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The equilibrium configuration of a nonwetted three fluid system takes the form of a floating liquid lens, where the lens
resides between an upper and lower phase. The axisymmetric profiles of the three interfaces can be computed by solving
the nonlinear Young-Laplace differential equation for each interface with coupled boundary conditions at the contact
line. Here we describe a numerical method applicable to sessile or pendant lenses and provide a free, downloadable
Mathematica Player file which uses a graphical interface for analyzing and plotting lens profiles. The results of the
calculations were compared to optical photographs of various liquid lens systems which were analyzed using basic ray-
tracing and Moir�e imaging. The lens profile calculator, together with a measurement of the lens radius for a known
volume, provides a simple and convenient method of determining the spreading coefficient (S) of a liquid lens system if
all other fluid parameters are known. If surfactants are present, the subphase surface tension must also be self-
consistently determined. A procedure is described for extracting characteristic features in the optical images to uniquely
determine both parameters. The method gave good agreement with literature values for pure fluids such as alkanes on
water and also for systems with a surfactant (hexadecane/DTAB), which show a transition from partial wetting to the
pseudopartial wetting regime. Our technique is the analog of axisymmetric drop shape analysis, applied to a three fluid
system.

Introduction

When a drop of liquid is placed on the quiescent surface of an
immiscible fluid, its final shape depends on the relative values of
the various surface tensions and whether the liquids wet each
other. A wetting droplet will spread out into an expanded film of
near-molecular thickness (complete wetting, Figure 1c), while a
nonwetting droplet will spread to a finite size and form a liquid
lens on the surface (partial wetting, Figure 1a). The latter is the
case for many common organic liquid systems, such as heavy
alkanes on water. In this Article, we are concerned with the
equilibrium geometry of these liquid lenses under the influence of
surface tension and gravity. The static geometry of such a system
will depend on the mass density of the lens, the subfluid phase,
and the surrounding gas as well as three surface tensions asso-
ciated with three separate interfaces. These interfaces can be seen
in Figure 2, which shows a typical profile of a liquid lens. In
principle, a three-phase contact line such as that in Figure 2 is also
characterized by an associated line tension. For liquid lens
systems, recent experiments and theory1-4 have shown that the
magnitude of the line tension is negligibly small, so we will ignore
this in our analysis. Brochard-Wyart et al.5 showed that the
wetting conditions can also depend on the relative Hamaker
constants of the liquids. For certain values of the parameters,

a finite liquid lens can exist in equilibriumwith a thin wetting film
(Figure 1b), which is known as the pseudopartial wetting regime.
However, onmacroscopic scales, this situation can bemodeled as
having an effective surface tension for the subphase fluid, andwill
be treated as such in this work.

There are two limits in which an analytic treatment of these
systems is possible. For very small lenses where the effects of
gravity can be ignored, the interfaces of the lens take the form of
spherical caps, and the surface of the subfluid is perfectly flat. In
the opposite case of very large lenses, the shape is that of a flat
“pancake”, that is, a nearly perfect cylindrical disk. This limit, in
which the thickness of the disk is independent of the volume, was
first discussed by Langmuir in 19336 and subsequently by Scriven
and Huh in 1972.7 For intermediate cases, typically correspond-
ing to lenses with a diameter of a few millimeters to a few
centimeters, the shape of the interfaces depends on the volume
of the lens and must be found by solving the axisymmetric
Young-Laplace equation:

ΔP ¼ 2Kmσ-ΔFgz ð1Þ
where ΔP=Pin-Pout is the pressure difference between the
interior and exterior fluid, κm is the mean curvature of the
interface, σ is the surface tension at the relevant interface, ΔF=
Fin- Fout is the density difference between the fluids, g is the
gravitational acceleration, and z is the axial position of the
interface (cf. Figure 2). Equation 1 is a nonlinear differential
equation because the curvature term contains products of deriv-
atives of the surface profile. Some solutions and configurations
have been presented by previous authors.7-10 Computation of
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lens shapes requires an iterative numerical solution of eq 1 for
each interface, together with rather complicated matching condi-
tions at the contact line. We have numerically computed the
shapes of various hydrocarbon lenses floating on the surface of
water surrounded by air for a wide range of lens parameters
(surface tension, density, volume, etc.) and compared the results
to experimental values. The simplest experimental parameters to
measure and control are the lens volume and radius; the most dif-
ficult parameter to determine experimentally is the hydrocarbon/
water interfacial tension or, equivalently, the spreading param-
eter S = σBC - σAB - σAC. Equation 1 implicitly determines
a relationship between these quantities; that is, for given values
of the fluid/air interfacial tensions, spreading coefficient,
densities, and the radius of a lens, there is a unique value of the
lens volume consistent with hydrostatic equilibrium. Initially, we
computed the shapes of thousands of different combinations of
lens parameters and tried to use the results to determine a high
order polynomial fitting function to provide an explicit relation
between the geometrical parameters of the lens and the spreading

parameterS. Thismethod turnedout tobe quite cumbersome and
prone to error. Instead, we developed, a free, graphical interface
for computing lens profiles as aMathematica Player file, which is
available for download via the Supporting Information. Using
the provided lens profiler together with easily determined fluid
properties, S can be conveniently estimatedwith little error over a
wide range of physical parameters.

The radius and volume are two particularly simple geometric
characteristics of a lens, but the solutions to eq 1 provide the entire
shape, including the spatial variation of the curvature. Another
goal of this Article is to compare experimental measurements of
the geometry of liquid lens systems to the equilibrium shapes
computed from the Young-Laplace equation. Our initial moti-
vation and interest in this problem was to understand the
relationship between the optical signatures of static liquid lenses
and their geometry, and to eventually apply this to previous work
in our lab, in which liquid lenses undergo dynamic pinch-off and
produce a fractal-like pattern of satellite droplets.11 The current
experiment consists of measuring the convergence of incident,
parallel, monochromatic light after passing through a liquid lens
at various distances from the surface of the subfluid. The liquid
lens can be considered anoptical lenswhere the exact details of the
surface profile are unknown.We compare experiment and theory
by tracing light rays through computed lens shapes (using eq 1);
by adjusting the surface tensions used as inputs into the calcula-
tion, good agreement was obtained for all of the fluids used in our
experiment. Surface deformations of the subfluid phase are rather
small and are difficult tomeasure quantitatively using ray tracing.
Moir�e imaging is ideally suited to measuring small angular
variations in a surface; we used this technique to directly measure
the subfluid contact angle γ in Figure 2, which is typically only a
few degrees. Finally, we illustrate the applicability of our method
to lens systems with the addition of a cationic surfactant,
dodecyltrimethylammonium bromide (DTAB), to the water sub-
phase with a hexadecane lens resting on the surface. This system is
known to have a pseudopartial wetting transition, characterized
by a minimum in the dihedral angle subtended by the lens as a
function of surfactant concentration.12,13 Using our method,
we have simultaneously measured the spreading coefficient,
contact angles, and subphase surface tension in the presence of
a hexadecane lens, which is in good agreement with similar
measurements reported in refs 12 and 13.

Numerical Method

The geometry under consideration is that of an axisymmetric
liquid lens phase A of density FA floating on a subfluid phase B of
density FB. Above both the lens and the subphase, there is a vapor
(or liquid) phase C of density FC. The interfaces between the
liquids have surface tensions denoted by σAC, σBC, and σAB

(Figure 2). For our discussion, we will assume that FC<FA<
FB, which is sufficient (but not necessary) to guarantee gravita-
tional stability for all lenses regardless of size. The subfluid
extends radially in a cylindrical container of radius Σ with a
boundary condition of 90� contact angle on the wall. As long as
the distance from the edge of the lens to the wall of the container
is much greater than the capillary length of the subfluid phase
(Σ- R. [σBC/g(FB - FC)]1/2), then deformations of the subfluid
interface will not affect the shape of the surface near the wall. In
this case, the systemprovides a good approximation to a lens float-
ing on an infinite subfluid phase. The shape of the axisymmetric

Figure 1. Three possible wetting conditions for a three fluid
system. (a) The partial wetting regime is characterized by a liquid
lensof finite size and contact angle. (b) In the pseudopartialwetting
regime, macroscopic lenses can exist in equilibrium with a thin
wetting film, typically only tens of nanometers thick. (c) In a
completely wetted system, the surfaces are flat and the upper fluid
completely covers the subphase fluid.

Figure 2. Cartoon of a generic liquid lens (A) floating on a
subfluid phase (B) surrounded by vapor (C). The contact angles
R, β, and γ are defined from the horizontal. Each phase has a mass
density (FA, FB, FC), and to guarantee gravitational stability we
require FC<FA<FB. Each interface is described by a surface
tension σxy, where xy denotes the A/B, A/C, or B/C interface.
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fluid interfaces can be described using parametric polar coordi-
nates ( r( j),z( j)) with a constant differential arclength

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ð jÞ2 þ z0ð jÞ2
h ir

dj ¼ L dj and 0 e j e 1

For each separate interface, the point j=0 always corresponds to
where the slope of the interface is zero (i.e., the top and bottom of
the lens and the intersection of the subphase with the container
wall). The point j=1 always corresponds to the intersection of
the three interfaces (contact line). In this formulation, the total
arclength in the r- z plane is

R
0
1[r0( j)2þ z0( j)2]1/2 dj= L ( Lwill

of course be different for each interface). Using these para-
metric coordinates, the expression for the mean curvature term
in eq 1 is

Km ¼ 1

2

z0ð jÞ
rð jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ð jÞ2 þ z0ð jÞ2

q þ r0ð jÞz00ð jÞ- z0ð jÞr00ð jÞ
ðr0ð jÞ2þz0ð jÞ2Þ3=2

0
B@

1
CA ð2Þ

Equation 1 provides one relation between the unknown functions
r( j) and z( j); the arclength parametrization dl/dj=L provides
another. The equations can be made dimensionless by the radius
of the lensR, the surface tension σ of the interface, and the density
difference ΔF= Fin- Fout across the interface, where Fin denotes
the highpressure side. The resulting coupleddifferential equations
can be written as

~r00ð jÞ ¼ ~z0ð jÞ 2 ~L ~P- ~LBo~zð jÞþ ~z0ð jÞ
~rð jÞ

 !
ð3Þ

~z00ð jÞ ¼ - ~r0ð jÞ 2 ~L ~P- ~LBo~zð jÞþ ~z0ð jÞ
~rð jÞ

 !
ð4Þ

where ~r = r/R, ~z = z/R, ~L = L/R, ~P = ΔPR/(2σ), and Bo =
ΔFgR2/σ is the gravitationalBondnumber. The constantΔP is the
pressure difference across the surface at ( r,z) = (0,0) for the lens
interfaces (AB and AC), and ( r,z) = (Σ,0) for the BC interface.
There will be different values of ~P and ~L for each interface. Since
the shape of the interface is independent of the absolute axial
position z, we have lost no generality by assuming that z(0)= 0 as
one of the initial conditions to the equations, and the interfaces are
to be translated vertically after computation. To compute the
shape of a liquid lens system we must solve eqs 3 and 4 subject to
boundary conditions on the contact angles discussed below; the
equationsmust be solved three times, once for each interface. This
is accomplished by solving a sequence of initial value problems
using a shooting method to satisfy the boundary conditions. To
obtain awell posed initial value problem, a guess for the arc length
parameter L and the pressure differenceΔPmust be provided, so
for the three interfaces there is a total of six parameters. There are
also six boundary conditions which uniquely determine the para-
meters. Three boundary conditions come from the requirement
that the three interfaces meet to form a three-phase contact line
with r( j) = R at j = 1, or in reduced variables:

~rð1Þ ¼ 1 ð5Þ
The interfaces meet at angles defined by

j~z0ð1Þ=~r0ð1Þj ¼ tanðθcÞ ð6Þ
whereθc corresponds toR,β, orγ as shown inFigure 2, depending
on the interface being considered. The three contact angles are not
independent, however, and must satisfy a force balance in the
r and z directions at the contact line:

σAC cosðRÞþσAB cosðβÞ- σBC cosðγÞ ¼ 0 ð7Þ

σAC sinðRÞ- σAB sinðβÞþ σBC sinðγÞ ¼ 0

which provides two additional boundary conditions. The final
boundary condition comes from the requirement that the pressure
drop around a closed loop that encloses the three-phase contact
line must vanish:

σACKAC - σABKAB - σBCKBC ¼ 0 ð8Þ
where κxy is the mean curvature of the given interface at the
contact line.Mathematically, eq 7 imposes a condition on the first
derivatives ( ~z0( j) and ~r0( j)), while eq 8 imposes a condition on the
second derivatives ( ~z00( j) and ~r00( j)). The numerical procedure
consists of constructing an initial guess for ΔP and L, or equiva-
lently ~P and ~L, and propagating the solution of eqs 3 and 4 from
j=0 to j=1with the initial conditions z(0)=0, z0(0)=0, r(0)=
0, and r0(0)= ~L for the lens interfaces (ABandAC), and z(0)=0,
z0(0) = 0, r(0) = Σ, and r0(0) = ~L for the BC interface using the
Mathematica NDSolve function. The appropriate values of the
~P and ~L parameters which generate solutions which satisfy the
boundary conditions eqs 5, 7, and 8 are determined to within a
tolerance of 10-8 using theMathematica FindRoot function.

With this formulation, the shape of a given liquid lens system is
defined using only R, FA, FB, FC, σAC, σAB, and σBC. One could
also use the volume of the lensV instead of the radiusR to define
the system; however, usingR is more amendable to the numerical
techniques since it enters the equations as a boundary condition
rather than an integral conservation law. Although not discussed
here, we note that the shapes of pendant lenses can also be calcu-
lated using this formulation, which is not possible using other
formulations such as thosewhere the angle of declinationφ is used
as the parametric variable;7,9 in these cases, the functions r(φ) and
z(φ) can be multivalued.

Figure 3a illustrates ourmethod. The three interfaces are calcu-
lated quickly and efficiently using eqs 3 and 4 with the coupled
boundary conditions eqs 5, 7, and 8; the three interfaces are then
translated vertically to form the lens system, as shown inFigure 3b.
The total computation time for one lens system is about 1-2 s on a
3 GHz computer. Because eqs 3 and 4 are in parametric form, we
can calculate the shape of lenses with arbitrary contact angles,
ranging from relatively flat pancakes to thick, reentrant liquid
lenses. Figure 4 shows examples of these two cases, together with
their associated parameters (surface tensions, densities, etc.). In
order toprovide a quick and efficientway to apply thismethod for
research, we developed a free Mathematica Player file with a

Figure 3. (a) Solutions of eqs 3 and 4 for each interface of the lens.
The two curves that describe the lens interface start at (~r(0), ~z(0))=
(0,0), while the interface of the subfluid begins at (~r(0), ~z(0)) =
(Σ~,0). Each interface is then numerically integrated to the contact
line at ~r(1) = 1. (b) The interfaces are then translated vertically so
that all three match at the contact line where ~z= 0.



DOI: 10.1021/la102268n 15319Langmuir 2010, 26(19), 15316–15324

Burton et al. Article

graphical user interface. The user enters the relevant fluid
properties and can then plot the shapes of the lens and subphase
interfaces, as well as find the contact angles and lens volume for a
given input radius. If the user wished to measure the spreading
coefficientSof a liquid lens systemandwas confidentof the values
of σBC and σAC, the user would guess values for S until the com-
puted lens volume matched the measured experimental volume.
Figure 5 shows a snapshot of the graphical interface for the
Mathematica Player file. This file is included in the Supporting
Information, as well as a full Mathematica notebook file that
allows for exporting data points along the lens interface. The
details of the shape of the lens are required for the ray tracing
procedure described below.

Experimental Methods

Lenses of heavy mineral oil, hexadecane, tetradecane, dode-
cane, and nonane onwater were studied using shadowgraphy and
Moir�e imaging. Shadowgraphy was used primarily to determine
the shape of the hydrocarbon lens, whileMoir�e imaging provided
information about the curvature of thewaternear the contact line.
The mineral oil was purchased from Fisher, while the alkanes
(99þ% pure) were obtained from Sigma-Aldrich. For experi-
ments where a surfactant was purposely introduced, we used
dodecyltrimethylammonium bromide (DTAB) obtained from
Sigma-Aldrich, which was listed as 99% pure. The values for
surface tensions of the fluid/air interfaces, densities, and indices of
refraction for each fluid at 25 �C were obtained from a chemical
reference database,14 except in the case ofmineral oil. Themineral
oil density and index of refraction usedwere those listed under the
heavy mineral oil CAS number at Sigma-Aldrich. Due to varia-
tions between lots of mineral oil, wemeasured the surface tension
directly using axisymmetric drop shape analysis. By taking a
photograph of a pendant drop of fluid in air, the same numerical
process discussed previously can be used to calculate theoretical
interfacial shapes. The best fit shape was calculated by manually
picking points along the boundary of a pendant drop in a digital
photographand then solving eqs 3 and 4 for the interfacial profile.
The resulting profile was then translated and rotated to best fit
onto the data points. The rotation and translation corrects for
slight tilts in the photographs and linear shifts in the origin of the
system. The surface tension and contact angle were adjustable
parameters in order to produce the best fit curve to the data.

Our criterion for best fit was to minimize the sum of the distance
between each point and its corresponding nearest point on the
calculated profile. The asymptotic standard error associated with
the 95% confidence interval using this technique was typically
0.4 dyn/cm. An example of this method applied to a drop of pure
water is shown in Figure 6.

Reproducible results could only be obtained by filtering the
alkanes at least once through a column of alumina powder to
remove polar impurities, as described in previous studies.15 The
tetradecane was especially impure and exhibited partial to com-
plete wetting behavior when unfiltered, so it was filtered twice,
which was sufficient to achieve consistent results. The filtering
procedure was not sufficient for hexadecane, so this fluid was
vacuum distilled in addition to being filtered. The purified fluids
had noticeably different lens geometries than the as-received
products, even though the as-received products were at minimum
99% pure. This is to be expected since even small amounts of
surfactants and/or impurities can significantly affect the surface
tension. Purity is especially critical in liquid lens systems; for
example, a system composed of hexadecane lenses floating on
aqueous solutions of the surfactant DTAB shows a partial-
wetting transition at concentrations of DTAB where the bulk
surface tensions have changed by less than 1%.12,13 This is due to
the fact that the surfactant can stabilize an oil layer on the surface
of the aqueous phase, usually only 1-10 nm thick, and this layer
significantly reduces the surface tension between the water and
air.16-18 All measurements were conducted at room temperature.

Laser shadowography19 was used to experimentally determine
the equilibrium shape of the lenses. A schematic diagram of the
optical system is shown in Figure 7. A shallow circular dish made
of optical quality borosilicate glass with a depth of 2.5 cm and a
diameter of 11.4 cm was filled with high purity water to a level of
≈0.5 cm from the top of the dish. A 100 μL hydrocarbon lens was
deposited onto the surface of the water using a 100 μL precision

Figure 4. Computed profiles of two floating lenses. Units on both
axes are centimeters. (a)Relatively flat (small contact angles) liquid
lens system, typical of a hydrocarbon onwater. The parameters for
this systemareR=1.0 cm, Fo=0.7 g/cm3, Fw=1.0 g/cm3, σAC=
25 g/s2, σBC= 70 g/s2, σAB= 55 g/s2, and the volume of the lens is
V = 0.579 cm3. (b) Reentrant liquid lens system, typical of water
floatingonadense, hydrophobic subphase.Theparameters for this
systemareR=1.0cm,Fo=1.0g/cm3,Fw=2.0g/cm3,σAC=70g/s2,
σBC = 20 g/s2, σAB = 50 g/s2, and the volume of the lens is
V = 1.639 cm3.

Figure 5. Graphical interface of the lens profiler provided in the
Supporting Information.Theuser enters the fluidparameters, and the
lens profiler reports the shape, angles, and volumeof the resulting lens
system.The fullMathematica version also provided allows the user to
export data for the coordinates of the lens and subphase shape.
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Hamilton glass syringe, and then the dish was quickly covered
with a 1.6 mm thick borosilicate glass plate. The cover prevented
ambient air currents from moving the lens around the dish, and
the cover also provided an enclosed environment which sup-
pressed evaporation of the lens. For pure fluids, data were taken
immediately following deposition of the lens. In experiments in
which surfactants were purposefully introduced, the lenses were
were left to equilibrate for 60 min before taking measurements.
The dish containing the water and the floating lens was placed on
a transparent horizontal platform on a vertically mounted optical
rail so that its height could be precisely adjusted. A translucent
paper screen with millimeter rulings was mounted in a fixed
position on the optical rail above the dish. The camera (Nikon
D70) with a macro lens was mounted ≈20 cm above the paper
screen. The system was illuminated from below with green laser
light (3mWdiode laser, 532 nmwavelength) that had been passed
through a beam expander which provided a uniform beam of
parallel rays approximately 4 cm in diameter. The hydrocarbon
lens refracted the parallel beam into converging rays, as shown in
Figure 7. Images of the lenses such as the one shown at the top of
Figure 7 were obtained with a 6 megapixel digital camera. Digital
photographs of the projected lens image were taken at a sequence
of values of h, the distance between the screen and the flat surface
of the water, at approximately 2 mm intervals.

In addition to the shadowgraphic technique, we also directly
measured the contact angle γ of the water using Moir�e imaging.
The Moir�e patterns and imaging method were nearly identical to
those used by Dussaud et al.20 which describes measurements of
the deformation of a liquid surfacewith a spreading surfactant. In
order to alter our experimental setup to accommodate the Moir�e
technique, a 2.5� 2.5 cm2 Ronchi ruling of pitch 127 μm was
placed between the beam expander and the bottom of the dish,
and the gridded screen was replaced with a second identical
Ronchi ruling in contact with an identically sized piece of opal
glass. The height of the second Ronchi ruling was adjusted until
about 8 or 9 interference lines were visible. These lines were
undeflected when no lens was present, confirming that the water
was flat away from the perimeter of the dish (see Figure 10a). A 1
mL volume of unfiltered dodecane was placed on the water, and
an image of the nowdeflected lineswas taken (seeFigure 10b).We
tracked the deflection of the fringe line that would be perpendic-
ular to the lens when undeflected, as Moir�e lines deflect due to
deformation along one axis only. For small values of γ, the total

distance that a given line is deflected from far away from the lens
(where the subphase surface is flat), up to the contact line, is
proportional to the slope of the water’s surface at the contact line,
and thus the contact angle can be determined once the slope is
known. A detailed description of the Moir�e technique can be
found in Patorski’s book.21

Results

The accuracy and internal consistency of the entire numerical
method was checked by measurements of pure hydrocarbon
lenses of known volume on a pure water subphase. The simplest
case involves partial wetting, where there is no microscopic
hydrocarbon wetting layer on the water surface, which would
presumably change the surface tension of the water/air interface.
In this case, the seven known quantities are R,V, FA, FB, FC, σAC,
and σBC,which is enough todefine a liquid lens system.The radius
can be measured from the optical shadowgraphic images. We
wish to determine the resulting spreading coefficient S from this
configuation. However, the numerical technique requires S as an
input, and the volume is an output. Thus, we adjusted the value of
S in the numerical technique until the resultant lens volume
Vmatched the known volume from the experimental lens (100 μL).
Values obtainedusing this procedure are denoted asSexp inTable 1.
The error in the spreading coefficient for the pure alkane fluids

Figure 6. Image of a pendant water droplet hanging from a glass
nozzle (right, rotated by180 degrees). Pointsweremanually chosen
off of the profile of the dropand then fitted to solutions of eqs 3 and4,
using the contact angle at the nozzle and the surface tension as
adjustable fitting parameters. Using this procedure, the surface
tensionofpurewater at roomtemperaturewasmeasured tobe72.2(
0.4 dyn/cm.

Figure 7. Diagram of the experimental apparatus along with a
typical image of an alkane lens. A 3 mW, 532 nm green diode laser
was passed through a beam expander in order to produce uniform,
planar illumination. The light passed through the water and liquid
lens interfaces, where it is refracted.A gridded-screenwas placed at
variable heights above the lens in order to form an image, which
was then photographed with a digital camera. The width of the
dark ring in the photograph is denoted wdr.

(20) Dussaud, A. D.; Matar, O. K.; Troian, S. M. J. Fluid Mech. 2005, 544,
23–51.

(21) Patorski, K. Handbook of the Moir�e Fringe Technique; Elsevier:
The Netherlands, 1993.
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was dominated by the error in the radius measurements, so we
computed the lens profile for the lower and upper bound on the
radius, which gives upper and lower bounds on Sexp.

A plot of the intensity variation across a diameter is shown in
Figure 8. The intensity variation has considerable structure which
can be related to the shape of the lens, although it is sensitive to
spatial variations in the illumination intensity. One of the most
prominent features of the images is a dark ring formed by the
refraction of the rays near the contact line. The width of the dark
ring wdr is a simple, robust, and model-independent feature that
we used to characterize the images. Thiswas experimentally deter-
mined bymanuallymeasuring the outer and inner diameter of the
dark ring in pixels, subtracting these diameters, and then dividing
by two. Diameters were averaged over two orthogonal directions
in order to reduce error. The width of the dark ring was then
converted to centimeters using the grid spacing on the screen.
Edges could be located on the images with a resolution of 5 pixels
(0.01 cm).

There are two optical properties of the lens/water system that
determine wdr. The dominant contribution comes from the
focusing of the light due to the lens shape. Another contribution
is due to the fact that the surface of the watermust be curved near
the contact line, as seen in Figure 4. This results in a divergence of
the light which makes the outer diameter of the lens larger as the
screen is placed farther away from the lens. The angular diver-
gence δ is given by the formula δ=arcsin( nw sin(γ)/na) - γ,
where nw ( na) is the index of refraction of the water (air) and γ is

the contact angle of the water at the contact line (see Figure 2).
Although this divergence makes only a small correction to width
of the dark ringwdr, this termmust be taken into account in order
to obtain quantitative agreement with the experimental results
(Figure 9). This divergence also affected the measurement of the
radius of the lens. The radius was determined from shadowgraph
images by measuring the outer diameter of the dark ring at
different known heights h above the water surface. The apparent
radius of the lens increases linearlywith h because of the curvature
of thewater, sowe fitted the apparent radius versus height to a line
and extrapolated the results to zero height, which correspond to
the true radius of the lens (Figure 9). Errors in the radius were
dominated by the blurring of the edge of the lens image on the
ruled paper and were of order ≈0.05 cm. The Moir�e imaging
independently confirms the predicted curved profile of the water.
As shown in Figure 10, the water contact angle at the edge of a
1mLdodecane lens of radius 1.57 cmwas determined to be 3.6�(
0.6� using the Moir�e technique compared to a value of 3.69� pre-
dicted using the numerical method.

Once the lens profile was calculated using the numerical
method, initially parallel light rays were traced through the oil/
water, oil/air, andwater/air interfaces using Snell’s law so thatwdr

could be found at a given distance from the lens. An example of
this type of analysis is illustrated in Figure 12, which shows
computed interfacial profiles for a tetradecane lens with volume
100 μL and radius 0.56 cm together with the refracted ray tra-
jectories. The profile of the lens is compatible with the shape of oil
lenses previously photographed in other studies.22 The width of
the ring where no light rays intersected the image plane and the
intensity was nearly zero defines wdr. This value was calculated as
a function of height above the lens h, and compared to the
shadowgraphy data as shown in Figure 9. Our initial attempts

Table 1. Parameters Used and Measured in the Hydrocarbon Liquid

Lens Systemsa

fluid
F

(g/cm3)
σoa

(dyn/cm)
R

(cm)
Sexp

(dyn/cm
σwa

(dyn/cm)

nonane 0.715 22.43 0.84 -0.73 ( 0.02 72.2
dodecane 0.745 24.94 0.60 -4.22( 0.19 72.2
tetradecane 0.758 26.15 0.56 -6.15( 0.30 72.2
hexadecane 0.728 23.41 0.65 -6.11( 0.15 72.2
mineral oil 0.862 29.19 0.54 -7.84( 0.49 57.8 ( 3.8

aThe alkanes were filtered through a column of alumina powder to
remove polar impurities, and in addition the dodecane and hexadecane
were vacuum distilled. S was determined using the volume matching
method outlined in the Results section. The error in S increases inverse
to the lens radius, since changes in radii produce more pronounced
changes in volume for fluids with large negative spreading coefficients.
Oil/air surface tensions (denoted oa) and densities were taken from
ref 14, except in the case of the mineral oil, for which the surface tension
was measured using the axisymmetric drop shape technique outlined in
the results section. The water/air surface tension (denoted wa) used was
our measured value of 72.2 dyn/cm for pure water; however, in the case
of mineral oil, σwa was used as an adjustable parameter due to suspected
pseudopartial wetting.

Figure 8. Plot of the optical intensity as a function of position
across a diameter of a typical lens. Refraction produces a dark
annular region of width wdr surrounding a bright center region.

Figure 9. (a)Values ofwdr as a function of h for a 100μLdodecane
lens of radius 0.60 cm on water. The solid curve is the prediction
obtained from ray-tracing through the computationally deter-
mined lens geometry. The dashed curve is the predicted behavior
not including the effects of the water curvature near the contact
line. (b) Radius of lens in the images as a function of height. The
water curvature causes a slight divergence of the rays, whichmakes
the radius of the lens appear larger for larger h. The solid line is a
linear fit used to determine the actual radius of the lens.

(22) Boniewicz-Szmyt, K.; Pogorzelski, S.; Mazurek, A. Oceanologia 2007, 49,
413–437.
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to fit the data includedonly the optical effects of the lens itself, and
ignored the curvature of the water subphase. Although the com-
puted slope of thewater near the contact linewasonly a fewdegrees,
we found that including this effect produced substantial changes in
the predicted values ofwdr (Figure 9). In fact, if the curvature of the
water was neglected, there was typically no value of S which
provided a consistent description of the radius, volume, and the
variation of wdr with h. The numerical calculation of wdr versus
h including the effects of water curvature and the experimental
shadowgraphy data for mineral oil, tetradecane, dodecane, and
nonane are shown in Figure 11. There are no free parameters in
the predicted curves, and the agreement is excellent, which verifies
the ray tracingmethodand the numericalmethod simultaneously.
We should also note that when the light rays pass through the
glass cover on the dish, they are slightly shifted in the horizontal
direction due to refraction, and this was also taken into account,
although the correction is rather small, and is negligible for a very
thin glass cover.

In the case of mineral oil, we found that an accurate fit to the
dark ring data could not be found simply by varying S with the

surface tension of the water/air interface fixed at its nominal value
of 72.2 dyn/cm; considerably smaller values were required to fit
the data. This is not surprising considering that themineral oil was
not purified (in contrast to the alkanes), so that impurities and
surfactants are likely tobe present. This could stabilize a thin layer
ofmineral oil on the surface of thewater (pseudopartial wetting5),
which would lower the water/air surface tension. In this case,

Figure 10. (a) Moir�e fringe lines of the surface of water at the
center of a borosilicate glass dishwith diameter 11.4 cm and height
0.6 cm.The lines are parallel andundeflected, indicating the surface
of the water is flat. (b) Moir�e fringe lines of the surface of water in
the presence of an unfiltered dodecane lens 1.57 cm in radius. The
deflectionof the lines from their positionwithout the lenspresence is
proportional to the angle of curvature of the water at the lens’ edge.

Figure 11. Values of wdr obtained from 100 μL lenses of mineral
oil (triangles), tetradecane (diamonds), dodecane (circles), and
nonane (squares). The parameters associated with the lenses can
be found in Table 1. The solid lines are the computed dark ring
curves from the numerical and ray-tracing technique. The surface
tension of the subphasewas fixed at 72.2 dyn/cm, as it shouldbe for
purewater (except in the case ofmineral oil, see the text for details).
There are no fitting parameters involved in the generation of the
theoretical solid curves for the alkanes.

Figure 12. Computed geometry of 100 μL tetradecane lens of
radius 0.56 cm with spreading coefficient -6.15 dyn/cm. Initially
parallel rays from below are refracted by the liquid lens and the
subphase. The region containing no rays corresponds to the black
ring of Figure 7. The width of the dark region wdr depends on the
height of observation h. Measurements were always performed for
values of h below which the rays begin to cross into the dark ring
region (i.e., inside the focal length of the lens).
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we adjusted both the water/air surface tension and spreading coeffi-
cient to achieve a minimum in the χ2 function associated with the
fit, with the constraint that the volume of the lens be 100 μL. The
error inSwasdominatedby the 95%confidence interval in thepara-
meter estimate, which we report in Table 1. Our values of the
spreading coefficients are in qualitative but not quantitative agree-
ment with prior experimentally measured values. Hirasaki23 lists
previous values for dodecane: -5.8 initially and -6.1 at equilib-
rium, both in dyn/cm. Langmuir6 determines tetradecane has a
spreading coefficient equal to-6.2 dyn/cm. Any discrepancies in
these results are almost certainly due to variations in the purity of
the fluids used, since small purity changes are known to result in
fairly large fluctuations in the spreading coefficient.24 We also
observed substantial changes inSwhen a nominally (99þ%pure)
unfiltered dodecane lens was compared to dodecane purified
using a column of alumina powder and/or vacuum distillation.
Comparison of the measured and computed values for the width
of the dark regionprovides a fairly convenientway of determining
multiple unknown surface tensions, and all information about the
lens geometry is known once a fit to the data is found.

To illustrate this point, we studied lenses using the hexane/
water/DTAB systemwhich has awell characterized transition to a
pseudopartial wetting state12,13 which can be controlled by the
concentration of the surfactant DTAB. Lenses were measured on

aqueous solutions of purified water and DTAB with a range of
concentrations from0 to 20mM.Figure 13 shows the various lens
systemparameters as a function of surfactant concentration in the
subphase. The surfactant is not expected to change the hexadecane/
air surface tension, which has the value 27.09 dyn/cm for all
concentrations. The surfactant will however affect both the
subphase/air interface and the hexadecane/subphase interface.
As in the mineral oil case, the only known parameters are the lens
radius and volume, fluid densities, and hexadecane/air surface
tension, so both the spreading coefficient S and the subphase/air
surface tension σsa must be determined. One constraint in the
computationof the lens profiles is that the computed volumemust
match the known volume of the hexadecane lens (100 μL). For a
given value of σsa, S was adjusted to meet this constraint. The
value ofσsa was used as a fitting parameter tomatch themeasured
dark ring width wdr versus height h data at each concentration.
Nonlinear regression analysis was used to compute the 95%
confidence interval for the parameter estimates in σsa and Swhich
determine the error bars associated with the data points.

As Figure 13 illustrates, the versatility in our method resides in
the fact that once the best fit is computed, we know all the
parameters in the system (e.g., contact angles R, β, γ). Consistent
with Wilkinson et al.,13 we see a minimum in the dihedral angle
(R þ β) at a concentration of≈0.25 mmol, which is attributed to
the onset of the pseudopartial wetting regime (Figure 1b). This
corresponds to a maximum in S, where S is very close to zero,
but still negative so that the subphase is not completely wetted.

Figure 13. (a-c) Plot of the contact angles as defined in Figure 2 as a function of DTAB concentration in the aqueous subphase. The
hexadecane lens becomes very flat around≈0.25mmol, so the contact angles becomequite small. (d) Thedihedral angle subtended by the lens
is plotted in order to compare to data inWilkinson et al.13 (e-f) Plots of the subphase/air surface tension σsa and spreading coefficient S. The
distinct dip inσsa at 0.25mmol corresponds to the onset of the pseudopartialwetting transition,where a thin layer of hexadecane is solubilized
onto the surface of the subphase. Although S is nearly zero, it is still negative, resulting in a finite-sized liquid lens.

(23) Hirasaki, G. J. J. Adhes. Sci. Technol. 1993, 7, 285–322.
(24) Takii, T.; Mori, Y. H. J. Colloid Interface Sci. 1993, 161, 31–37.
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Our results are in qualitative and semiquantitative agreementwith
previous results;13 our measured values for the dihedral angle at
concentrations above the pseudopartial wetting transition are
significantly larger. This could be due to the fact that the DTAB
surfactant was purified by recrystallization in Wilkinson et al.,13

while we used unpurified surfactant as delivered by the manu-
facturer.

In conclusion, we have made detailed comparisons of optical
measurements of various liquid lens systems with numerically
determined equilibrium shapes. Our numerical method which
solves the Young-Laplace equation has been implemented in
Mathematica; the code is available in the Supporting Information,
which also contains a free open source Mathematica Player file.
For given values of the fluid densities, surface tensions, and the
radius of the lens, the Player version of the Young-Laplace
solver will output a graphical image of the lens and subphase, and
numerical values of the contact angles and the volume of the lens,
while the full version will also output a list of coordinates which
define the interfaces of the lens. A comparison of observed and
computed features of the lens provides a convenient method for
measuring the spreading coefficient S and the effective water/air
surface tension σwa. For purified fluidswhich are known tobe free
of surfactants, the literature value of σwa can be used, so S is the
only unknown parameter. In this case, a single measurement of
the radius and the volume of a lens is sufficient to determineS: the
value of S can be varied in the Young-Laplace solver until the
observed relation between radius and volume is achieved. In
general, however, the properties of a liquid lens system can be
significantly altered by the presence of even trace amounts of a
surfactant which may be intentionally included or may exist as
a contaminant. This results in a pseudopartial wetting film,
which generally reduces the effective value of σwa. At least two

independent measurements are required to determine the two values
S and σwa. In principle, if sufficient sample fluid is available, the
required data could be obtained frommeasurements of the radius
and volume of lenses with a wide range of volumes. Optical
measurement of the radius is complicated by the curvature of the
subphase near the contact line, which we have quantitatively
determined usingMoir�e imaging.Measurements of the shadowof
a lens as a function of height above the subphase extrapolated
back to zero height provide a precise method of determining the
radius. Similarly, the width of the dark ring in the shadow as a
function of height is an easily measured and robust feature of the
optical image which can be obtained for a single lens. We have
used this type of data to determine S and σwa for a variety of
systems. This is accomplished by computing candidate lens
profiles and tracing rays through them to find the width of the
dark ring as a function of height, and then adjusting S and σwa to
match the measured values. We have verified the effectiveness of
this procedure for both pure fluids and systems containing
surfactants.
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Player file (Lens_Profiler, si_002) that can be used to com-
pute the shapes of liquid lens systems. In addition, a full
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used to export the data associated with the computed lens
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Internet at http://pubs.acs.org.


