: 10.1063/1.2800387]

I. INTRODUCTION

Singularity formation and topology changes in free sur-
face flows and fluid sheets have been the subject of extensive
research in the fluid dynamics field for the last two decades.
One of the motivations for this work is the particularly close
connection to some of the simplest and most commonly ob-
served fluid phenomena, such as water dripping from a fau-
cet. The ease of experimental access to these simple physical
systems with a finite time singularity has facilitated careful
comparison between theory and experiment. Another impor-
tant driving factor for research in this field has been the
challenge of mathematically describing and classifying the
possible types of “pinch-off” singularitie:s.1 The solutions of
the equations describing pinch-off often have a self-similar
form with unique power law exponents describing the col-
lapse or divergence of quantities such as neck thickness, ve-
locity, and pressure. The large majority of research has fo-
cused on pinch-off in 3D axisymmetric droplets in different
flow regimes (inviscid flow, Stokes’ flow). A notable ex-
ample is the solution found by Eggers2 for the pinch-off of
an axisymmetric fluid thread where surface tension, viscos-
ity, and inertia are all of comparable importance. Eggers
showed that the asymptotic power law exponents are rational
numbers which can be predicted by a dimensional analysis of
the fluid parameters and geometry of the problem. Rational
exponents derivable from dimensional considerations are a
hallmark of self-similarity of the first kind. In many cases,
however, the asymptotic behavior is more complicated.
When the similarity exponent cannot be predicted from di-
mensional analysis alone, the solution is then described as
“self-similarity of the second kind,” a term first used by
Barenblatt.®> One example of this type of self-similarity is
discussed in Ref. 4 and then in Ref. 5 for the Stokes’ flow
pinch-off of an axisymmetric fluid thread.

For the case of inviscid pinch-off of a 3D axisymmetric
droplet, experiments and simulations®™'? yield a similarity
exponent of exactly 2/3. This is the result expected from
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simple dimensional analysis using the surface tension o and
the fluid density p as the relevant parameters, L
~(o/p)"3T?3, where L and T are the characteristic length
and time associated with the singularity. If we apply the
same reasoning to the problem of 2D inviscid pinch-off with
line tension N and 2D density &, then the exponent which
describes the time dependence of the characteristic length is
again 2/3, with L~(N/&"3T?3. Our recent experiments
with pinch-off in low-viscosity, quasi-2D liquid lens
systems13 show that simple changes in the geometry of the
fluid (thin liquid lens versus axisymmetric drop) result in
drastic changes to the structure and nature of the singulari-
ties. The results reported in this article were motivated by an
attempt to understand how inviscid pinch-off differs in 2D
and 3D.

Although simple dimensional arguments suggests that
the characteristic exponents do not depend on the spatial
dimension of the fluid, the capillary stability of a fluid region
to small perturbations is quite different in 2D and 3D. The
early stage of pinch-off in 3D is typically driven by surface
tension. A sufficiently deformed axisymmetric droplet begins
to break apart due to the positive radial curvature «, near z
=0 in the (r, 0) plane (Fig. 1). The axial curvature «, in the
(r,z) plane is negative, and tends to pull the drop back into a
spherical shape. When the mean curvature «,=1/2(k,+ k)
near a thin neck is positive, the drop is unstable and begins to
break into two pieces. In 2D, there is no analog of “radial
curvature.” There is only one curvature k, (analog of «.),
which must be negative near a minimum neck thickness, so
curvature induced Laplace pressure cannot be the driving
force for pinch-off in 2D. This suggests that pinch-off may
not be possible in 2D. We have found, however, that suffi-
ciently deformed 2D droplets released from rest do indeed
undergo pinch-off. Qualitatively, this is due to the Bernoulli
pressure caused by the large fluid velocities which arise as
the line tension potential energy is converted into Kinetic
energy of flow. This effect apparently overwhelms the
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FIG. 1. (a) Cartoon of a deformed 3D axisymmetric droplet. The surface of
the 3D drop is obtained by rotating the boundary around the z-axis; it is
characterized by two curvatures, «, and .. (b) Cartoon of a 2D fluid drop.
In 2D, the fluid sheet lies entirely in the (y,x) plane, and is characterized by
a single curvature k.

Laplace curvature term and the sheet begins to pinch and
eventually follows a self-similar solution. We have studied
the pinching flows using three different techniques. In Sec.
II, we describe numerical solutions of the boundary-integral
equations for potential flow of deformed drops in both 2D
and 3D. In 3D, our code reproduces the well known solu-
tions obtained previously by others.””® The 2D and 3D cal-
culations differ primarily in the form of the Green’s function
used, but the 2D case produces a qualitatively different shape
of the pinch region and different (irrational) power laws
which describe the rate of collapse of the neck. Another im-
portant difference between the solutions in the 2D and 3D
cases is the way in which the characteristic axial and radial
length scales vary with time. In 3D, axial and radial lengths
have the same time dependence, so the shape of the neck is
self-similar. In 2D, however, the characteristic radial length
shrinks faster than the axial length, so the profile is not self-
similar, and variations of the flow properties in the radial
direction become asymptotically negligible compared to
variations in the axial direction. This allows a simplification
of the equations of motion known as the slender approxima-
tion. In Sec. III, the partial differential equations for the neck
profile in the slender approximation are solved numerically.
These equations are simpler and computationally much more
efficient than the boundary integral solutions, but the same
basic result of irrational exponents and different scaling be-
havior in the radial and axial directions are obtained. In Sec.
IV, the slender approximation equations are converted to a
system of ordinary differential equations by assuming a scal-
ing form of solution involving an exponent «. The boundary
conditions on the ODEs yield a nonlinear eigenvalue prob-
lem which determines a unique value for a. The scaling form
of the solutions leads to power laws for the neck profile
which are in excellent agreement with the other two methods
of solution.
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Il. BOUNDARY-INTEGRAL SIMULATIONS

We begin with an initial boundary of a 3D axisymmetric
drop in the (r,z) plane or the boundary of a 2D sheet in the
(v,z) plane (Fig. 1). A typical simulation starts with a dumb-
bell shaped domain at rest (v=0 everywhere). The shape is
then acted upon by surface tension (3D) or line tension (2D)
forces occurring at the boundary. Our simulations are re-
stricted to perfectly inviscid, incompressible fluids with
smooth, nonturbulent flows. In this regime, standard poten-
tial flow theory can be applied where a potential ¢(X,) is
specified along the boundary, and V?¢(x)=0 everywhere.
The normal component of the velocity along the boundary
can then be calculated through boundary integral equations.
However, the resulting integral equations are weakly singu-
lar, which can pose a computational difﬁculty.14 A method
for singularity reduction in the integrals is given by Nie and
Baker,"” which involves describing the flow by a dipole dis-
tribution ¢(x,) along the surface, and along with ¢(X,), in-

troducing the vector potential A(X,). The resulting integral
equations are

o(&,) = f [4) - 4G [T G R) - RERSE) - o),
B
0

AR, = f [¢(%) - ¢(X,) () X VG(x,,0)ds(X),  (2)
B

where n(xX) is the normal vector pointing away from the fluid
and G(X,,X) is the free space Green’s function in the appro-
priate dimension,

)

- | T
G2D(X0’X) == ZT 1H|X — X,

3)

- - |_1

G3D(§m§) = _|X — X,
417

In this formulation, the potential has a discontinuous
jump across the boundary,

¢ -¢ =q, 4)

where the superscript denotes the exterior (+) and interior
(—) side of B. The value of the potential exactly on the
boundary is taken as the principal value of ¢,

&V =3¢+ ¢). (5)

In 2D, Egs. (1) and (2) are line integrals over the boundary of
the sheet, and in 3D, the integral is taken over the surface of
the axisymmetric drop. However, the axisymmetry in 3D can
be exploited by performing the azimuthal () integration
an.':llytically,15 which reduces 1 and 2 to line integrals in the
(r,z) plane (Fig. 1). The boundary was discretized by a col-
lection of marker points, and quintic splines were used cal-
culate derivatives and to interpolate between points. We have
restricted ourselves to boundaries that are symmetric about
the r-axis (y-axis) and the z-axis (x-axis) in 3D (2D). Be-
cause of this, we only need marker points in one quadrant,
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which speeds up the calculations. The boundary integrals
were calculated using an 8-point Gaussian quadrature. Once
¢ (X,) is specified at each marker point, Eq. (1) can be
solved efficiently by the method of successive substitutions

to obtain the values of g(X,) along the boundary. 1&(?{0) can
then be obtained by a direct integration of g(x,). To obtain
the normal component of the velocity along the boundary, we

make use of the fact that ﬁ-?:ﬁ-§¢—=ﬁ-(ﬁx§). It turns

out that n- (6 X ,&) can be calculated using only derivatives
along the boundary, which are easily obtained by direct dif-

ferentiation of A. Although the normal component of the
velocity must be continuous across B, the tangential compo-
nent of the velocity undergoes a discontinuous jump across
B. We chose to advect the marker points on the boundary
using the velocity obtained from the principal value of the
potential [Eq. (5)],

_=*’ 6
DY (6)

where D/Dt=0d/ ﬁt+(€¢P Vﬁ) is the convective derivative.
Since there is no external fluid in our problem, we only need
the time evolution of the internal potential ¢~, which is gov-
erned by the kinematic boundary condition

D¢ 1= , 1 = = .

o= VP (Ve (Vg 9+ (P =P, ()
where § is the unit vector tangent to the boundary and (P*
—P") is the pressure difference across the boundary. In 2D,
this pressure difference is given by (P*—P7)=\«k,/§, where
\ is the line tension, ¢ is the 2D density of the fluid, and «,
is the curvature of the boundary in the (x,y) plane. In 3D, the
pressure difference depends on the two principal radii of cur-
vature for the surface, (P*—P~)=0(k,+k.)/p, where o is the
surface tension, p is the 3D fluid density, «, is the axial
curvature in the (r,z) plane, and «, is the radial curvature
which lies in a plane perpendicular to the (r,z) plane and
contains the normal vector pointing outward from the sur-
face.

For simplicity, all fluid parameters were set equal to
unity for most simulations. Using an explicit fourth-order
Runge-Kutta scheme, the x and y coordinates of each marker
point and the value of ¢~ at each point were advanced in
time. As the singularity was approached, refinement of the
grid of marker points and adaptive time stepping were nec-
essary to maintain resolution at small length and time scales.
In a similar fashion to the methods employed in Refs. 7 and
8 the marker points were redistributed at each time step
along the boundary with the local point spacing being deter-
mined by the following formula:

R —
Alyp = arctan(NA(x — x,,;,)° + By?),

(®)

ALy o arctan(VA(z — zyin)> + Br?),

where the subscript min denotes the position of the minimum
neck thickness and A and B are numerical constants chosen
according to the problem. In 3D, both horizontal and vertical
lengths scale with the same exponent, so A=B. However, in
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2D, we found that the horizontal and vertical lengths scale
differently, so that A and B were adjusted as the singularity
evolved. The arctan function was chosen because its value
remains finite as the argument approaches infinity, so that
points far away from the singularity would still retain a local
spacing fine enough to accurately describe the surface. Points
were added to the boundary when the local point spacing
near the pinch was too large (6>0.1y,, or 8I>0.1r,). A
typical number of marker points at the beginning of the
simulation was ~200, whereas near the final stages of pinch-
off, there were ~400 marker points. The time step ot was
chosen according to the formula &t=Cr."2 for the 3D case,
and 8t=Cy %87 for the 2D case, where C~0.1 is a numeri-
cal constant. For 3D simulations, the value of the similarity
exponent is already known to be 2/3, so that a time step
proportional to ri{izn should scale appropriately as 7—0.
Since the similarity exponent in 2D was not known a priori,
very small time steps were taken until a good approximation
of the similarity exponent was obtained so that we could
make use of 8t=Cy/%87 a5 the time step towards pinch-off.
Typical simulations took approximately 5 days to complete
on a 2 GHz desktop PC. The main results of the boundary-
integral simulations for both 2D sheets and 3D droplets can
be seen in Fig. 2. First, a series of boundary shapes show the
approach to pinch-off for both cases. The regridding of the
marker points can be seen in both the 2D and 3D cases in
Fig. 2(a). In both 3D and 2D, initial conditions which are
small deviations from the equilibrium shape result in oscil-
lations (discussed in more detail in the Appendix), while suf-
ficiently deformed initial shapes lead to pinch-off. The two
cases differ in the balance of forces in the initial stages of
pinch-off; in 3D, if the total curvature is positive, the Laplace
pressure term tends to decrease the neck diameter, while in
2D, the Laplace pressure term always tends to increase the
neck diameter. This difference in the initial stability accounts
for the fact that more highly elongated initial shapes are re-
quired to induce pinch-off in 2D than in 3D. The highly
elongated 2D initial shapes contained large amounts of po-
tential line tension energy. As the drop rebounds [Fig. 2(a),
right panel], the potential energy is converted into kinetic
energy. The resulting large velocities create areas of low
pressure, which drive a Bernoulli “suction” effect, pulling
the neck of the droplet inward towards the x-axis. In 2D and
3D as the neck collapses, fluid is driven from the center mass
of fluid to the large reservoirs at the ends, so the horizontal
components of the velocity v, and v, near the singularity
point away from the origin in Fig. 2(a). In 2D, the curvature
is always negative near a minimum neck thickness, which
means that line tension always acts to increase the neck di-
ameter. However, in 3D, the situation is more complicated
because the mean curvature «,,=1/2(k,+k,) changes sign
near the minimum, so that different parts of the neck are
being pulled in different directions by the Laplace pressure.
In fact, at the minimum radius, the mean curvature is posi-
tive, meaning that the Laplace pressure helps to squeeze the
neck at r=r,;,. Figures 3(a) and 3(b) show plots of the cur-
vature near the minimum neck thickness which illustrates
this point.

A zoomed-in view of the pinch region in Fig. 2(b) shows
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3D Axisymmetric Droplet
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2D Fluid Sheet

FIG. 2. (a) Sequence of boundary pro-

files in inviscid pinch-off for 2D

(right-hand panels) and 3D (left-hand
panels). The boundary initially starts
at rest and is acted upon by line ten-
sion or surface tension. (b) Profile of
the asymptotic pinch-off region in 2D

(right) and 3D (left). The aspect ratio
for the 3D plot is equal to unity,

whereas the aspect ratio for the 2D
plot has been enhanced to ~3.5 due to
the slenderness of the pinch profile.
The overturned double cone structure
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the structure of the singularities in 2D and 3D. In 3D, an
overturned, double-cone profile is always realized near
pinch-off, starting from a wide array of initial conditions.
The value of the cone angles are approximately 18° and
113°.7? In 2D, the singular region has no overturning and
looks more like an asymmetric hyperbola. The dimensional
analysis of both the 3D and 2D inviscid pinch-off yields a
value of 2/3 for the power law describing the time depen-
dence of the minimum neck radius: 7, % (a/p)'*7/* in 3D
and vy, < (N &3 in 2D. The left panel of Fig. 2(c)
shows excellent agreement with this prediction in 3D, which
is essentially a verification of our numerical code since this
exponent has been previously verified by simulations and
experiments.6_12’16 The first indication that 2D inviscid
pinch-off does not display self-similarity of the first kind is
the fact that y;, follows a power law in time with an anoma-
lous exponent that is different from the predicted 2/3 ob-
tained from dimensional analysis. The right panel in Fig. 2(c)
shows the best fit exponent to the data to be 0.7516. Further-
more, in contrast to the 73 scaling in both the horizontal and
vertical lengths scales in 3D pinch-off, the height of the

pinch region in 2D (y,y;,) shrinks faster than the width of the
pinch region ('), so that the profile becomes slender as 7
— 0. This is illustrated in Fig. 3(c), which shows the ratio of
the vertical to horizontal length scale A at the minimum neck
thickness (A= k,y|,-, in 2D, A= wr|,, in 3D) as a
function of 7. In 3D, this ratio approaches a constant value,
which indicates that both lengths scale with the same expo-
nent. However, this is clearly not the case for 2D pinch-off,
which implies that the axial and radial scaling behavior are
different. Slender approximations to many pinch-off
phenomenaz’4’17_l9 have been utilized to more easily study
the asymptotic properties of these singularities, and an appli-
cation to 2D inviscid pinch-off is the subject of the next
section.

lll. SLENDER APPROXIMATION

When the neck region of the pinch-off becomes slender,
the equations of motion simplify considerably. Only the tan-
gential component of the velocity v,(x,?7) is retained, and the
expression for the curvature is reduced to d’h(x,1)/dx?,
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FIG. 3. (a) 3D mean curvature («,,) as a function of arc-length s near the
pinching region at a time near the singularity. The variables are made di-
mensionless by r.;,. The curvature at the minimum is positive, and the
curvature (which determines the sign of the Laplace pressure) changes sign
near the minimum. (b) 2D curvature (x,) as a function of arc-length near the
pinching region at a time near the singularity. The variables are made di-
mensionless by y.,. The curvature is always negative near y,,;,, meaning
the curvature always tends to increase the neck diameter. (c) Data plotted of
the vertical to horizontal length scale (A= &yl,-, = in 2D, A=« in
3D) of the pinch region for both 3D axisymmetric pinch-off (full circles)
and 2D fluid sheet pinch-off (open circles). In 3D, this aspect ratio ap-
proaches an asymptotic constant value, indicating that the pinch profile
maintains a universal shape. In 2D, the neck thickness shrinks faster than the
curvature, so that the neck becomes “slender” as 7=0 is approached.

where h(x,7) is the boundary profile of the drop. A math-
ematical description of this simplification can be found in
Refs. 17 and 18, and the resulting equations in the inviscid
limit for the boundary profile h(x,) and the velocity v(x,?)
are

oh d

—+ —(hv) =0, 9
ot &x( v) ®
w  w NPh

—+v_—---53=0. (10)
ot ox  &Edx

Such 1D “slender” approximations have been used many
times in the past to calculate self-similar solutions of pinch-
ing singularities.2’4’17’19’20 Starting from different initial con-
ditions, we have found solutions to Egs. (9) and (10) that
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contain a finite time singularity where h(x,7)—0 and
v(x,f)—. To solve these equations, we used the “N D
Solve” function in MATHEMATICA which is based on the
method of lines. Since these partial differential equations are
meant to describe 2D pinch-off near the singularity, the ap-
propriate boundary conditions should contain a nonzero ini-
tial velocity to account for the Bernoulli suction observed in
the boundary-integral simulations. We propagated the solu-
tions of Egs. (9) and (10) using many different boundary
conditions, and all sets that resulted in finite-time pinch-off
were qualitatively the same and displayed the same scaling
exponents. Subsequently, we choose to discuss one such case
in the range 0 <x <2 with A=1 and £=1 and the following
set of boundary conditions:

h(x,0)=1-0.2 cos(mx/2),
v(x,0) = 7 sin(mx/2),

oh(0,1)
ox

=0,

(11)
oh(2,1) 0

ox
v(0,7) =0,

v(2,1)=0.

The solution for i(x, ) with these boundary conditions is
shown for multiple times during the evolution in Fig. 4(a).
Figure 4(b) shows h(x,f) at time very near the singularity.
The position of the minimum thickness (xpin,/min) NOt only
collapses towards /,,;,=0, but also moves towards a finite
value of x,;,~0.995. In order to ensure adaptive time step-
ping and spatial mesh refinement as the singularity is ap-
proached, “N D Solve” was stopped at various time intervals
near the singularity, and the spatial grid of x values were
redistributed according to the same regridding technique
used for the boundary integral simulations [Eq. (8)], at which
point the routine was restarted. The time intervals between
regridding became smaller as the singularity was ap-
proached. 500 points were used during most time intervals,
although points were added for times 7<107’, ending in
approximately 700 points on the spatial grid when the rou-
tine was halted at 7=107'". The time step was maintained at
a fraction 10™* of each time interval between each spatial
regridding. The solutions were followed until 7~ 10717,
where the minimum neck height /,,;,~ 10~7. Figure 5 shows
a Logy-Log;, plot of h.;, versus 7 and x.;,—x, Versus 7,
indicating a best fit power law exponent of 0.7476+0.005
and 0.6869+0.005, respectively. To illustrate the self-similar
nature of the singularity, we rescale the profile at different
times very near pinch-off using the fitted power law expo-
nents for the horizontal and vertical direction (Fig. 6). The
scaled data for the profiles then collapse onto a single curve
over several orders of magnitude change in 7.

Although these partial differential equations are nonlin-
ear, solutions are much more easily calculated than the full

Downloaded 28 Oct 2007 to 128.200.11.42. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



102109-6

J. C. Burton and P. Taborek

e t=0.2600
= t=0.2613
0.01f & t=0.2625
A t=0.2638
v t=0.2642
0.97 0.98 0.99

X

FIG. 4. (a) Plot of the profile of a 2D drop h(x,7) as a function of x showing
the evolution of h(x,z) for several values of ¢ up to the singular point 7
~0.264 starting from the initial conditions given in Eq. (11) at t=0. (b)
High magnification view of the behavior of A(x,7) as a function of x for five
different times very close to the moment of pinch-off. Note that the mini-
mum thickness (h;,) approaches the singularity in both the vertical and
horizontal directions. The variation of each of these quantities is character-
ized by a different exponent, as shown in Figs. 5 and 6.
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boundary integral solutions. For example, following the so-
lutions of Egs. (9) and (10) over 8 orders of magnitude in
time took only 5—10 min, as opposed to 5 days required to
solve Egs. (1) and (2). Although the exponent for the mini-
mum neck thickness was slightly different than the one ob-
tained from the solutions of the PDEs (0.7516 as opposed to
0.7476), this difference is most likely explained by the fact
that the pinch shape has not yet reached the slender limit in
Fig. 2, with an aspect ratio of 1:10 in the horizontal and
vertical length scales (Fig. 3).

Equations (9) and (10) have been examined by previous
authors,'®?" with the assumption that the similarity exponent
for pinching solutions should be 2/3. Numerical results in
Ref. 21 reports a power law exponent for A, versus 7 of
a=0.74. However, the deviations from 2/3 are attributed to
the finite range of the simulation in 7 or neglecting higher-
order terms in the equations. In another case, similar devia-
tions from the expected value 2/3 were obtained from nu-
merical solutions of nearly identical equations17 for studies
of finite-time singularities in Hele-Shaw systems with zero
fluid density and a finite fluid density. They found that with a
finite fluid density, the viscous terms become negligible near
pinch-off and power law exponents for various quantities are
nearly identical to ones that we have found. For example,
Dupont et al.”’ reported on an exponent of 0.766+0.05 for
the minimum neck radius. Although their numerical values
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FIG. 5. Logy-Log,y plots of (a) hy,(7) and (b) xpin(7)—x, obtained by
solving the set of partial differential equations (9) and (10) with the bound-
ary conditions in Eq. (11). The value of 7 was chosen by a best power law
fit to the data. The open circles denote data and the solid line denotes the
slope.

for the exponents are similar to ours, they attribute the de-
viation from the dimensional analysis result =2/3 to loga-
rithmic corrections. Our results from the boundary-integral
simulations show that there is true power law behavior, but
with an irrational exponent.

IV. CALCULATION OF THE SELF-SIMILAR EXPONENT

Equations involving self-similar solutions of the second
kind have been used to describe a variety of phenomena
including nonlinear diffusion and heat conduction, filtration-
absorption and flow through porous media,”> and viscous

¥
“ £
£

o]

N

(hmin)/10.7476

-3 -2 -1 0 1 2 3 4
(X'Xmin ) /T0.6869

FIG. 6. Scaled plots of the pinch-off region at different values of 7. The data
come from the solutions of the partial differential equations (9) and (10)
with the boundary conditions in Eq. (11). The symbols denote the following
values of 71 A=1.21X107, O=1.13X10"°, *=3.38X 1078, and X=3.76
% 107, In order for the profiles to collapse onto a single curve, the horizon-
tal and vertical axes must be scaled by different exponents, obtained from
Fig. 5.
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gravity currents.” Finding the numerical value of the self-
similarity exponent typically involves solving a nonlinear ei-
genvalue problem, where the boundary conditions are given
at different points and a “shooting” method is required to
find the solution between them. For 2D inviscid pinch-off,
we begin with Egs. (9) and (10) and define a new function
glx,t)=(\/&)h(x,r) in order to remove the fluid parameters
from the problem. Equations (9) and (10) then become
dg d

E+£(gv)=0, (12)

a v P
() (13)
ot ox  ox

Next, we assume a self-similar form for both g(x,7) and
v(x,1),
(-xo_-x)4

(t,-1?

gx,1) = G(),

(14)
(xo - )C)
(to - t)

where 7 is the similarity variable

V(n),

v(x,1) =

_ (xo _x)
7= 7(t0 - t)a

and (x,,7,) is the spatial/temporal position where the singu-
larity occurs. This self-similar form illustrates the relation
between the similarity exponent «, and the various exponents
of singular quantities, such as g, and v;,. For example, if
we follow the minimum neck height in time, this occurs at
X=Xpin(1)=A(t,—1)*+x,, where A is a constant determined
by the initial conditions leading up to pinch-off. Plugging
this into Eq. (14), we find that h;,(£)=A%(t,—1)**2G(A/ y).
So this implies that /,,;, follows a power law in time with an
exponent of 4a—2. We should note that if the similarity ex-
ponent was in fact 2/3 as predicted by dimensional analysis,
then 4(2/3)-2=2/3, and h,;, would also follow a 2/3
power law.

In the following discussion, we will limit ourselves to
solutions where 1<t (before pinch-off), so that positive and
negative values of # refer to solutions where x<<x, and x
>x,, respectively. Although the similarity exponent « has a
universal value for self-similar solutions of 2D inviscid
pinch-off, the value of y cannot be obtained a priori and will
depend on the initial conditions leading up to pinch-off. To
calculate the value of a, we plug similarity solutions (14)
into Egs. (12) and (13) and obtain the following coupled set
of ordinary differential equations:

G' S5V+qpV' -2

G pla-Vv) ' (16)

(15)

V(V=1)+ V' (V- a) =24G + 736G’ + 127°G"
+7°G", (17)

where the prime (e.g., G') notation denotes differentiation
with respect to 7. The functions G(7) and V(%) cannot be
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determined without first specifying the value of 7, which is
included in the definition of 7. For this reason, it is conve-
nient to eliminate the explicit dependence on 7 and reduce
the equations to an autonomous form, similar to the method
used in Ref. 23. To do this, we make the substitution of the
dependent variable v=In(|7|) and write the equations in
terms of G(v) and V(v),

G 5V+V' -2
— = (18)
G (a=V)

V(V=1)+V'(V=-a) =24G +26G' +9G"+G",  (19)

where the prime now denotes differentiation with respect to
v. The phase space representation is constructed using G as
the independent variable, and defining the derivatives of G as
new functions P(v)=G'(v), and Q(v)=G"(v). After a little
algebra, we obtain three first-order ODEs for the functions V,
P, and Q, as a function of G,

dV _a-V 2-5V

G- ¢ T p 20
ar _Q
dG P’ 20
2
9 o _(a=V)
dG G
.\ -2(12G+ a) + V(1 +5a—4V)—9Q. (22)

P

The appropriate boundary conditions for V, P, and Q can be
determined by considering the limits of 7—0 and 7— +%
of the self-similar forms in Eq. (14). The limit — O refers to
x—x, with a finite . When x—x,, g(x,) must also be a
finite number if the profile of the pinch is to remain smooth.
The only way this can happen is to require G~ 7%~ e *" as
n—0. The same holds true for the velocity V so that V
~ ' ~e” as p—0. This means that both G and V diverge
to infinity as 7— 0 (v— —o0). The limit that 77— + refers to
t—t, while x is held fixed. Then g(x,) and v(x,7) must also
be finite in this limit so that G~ 7 ?*~¢2Y® and V
~ Ve~ eV a5 p— +o0 (v— ). These asymptotic forms
imply the following behavior for the phase-space equations
in the vicinity of the singular points at G=0 and G=¢=,
V~G"™, P~G;, 0~G G—

(23)

V~G\2:

P~G; 0~G G—0.

Prior to pinch-off, the profile g(x,7) must be continuous
and positive, so we require 0 <G <. The asymptotic ex-
pansions around the singular points G=0 and G=% can be
obtained using the lowest power in G from 23. Near G=0 we
have

]

V~ayG+ S ajG1/2+j/2, (24)
j=1

Downloaded 28 Oct 2007 to 128.200.11.42. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



102109-8 J. C. Burton and P. Taborek
-2 S 1+j/2
P~—G+ 2 bG"", (25)
a j=1
4 . 1+j/2
0~ G+ ¢,G"2, (26)
o j=1 X

By inserting this expansion into Egs. (20)—(22), and equating
terms of equal powers in G, we find that all of the coeffi-
cients (a;,b;,c;) can be determined by choosing @ and one
leading order term (e.g., ag), so that the problem is reduced
to a two parameter family of solutions. Near G=%, the ex-
pansion is

[

V~ koG + 2 kG, (27)
j=1
P~ —4G +m G+ myG" + X, m/G' T, (28)
j=3
0~ 16G + > n,G' ", (29)

j=1

Inserting this expression into the ODEs for V, P, and Q leads
to a four parameter family of solutions (e.g., a, ko, m;, m,)
where specifying three of the coefficients and « will deter-
mine all remaining coefficients (kj,mj,nj). There are two so-
lutions for each function V, P, and Q in the phase space, one
corresponding to positive values of z and one to negative
values of 7. To generate a curve in the phase space corre-
sponding to positive 7 solutions we need to specify four
coefficients and a (af,ky,mj,m5,a) for a total of five pa-
rameters. Then to generate the phase space curve corre-
sponding to negative 7 solutions, we need only four more
parameters since « has already been specified
(ag.ky,mj,m;,a). This is a grand total of 9 parameters.
Three boundary conditions come from the fact that
dg(x,t)/dx, g(x,1)/ox?, and v(x,r) must be continuous at
x=0 (G=2), which implies the following relations between
the leading terms in the asymptotic expansions:

ko =— kg,

m;=—m7, 30
1 1

m; =ms.

The nonlinear eigenvalue problem which determines «
consists of finding the unique integral curve which connects
the singular point at G=0, =+ and the singular point cor-
responding to G=0, »=— which satisfies the conditions of
Eq. (30) near G=. The eigensolution was found by numeri-
cally minimizing an objective function of the six parameters
which define an integral curve which was constructed to
have a minimum for the desired solution. In particular, val-
ues were chosen for «, the two parameters which determine
the asymptotic solutions near G=0, =+, and the 3 param-
eters which define the series solution near G=%. The
asymptotic series solutions were used to compute values of
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TABLE 1. Power law exponents (7°) associated with various quantities near
pinch-off. The subscript “min” denotes the value of the quantity at the
position of the minimum neck thickness. The relationship to the similarity
exponent « is shown in the last column.

Quantity B Relation to «
Rnin 0.7477+0.0012 4a-2
Xmin—Xo 0.6869+0.0003 a

Umnin —0.3131+0.0003 a-1

Kmin —0.6261+0.0006 2a-2

V, P,and Q for 0<G< 1073 for both the positive and nega-
tive 7. These solutions were numerically integrated up to
G=10° using the “N D Solve” function in MATHEMATICA.
The difference between the values at G=10? obtained in this
way and those obtained from the series solution valid near
G=% were minimized in the least squares sense using a glo-
bal minimization technique (the MATHEMATICA function “N
Minimize”). The minimization was started from multiple
points in the 6 parameter space in order to prevent accidental
trapping in a local minimum. The value of the self-similar
exponent at the global minimum was found to be «
=0.6869+0.0003, where the error represents the standard de-
viation of the values obtained from various initial sets of
parameters. Thus the value of the power law exponent asso-
ciated with A, versus 7is 4a—2=0.7476+0.0012. The nu-
merical solution of the governing partial differential equa-
tions (Fig. 5) is in excellent agreement with our calculated
value of a. We have composed a table (Table I) of power law
exponents associated with various quantities such as curva-
ture, velocity, etc. in order to compare to the exponents re-
ported in Ref. 19 that were calculated from fits to their data.
The functions G(7) and V(%) cannot be computed without
first choosing the constant y, but we can calculate V as a
function of G from the solutions to Egs. (20)—(22). By divid-
ing g(x,#) and v(x,r) by appropriate powers of (x,—x) and
(z,—1t), we obtain values of G and V along the boundary.
These data are plotted in Fig. 7 at a time 7=3.76 X107,
along with the function V(G) found from the global minimi-
zation technique. It should be noted that the point (xy;,
—X,,&min) always occurs at G ~0.63.

V. CONCLUSIONS

We have investigated the pinch-off of a 2D droplet of
inviscid fluid using several numerical techniques and com-
pared the results to the well-known solutions in 3D. Al-
though line tension always tends to stabilize a 2D region and
drive it toward a circular shape, a sufficiently distorted re-
gion will nevertheless undergo pinch-off due to nonlinear
Bernoulli effects. In contrast to 3D, the 2D pinch-off process
is described by a self-similar solution of the second kind,
which is characterized by a memory of the initial conditions
on the solution and an anomalous scaling exponent. This
self-similar solution is seen in boundary-integral simulations
of 2D potential flow. As the neck region shrinks, the horizon-
tal and vertical lengths scale with different exponents so that
the pinch region eventually becomes slender, allowing a sim-
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1
(a)
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v 0.5
0.25

FIG. 7. Phase-space plots of the similarity function V as a function of G.
The data points are calculated from the solutions of the partial differential
equations (9) and (10) with the boundary conditions in Eq. (11). Starting
from Eq. (14), we first calculate G and V by dividing the PDE solutions by
appropriate powers of (x—x,) and (r—t,). The positive V curve (a) corre-
sponds to x<0, and the negative V curve (b) corresponds to x> 0. The solid
line is the calculated phase-space curves V(G) from Egs. (20)—(22).

plification of the governing equations in the form of a 1D
coupled set of partial differential equations for the neck pro-
file h(x,r) and the velocity v(x,r). We have solved these
PDEs and observed the self-similar solution starting from
many different initial conditions. Furthermore, using a phase
space formalism similar to that in Ref. 23 we have con-
structed a nonlinear eigenvalue problem which yields the
anomalous similarity exponent «=0.6869+0.0003. Other ex-
ponents of physical interest are all related to «; for example
the exponent which governs the time dependence of the
minimum neck diameter is 4a—2=0.7477. Because of the
widespread applicability of the slender approximation, the
asymptotic solutions we have identified may be useful in
other investigations.

One of the primary motivations for this work was to
understand the results of recent experiments in our lab on
pinch-off and coalescence of quasi-2D liquid lenses.'® Al-
though liquid lens systems are considerably more compli-
cated than both the 2D and 3D inviscid pinch-off cases dis-
cussed in this paper, we have found some flow regimes
which generate pinch-off profiles that bear a striking resem-
blance to our 2D calculations; results of this work will be
published elsewhere.

APPENDIX: VERIFICATION OF BOUNDARY
INTEGRAL CODE

Small oscillations of droplets in 3D and 2D provide a
useful check of the numerical scheme used in the solution of
the boundary integral equations of potential flow because
exact solutions are known. Simulations were started from
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4. x10°8
r 112.5°
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18° (
1.3129283 1.3129323

Z

FIG. 8. Close-up of the singular region from 3D axisymmetric droplet simu-
lation depicted in Fig. 2(b). The universal shallow and steep cone angles of
18° and 112.5° are shown on each side of the singularity. Reproduction of
these cone angles is a check on our numerical routine since they have been
realized by previous authors.

rest (v=0) with the following small distortions on a sphere
or circle of radius R, with the perturbation in the first quad-
rant given by:

3D drops,

Z(j) ={1 + €P,,[cos(j)]}sin(j),

(A1)
R(j) ={1 + €P,[cos(j) J}cos(j),
2D sheets,
X(j) =[1 + ecos(mj)]sin(j),

(A2)

Y(j) =[1 + ecos(mj)]cos(j),

where 0<j=<m/2 is the parametric surface coordinate and
P,, is the Legendre polynomial of order m=2. Simulations
were performed for m=2,4,6 with €=0.02 and N=40
marker points along the boundary. The observed frequencies
were always within 0.1% of the values obtained by linear
theory,24

wlp=mlm = 1)(m+2)~—,
(A3)
A
2 2
wyp=m(m*—1)——=.
== e
Another useful check of the numerical routine is pro-
vided by comparison of our results for pinch-off in 3D axi-
symmetric drops to previously published results.”” Near
pinch-off for inviscid 3D axisymmetric drops, the singular
region approaches a double-cone profile with cone angles
that are universal. The cone half-angles are approximately
18° for the shallow cone and 112.5° for the overturned, steep
cone. Figure 8 shows the results from one of our 3D simu-
lations near pinch-off. The cone angles that we measure are
in excellent agreement with the previous predictions.
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