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Prompt
Warped compactifications of type IIB string theory from ten dimensions down to four dimensions play
a central role in string theory. At the same time, five-dimensional warped geometries are a powerful
tool for addressing the hierarchy problem and modeling the physics of the electroweak scale. This A
Exam question considers the relationship between these two classes of warped geometries.

1. Describe warped compactifications of type IIB string theory, following the first three sections of
[1]. Explain which 10-dimensional stress-energy sources are responsible for creating the warping.

2. Explain how placing D3-branes at the tip of a cone over an Einstein manifold X5 creates the
warped geometry AdS5 ×X5. (Note that R6 is a cone over S5, so that the geometry serving as the
canonical example of AdS/CFT is a special case of this result.)

3. Now sketch how with the inclusion of additional sources one can obtain a ten-dimensional solution
containing a finite warped throat region. Focus on the Klebanov-Strassler solution truncated at a
large value of the radial coordinate of the cone.

4. Finally, connect this compactification to RS models by explaining which aspects of the string
compactification correspond to IR and UV branes. This leads us to the question of primary physical
interest: what sort of ‘substructure’ does string theory provide for what appear to be singular objects
in the five-dimensional description?

Note: the Klebanov-Strassler solution is somewhat involved, and for the purpose of this exam it is
sufficient to focus on the physics in the infrared (the “tip”) and at large radial distance, avoiding
some of the complexity of the intermediate region.
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1 Introduction

I know. Compared to the other two 50+ page write ups I’ve submitted for this exam,
this looks really scrawny. The irony is that I spent the most time preparing this prompt.

Well, if you’re still reading then this paper’s irreverent title hasn’t dazzled you into passing
me without actually reading this document. It was worth a shot. I guess we should get to some
physics.

Two of the biggest developments in theoretical physics in the late 1990s were (i) the Randall-
Sundrum (RS) model of a warped extra dimension and (ii) the AdS/CFT conjecture connecting
D dimensional gravity to (D − 1) dimensional gauge theory. The RS model was introduced as a
‘phenomenological’ (a word which we define relative to string theory) model of naturalizing the
electroweak hierarchy, though it was quickly realized that it could be interpreted holographically
as the five-dimensional dual of a strongly-coupled four-dimensional gauge theory. These two ideas
went on to dominate a significant fraction of theoretical high energy physics in the following
decade.

Despite being heuristically very similar, it took some time before an actual string realization
of the RS could be constructed. The issue here is that the RS1 model is a slice of AdS5 space with
boundaries formed by two solitonic branes. For the most part, phenomenologists needn’t worry
about the ultraviolet completion of the 5D theory that produced these branes (e.g. are these
branes the same thing as stringy Dp branes?) in order to use the effective theory to discuss TeV-
scale phenomenology. It turned out that the scaffolding required to microscopically (i.e. string-ily)
support such a ‘low energy’ theory in a meaningful way (i.e. with a well-understood gauge dual) is
non-trivial. This required (1) knowing how to deform Maldacena’s original AdS5×S5 construction
to include the RG running in the gauge theory, (2) breaking the excess supersymmetries, and (3)
generating the warped region with appropriate cutoffs corresponding to the Randall-Sundrum IR
and UV branes.

In this A-exam we will heuristically describe how this structure can be realized in string theory.
We will see that the IR region can be described by Klebanov and Strassler’s “warped deformed
conifold” [2] while the UV region warping is described by the construction by Giddings, Polchinski,
and Kachru [1]. We will further remark that this construction is holographic to a so-called ‘duality
cascade’ that is cut-off by a confinement scale that is given by the conifold deformation.

We will not attempt to properly acknowledge original literature. A brief half-hearted literature
review is provided in Appendix B. We will assume that the reader has the appropriate background
in Randall-Sundrum model so that we will not discuss ‘phenomenology.’ Further, we will assume
that the reader has a background in AdS/CFT and string theory appropriate to the level at which
they would like to follow this paper. And really, between you and me, someone ought to know
string theory.

Unlike my other A-exam write ups, this is meant to be a qualitative paper meant to supplement
my oral examination. . . which will also be qualitative. As for any detailed derivations, I take the
same stance that my [Russian born] freshman math professor took about homework1: “Homework?
I sheyit on your homework!”

1We later discovered that he meant to say that he makes a ‘spread sheet’ of our homework grades.
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2 The big picture

Let’s provide a framework by summarizing the ‘big picture’ in bullet form. (This is the A-exam
equivalent of a montage2.)

• Maldacena. The original AdS/CFT correspondence related a gravitational theory on
AdS5×S5 to N = 4 superconformal field theory. This is way too symmetric. Because
we know that the isometry group of the gravity theory is related to the internal symmetry
of the gauge theory, we would like to find ways to modify the S5 into a less symmetric space
where still have a handle on the gauge theory3.

• KW. Klebanov and Witten found that if the extra dimensions form a conifold, AdS5×T1,1,
then one can break most of the supersymmetries. This turns out to be dual to N = 1
superconformal field theory. We’ll say a few more words (but not that much more) about
T1, 1 below. This will be as far as we will break the supersymmetry. As long as the theory
is superconformal, however, there will be no RG running and we will not have anything
RS-like (where we recall that the dual picture of RS associates the warping with RG flow)

• KT. Klebanov and Tseytlin found that adding fluxes into the mix (from wrapped D5 branes)
generates the necessary back reaction to produce the desired ‘warped throat’. We are thus
reduced to N = 1 super Yang-Mills. This is pretty good, but the geometry contains a naked
curvature singularity at the tip of the cone. In RS language we would say that there is no
IR brane.

• KS. Klebanov and Strassler then smoothed out the tip of the conifold by blowing up the S3

at the tip to produce the deformed conifold. We’ll discuss this much more below, but the
point was that this gets rid of the naked singularity and provides the desired structure for the
IR brane and has a remarkable description in terms of a ‘cascading’ super QCD theory. One
remaining item for a “realistic4” string realization is that the UV end of the conifold must
be attached to a compact manifold. (It’s much easier to work with noncompact conifolds as
the tips of compactified conifolds.)

• GKP. Finally, Giddings, Polchinski, and Kachru included the deformed conifold as an
appendage to a Calabi-Yau flux compactification. As we shall see, GKP construction also
provides a way to generate the hierarchy in scales between the IR (KS tip) and the UV
(compact manifold) branes.

3 The conifold

Calabi-Yau manifolds are typically non-singular, but at special parameter values they can be
forced to develop singularities. One fairly generic class of singularity are conifolds, which are

2http://www.southparkstudios.com/clips/collections/rock/185666
3This is a non-trivial step since symmetries are precisely what help us get a handle on the gauge theory.
4Yes, these quotation marks are dripping with sarcasm.
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defined by

∑

i

(zi)2 = 0 (3.1)

for z ∈ C4. Note that here ‘squared’ really does mean squared, not modulus-squared. (This will
be important for R symmetry.) This equation defines a cone, which can be seen straightforwardly
from noting that any solution can be mapped to another solution via zi → λzi for each i. Further,
the base of the cone is topologically S2×S3, which can be seen less-straightforwardly by writing
out the above equation in terms of real coordinates. The Ricci flat and Kähler metric on this
space is that of a cone,

ds2 = dr2 + r2dΩ2
T1,1 (3.2)

We’re not going to go into the gory details of dΩ2
T1,1 , but an important relation is that the conical

radius, r, is related to the radius of the S3, ρ, via

r ∼ ρ2/3. (3.3)

In the KS solution the conifold is ‘deformed’ to smooth out the singularity at the tip. “De-
formed” is actually a technical term for blowing up the S3 at the tip, as illustrated on the left of
Fig. 1. The defining equation for the deformed conifold is
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Fig. 10.4. The deformation and the resolution of the singular conifold near the
singularity at the tip of the cone.

the noncompact Calabi–Yau space obtained by magnifying the region in
the vicinity of a singularity of the three-fold. This noncompact Calabi–
Yau space is called the conifold, and its geometry is given by a cone. This
section describes the space-time geometry of the conifold, together with its
smoothed out cousins, the deformed conifold and the resolved conifold. Type
IIB superstring theory compactified on a deformed conifold is an interesting
example of a flux compactification. It is the superstring dual of a confin-
ing gauge theory, which is described in Chapter 12. Here we settle for a
supergravity analysis.

The conifold

At a conifold point a Calabi–Yau three-fold develops a conical singularity,
which can be described as a hypersurface in 4 given by the quadratic
equation

4∑

A=1

(wA)2 = 0 for wA ∈ 4. (10.117)

This equation describes a surface that is smooth except at wA = 0. It
describes a cone with an S2 × S3 base. To see that it is a cone note that if
wA solves Eq. (10.117) then so does λwA, where λ is a complex constant.
Letting wA = xA + iyA, and introducing a new coordinate ρ, Eq. (10.117)
can be recast as three real equations

#x · #x− 1
2
ρ2 = 0, #y · #y − 1

2
ρ2 = 0, #x · #y = 0. (10.118)

Figure 1: Deformed versus resolved conifold. From [3]

∑

i

(zi)2 = ε2. (3.4)

We will discuss the origin of this deformation below. For the record, smoothing out the singularity
by instead blowing up the S2 is called ‘resolving’ the conifold. We will not make use of this latter
case.
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4 Sources of warping and running

Let us now discuss how we generate the warped throat region which plays the role of the RS1
bulk.

4.1 Avoiding a no-go theorem

As one can can guess from Maldacena’s AdS5×S5 construction, this warping comes from the
inclusion of extra sources in the stress-energy tensor. We would ultimately like to generate an
warped spacetime metric with an RS-like region of the form

ds2
10 = e2Adx2

Mink. + e−2A
(
dr2 + r2dΩ2

T1,1

)
. (4.1)

The Einstein equation for takes the form

RMN = κ2
10

(
TMN −

1

8
gMNT

)
(4.2)

where the stress-energy tensor has contributions from the usual supergravity fields in addition to
any localized objects TMN = T sugra

MN + T loc
MN . Plugging in the metric ansatz and taking the trace,

we obtain an equation for the warp factor

∇̃e4A = e2AGmnpG
mnp

12Imτ
+ e−6A

[
∂mα∂

mα + ∂me
4A∂me4A

]
+
κ2

10

2
e2A
(
Tmm − T µµ

)loc
. (4.3)

This is the ugliest equation that I have the intestinal fortitude to discuss in this paper. Gmnp

is a three-form flux (related to the ‘usual’ IIB supergravity fields via G(3) = F(3) − τH(3) with τ
the axion/dilaton) where we have introduced the notation of lower-case Roman letters from the
middle of the alphabet for internal manifold indices. The last term is a trace over the stress-energy
tensor of the localized sources.

Let us remark upon some salient features. First of all the first term tells us that the fluxes
source the warping. We will say more about the origin of these fluxes in terms of D3 branes. Both
this term and the second term are positive definite. If we integrate both sides of the equation over
the compact manifold, then the left-hand side vanishes as a total derivative, and the first two terms
on the right hand side give a positive definite contribution. Back in the 1980s—when physicists
didn’t really understand D branes and so the localized term was neglected—this was interpreted
as a no-go theorem against warped compactifications. In the modern era we are comfortable
including D brane sources.

4.2 Negative tension

If one includes a Dp brane wrapped on a (p − 3) cycle on the compact manifold M6, the third
term turns out to be proportional to

(
Tmm − T µµ

)loc
= (7− p)Tpδ(M6). (4.4)
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What we find is that for p < 7, we need negative tension branes. Such objects happen to
show up fairly generically, e.g. O3 orientifold planes. It is interesting at this point to remark,
however, that even phenomenologists could have guessed something like this would happen since
the simple RS scenario requires negative tension branes to satisfy the Einstein equation. (We
won’t derive this either, but this time it’s not because the author is incapable of doing so.)
The main difference, however, is that the RS scenario required both branes to have negative
tension. In the KS/GKP construction the microscopic structure at the IR does not contain
negative tension; instead, the negative tension comes only from the compactified manifold that
provides the microscopic structure for the UV brane (the end of the throat).

4.3 D3s at the tip

Klebanov and Witten placed N D3 branes at the conifold singularity to generate a warped metric

ds2 = h−
1
2 (r)(dx2

Mink.) + h
1
2 (r)

(
dr2 + r2dΩ2

T1,1

)
, (4.5)

where h(r) = 1 + R4/r4, with R4 ∼ Nα′2/Vol(ΩT1,1). This is shown heuristically in Fig. 2. The
backreaction of the D3 branes pull out the AdS throat, but we note that there is a singularity at
the origin. Further, the warped geometry is pure AdS5 so that the corresponding gauge theory is
conformal. We would like to resolve these issues. Er, technically we would like to deform them.

compact space

with conifold singularity compact

manifold

conical

region

r

AdS throat

backreaction

D3!branesN

Figure 2.2: The warped conifold throat (note that the D3-branes are really
placed at the singularity).

and also admits a Calabi-Yau metric. When placing M units of F3 flux
on the 3-cycle, the flux backreaction on the geometry gives the warped
deformed conifold. It is possible to regard also this F3 flux as sourced by
D-branes, albeit in a more subtle way: If M D5-branes are wrapped around
the collapsing 2-cycle of the singular conifold, they will be constrained to
reside at the singularity and act effectively as “fractional” D3-branes. Their
back-reaction on the geometry will deform the singularity and give rise to a
warped metric, and they will source M units of F3 flux threaded through the
transversal S3. This picture is especially useful to construct the AdS/CFT-
dual gauge theory, which was achieved in [22,56,57].

For our purposes it is convenient to merely regard the warped deformed
conifold with F3 flux as a supergravity solution, dispensing momentarily
with the D-brane picture. The singularity at the conifold tip is deformed,
so that the throat now ends at finite r. The metric for the throat excluding
the tip was found by Klebanov and Tseytlin (KT) [57]:

ds2 = h̃(r)−1/2ηµν dxµ dxν + h̃(r)1/2(dr2 + r2ds2
T 1,1), (2.14)

where

h̃(r) = 1+
R4

eff(r)
r4

, R4
eff(r) =

27
4

πgsNeff(r)α′2, Neff(r) =
3
2π

gsM
2 log

r

rs
.

(2.15)
Here rs is a parameter associated with the deformation size of the singularity.

The KT metric becomes singular for r → rs; in fact, it is no longer valid
in the domain r ! rs, and the complete throat is perfectly smooth also at its
tip. This can be inferred from studying its AdS/CFT dual [22]. However,
the precise shape of the throat in the region near the tip, which we will call

17

Figure 2: The warped conifold throat from D3 branes placed on the conical singularity. From [4]

4.4 Fractional D3s

In addition to the N D3 branes at the conifold tip, we may also include M D5 branes that have
managed to get themselves wrapped all over the S2. Since this two-cycle shrinks in the deformed
conifold, these D5 branes look like D3 branes with fractional charge. We thus call them fractional
D3 branes. It turns out that these D5s will be responsible for turning on the flux that sources
the ‘additional’ warping that breaks conformality.

Each fractional D3 is a source of a unit of F(3) flux (the field strength of the RR 2-form
C(2) in the IIB supergravity action) through the T1,1 tricycle. This, in turn, causes the five-form
flux through T1,1 to depend on the radial coordinate r. A heuristic way to understand this is to

5



recall in Maldacena’s AdS5×S5 construction, the ’t Hooft coupling depended on the number of
D3 branes in the stack by

λ = g2
YMN. (4.6)

The effect of the r-dependence of F(5) is to change the effective N to

Neff(r) ∼ N + gsM
2 log

(
r

r0

)
. (4.7)

This introduces precisely the logarithmic deviation from AdS that we want to break conformal
invariance in the dual theory.

We can motivate this in a slightly more technical way. The self-dual five-form flux F(5) is
sourced by the H(3) and F(3) fluxes to stabilize moduli and any localized sources. It turns out that
including the fractional D3 branes causes the F(5) flux to pick up a radial dependence via

∫

T1,1

F(5) =
1

2
(α′)2πNeff(r), (4.8)

with Neff given above. The integration constant r0 is a characteristic UV scale. The point is that
this turns our conifold into a warped conifold (i.e. warped in addition to the AdS curvature)
with an r-dependent warp factor,

ds2
10 = e2A(r)dx2

Mink. + e−2A(r)
(
dr2 + r2dΩ2

T1,1

)
. (4.9)

Using some sort of voo-doo, Horcrux, or other kind of black magic, one can integrate equation
involving F(5) to obtain an expression for the warp factor,

e−4A(r) ∼ (α′)2

r4

[
gsN + (gsM)2 log

(
r

r0

)
+ (gsM)2

]
, (4.10)

where we’ve dropped various prefactors on each term. It is suggestive to write this in the form

e−A(r) ∼ 1 +
R4

UV +R4
IR log(r/r0)

r4
= 1 +

R4
IR log(r/rs)

r4
= 1 +

R4
eff(r/rs)

r4
, (4.11)

where the Rs are the radius of curvature at the UV and IR scales. In the last step we defined
a ‘slowly varying’ radius of curvature Reff(r) ∼ πα′2gsNeff(r). Comparing to (4.5) we see that
the warping indeed deviates from AdS by the logarithmic factor so that the space is now only
approximately AdS5×T1,1.

5 Flux this tip

Let us now continue on to the KS and GKP solutions. At this point we should note that we have
a warped solution thanks to our fluxes, what we have not yet done is provided a large and stable
hierarchy. It is sometimes under appreciated that warping and hierarchy are not the same thing:
warping provides an [exponentially] good way to generate hierarchies, but only if such hierarchies
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can be stabilized. In toy constructions of string realizations of RS-like models where D3 branes
played the role of the Randall-Sundrum IR and UV branes (e.g. [5]) this was manifested by
somehow forcing one D3 brane to stay some finite distance away from the rest of its friends at
the bottom of the cone. In ‘phenomenology’ this manifests itself as the need to have some kind
of Goldberger-Wise-like mechanism to fix the radion5. In our stringy construction this issue will
be related to fixing the IR scale, which we’ve already alluded comes from deforming the conifold
tip. One could then ask where the deformation came from. The answer, as usual, is flux (which
in turn came from the fractional D3s discussed earlier). This isn’t actually new information: the
whole point of flux compactifications is that one can generate potentials for the moduli; ε2 is just
another modulus.

Let’s dig into the structure of the IR a little bit. We define the T 1,1 = S2 × S3 structure of
the deformed conifold in terms of two three-cycles tricycles. The A tricycle is nonvanishing at the
tip and corresponds to the S3 that we blow up in our deformation. This vanishes as z → 0 and
is defined as the S3 defined by setting the zi to be real. We shall take the B tricycle to be the
dual of the A tricycle in the sense that the compact maifold can be thought of as a “Cartesian
product” of the two cycles. More concretely, the B tricycle is the S2 of the T 1,1 along with the
AdS radial direction; it is defined by taking z1,2,3 imaginary and z4 real in (3.4).

The fractional D3 branes place M units of F(3) flux on the A cycle. The field equations
(alternatively, D3 charge conservation) then require that the H(3) flux must also be supported on
the dual B cycle with, say, −K units of flux;

∫

A

F(3) = 4π2α′M

∫

A

G(3) = −4π2α′K. (5.1)

Poincaré duality then gives a superpotential

W =

∫

M6

G(3) ∧ Ω = (2π)2α′
(
M

∫

B

Ω−Kτ
∫

A

Ω

)
. (5.2)

This tells us, for reasons that I define to be outside the scope of this paper (probably more black
magic), that the ε2 describing the size of the A tricycle is

z =

∫

A

Ω. (5.3)

This then (again, abra cadabra) tells us that the integral over the dual B tricycle is

∫

B

Ω =
ε2

2πiε2
log ε2 + holmorphic. (5.4)

The Kähler covariant derivative of the superpotential with respect to this complex coordinate is
then (expelliarmus !),

DzW ∼ α′
M

2πi
log z − iK

gs
(5.5)

5Perhaps a more pedestrian manifestation of this question is whether or not RS models truly generate a hierarchy
of scales or have we just chosen misleading coordinates?
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so that in the K/Mgs � 1 limit, we obtain an exponentially small

ε2 ∼ exp(−2πK/Mgs). (5.6)

This now tells us that the flux compactification with N D3 branes at the conifold singularity
and M fractional D3 branes gives a deformed conifold at the IR tip whose characteristic scale is
exponentially smaller (warped) than the UV scale set by the compact manifold.

6 RS, is that you?

A heuristic picture of the warped compactification that we have described is presented in Fig. 3. As

compact

manifold

conical throat KS

regionregion

r

IR brane5d bulkUV brane

Figure 3.1: The KS throat as a RS-I model

3.2 Radius stabilization

We have seen in Section 2.4 how the complex structure modulus z of the KS
throat can be stabilized by fluxes. The z modulus determines the hierarchy
between the two ends of the throat, or, in the 5d picture, the distance be-
tween the two branes. This distance is commonly referred to as the “radius”
of the RS geometry (since the original RS-I model was based on an S1/Z2

orbifold with the S1 radius becoming the interval length). The radius is
a modulus itself in a pure RS-I model, but can be stabilized by additional
dynamics. Let us investigate what these dynamics are if the 5d model is to
be an effective description of the stabilized 10d throat.

While the 5d metric may locally be well approximated by AdS5, the
radial variation of Reff has to be taken into account in order to characterize
the throat as a whole. In other words, the negative 5d cosmological constant
of AdS5 has to be replaced by a vacuum energy density V (H), which must
be a function of at least one 5d scalar field H to allow for spatial variation.
This field H must have a non-trivial profile H(r) in the fifth dimension,
which encodes the radial variation of the quantity Neff (or equivalently Reff)
of the full 10d picture.

Working in a 5d Einstein frame with canonically normalized H,

L5 =
1
2
M3

5R5 −
1
2
(∂H)2 − V (H) + . . . , (3.1)

we can now enquire about the appropriate function V (H). The profile H(r)
induced by this potential will give rise to a certain scalar-field energy density.

27

Figure 3: A realization of the Randall-Sundrum model (RS1) on the throat. From [4]

indicated, the warped throat region corresponds to what phenomenologists would like to call the
5D bulk region. This region deviates from AdS by a logarithmic factor which breaks conformality.
The IR brane is described by the Klebanov-Strassler deformed conifold which provides a structure
which truncates the throat. On the other end the compact manifold itself (with its sources of
negative tension) serve as a ‘UV brane’ to cutoff the throat behavior.

7 Remarks on the duality cascade

We now present a very brief sketch of the dual theory to the Klebanov-Strassler region of our
warped throat. The space T1,1 = SU(2)×SU(2)/U(1) (i.e. before we deform the conifold) has an
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SU(2)× SU(2)× U(1) isometry. The local U(1) is realized as a global R symmetry in the gauge
theory. This theory contains two chiral superfields Ai and Bi in SU(N)×SU(N) representations
(N, N̄) and (N̄,N) respectively. These chiral superfields transform as (�, 1) and (1,�) under the
SU(2)s above.

Adding the fractional D3 branes breaks the AdS symmetry in the gravity theory and hence
conformal symmetry in the gauge theory. We can understand the effect of the fractional D3s by
considering them one at a time as 5D domain walls. As we pass a fractional D3 going up the
throat the gauge symmetry changes from SU(N)×SU(N) to SU(N)×SU(N + 1). Thus we see for
M such fractional D3 branes the conifold UV (large r) gauge symmetry is SU(M +N)×SU(N).

Let us write the near-horizon warp factor (4.11) as exp(−4A(r)) ∼ log(r/rs)/r
4. Holography

tells us to interpret this logarithm as log(µ/Λ) for some renormalization scale µ and a fundamental
scale Λ. We would now like to ask what happens as we flow to the infrared, i.e. r ∼ µ → small.
The gauge and string couplings are related by

1

α1(µ)
+

1

α2(µ)
=

1

gs
, (7.1)

where α1,2 = g2
YM1,2

/4π refer to the couplings of the SU(M +N) and SU(N) groups respectively.
The left-hand side is constant because (Alakazam) the dilaton is constant. On the other hand,
the difference of these objects obey a logarithmic running,

1

α1(µ)
− 1

α2(µ)
∼ log

(µ
Λ

)
. (7.2)

As µ decreases, α−1
1 decreases and α−1

2 increases. Eventually, however, α−1
1 vanishes. In this case

we may replace the theory with it’s Seiberg dual. Recall that Seiberg duality replaces an SU(Nc)
supersymmetric gauge theory with F quark flavors with an SU(F −Nc) theory and F flavors (and
baryons). For α1, Nc = M + N and F = 2N . Thus Seiberg dualizing has transmogrified our
gauge theory,

SU(M +N)× SU(N) → SU(N)× SU(N −M). (7.3)

This process can be repeated over and over again, as shown in Fig. 4. In fact, in the KT model it
could be repeated ad infinitum all the way to the naked singularity. For the Klebanov-Strassler
deformed conifold, the geometry provides a cutoff for this cascade at rs ∼ ε2/3. On the gauge
side the theory confines. One can see this by considering the R symmetry groups of the KT
and KS models. For ε = 0, the conifold coordinates obey a U(1) symmetry associated with
zi → eiθz. When ε 6= 0, this is broken to z → −z, which is precisely what one expects since
gaugino condensation breaks U(1)R → Z2N , which in turn is broken to Z2 by anomalies6.

8 Conclusion

We have briefly reviewed the Giddings-Kachru-Polchinski/Klebanov-Strassler ‘microscopic’ string
construction of a warped compactification that mimics the ‘macroscopic’ structure of the Randall-

6It is unfortunate that the examinee did not have enough time to connect this to his A exam prompt on
instantons.
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To cut a long story short, Seiberg showed that one can continue N =
1 gauge theories of this type across the singularity, provided one replaces
the gauge theory by a different one, called the Seiberg dual, on the other
side! For an SU(Nc) theory with Nc colors and Nf > Nc flavors (meaning
chiral superfields in the fundamental representation), the Seiberg dual is
an SU(Nf − Nc) gauge theory with Nf flavors.22 In the present context,
Nc = M + N and Nf = 2N . Therefore, the SU(M + N) gauge group
gets replaced with an SU(N −M) gauge group. Altogether, when the dust
settles, one has an SU(N) × SU(N −M) gauge theory that is isomorphic
to the theory one started with in the UV, with N replaced by N −M . This
process repeats k times as one flows to the infrared so long as N − kM

remains positive, and then it ends. For example, if N is an integer multiple
of M , the final gauge theory in the IR is N = 1 SU(M) gauge theory with
no chiral matter. The renormalization group flow is plotted in Fig. 12.9.

Confinement

N = 1 SU(M) gauge theory with no chiral matter is well known to exhibit
confinement and a mass gap. Also, it has a gaugino condensate that breaks
the discrete R symmetry 2M → 2. So the question arises how these
features are manifested in the bulk string theory. The basic mechanism was
already hinted at in Chapter 10. The naked singularity in the metric at rs is
removed because the conifold becomes a deformed conifold. Recall that this
corresponds to a manifold given by an equation of the form

∑
(wA)2 = ε2.

The parameter ε is related to rs by ε ∼ r
3/2
s . This smooths out the tip of

the conifold and cuts off the space-time before one reaches a horizon. In
other words, r = 0 is no longer part of the space-time.

22 There are also some other fields that are not relevant to the present discussion.

α

g

logµ

α−1

−1

−1
S

1

2

Fig. 12.9. The renormalization group flow of the duality cascade.
Figure 4: Cartoon of the duality cascade from [3].

Sundrum model of a warped extra dimension. We’ve focused on the supergravity side and have
been unabashedly qualitative. (I admit that I am a little bashful about how qualitative I’ve been.)

Let us be up front about some of the many interesting topics that we did not discuss. These
include

1. Non-supersymmetric throats. The construction that we have presented still is manifestly
N = 1 supersymmetric. While this typically carries virtues, it is still not quite the ‘minimal’
RS1 scenario that phenomenologists like to play with. Generally it is difficult to get a handle
on the gauge and gravity theories in the absence of SUSY. Recent progress in this direction
(which also contributed to the author’s interest in this topic) has been made by Kachru,
Simic, and Trivedi [6].

2. The duality cascade. The KS solution can be understood purely from the gauge theory
side. For an excellent review, see Strassler’s TASI lectures [7].

3. Randall-Sundrum phenomenology. We didn’t touch RS phenomenology one bit. This
is partly because the author is rather fed up with it at the moment. However, there has been
some recent interesting work building novel supersymmetric Randall-Sundrum holographic
models. One particularly interesting direction involves having supersymmetry broken at a
high scale only to re-emerge as an accidental symmetry as the theory couples to a supercon-
formal sector during its RG flow [8].

4. Randall-Sundrum phenomenology . Perhaps more to the point of this work, a former
Cornell theory group graduate student has performed a more thorough investigation of the
‘imprint’ of a stringy completion on ‘phenomenological’ RS models and their experimental
signatures [9].

In this respect this A exam prompt has been a way for the author to familiarize himself with
the string-side picture of warped compactifications with an eye on possible future projects at the
intersection of string theory and phenomenology.
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A Notation and Conventions

4D Minkowski indices are written with lower-case Greek letters from the middle of the alphabet,
µ, ν, · · · . Compact manifold coordinates are denoted by lower-case Roman letters from the middle
of the alphabet, m,n, · · · . Occasionally we’ll omit a tedious derivation by saying that a fact follows
‘by magic.’ We will indicate this by inserting magical incantations like hocus pocus !

B Brief Literature Review

Nothing in this paper represents original work, except the errors. The primary references were the
text by Becker2 and Schwarz [3], the original literature (KS [2], GKP [1]), and the dissertations by
two recent Heidelberg graduates [10, 4]. I also benefitted from notes of Shamit Kachru’s lectures
at PiTP 20087 and Stefan Sjörs BSM Journal Club8. Finally, the primary catalyst for my humble
understanding of this material came from edifying discussions with Liam McAllister and Sohang
Ganhdi.
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