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Abstract. A new definition of order called topological order is proposed for two-dimensional 
systems in which no long-range order of the conventional type exists. The possibility of a 
phase transition characterized by a change in the response of the system to an external 
perturbation is discussed in the context of a mean field type of approximation. The critical 
behaviour found in this model displays very weak singularities. The application of these 
ideas to the x y  model of magnetism, the solid-liquid transition, and the neutral superfluid 
are discussed. This type of phase transition cannot occur in a superconductor nor in a 
Heisenberg ferromagnet. for reasons that are given. 

1 .  Introduction 

Peierls (1935) has argued that thermal motion of long-wavelength phonons will destroy 
the long-range order of a two-dimensional solid in the sense that the mean square 
deviation of an atom from its equilibrium position increases logarithmically with the 
size of the system, and the Bragg peaks of the diffraction pattern formed by the system 
are broad instead of sharp. The absence of long-range order of this simple form has been 
shown by Mermin (1968) using rigorous inequalities. Similar arguments can be used to 
show that there is no spontaneous magnetization in a two-dimensional magnet with 
spins with more than one degree of freedom (Mermin and Wagner 1966) and that the 
expectation value of the superfluid order parameter in a two-dimensional Bose fluid 
is zero (Hohenberg 1967). 

On the other hand there is inconclusive evidence from the numerical work on a 
two-dimensional system of hard discs by Alder and Wainwright (1962) of a phase 
transition between a gaseous and solid state. Stanley and Kaplan (1966) found that high- 
temperature series expansions for two-dimensional spin models indicated a phase 
transition in which the susceptibility becomes infinite.The evidence for such a transition 
is much stronger for the xy model (spins confined to a plane) than for the Heisenberg 
model, as can be seen from the papers of Stanley (1968) and Moore (1969). Low-tem- 
perature expansions obtained by Wegner (1967) and Berezinskii (1970) give a magnetiza- 
tion proportional to some power of the field between zero and unity, and indicate the 
possibility of a sharp transition between such behaviour and the high-temperature 
regime where the magnetization is proportional to the applied field. 

In this paper we present arguments in favour of a quite different definition of long- 
range order which is based on the overall properties of the system rather than on the 

1181 

G7 



1182 J M Kosterlitz and D J Thouless 

behaviour of a two-point correlation function. In the cases we consider, the usual 
correlation function, such as the spin-spin correlation function, vanishes at any finite 
temperature in contrast to the corresponding cases in three dimensions. This type of 
long-range order, which we refer to as topological long-range order, may exist for the 
two-dimensional solid, neutral superfluid, and for the xy model, but not for a super- 
conductor or isotropic Heisenberg model. In the case of a solid, the disappearance of 
topological long-range order is associated with a transition from an elastic to a fluid 
response to a small external shear stress, while for a neutral superfluid it is associated 
with the instability of persistent currents. Recently, Berezinskii (197 1) has put forward 
similar arguments, but there are some important differences in our results. A brief 
account of this theory has already been given (Kosterlitz and Thouless 1972). 

The definition of long-range order which we adopt arises naturally in the case of a 
solid from the dislocation theory of melting (Nabarro 1967). In this theory, it is supposed 
that a liquid close to its freezing point has a local structure similar to that of a solid, 
but that in its equilibrium configurations there is some concentration of dislocations 
which can move to the surface under the influence of an arbitrarily small shear stress, 
and so produce viscous flow. In the solid state there are no free dislocations in equi- 
librium, and so the system is rigid. This theory is much easier to apply in two dimensions 
than in three since a dislocation is associated with a point rather than a line. 

Although isolated dislocations cannot occur at low temperatures in a large system 
(except near the boundary) since their energy increases logarithmically with the size of 
the system, pairs of dislocations with equal and opposite Burgers vector have finite 
energy and must occur because of thermal excitation. Such pairs can respond to an 
applied stress and so reduce the rigidity modulus. At sufficiently high temperatures, the 
largest pairs become unstable under an applied shear stress and produce a viscous 
response to the shear. 

The presence or absence of free dislocations can be determined in the following 
manner. We suppose that the system has a fair degree of short-range order so that a 
local crystal structure can be identified. To be definite we take the crystal structure to be 
a simple square lattice with spacing U .  Using the local order, we attempt to trace a path 
from atom to atom which, in the perfect crystal, would be closed. Mermin (1968) has 
commented that the thermal motion does not necessarily destroy the correlation in 
orientation of the crystal axes at large distances, but even if this is destroyed, the direction 
taken in one region can be defined in terms of that taken in a previous region in the same 
neighbourhood. Local defects can be avoided by small deformations of the path. Thi5 
procedure is possible provided there are no grain boundaries. If there are free disloca- 
tions present, the number of dislocations contained within the region surrounded by the 
contour will be proportional to the area of the region. Since the Burgers vectors of the 
individual dislocations can point in two possible directions, the average total Burgers 
vector will be proportional to the square root of the area. The path will fail to close b> 
an amount proportional to L, the length of the path. If there are only pairs of dislocations 
present, only those pairs which are cut by the contour will contribute to the total Burgers 
vector. The number of pairs cut by the path is proportional to Lr where r is the mean 
separation of the pairs. Averaging over the possible orientations of the individual 
Burgers vectors, we see that the path will fail to close by an amount proportional to 
(Lr)”’. This allows us to determine the presence or absence of topological long-range 
order in the system. 

We can obtain estimates of the transition temperature for the systems discussed by 
arguments similar to those used by Thouless (1969) for a one-dimensional Ising model 
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with an interaction falling off at large distances as r - ’ .  At large distances from a dis- 
location (or vortex in the case of the xy model and neutral superfluid) the strain produced 
is inversely proportional to the distance and so the energy of a single dislocation depends 
logarithmically on the size of the system. In fact, the energy of an isolated dislocation 
with Burgers vector of magnitude b in a system of area A is (Friedel 1964) 

vb2(1 + z) A 
E =  In - 

4n A0 

where v and z are the two-dimensional rigidity modulus and Poisson’s ratio respectively, 
and A ,  is an area of the order of b2.  The entropy associated with a dislocation also 
depends logarithmically on the area, and, since there are approximately A/Ao possible 
positions for the dislocation, the entropy is 

where kB is the Boltzmann constant. 
Since both energy and entropy depend on the size of the system in the same way, 

the energy term will dominate the free energy at low temperatures, and the probability 
of a single dislocation appearing in a large system will be vanishingly small. At high 
temperatures, dislocations will appear spontaneously when the entropy term takes over. 
The critical temperature at which a single dislocation is likely to occur is the temperature 
at which the free energy changes sign, namely (Kosterlitz and Thouless 1972) 

vb2(1 + z) 
471 

k B r  = 

Identical considerations for the 

k B q  = 715 

xy model give 

where J is the spin-spin coupling constant and 

for the neutral superfluid where p is the density of particles per unit area and m is the 
effective atomic mass which is not necessarily the same as the atomic mass for a particle 
moving on a substrate. 

That these estimates are upper bounds can be seen by the following argument. 
Although the formation of isolated dislocations will not occur at low temperatures, 
there can always be production of a pair of dislocations with equal and opposite Burgers 
vector, since the strain produced by such a pair falls off sufficiently rapidly at large 
distances so that the energy is finite. The critical temperatures as calculated above are 
the temperatures at which a pair of dislocations (or vortices) will dissociate, ignoring 
the effect of other pairs in the system. These other pairs will relax in the field of the first 
pair thereby renormalizing the rigidity modulus etc. downwards and consequently 
reducing the critical temperature. Most of the rest of the paper is devoted to a detailed 
study of this phenomenon in the systems discussed. 
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2. A model system 

The statistical problem we are faced with is essentially that of a two-dimensional gas of 
particles with charges + q  interacting via the usual logarithmic potential, the number of 
particles being constrained only by the requirement that the system has overall electrical 
neutrality. The only essential modification necessary to treat the dislocation problem 
is to allow for the two different possible orientations of the Burgers vector. The hamil- 
tonian for such a system is 

H ( v ,  . . . r N )  = 5 li(l v i  - v j / )  
i # j  

where 

= o  r < r o .  

Here qi and Y, are the charge and position of the ith particle, 2p is the energy required 
to create a pair of particles of equal and opposite charge a distance ro apart, and ro is 
some suitable cutoff to avoid spurious divergences at small separations. We expect that 
the cutoff ro is of the order of the particle diameter or, for a lattice, the lattice spacing. 
In such a lattice near the critical point, we will be able to replace sums over the lattice 
sites by an integral over the whole system since the important contributions to the sum 
will come from the long-range part of the interaction, that is 1 Y, - y j I  % ro .  

To obtain a tractable theory, we further assume that the chemical potential is 
sufficiently large that there are very few particles present in the system. Since we have 
such a dilute gas, the configurations of least energy are those where equal and opposite 
charges are closely bound in dipole pairs, well separated from one another. At low 
temperatures, therefore, the fluctuations of charge within a given region are restricted. 
while at high temperatures charges may occur in isolation so much larger fluctuations 
may occur. For such configurations, we see that the mean square separation of the 
particles making up a dipole pair (ignoring for the present interactions between the 
Dairs) is I ,  I,", dr r3  exp{ - 2pq2 In ( r / ro ) }  

1,; dr r exp{ - 2pq2 In (r /ro)}  
Pq2 - 1 ( r 2 >  = = ro- 
pq2 - 2 

(7)  

where ,!? = ljk,T The probability of finding a pair within a given area is found by 
summing exp( - 2811 - 2Pq2 in ( 1 vi - r j  1 / yo )>  over all values of vi and r j  in the area. The 
double sum can be replaced by a double integral if we normalize by a factor of order 
r i 4 ,  so that the mean separation d between such pairs is given in the same approximation 
by 

e - m  1- 
d 2  T j  d2r  exp{ -2/3q2 In ( r / ro ) }  + O(e-48p) 

Here we can see the necessity for a large chemical potential p, since already in calculating 
dL2. any terms beyond first order in exp( - 20p) become intractable. Thus 
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We can already see that a phase transition to a conducting state will take place at a 
temperature T,  given by 

since, in this simple approximation the polarizability, which is proportional to ( r ’ ) ,  
diverges. The closely bound dipole pairs will separate to give a uniform two-dimensional 
plasma of oppositely charged particles. The free energy of an isolated charge is 

F = E - 7s z i q 2  In (R’lr;) - kBTln ( R 2 / r i )  (1 1) 
where R is the radius ofthe system. Thus we see that isolated charges can appear spontane- 
ously when the temperature reaches T,  as given by equation (10). We are therefore 
particularly interested in values of pq2 near 2. 

Hauge and Hemmer (1971) have investigated the two-dimensional Coulomb gas 
under very different conditions. In the limit of vanishing particle size, they find a transi- 
tion at k T =  q2 (in our units), the temperature at which pairs begin to form as kT+ q2 
from above. We look at a different temperature range and find a transition near kT= $q2. 
when the largest pairs dissociate as the transition is approached from below. The main 
difference between the two models is the presence of a finite cutoff in this paper. which 
makes the potential well behaved at small distances, while Hauge and Hemmer allow the 
potential to be singular at the point of closest approach. 

The divergence of the polarizability as the transition temperature is approached from 
below suggests that the most important effect of the interactions between different 
pairs may be described by the introduction of a dielectric constant. The field of a pair 
separated by a small distance of the order of ro does not extend much beyond the distance 
of separation of the two charges and from equation (8) it is very unlikely that there will 
be another pair in their immediate vicinity. Thus the dielectric constant appropriate 
for the expression of the energy of such a pair is unaffected by the polarizability of the 
other pairs. It is only for charges separated by an amount greater than the mean separa- 
tion d of pairs that the energy is modified by the presence of other smaller pairs lying 
within the range of the field. The effective dielectric constant, therefore, becomes larger 
as we consider larger and larger pairs, so that the problem becomes a sort of iterated 
mean field approximation. We are therefore faced with problems similar to those which 
led to rescaling in the paper of Anderson et a1 (1970). 

Within the range of a pair with large separation r % yo it is expected that there will 
be other pairs with separation up to r exp( -8p). The effect of these will be to reduce the 
interaction energy of the large pair by introducing an effective dielectric constant ~ ( r ) .  
To calculate this dielectric constant we consider pairs with separations lying in a small 
interval between r and r + dr with dr 4 r ,  and consider terms to first order only in dr. 
Using the standard methods of linear response theory, we apply a weak electric field E 
at an angle 0 to the line joining the two charges The polarizability per pair is given by 

a 
p ( r )  = q - ( r  cos 0) 

8E Z = O  

where the average is taken over the annulus r < r’ < r + d r  with Bolt7mann factor 
- 2 p q 2 / e ( r i  

exp { -~u ( i . )$=  (k) exp (pEqr cos 0 ) .  (13) 

Although formally the factor exp(pErq cos 0) will cause a divergence in the integrals of 
equation (12), we can argue that we can carry out the differentiation with respect to E 
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and take the limit E -+ 0 before integrating as follows. Inside the medium the effective 
field is set up by the two charges, and falls off rapidly at distances greater than the separa- 
tion between the charges and so has a finite range. Moreover, since the dipole pairs 
within this field have a separation very much less than the separation of the two charges 
of interest, the field experienced by the dipole pairs is effectively constant over them. 
Thus, our method of calculating the polarizability of a given pair from equation (12) is 
justified. We easily obtain 

p ( r )  = $42'2.  (14) 
The density of such pairs is, by the same argument that leads to equation (8), 

dn(r) = I j 2 f f d Q l + d r  dr' r' exp { -bUeff(r')} + O(ev4flp) (15) 
0 

where Ueff(r) is the energy of two charges separated by r in such a dielectric medium. 
The terms O(e-48p) correspond to the fact that in the normalization of the probability 
for seeing such pairs there are terms corresponding to seeing no pairs, one pair etc, all 
of which we ignore except for the no-pair term. Another complication arises at this point 
because the energy Ueff(r) is given by 

As it stands, we cannot evaluate equation (16) because of the unknown function E ( r ) .  
However, assuming that de- '(r)/dr is sufficiently small, we can write 

and check the consistency of this assumption a posteriori. We finally obtain the suscepti- 
bility due to these pairs 

Lastly, we change variables to 

to obtain the differential equation 

which is subject to the boundary conditions 

where E is the macroscopic dielectric constant. Since, as discussed previously, when 
x = 0, r = r0 so that the interaction of a pair separated by r0 is unaffected by any other 
pairs, so that E ( X  = 0) = 1 .  Similarly, as x -+ a. the effective interaction is reduced by a 
factor E(X = a), which must be the same as the dielectric constant as measured by 
application of an external field to a macroscopic region of the medium. We can simplify 
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equation (19) further by noticing that, since the derivative dy/dx is proportional to 
e-28p, the difference y(0)  - y(a3) for y(0) > y,(O) must also be very small (in fact y(0) - 
y(co) < O(e-OP)) so that we can replace the factor (y + 4)2 in equation (19) by (y(0) + 4)2. 

The problem is now reduced to solving the equation 

= - exp(-Rjj) dy" - 
d 3 

where we have rescaled x = (ne-pp((y(O) + 4))-' R and y = (ne-Bp(y(0) + 4))y" to 
eliminate the constant multiplying the exponential. This equation does not possess an 
analytic solution but the solutions fall into two classes (see Appendix) 

"2 
2 > 0  Y ~- 

(i) kB TE( T) 
f o r T <  T,  

We interpret this sudden change in the behaviour of E(T) as Tpasses through T,  as a 
phase transition to the conducting state where the pairs become unbound. The critical 
temperature is given by 

and the critical value of the dielectric constant at the transition temperature is given by 
"2 

__-  2E(T,) = 0 .  
k B  T,  

To determine the values of T,  and E ,  and to investigate the nature of the phase 
transition, it is necessary to find an approximate solution of equation (21). This can be 
done in two limiting cases, T < T,  and T 5 T,. In the first case, y(0) z y(c0) > 0 so we 
can immediately integrate equation (21) by replacing y(x) by y(0) in the exponential to 
obtain 

In the second case T 5 T,, equation (21) may be solved approximately by the methods 
described in the Appendix to obtain y",(O) = 1.3 so that 

and 

This singularity in E(T) is of a most unusual type but, since we have used a mean field 
theory, this form of the singularity is unlikely to be the correct one. Note in particular 
that E(T,)  is finite so that the susceptibility does not diverge at the critical temperature as 
one would expect from the simple arguments presented earlier. 
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We are now in a position to check our assumption that dE-'(r):dr is sufficiently small 
to do the integration in equation (16). Clearly, for T 6 T,, the replacement of E -  ' ( 7 )  by a 
constant is valid. The most unfavourable case is for the critical trajectory when y ( x )  = 0 
and dE-'(r)/dr is largest. The condition for the replacement to be valid is 

1 ___ < _ _ - .  de- ' ( r )  
dr r + J j r l n r  

The critical solution of equation (21) is, as can be verified by direct substitution 

21112 In In E 
y"(x) N ~ - ~ + . . .  

x + x  2 2 

Remembering that R cc In r / ro ,  this gives 

1 In In r 1 
N ~ _ _  <-. de- ' ( r )  

dr r l n r  l n r  r l n r  

The free energy has a singularity at the critical temperature but it is so weak that any 
observable except the dielectric constant is finite and all derivatives are finite and 
bounded for T < T,. Not surprisingly, this is in agreement with the results obtained by 
Anderson and Yuval (1971) for the one-dimensional Ising model with inverse square 
interaction, which can be treated with our methods to obtain most of their results. The 
energy of a pair of charges is 

qzs: dx x ~ - l ( x ) e x p {  - 2 ( p y ' ~ - ~ ( x )  - 1)x) U =  ~~ s: dx exp{ -2(Pq'~-'(x) - l)x} 

where we have substituted x = ln(r/ro). Since the specific heat C is proportional to 
dU/db, any singularities in C will show up in integrals of the form 

where we have used the fact that P q 2 c - ' ( x )  - 1 % const > 0 for T <  T,. This integral 
will certainly be finite except possibly at T =  T,, in which case we want the asymptotic 
form of y ( x )  as given by equation (29), since it is clear that dy(x)/dy(O) is singular only at 
infinity. 

Differentiating equation (21) with respect to p(0) and using equation (29) we obtain 

which has the solution 

The integrals of the form (32) in the expression for C are thus all finite since the eCax 
factor ensures convergence. We can similarly show that all derivatives of C of finite 
order are finite and bounded at the critical temperature, which strongly indicates that 
C is analytic there. 



Metastability and phase transitions in two-dimensional systems 1189 

It must be borne in mind that mean field approximations are notoriously bad in 
predicting the form of the singularities in specific heats etc, since such a theory ignores 
fluctuations in the internal field. We therefore expect that our value of is an over- 
estimate and that in an exact treatment there may be a weak singularity in C. 

Just above the critical temperature, the largest pairs will dissociate and be able to 
carry charge so that the medium will conduct. Assuming that the mobility of a free 
charge behaves smoothly at T,, the behaviour of the DC conductivity as T+ T, from 
above will be determined by that of the density of dissociated pairs 6n(T).  This number 
may be estimated by calculating the number of pairs whose separation is less than R, 
where R is defined by y(R) = 0. When the separation r increases so that y(r )  < 0, the 
trajectory y(x) (x = In (r/r,,)) falls off rapidly to minus infinity (see figure Al). We interpret 
this failure of the theory as the complete dissociation of such a pair. We find that R is 
given by (see Appendix) 

In- R - exp{(ln-)”’] 1 
ro r -  F,‘ T - T ,  (35) 

where we have taken E ( r )  z 1 throughout the region of integration. This is justified here 
because { P q 2 / E ( r ) }  - 1 % 1 near T, for all r .  Thus, the density of dissociated pairs 
&(T) is given by 

where 2n is the total density of charges. Also 

so that 

and 

(38) 

(39) 

Thus, the DC conductivity tends to zero with all derivatives zero as the critical tempera- 
ture is approached from above. 



1190 J M Kosterlitz and D J Thouless 

To conclude this section on the model system, we would like to point out that the 
assumption of a very dilute system (e-2Bp < 1) is not necessarily valid in a real system. 
However, we expect that the qualitative ,arguments will go through even in such a case 
and the general form of the results will be unchanged. We can imagine increasing the 
cutoff r ,  to some value R, such that the energy of two charges a distance R ,  apart is 
2jc(R,) where exp { -2p(R0)P) < 1. For charges further apart than R,, we can use the 
theory as outlined previously. The boundary conditions given by equation (20) will be 
changed to 

-2 

with E(R,) an unknown function. The critical temperature and the dielectric constant 
will now be determined in terms of E(R,)  and p(&). To determine these two quantities, 
a more sophisticated treatment is required, but we expect that the behaviour of the 
dielectric constant and specific heat at the critical temperature will be unchanged. 

3. The two-dimensional xy model 

The two-dimensional xy model is a system of spins constrained to rotate in the plane of 
the lattice which, for simplicity, we take to be a simple square lattice with spacing a. 
The hamiltonian of the system is 

where J > 0 and the sum ( i j )  over lattice sites is over nearest neighbours only. We have 
taken I Si I = 1 and q5i is the angle the ith spin makes with some arbitrary axis. Only 
slowly varying configurations, that is, those with adjacent angles nearly equal, will give 
any significant contribution to the partition function so that may expand the hamiltonian 
up to terms quadratic in the angles. 

It has been shown by many authors (Mermin and Wagner 1966, Wegner 1967. 
Berezinskii 1970) that this system does not have any long-range order as the ground 
state is unstable against low-energy spin-wave excitations. However, there is some 
evidence (Stanley 1968, Moore 1969) that this system has a phase transition, but it 
cannot be of the usual type with finite mean magnetization below T,. As we shall show. 
there exist metastable states corresponding to vortices which are closely bound in pairs 
below some critical temperature, while above this they become free. The transition is 
characterized by a sudden change in the response to an applied magnetic field. 

Expanding about a local minimum of H 

where A denotes the first difference operator, +(U) is a function defined over the lattice 
sites, and the sum is taken over all the sites. If we consider the system in the configuration 
of figure 1, its energy is, from equation (43) 

R 
H - E ,  d l n -  (44) 

U 

where R is the radius of the system. Thus we have a slowly varying configuration. which 
we shall call a vortex, whose energy increases logarithmically with the size of the system. 
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\ \ - A / /  

Figure 1. An isolated \ortex in the xy model 

From the arguments of the Introduction, this suggests that a suitable description of the 
system is to approximate the hamiltonian by terms quadratic in A+(r)  and split this up 
into a term corresponding to the vortices and another to the low-energy excitations 
(spin waves). 

We extend the domain of +(Y) to - m < +(r)  < cc to allow for the fact that, in the 
absence of vortices, ((+(Y) - + ( Y ‘ ) ) ~ )  increases like In ( 1  Y - u ’ l )  (Berenzinskii 1971). 
Thus, at large separations, the spins will have gone through several revolutions relative 
to one another. If we now consider a vortex configuration of the type of figure 1, as we 
go round some closed path containing the centre of the vortex, +(Y) will change by 271 
for each revolution. Thus, for a configuration with no vortices, the function +(r)  will 
be single-valued, while for one with vortices it will be many-valued. This may be sum- 
marized by 

E A + ( 4  = 2 w  q = 0, * 1, * 2 . . .  (45) 

where the sum is over some closed contour on the lattice and the number q defines the 
total strength of the vortex distribution contained in the contour. If a single vortex of the 
type shown in figure 1 is contained in the contour, then q = 1. 

Let now +(Y) = $(Y) + $(Y), where $(r) defines the angular distribution of the spins 
in the configuration of the local minimum, and $(Y) the deviation from this. The energy 
of the system is now 

H - E ,  = J c (A$(4)2  + J c (A&Y))2 (46) 
r r 

where 

a A$(v) = 0 and A$(r) = 2719. (47) 

The cross term vanishes because of the condition (47) obeyed by $(v). Clearly the con- 
figuration of absolute minimum energy corresponds to q = 0 for every possible contour 
when $(Y) is the same for all lattice sites. We see from equation (45) that, if we shrink the 
contour so that it passes through only four sites as in figure 2, we will obtain the strength 
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Figure 2. Contour around centre of Lortex 

of the vortex whose centre we can take to be located on a dual lattice whose sites r* lie 
at the centres of the squares of the original lattice (Berezinskii 1971). This procedure 
enables us to define the vortex distribution function p ( r * )  given by 

(48) P ( V * )  = 2 4 e  h*i.e* . 
e 

Going now to a continuum notation for convenience, using equation (47). we can 
easily find the equation obeyed by & v )  

VZ$(r) = 271p(r). (49 ) 
In terms of p ,  the energy of the system in a given configuration is 

R + 2nJ [ [ d2r  d2r '  p(v)  p ( r ' )  In - 
Y O  

where R is the radius of the system, ro is a cutoff of the order of the lattice spacing a and 
g(r) is the Green function of the square lattice defined so that g(0) = 0 (Spitzer 1964). 
The last term of equation (50) requires that Cq, = 0 which is the condition that the total 
vorticity ofthe system vanishes, and corresponds to the requirement ofelectrical neutrality 
in the model system. The first term produces the spin-wave excitations and is responsible 
for destroying long-range order. and the second term is the interaction energy of the 
vortices which cause the phase transition. 

If we ignore all vortex configurations, we obtain for the spin-spin correlation 
function 

where (Spitzer 1964) 

and 

e- Y 
- - - ~ 

a 2\12 (?; = Euler's constant) 
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and we can see that the spin-wave excitations are responsible for destroying any long- 
range order in the system, but have nothing to do with any phase transition which may 
occur. 

The energy E,  of the vortex configuration is now simply 
r .  - r .  

E,  % - 2715 1 qiqjln 
l r , - v l , f a  i # j  

(54) 

where q1 is the strength of the ith vortex whose centre is located at rL. We no longer 
distinguish between the original and dual lattices. This asymptotic expression for the 
energy is in fact a very good estimate even down to 1 Y 1 = a (Spitzer 1964) so we can use 
it for all 1 Y I> a. Since in our approximation. the spin-waves and vortices do not interact 
with one another, the problem is now reduced to that of the model system with the 
vortices playing the r61e of the charged particles and 

E ,  = - 2715 1 4i4jln for 1 yi - y j  1 > a  
i # j  a 

= o  otherwise. ( 5 5 )  

The chemical potential p of a single vortex of unit strength is 

li = - 2715 In - = 2nJ(g + 1 In 2) ( 5 6 )  

which is to be compared with the exact expression for the energy of two vortices separated 
by a single lattice spacing 

r0 

a 

/L = z2J (57)  
which is obtained from equation (50) using the exact value of g(a) = b. The critical 
temperature T,  at which the transition takes place is given by the solution of the equation 

% 0.12. 

Below T,, the vortices will be bound in pairs of zero total vorticity, while above T,  they 
are free to move to the surface under the influence of an arbitrarily weak applied magnetic 
field, thereby causing a sudden change in the form of the response to the applied field. 

One way of seeing the effect of the transition is to consider the spin-spin correlation 
function (Si. S j ) .  Taking the vortices into account, this is modified to 

(59) 

Since the vortices and spin waves do not interact in our approximation. the two averages 
are taken independently. The average (exp(i($i - t+hj))) is taken over all possible values 
of $i. and is given by equation (53) and (exp{i($i - $ j ) } )  is taken over all possible 
vortex distributions. In our mean field approximation. we can estimate the latter term 
as follows 

<Si*Sj> = <exp{i($i - $j)})<exp(i($i - $ j ) } > .  

- -  

(exp{i($i - $j)}) = ( S i .  S j )  K ( T )  (60) 
I V i  - r, 1 -+ r 
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where si is the spin on the ith site in the absence of spin-wave excitations. Thus. 

K ( T )  = O2 (61) 

where 0 is the mean magnetization of the metastable configurations without the spin- 
wave excitations. Thus, 0 corresponds exactly to e- '  of the model system so that 
K ( T )  = O(1) for T <  T,  and vanishes discontinuously at T =  T,  according to equation 

Since the spin waves and vortices do not interact. the system of vortices alone is 
equivalent to a system of freely moving, straight parallel current-carrying wires whose 
number is not conserved, located at the centres of the vortices. The sign of the forces 
between the wires is reversed, and Ii = qi$nJ, Ii being the current in the ith wire in 
suitable units. The chemical potential = n2J is the energy required to 'create' a wire 
with no current. The sum of the currents in the wires is contained to be zero, corres- 
ponding to the condition Cq,  = 0. This analogy tells us that, on applying a magnetic 
field in the plane of the system. the vortices will tend to move at right angles to the field. 
the direction determined by the sign of qi.  

(27). 

4. Two-dimensional crystal 

For simplicity, we consider a crystal with a square lattice of spacing a, and when possible 
as a continuum with a short distance cutoff yo of the order of the lattice spacing a. As 
far as any critical phenomena are concerned, this will make no essential difference. The 
short-distance behaviour will affect quantities like the effective chemical potential. but 
for our purposes we require only that this is sufficiently large. We can therefore use 
standard linear elasticity theory to describe our crystal (Landau and Lifshitz 1959). 

The stress oij is related to the  strain u i j  for an isotropic medium by 

oii = 2vuij + 3.6iju,, (62) 

and the internal energy by 

As mentioned in the Introduction. there is no long-range order of the usual type in 
this system, exactly as for the xy model of the previous section. Writing the energy in 
terms of the displacement field u(v). which describes the displacement of the lattice sites 
from their equilibrium positions, and expanding to terms quadratic in u(J*), we can show 
that the mean square deviation of a site from its equilibrium position increases logarith- 
mically with the size of the system (Peierls 1935. Berezinskii 1970). This destruction of 
long-range order is caused by the low-energy phonon modes, and the phase transition 
from the solid to the liquid state by the dislocation configurations. Since in our approxi- 
mation, the phonons and dislocations do not interact, we may treat them separately. 
As in the magnetic case, we may decompose the displacement field as 

(64) u(v) = v(v)  + Is(v) 

where 

$u(v)dl = 0 and @(v)dl = b 
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where the integral is taken round some closed contour and b is the total Burger's vector 
of the dislocation distribution contained within the contour. v ( v )  is the displacement field 
of the phonons and Iz(v) that of the dislocations. If the contour in equation (65) is taken 
round only one dislocation it gives the Burger's vector b of that dislocation. For simpli- 
city we shall assume that 1 b I is the same for all dislocations and the most likely value of 
1 b 1 will be the smallest possible. that is I b I = a. 

The most convenient way of treating a medium with dislocations is to introduce a 
stress function ~ ( v )  which is related to the stress oij(v) by (Friedel 1964, Landau and 
Lifshitz 1959) 

where 
c12 = +1, cZ1 = -1, eij  = Ootherwise. 

We can then define a source function y(v )  describing the distribution of dislocations so 
that ~ ( v )  obeys the equation 

4v(v + A) 
2v + 3. K =  = 2v(l + 7) .  

y(r) is given by (Friedel 1964) 

(69) 

where and b(') are the position and Burger's vector respectively of the cxth dislocation. 
Having set up such a formalism, we can investigate the response of a medium 

containing dislocations to an applied stress in exact analogy to the electrostatic case. In 
our case, crij and uij correspond respectively to the electric field E and displacement field 
D .  The strain energy of the medium due to the dislocations is 

a 
y(v) = a 11 J axja) E . .  b(?) ~ $ 2 )  ( v  - r (a) )  

U = $ [ d 2 r  ~ ( v )  y(u) 

d2v d2v' y ( v )  g(v - v' )  y(v') + 0 2 U 

where y(u) is the Green function of equation (67) 

and 
g(0) = 0. 

Using those equations, we can immediately see that the energy of an isolated dislocation 
increases logarithmically with the area of the system. The strain energy of a pair of 
dislocations with equal but oppositely directed Burger's vectors is easily found to be 
(Friedel 1964) 
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where I r 1 is the separation of the two dislocations, 0 the angle between b and r ,  and 2 p  
the energy required to create two dislocations one lattice spacing apart. This result 
implies that, at low temperatures, the dislocations tend to form closely bound dipole 
pairs. Clearly, the condition Cb'") = 0 must be satisfied so that at low temperatures the 
energy of the system is finite, corresponding to the condition of electrical neutrality in 
the model system. 

The next step is to identify a quantity analogous to the dielectric constant. Consider 
the stress function ~ ( " ' ( r )  due to the clth dipole with source function q("'(r), (cf Jackson 
1962) 

where r(") denotes the centre of the ath dipole. Assuming the dipoles are very small, we 
expand in powers of r' for 1 Y' 1 < 1 r - 4') 1 

since the linear term vanishes for a dipole. We can now define the macroscopic stress 
function by averaging over a region AA such that ( r ' )  AA < A, where ( r ' )  is the 
mean square separation of the dipole and A is the area of the system. 

@g(v - r') 
~ ( r )  z K d2v'y(r')g(r - i )  + K d2v'Cij(v') s s axpx;. 

where 

d2r'y("'(r')6(r - Y ( ' ) ) ) ~ ~ ~ ( Y )  

(75) 

where n(r) is the density of dipoles. 

the applied stress aij by 
Simple tensor analysis shows that, for an isotropic medium, C,, is given in terms of 

(77) 

where C, and C, are to be determined by a model calculation. From equation (75), we 
find after an integration by parts 

Cij = ~ik~kLCIakl + C26k~mm) + 0(o2) 

d2r'q(r')g(p - i ) .  
X ( r )  = 1 - K ( C ,  + C,) 

Thus, the effect of the dislocation pairs is to renormalize K-'  ---f K- '  - ( C ,  + C,), 
and we immediately see that the quantity corresponding to the dielectric constant 
E(r) is E ( r )  = 1 - K{C,(r)  + C,(r)). Using simple linear response theory as in the model 
system, we obtain 

C,(r) = - @b'n(r2> 

C,(r) = & /?b2n(r2 cos 26) (79) 
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where the averages are to be taken with Boltzmann factor exp(-fiUeff(r)} and 

Provided we choose the cutoff ro sufficiently large so that our continuum approxima- 
tion holds, and that p is large enough, we only have to show that the average over 8 does 
not change the analogy with the model system of 3 2. We can easily show that equation 
(19) is modified to 

with 
fib2 y (x )  = ~ - 4 

471K4x) 

and Z,(z) is the vth-order modified Bessel function (Ambramowitz and Stegun 1965). 
Provided /L is sufficiently large, y(x) is very small for all x, so that the Bessel functions 
occurring in equation (81) are essentially constant. Thus we can immediately apply all 
the results of 92  to this case. 

5. Neutral superfluid 

The same type of argument can be applied to a neutral superfluid in two dimensions. 
All that is required is that Bose condensation should occur in small regions of the system, 
so that locally a condensate wavefunction can be defined. The argument of Hohenberg 
(1967) shows that the phase ofthe condensate wavefunction fluctuates over large distances 
so that the type of order defined by Penrose and Onsager (1956) cannot occur. If a 
condensate wavefunction can be defined in a local region, it should be possible to explore 
the variation of its phase from one region to a neighbouring region. The total vorticity 
within a region is found by the change of phase along the boundary, divided by 271. 

Just as the energy of a vortex in the magnetic system or dislocation in the crystal, so the 
energy of a superfluid vortex increases logarithmically with the size of the system. At 
low temperatures, there will be no free vortices, only clusters of zero total vorticity. 
Neglecting the interaction between clusters, the critical temperature is given by equation 
(5). The analogy with the model system is close as there is only one type of vortex which 
may have either sign. As in this model, we expect the interaction between vortex clusters 
to lower the critical temperature from the estimate of equation (5). The lattice Bose gas 
has been discussed in detail by Berezinskii (1971) who finds the parameters of the Bose 
gas to be related to those of the magnetic system by 

where c is the speed of sound. Using these parameters, we can estimate the value of T,  
from equation (58) and the superfluid density p,(T,) which is nonzero in contrast to the 
result of Berezinskii. 

Below the critical temperature, for a lattice Bose system with periodic boundary 
conditions, superfluid flow is stable in the thermodynamic limit, since a state with flow 
is one in which the phase of the order parameter changes by a multiple of 271 round the 
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system. The system can change from one such state to another by the creation and separa- 
tion of a pair of vortices, one of which passes right round the system before recombining 
with the other, but there is a high energy barrier which prevents this process. The 
different states of superfluid flow are topologically distinct states which do not make 
transitions between one another at low temperatures. The phase transition is character- 
ized by these states becoming mutually accessible above the transition temperature, so 
that the flow states are no longer metastable. 

Experiments on the onset of superfluid flow for thin films-see, for example, Symonds 
et al(1966), Chester et al(1972) and Herb and Dash (1972)-show a strong depression of 
the temperature as the film becomes thinner. According to the considerations of this 
paper the critical temperature should be given by 

where ps is the density of superfluid particles per unit area and mx is the effective mass of 
the helium atoms in the film. If ps is taken to be the bulk value multiplied by the film 
thickness and m* is taken to be unaffected by the substrate, and so equal to the atomic 
mass, this formula gives too high a value for T,, so the effect of the boundaries in reducing 
ps must be important. The value of p, at the onset temperature must be nonzero: for 
a film thickness 1.5 nm at 1.5 K the superfluid density given by equation (81) is about 
0.22 times the particle density, if m* is taken equal to the atomic mass. It is not surprising 
that the specific heat maximum occurs at a higher temperature than the onset of super- 
fluidity, since a considerable degree of short-range order is necessary before the con- 
siderations of this paper have any relevance. De Gennes has made a relevant comment 
on this matter (see Symonds et a1 1966). 

For a charged superfluid (superconductor) the argument cannot be carried through 
because, as a result of the finite penetration depth A, the energy of a single flux line is 
finite. The circulating current density inside a thin superconducting film of thickness 
d 6 A is (Pearl 1964) 

where r is the distance from the flux line. The repulsion energy between two vortices 
with opposite circulation falls off like r - ’  instead of increasing as In r for large separa- 
tions. The self energy of a single flux line is thus determined by the current near the flux 
line and is approximately (De Gennes 1966) 

where is the ‘hard core’ radius of the flux line. 

6. Isotropic Heisenberg model in two dimensions 

The isotropic Heisenberg model for a two-dimensional system of spins is quite different 
from the xy model. To show the nature of this difference. we consider a large system 
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with periodic boundary conditions, but similar considerations apply to other boundary 
conditions. In the xy model at low temperatures, the direction of magnetization in a 
region is defined by a single angle $ which varies slowly in space. Although the angle 4 
fluctuates by a large amount in a large system, the number of multiples of 271 it changes 
by on a path that goes completely round the system is a topological invariant, so that 

are numbers defining a particular metastable state. Transitions can only take place from 
one metastable state to another if a vortex pair is formed, the two vortices separate 
and recombine after one has gone right round the system. Such a process will cause a 
change of one in either n, or ny,  but there is a logarithmically large energy barrier to 
prevent such a transition. 

In the case of the isotropic Heisenberg model, the direction of magnetization is 
defined by two polar angles 8 and $. A quantity such as 

is not a topological invariant. A twist of the angle $ by 271 across the system can be 
changed continuously into no twist by changing the other polar angle 8 (which we take 
to be the same everywhere) from 371 to zero. There is in fact a single topological invariant 
for the Heisenberg model in two dimensions, which is 

If we regard the direction of magnetization in space as giving a mapping of the space 
on to the surface of a unit sphere, this invariant measures the number of times the map 
of the space encloses the sphere. This invariant is of no significance in statistical mechan- 
ics, because the energy barrier separating configurations with different values of N is 
of order unity. To show this, we consider how a configuration with N equal to unity 
can be transformed continuously into one with N equal to zero. 

A simple example of a configuration with N = 1 is one in which 8 is a continuous 
function of r = (x' + yZ)'l2, equal to 7c for r greater than some value a, and equal to 
zero at the origin. The angle $ is assumed to be equal to tan-'(y/x). The energy of a 
slowly varying configuration is proportional to 

3 jf ((V8)' + sin' 8(V$)2) dx dy 

which, for the configuration described above 

= 71 jo' {(g)' + f sin'e} r dr (87) 

Even if 8 varies linearly between the origin and r = a, this integral is finite and inde- 
pendent of a. The configuration can be changed continuously into a configuration with 
N = 0 by letting a tend to zero. Of course, for small values of a, this expression for the 
energy is invalid, but the number of spins in a disc of radius a is then small so that any 
energy barrier is small. 
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We must conclude that there is no topological long-range order in the Heisenberg 
model in two dimensions. Supposing that the occurrence of a phase transition is really 
connected with the existence of long-range order we would conjecture that the xy 
model has a phase transition but the Heisenberg model does not. Such a conjecture 
does not seem to be in conflict with the evidence provided by the analysis of power 
series for the models by Stanley (1968) and Moore (1969). 
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Appendix. Solution of dyidx = - eCXy 

\ 

Figure A l .  Trajectories of dydx = e-X’. 

From the method of isoclines, we see that the trajectories y(x) behave as plotted in 
figure A1 with the singular point at infinity. It is easy to see that the solutions fall into 
two classes 

(i) Y ( W )  3 0 Y(0) 3 Y m  
(ii) Y@) -+ -cc Y ( 0 )  < Y m  (A. 1) 

corresponding to equation (22). For convenience, we make a transformation of variables 
to brong the singular point to the origin by defining 

( A 4  
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Figure A2. Trajectories in  transformcd variables. 

so that 

dw 1 1  
- = - - + -coth+w. 
dZ z2 z 04 .3 )  

The trajectories w(z)  have the form displayed in figure A2, where the trajectories corres- 
ponding to y(0)  B y,(O) are those with w(z) 2 0. We can find approximate solutions in 
the three regions 

0) w - 0 )  z - 0  

(ii) w - + c o ,  z - 0  

(iii) w ---f 03, z + 03 

and match the solutions at w = 2. In region (i) 

dw 1 2  
dz z2 wz +- - .  -e _ -  

Changing variables to 2t = (l/z) - w we obtain 

z ( t )  el2 r' e-s2 ds 
J t  

where t ,  -, CO as y(0)  -+ y,(O) from above. In regions (ii) and (iii) 

('4.6) 
1 

w(z) % - + In z + 2 In y 
Z 

where y = y(m) in (ii) and y = y(0)  in (iii). 
We can make the best match at w(z) = 2, where the gradients in the three regions are 

equal. However, the numbers are not too good because coth 1 % g, while we have taken 
coth iw = 1 in regions (ii) and (iii). The points at which we match are defined by the 
intersections of the curves 

(A.7) 
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The match between regions (i) and (ii) corresponds to the intersection at t -, CO, that is 
In t, 

t % t ,  - -. 
2tl 

At the other intersection, we put t = t ,  + 6, where t ,  is defined by 

Numerical calculations give t ,  % - 0.84. Expanding z(t) to first order in 6 we obtain 

Using equations (A.6) to (A.10), we obtain 
~ ( c o )  x Jzt, e-" 

(A.10) 

(A.11) 

where 

y:(O) = 2(tc + 1) e-''. % 1.7. (A.12) 

Taking logarithms of equation (A.11) eliminating t , ,  we obtain the leading singularity 
in Y(CO) for Y(0) 2. Y A O )  

(A. 13) 

Substituting the expressions for ~ ( c o )  and y(0)  given by equation (20), and ignoring all 
but the most singular terms, we immediately obtain equation (27). 

Just above the critical temperature where y(0) < y,(O), the appropriate solution of 
equation (A.4) is 

m 

z(t) = e" 1 e-s2 ds + Kef2 (A.14) 

where K 2 0. In the region w -, - CO, z -, + CO 
(A.15) 

where X is defined by y(X) = 0. We can now carry out exactly the same procedure 
as above to estimate the behaviour of X for y(0)  + y,(O) when K -, O f  by matching the 
solutions (A.6), (A.14) and (A.15) at 14 = +2. We find 

1 
w(z) % - - In z - 2 In X 

Z 

(A.16) 

Using the expressions for y(0)  and y,(O) of equation (20), we immediately obtain equation 
(35). 
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