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Flight of theWarped Penguins
and other weakly coupled tales of strong dynamics

Philip Tanedo, Ph.D
Cornell University 2013

Strongly coupled phenomena are typically inaccessible to the perturbative methods that are the bread and butter of
physicists. In many cases, however, there exist alternate dual descriptions of the strongly coupled system that are perturbative.
In this thesis, we explore applications of strong dynamics to models of physics beyond the Standard Model that are tractable
due to the existence of weakly coupled descriptions.

The Randall-Sundrum framework for a warped extra dimension, for example, is related by the holographic principle to
strongly coupled four dimensional gauge theories. We present a detailed calculation of loop-level flavor-changing ‘penguin’
diagrams in this scenario, both for the lepton and quark sectors. The phenomenological bounds from these processes are
complementary to those from tree-level diagrams. Further, we present a definitive analysis of the one-loop finiteness of these
diagrams.

Another handle for strong coupling is chiral perturbation theory. Here one makes use of the symmetry breaking pattern at
low energies to determine the low-energy spectrum of Goldstone bosons. We examine a supersymmetric generalization of
these types of theories and explore the features that make the ‘Goldstone fermion’ partner of the Goldstone boson a viable
dark matter candidate. We then present a general framework by which one may calculate the low-energy enhancement of the
dark matter interaction cross section when the dark matter self-interactions generate a singular potential.

Finally, we explore the phenomenological signatures of gluinos in R-parity violating supersymmetry. Signatures based on
same-sign dileptons can constrain the scale at which Majorana gluinos are produced. We explore the extent to which jet
substructure techniques may be used to improve current and future bounds.
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me give you some advice as a graduating student. If Johannes ever
comes up to you and says, “Hey, there’s something really interesting
that I want to show you in the restroom,” do not follow him.

Dan Goldbaum, 19 August 2008

1
For non-specialists

In the interest of accessibility, each chapter of this thesis begins with a non-technical introduction meant to be
understandable by a general ‘science enthusiast’ audience. This chapter goes one step further and provides introductory
material to a general audience with no science background with the goal of being able to appreciate the non-technical
summaries of subsequent chapters.

1.1 Act 1: Science

Science is a branch of human knowledge associated with the rational, objective, and empirical study of the natural world. The
primary mode of generating such knowledge is the scientific method, by which hypotheses are checked against experiments.
Science differs from the humanities in its subject and from the arts in its method.

Scientific fact is based on observation. Causal explanations for these observations are theories that must be rigorously
checked against experiment. It is worth highlighting that a “theory,” in the scientific sense, both explains observed phenomena
and predicts further observable phenomena. In this way scientific theories are falsifiable and differ from the common use of
the word ”theory” which implies opinion of speculation. A theory may end up being incorrect when subjected to further
experiments, but this is a feature rather than a shortcoming of the scientific method.

1.2 Act 2: Physics

Physics is the branch of science concerned the fundamental laws of nature. Branches of physics study atoms (and all things
subatomic), materials in different phases (condensed matter), dynamics of different systems (e.g. geophysics, general
relativity), outer space (astrophysics and cosmology), and applications to other sciences (biophysics, physical chemistry).

Unlike the other sciences, physicists can roughly be divided into theorists and experimentalists. Theorists are primarily
concerned with mathematical models of nature that can be used to explain experimental data. Experimentalists are primarily
concerned with testing theories and acquiring new data that may point to science beyond current theories. This divide occurs
because of the high degree of specialization required to study nature at the level of physics. Theorists must be fluent in
advanced mathematical methods while experimentalists must be clever to build apparatuses and interpret data.
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1.3 Act 3: Particle (‘High Energy’) Physics

Particle physics is the branch of physics concerned the smallest building blocks of nature. In the past century, the “particles”
that physicists considered “smallest” have gone from atoms, to nuclei, to protons, to quarks (not to mention electrons and
their cousins). We have also learned how to think of the fundamental forces of nature in terms of force-mediating particles
such as the photon.

Why do we study these particles? One reason is that we hope that by studying the basic building blocks of the universe we
can understand composite objects better (reductionism). There is also a philosophical/aesthetic appeal associated in
understanding what the ultimate basic building blocks of the universe should look like.

The current canon of particle physics is called the Standard Model and was mostly completed in the 1970s. It is based on
quantum physics and explains the strong and weak nuclear forces as well as electromagnetism. It has passed every direct
experimental test with flying colors and is regarded as a stunning success.

1.4 Intermission: Effective Theories

We know, however, that the Standard Model is incomplete. This is not to say that it is wrong, but that it is an effective theory
for the distance scales that we have probed. In the same sense, Maxwell’s equations are an effective theory for
electromagnetism above the atomic scale, where quantum effects become relevant (and another theory is effective: quantum
electrodynamics).

The reason why effective theories are reasonable is that nature tends to only care about physics at the scale you are probing.
For example, when a chef bakes a cake, there are several chemical reactions that occur as the batter bakes. At the heart of these
chemical reactions are statistical and quantum effects which are ultimately explained by the Standard Model, which, in turn,
may ultimately be explained my a more fundamental theory such as string theory. The chef, however, does not need to know
particle physics, quantum mechanics, or even chemistry to bake the cake; the chef has an “effective theory” of how to bake
cakes that is based on measuring cupfuls of ingredients.

In the same way the Standard Model is an effective theory for physics at the length scales we have probed. (Particle
physicists measure scales in electron volts, which are inversely proportional to length; we have probed scales up to around the
hundreds of giga-electron volt range.) There must be more to the story at smaller scales, but they don’t have an appreciable
effect on the scale that we’ve currently been able to study. One of the major missing pieces in the Standard Model is a
quantum theory of gravity.

1.5 Act 4: Particle Theory

Theoretical particle physics focuses on ways we can understand nature beyond the Standard Model. There are roughly two
kinds of particle theory: phenomenology and formal theory. Phenomenologists attempt to study the next level of effective
theory by looking for signals of physics beyond the Standard Model in experiments and constructing new models. Formal
theorists attempt to answer the bigger question of finding a fundamental “theory of everything” that is a complete theory that
describes nature down to the smallest length scales. Most formal theory today focuses on string theory.

Since the characteristic scale of gravity is well beyond anything that is experimentally accessible in our lifetimes, formal
theory often comes up against the barrier of experimental assessment. Much of the motivation for string theory comes from
the hope that it can be a self-consistent theory of quantum gravity.

This thesis focuses, instead, on phenomenology.

1.6 Act 5: Particle Phenomenology

Particle phenomenology often used as a blanket term used to describe theoretical particle physics that is not string theory.
This generally refers to particle theory that is more closely related to experiment, with theory and experiment each suggesting
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new research directions to the other. It is an exciting time to be in this subfield since the Large Hadron Collider (lhc) will
open up a new sectors of nature to scientific inquiry.

Some phenomenologists study finer details of the Standard Model, these include on-going studies of cp violation and
neutrino physics. There is also a subgroup of phenomenologists who work on the theory of strong interactions (i.e. quarks and
gluons), called quantum chromodynamics (qcd) which is notorious for being nonperturbative. Most qcd research involves
applying new mathematics (such as twistor methods) or computer simulations on discretized space (lattice qcd) to extract
more accurate predictions from the theory.

While these are both very promising directions, my primary research interest is what happens when our current effective
theory breaks down. The answer is almost certainly that it is replaced by another effective theory, perhaps motivated by string
theory, that sheds further light on the structure of nature.

1.7 Act 6: Beyond the StandardModel

“Beyond the Standard Model” phenomenology deals with ways to extend the Standard Model past its range of validity and,
hopefully, include any new physics we discover at the Large Hadron Collider. There are several sources of data for particle
physics, including astrophysics and cosmology, but colliders still represent our best controlled experiments.

There are good reasons to believe that there should be physics beyond the Standard Model within the reach of the lhc
even though quantum gravity is well beyond that range. For one, from astrophysical observations we know that there is a class
of massive particles called dark matter that is responsible for the clustering of galaxies. Within reasonable assumptions, such a
particle should be produced at the lhc. Another reason is the mass of the Higgs boson, which seems to suggest a “uv
completion” at the tev scale.

The twomost prominent ideas in ‘bsm’ phenomenology are supersymmetry and extra dimensions. Supersymmetry (susy)
adds extra quantum dimensions to spacetime that lead to each particle having a “supersymmetric partner.” This is analogous to
each particle having an antiparticle. Extra dimensional scenarios extend our spacetime with classical dimensions, allowing our
known particles to resonate in these extra directions to produce new “Kaluza-Klein” particles.

For the past ten or twenty years, bsm phenomenology has been centered around model building, i.e. developing new
theories or reworking old theories that can solve the problems of the Standard Model. With the lhc turning on, however, the
bsm community has shifted towards developing bottom-up data-driven approaches to new physics. The big question when the
lhc turns on will be whether we can identify signals that are beyond the Standard Model. This is not a trivial thing since
piecing together experimental signatures at a particle collider is very much a detective mystery in its own right; luckily this
task is shared by experimental particle physicists.

As of this writing, the bsm phenomenology community is faced with the prospect that there is yet no evidence for new
physics from the lhc. Possible astrophysical signals of dark matter have yet to be accompanied by ‘smoking gun’ signals from
sensitive underground experiments. Searches for the quantum effects of new particles at low energies have also yet to find
deviations from the Standard Model. Despite this, there are reasons to be optimistic that this generation of particle physics
experiments may show the way beyond the Standard Model.
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I tell the undergrads that it is not bymistake that [our department]
is in [the college of] Arts and Sciences. All of physics is about the
art of making the right approximation. Making the right approxi-
mation can teach you a lot.

Yuval Grossman

2
Hegemony of the StandardModel

Our present working theory of particle physics, the Standard Model (sm), has survived three decades against every
collider constraint, culminating in the 2012 discovery of the Higgs boson at the Large Hadron Collider (lhc). In this chapter
we review the structure of the sm and highlight theoretical and experimental evidence for directions beyond it.

2.1 The theory of quarks and leptons

The Standard Model describes the dynamics of quarks and leptons with respect to the strong and electroweak forces [12, 13].
It is based on a quantum field theory (qft) with a non-Abelian gauge symmetry which is broken to a subgroup via the Higgs
mechanism [14–16]. The theoretical and experimental path to the sm is a story of scientific triumph over several decades that
is best told by its makers [17–19]. Since this thesis focuses on our steps beyond the Standard Model, we will be necessarily
terse and focus on the finished product rather than its development.

The Standard Model matter content is given in Table 2.1. The sm is the most general renormalizable quantum field theory
with this matter content assuming that the potential for H breaks SU(2)L × U(1)Y → U(1)EM. The resulting Lagrangian is a
sum of terms,

L = Lgauge + Lkin. + LYuk. + LHiggs. (2.1)

We now review the physics of each of these terms.

2.1.1 Gauge structure

Gauge symmetry is a redundancy in the mathematical description of a theory. It appears because we prefer to work with
mathematical objects, such as the four-vector potential Aμ , which are manifestly covariant with respect to the Lorentz
symmetry of spacetime. The redundancy can be seen in the massless vector particle. Of the four degrees of freedom contained
in Aμ ,

• two are physical states (left- and right-polarizations)
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Field Spin SU(3)c SU(2)L U(1)Y
Q 1/2 1/6
ū 1/2 1 −2/3
d̄ 1/2 1 1/3
L 1/2 1 −1/2
ē 1/2 1 1 −1
H 0 1 1/2

Table 2.1: Matter content of the Standard Model. Each spin-1/2 field is a left-handed Weyl fermions that trans-
forms under a distinct U(3) flavor symmetry. The SU(2)L doublets contain left-handed fields Q = (u, d) and
L = (ν, e); when necessary we disambiguate these from the SU(2)L singlets by writing subscripts L and R for the
doublet and singlet respectively.

• one, the longitudinal polarization, is removed by the massless condition

• one is an unphysical gauge redundancy associated with the shift Aμ → Aμ + ∂μ λ(x).

In other words, one must identify (or ‘mod out’) gauge redundant configurations as describing the same physical state. The
natural mathematical language for describing this gauge redundancy is that of a principal fiber bundle and its associated
bundles; these are reviewed in [20–23]. A convenient way to describe these gauge redundancies is in terms of a ‘local’
symmetry. Conceptually this helps connect to the global symmetry associated with the gauge redundancy under which
particles are charged and which, as we will see in Section 2.1.4, is what ‘breaks’ in the Higgs mechanism.

The gauge potentials, Aμ(x) = Aa
μ(x)ta, are Lie algebra valued fields with gauge field strength

Fμν = ∂[μ A ν] + g[Aμ,Aν ], (2.2)

where g is the gauge coupling. The commutator evaluates to [Aa
μ,Ab

ν ] = ifabcAc, where fabc are the structure constants of the Lie
algebra. Out of the field strength we may write the pure gauge contributions to the Standard Model Lagrangian (2.1),

Lgauge =

3∑
i=1

F(i)μνF
μν
(i) + ΘqcdF(3)μν F̃

μν
(3). (2.3)

Here F(i) labels the field strength for the SU(3)c, SU(2)L, and U(1)Y gauge factors for i = 3, 2, 1 respectively. The dual field
strength, F̃μν = εμνρσFρσ , appears in the cp-violating phase Θqcd. This phase only appears for qcd since the chiral nature of
the Standard Model allows one to rotate away the Θ-angle associated with SU(2)L. It is conventional to write the U(1)Y
coupling as g′ and the SU(2)L coupling as g.

2.1.2 Matter kinetic terms

The matter fields in Table 2.1 each have kinetic terms so that the kinetic Lagrangian terms in (2.1) are

Lkin. =
∑

i=fermions

iψ†
i
/̄Dψi + |DH|2 . (2.4)
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Here D is the gauge covariant derivative,

Dμ = ∂μ − i
∑
i

giAa
(i)μt

a
(i)r, (2.5)

where i runs over gauge groups and tr is the r representation of the Lie algebra. Geometrically this is the object that generates
horizontal lifts on the fiber bundle; the gauge field appears as a connection for the bundle geometry. The /̄D notation indicates
a contraction σ̄μDμ and is the Weyl spinor analog of the usual /D = γμDμ for Dirac spinors; see [24] for a review.

TogetherLgauge andLkin. describe a non-interacting theory with an SU(3)c × SU(2)L × U(1)Y gauge redundancy and the
matter content of Table 2.1. Note that this theory has a classical U(3)5 global symmetry corresponding to independent
rotations of each fermion species in flavor space.

2.1.3 Yukawa terms

The flavor sector of the Standard Model is determined by the Yukawa terms in the LagrangianLYuk,

LYuk = yeijL̄
iHej + ydijQ̄

iHdj + yuijQ̄
jH̃uj + h.c., (2.6)

where the Yukawa matrices yij are flavor space matrices and H̃ = iσ2H∗ is the SU(2)L antifundamental that can be formed
from the fundamental since□ = □ in SU(2).

The three Yukawa matrices are spurions for flavor symmetry breaking, U(3)5 → U(1)2 where the classically unbroken
factor is identified with baryon and lepton number, U(1)B × U(1)L. Quantum mechanically, however, this is broken to
U(1)B−L due to the anomaly coming from the chiral matter content in Table 2.1.

Opon electroweak symmetry breaking, the Higgs obtains a vacuum expectation value (vev) ⟨H⟩ = (0, v/
√

2) and the
Yukawa terms generate Dirac masses for the quarks and charged leptons. One may use the broken U(3)5 flavor symmetry to
rotate the fermions into this basis, ψ→ Uψψ for ψ = Q, u, d, L, e. In the quark sector this gives

LYuk. ⊃ ūiLm̂
u
iiu

i
R + d̄iL(U

†
QUd)

†j
i m̂d

jjd
j
R. (2.7)

The mismatch between the quark mass and flavor bases are the source of the non-trivial flavor physics in the sm, see
Section 2.2 below. Observe that in there is no analogous flavor structure in the lepton sector since the sm does not include
right-handed neutrinos. Such an extension is straightforward and addressed in Section 2.3.2.

2.1.4 Higgs mechanism

The last piece of the Standard Model Lagrangian (2.1) is the ‘Mexican hat’ Higgs potential,LHiggs = −V(H),

V(H) = −μ2H†H + λ
(
H†H

)2
. (2.8)

This potential has a minimum at non-zero values of H so that the Higgs obtains a vev which we may choose to be
⟨H⟩ = (0, v/

√
2), where

v2 =
μ2

λ
. (2.9)

This spontaneously breaks electroweak symmetry¹ to the electromagnetic subgroup SU(2)L × U(1)Y → U(1)em. This
electroweak symmetry breaking (ewsb) is manifested in the masses generated for the gauge bosons associated with the
broken generators by the connection terms in the Higgs kinetic term (2.4). The mass eigenstates for the gauge bosons of the

¹What is actually spontaneously broken is the global SU(2)L ×U(1)Y symmetry since the local symmetry is a gauge redun-
dancy. In the broken phase the broken generators can no longer be associated with redundancies since these shift the vacuum.
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electroweak sector are the massless photon A, the massive electrically charged W±, and the massive neutral Z,

M2
Z =

1
4
(
g2 + g′2

)
v2 M2

W =
1
4
g2v2. (2.10)

The rotation to the mass basis is given by the Weinberg angle, θW, and depends on the gauge couplings,

sin θW =
g′√

g2 + g′2
. (2.11)

Observe that the Higgs sector parameters μ2 and λ only appear in the combination v2 for all interactions that do not involve
the other radial Higgs excitation, (0, v/

√
2 + h(x)). This is the reason why physicists have been able to tightly confirm the

structure of the Standard Model long before knowing the mass of the Higgs boson; the ‘Standard Model sans Higgs’ is actually
a non-linear Σ model (NLΣM) which depends only on the parameter v2. The discovery of the Higgs confirms at this NLΣM is
indeed completed by a linear Σ model.

2.2 Flavor

One of curiosities of the Standard Model is its flavor structure. Theoretically, the hierarchy in the spectrum of fermion
masses—though technically natural—seems to beg for a dynamical explanation. Experimentally, flavor observables probe
nature at high scales and severely constrain generic models of new physics.

2.2.1 The ckm matrix

The mismatch between the flavor and mass bases in (2.7) is represented by the Cabbibo-Kobayashi-Maskawa (ckm) matrix,

Vckm = U†
QUd (2.12)

The diagonal element of the unitary transformations UQ,u,d allows one to set the mass matrices to be real, but one physical
complex phase is left over in the ckm matrix and contributes to cp-violation.

2.2.2 The unitarity triangle

The unitarity of the ckm matrix implies relations of the form∑
i=u,c,t

VidV∗
ib = 0. (2.13)

Each term in on the left-hand side can be plotted as a phasor in the complex plane so that the null sum can be represented as a
triangle. While most of these triangles are very flat owing to having one term much smaller than the others, the particular
relation between the bottom and down quarks in (2.13) is unique because each term in this sum isO(λ3) in the Wolfenstein
parameter. Each side is roughly the same order and the resulting ‘unitarity triangle’ is robust against experimental errors.
Normalizing the sides of the triangle by VcdV∗

cb,

VudV∗
ub

VcdV∗
cb

+ 1 +
VtdV∗

tb

VcdV∗
cb

= 0. (2.14)

This is shown in Figure 2.2.1.
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Figure 2.2.1: The unitarity triangle.

2.2.3 The gim mechanism

The gim mechanism, named after Glashow, Iliopoulos, and Maiani [25] is the observation that because any pair of columns in
a unitary matrix are orthogonal, flavor changing neutral currents (fcncs) prohibited at tree level. Further, loop-level fcncs
are most sensitive to the heavy quarks running in the loops. Because these virtual heavy quarks are off shell, this contradicts
the expectation from the Appelquist-Carazzone decoupling theorem [26], which states that the physical effects of a virtual
particle vanish as its mass is taken to infinity. Indeed, the heavy particles in fcnc loops do not decouple and the amplitude is a
function of the combination m2

t/M2
W.

The reason for this violation of decoupling is that fcnc processes are essentially mediated by the longitudinal part of the W
due to the Goldstone boson Equivalence theorem. The W coupling to the fermions in these diagrams is essentially a Yukawa
coupling, which goes like the fermion mass. When you have a particle whose coupling is proportional mass, then it is clear
that decoupling fails. Thus the gim mechanism tells us that one-loop diagrams carry factors of m2

i /M2
W, where i is summed

over the internal quarks.
Because new physics appearing as virtual particles in loops can affect low energy observables, the gim observation tells us

that the fcncs are a particularly fertile way to constrain physics beyond the sm. This is because gim prohibits the leading
order sm contribution to these processes so that both the new physics signal and sm background appear at the same order in a
loop expansion.

2.2.4 Penguins

Penguins are a class of fcnc diagrams that will be discussed at length in this thesis. The curious etymology of this process is
explained in John Ellis’ own words in [27]. These diagrams correspond to effective operators of the form χ†i σ

μν χ jFμν for a
Weyl fermions χ and gauge field strength Fμν; an example is shown in Figure 2.2.2. One way to understand these diagrams is to
consider what would be required for a fermion to change flavor: the gim mechanism requires a loop-level process, momentum
conservation requires the emission of a light particle, spin conservation requires this particle to be a boson and that the
fermion chirality flips, and this in turn implies the presence of a mass insertion. Alternately, the mass insertion can be
understood as a necessary term to avoid the gim cancellation in (2.13). Consider, for example, the penguin associated with
b→ sγ. Naïvely, the amplitude’s dependence on the ckm matrix takes the form

M∝
∑
i=u,c,t

V∗
ibVis = 0. (2.15)
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Figure 2.2.2: Example of a penguin diagram where arrows refer to fermion chirality. Note that the chirality-
flipping mass insertion is required by the dipole operator.

This product vanishes identically by unitarity. This tells us that any term independent of the internal quark mass vanishes so
that

M =
∑
i

V∗
ibVis f(mi). (2.16)

We can expand f in a power series. If mi ≪ MW then f(mi ≪ MW) ∝ m2
i /M2

W. This limit is valid for the up and charm quarks,
but there is no sense in which m2

t/M2
W is a small parameter—it turns out, however, that the linear approximation is only off by

anO(4) factor [28].

2.3 Hints for new physics

The discovery of the Higgs boson was a crowning achievement for the Standard Model [29, 30]. However, the many open
questions associated with the sm have been known since long before the first beam at the lhc. Here we review some of the
reasons why we expect physics beyond the Standard Model, highlighting particular aspects that are addressed in this thesis.

2.3.1 Naturalness and the Hierarchy problem

For the past three decades, one of the main motivations for physics beyond the Standard Model has been the so-called
Hierarchy problem. In typical quantum field theories, one may estimate the size of the model’s parameters based on their
scaling dimensions. The gauge Hierarchy problem is the observation that the expected Higgs squared mass parameter is much
larger than what is expected from the observed masses of the electroweak gauge bosons.

In the the Wilsonian picture², a given quantum field theory is defined with a cutoff, an upper limit on its range of
validity [31]. Changing this cutoff—or, alternately, probing the theory at different scales within its range of validity—can be
recast into a scale transformation on the theory. General field theories, however, are not scale invariant; the physics
manifested by the transformed theory is different from that of the original theory. Even terms which are classically invariant
under rescaling can pick up quantum (‘anomalous’) corrections to their naïve ‘engineering’ dimension. The flow in theory
space as one lowers the cutoff—i.e. “integrates out” high scale physics—is known as renormalization. See [32–36] for details.

The flow to the infrared (ir) generates large logarithmic corrections to the parameters of a theory. In order to maintain a
perturbative expansion, these large logarithms can be resummed using the renormalization group (rg) or ‘improved
perturbation theory.’ The Callan-Symanzik, or rg, equation for the running couplings is precisely a consistency condition that
recursively determines higher order corrections in the large logs to a given order of the coupling [37]. This resummation is a
geometric series of the heuristic form 1 + α ln+(α ln)2 + · · · = (1− α ln)−1. The solution of the rg equation prescribes the
scale dependence of the parameters of the theory in the so-called ‘running couplings.’

² During the preparation of this document, Ken Wilson passed away at the age of 77. His imprint on modern physics is
indelible and he will be remembered for teaching us all how to understand quantum field theory.
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Suppose that a given theory is defined at a cutoff Λ where, for example, it maps onto a more fundamental uv theory that
completes it. The action for the theory takes the form

S =

∫
d4x

∑
i

hiOi, (2.17)

with dimensionful coupling hi and operatorsOi. Note that the action is dimensionless so that [hi] + [Oi] + 4 = 0, where
[· · · ] is the mass dimension. It is convenient to work with dimensionless couplings, gi = hiμ−[hi], where μ is a characteristic
scale at which the interaction is probed. For example, a scalar mass operatorO2 = ϕ2 has a ‘coupling’ h2 = m2 and a
dimensionless parameter gi = m2/μ2. Note that the mass dimension [· · · ] implicitly includes the anomalous dimension
coming from quantum corrections.

Naturalness is the principle that the characteristic mass scales of the theory should be on the order of the cutoff Λ at which
it is defined:

mi ∼ Λ, (2.18)

up toO(1) factors [38] (see [39, 40] for reviews). This gives us a classification of the types of operators in a qft:

• Irrelevant operators have positive mass dimension [Oi]− 4 > 0 so that their couplings have negative mass dimension
[hi] < 0 and their dimensionless couplings go like a positive power of the scale μ, gi ∼ μ[Oi]−4

• Relevant operators have a negative mass dimension [Oi]− 4 < 0 so that their couplings have positive mass
dimension [hi] > 0 and their dimensionless couplings go like a negative power of the scale μ, gi ∼ μ−[Oi]−4.

• Irrelevant operators classically have zero mass dimension. If this is corrected quantum mechanically, then they are
known as marginally irrelevant or marginally relevant operators and scale logarithmically with μ. Otherwise, they are
exactly marginal.

Observe that the μ scaling of relevant and irrelevant and operators is relative to the characteristic coupling scale mi. Thus,
according to the natural values of this scale (2.18), the expected scaling is (μ/Λ) to a negative or positive power for relevant
and irrelevant operators respectively. If the uv scale is much larger than the probe scale, Λ ≫ μ, then we may ignore irrelevant
operators and restrict ourselves to theories with marginal and relevant couplings subject to the symmetries in the ir.
Conversely, relevant operators become large in this limit. This is simply the statement that relevant terms, such as a mass
parameter, are expected to be on the order of the uv scale, (2.18). For this reason 4D gravitational effects are highly
suppressed and can be ignored in experimental searches for new physics.

The electroweak sector appears to violate naturalness. The naïve uv scale for the Standard Model is the Planck scale
Λ ∼ MPl where one expectsO(1) effects from quantum gravity. From (2.9), the Higgs squared mass parameter is

μ2 = λv2, (2.19)

where v2 = (246 GeV)2 is fixed by the observed W and Z boson masses and weak couplings. The natural value of the μ2

parameter, μ2 ∼ M2
Pl, would thus require that the marginal coupling λ becomes correspondingly large. However,

perturbativity requires

λ
16π2 ≲ 1 ⇒ μ ≲ 4πv = 3 TeV. (2.20)

In other words perturbativity and naturalness predict that the physics associated with the order parameter of electroweak
symmetry breaking must be within the range of the lhc, and certainly well below the expected ‘natural’ value of the Planck
scale. The several orders of magnitude difference between μ2 and MPl is the Hierarchy problem and is strong motivation for
physics beyond the Standard Model near the TeV scale [38, 41–47].

Observe that at no reference to the existence of a Higgs boson is required to motivate the Hierarchy problem. Indeed, one
may have relaxed the requirement of perturbativity and assumed that the ‘Higgs squared mass parameter’ μ2 is a generated by
strong dynamics that causes an electroweak symmetry breaking condensate analogous to the chiral condensate of qcd—these
ideas are the basis of technicolor models [44, 48–51]. In this case one would have expected the observation of new states at
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the strong coupling scale. The discovery of the Higgs boson [29, 30] with mass

m2
h = 2μ2 = 2λv2 = (125 GeV)2 (2.21)

largely refutes these sorts of models and has been hailed by many as the ‘triumph of perturbativity’ and the ‘death of
technicolor’—though much of this thesis is dedicated to the ways in which strong coupling continues to find applications in
post-Higgs model building.

We thus now know the parameters of the Higgs sector,

μ = 88 GeV (2.22)
λ = 0.13, (2.23)

and must confront the Hierarchy problem, μ≪ MPl. In a sense ‘naturalness’ is an aesthetic principle, albeit formalized by the
framework of Wilsonian effective field theory. One might suppose that μ2 just happens to be a ‘fine tuned’ parameter relative
to its natural value. In the past decade this perspective has garnered some more serious thought [52, 53] due to observations
about the landscape of string theory vacua that appear to essentially offer a continuum of different low-energy parameters [54]
(see [55] for a recent examination). This has led to some speculation that string theory might be telling us that perhaps
naturalness fails due to some anthropic-like principle [56] akin to Weinberg’s proposal for the cosmological constant problem
(a much more severe violation of naturalness than the Hierarchy problem) [57]. Depending on the extent to which one
subscribes to these ideas, one may skip the remainder of this subsection or this thesis altogether.

In light of the aforementioned theoretical forays away from naturalness and—at the time of this writing—the lack of
experimental evidence indicating new physics at the TeV scale, it is worth reviewing a well known particle physics example
where naturalness proved true: the mass of the electron [58]; additional examples can be found in [39]. A question that any
high school student may ask is what happens when one approaches the ‘point charge’ distribution of an electron. Since the
electrostatic potential energy goes like V ∼ 1/r, this energy appears to diverge and the electron seems to want to blow itself
apart. Furthermore, E = m at rest, so that this self-energy should appear as a contribution to the electron mass,

mphysical = mbare + ΔEself. (2.24)

Regulating the radius of the electron to re = 10−17 cm gives ΔEself = 10 GeV. Since mphys = 511 keV, this fixes the bare mass to
be

mbare = −9.999489 GeV. (2.25)

Disregarding the strange sign, we observe that the electron mass appears to be fine tuned against this Coulomb self-energy.
The resolution to this hierarchy is that ‘new physics’ appears at the scale E = 2mphys since at this scale one is sensitive to the
vacuum polarization caused by quantum mechanical electron–positron pair production. A full calculation reveals that this
screens the electromagnetic self-energy [59] and cancels the ΔEself ∼ 1/r behavior. In fact, the leading correction goes like
ΔE ∼ αmphys ln(mphysre) so that mphys is multiplicatively, rather than additively, renormalized so that theO(10−4) tuning in
(2.25) is completely avoided. The naturalness argument for new physics at the lhc assumes that a similar cancellation of
quantum corrections occurs with with new states.

Finally, it is important to highlight how symmetry principles can preserve naturalness even when mass parameters take
values much less than their expected values, mi ≪ Λ. When this occurs, we say that the theory is technically natural [38];
even though a parameter is tuned relative to its expected mass scale, it is not fine tuned (unnatural) because symmetries
control the size of quantum corrections. As demonstrated in the electron self-interaction example above, symmetries render
radiative corrections to be multiplicative rather than additive. This multiplicative renormalization achieves technical
naturalness in two ways: power law corrections are softened to logarithmic corrections and these corrections are suppressed
by the smallness of the smallness of the tuned parameter. Stated more concretely, a dimensionful parameter gi ∼ m|n|

i is
technically natural if the limit gi → 0 restores a symmetry. The two examples in the Standard Model are the masses of the
fermions and the electroweak gauge bosons.

• Even the heaviest sm fermion, the top quark, is well below the Planck scale. Loop corrections to the fermion masses,
however, are forced to be proportional to the mass itself due to chiral symmetry. In other words, corrections that are
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not proportional to the fermion mass do not generate the correct fermion helicity for a mass correction.

• The masses of the gauge boson are also protected because they are generated through spontaneous symmetry
breaking. Any quantum correction to this mass must couple to the gauge bosons and carry the symmetry breaking
order parameter so that such corrections must go like g2v2 ∼ M2

gauge.

2.3.2 Lepton flavor

The observation of neutrino oscillations is a smoking gun for physics beyond the Standard Model [60]. This implies a
non-zero neutrino mass which is not included in the sm Lagrangian (2.1). Analogously to to the ckm matrix in (2.12), this
implies the existence of a unitary matrix that encodes the difference between the neutrino flavor and mass bases: the
Pontecorvo-Maki–Nakagawa–Sakata (pmns) matrix [61–63].

Note that in the quark sector, it is purely conventional that the ckm matrix is defined with respect to the down-quark
sector. The ckm matrix appears, for example, in the W boson vertex connecting mass basis up- and down-type quarks so that
the misalignment between mass and flavor states could have equivalently been shifted to the up-sector in (2.7). In the lepton
sector there is a strong physical prejudice that the pmns matrix appear on the neutrino mass terms. This is because the small
neutrino mass splittings cause them to oscillate on macroscopic distances, whereas the charged leptons lose coherence at very
short distances [64]. This is analogous to meson oscillations: only the K, D, B, and Bs can oscillate, other charge neutral
mesons either decay or their oscillatory components become decoherent [65].

It would be trivial to extend the sm neutrino sector to include a flavor multiplet of right-handed neutrinos, N̄, analogous to
the right-handed charged leptons so that the structure parallels that of the quark sector. Observe that in order to form the
leptonic analogues of the up- and down-type Yukawa interactions, N̄ must be a sm gauge singlet. This, in turn, opens up an
alternate possibility for neutrino mass: the N̄ may have Majorana masses [66]. Note, however, that a net sm singlet state N̄ is
not necessary for Majorana masses. Indeed, below the scale of electroweak symmetry breaking, the only relevant gauge group
is U(1)EM. One can construct higher dimensional (irrelevant) operators containing the Higgs doublet which, upon inserting
the Higgs vev, generate a Majorana mass term for the left-handed neutrino inside the SU(2) doublet L:

ΔLd=5 =
c5
Λ
(L · H)†(L · H)→ 1

2
c5v2

Λ
ν2L + h.c., (2.26)

where (L · H) refers to a contraction of SU(2)L indices by the ε tensor and the † applies the appropriate conjugations. This is
the unique d = 5 operator made out of sm fields that respects the sm gauge group. This operator can be generated, for example,
by the exchange of the right handed neutrino N̄. Observe that the smallness of the effective mass term controlled by the ratio
of the electroweak scale to the uv scale, (v/Λ), which we assume to be very small by the naturalness arguments above.

A particularly intriguing way of tying the smallness of neutrino masses to new uv physics is the see-saw
mechanism [67–71]. Here one assumes the existence of the right-handed neutrino N̄ with a large Majorana mass term. The
mass matrix between the left-handed neutrino νL and the right handed singlet νR = N is

Msee-saw =

(
0 yνv/

√
2

yνv/
√

2 MM

)
, (2.27)

where for simplicity we’ve assumed just one flavor with Yukawa coupling yν . The off-diagonal terms are Dirac masses which
are of electroweak scale up to hierarchies in the Yukawa, while the Majorana mass term MM is assumed to be natural and on
the order of a large cutoff scale. Note that the fermion masses—even the Majorana mass—are all technically natural no matter
what scale they take; here we make the further assumption that the Majorana mass is ‘absolutely’ natural. The key observation
is that given a matrix with the hierarchies above, one finds that the light mass eigenstates have masses on the order of
∼ (yνv)2/MM, which is parametrically small. Thus in this case the lightness of the neutrino eigenstates is related to the scale
Λ ∼ MM at which the neutrino sector is augmented by the right-handed singlet states. It is especially compelling thatO(ev)
scale neutrino masses point to MM ∼ 1015 GeV, a scale favored by grand unification schemes (see below).

13



2.3.3 The origin of the Yukawa matrices

In Section 2.2 we quickly surveyed the flavor structure of the Standard Model. The orders of magnitude difference between
the lightest and heaviest fermion masses indicates a curious hierarchy in the Yukawa eigenvalues. While this hierarchy is
technically natural—i.e. it is protected against quantum corrections—it is a curiosity in the Standard Model.

2.3.4 Dark Matter

A second piece of evidence for physics beyond the Standard Model comes from astrophysics: approximately one quarter of
the energy density of the universe—and the large majority of the matter density—is non-baryonic and (to good
approximation) non-luminous. There are now many independent checks of this hypothesis that strongly suggest an additional
‘dark’ sector that augments the Standard Model and which contains a stable dark matter particle. We briefly summarize these
below, for further details see reviews in [72–74].

• The dm hypothesis was first proposed to explain the radial velocity dispersion of galaxies in the Coma cluster [75, 76],
a phenomenon that was soon discovered in the Virgo cluster [77] and later in the local group [78].

• The rotational velocity curves of spiral galaxies: The outer regions of these galaxies rotate with higher velocities than
would be expected if their matter distribution is composed only of luminous matter [79, 80].

• Comparing the matter content required for hydrostatic equilibrium to the luminous matter determined from X-ray
emissions of elliptical galaxies further confirms that dark matter is not exclusive to spiral galaxies [81]. Additional
refinements of these searches are summarized in [82].

• One can further probe gravitational signals of dark matter through lensing phenomena. This effect can be seen at
different magnitudes depending on the gravitational potential of the lensing object. Strong lensing refers to easily
visible distortions of an individual light source. Weak lensing, on the other hand, requires a statistical analysis of a
large number of sources to search for coherent distortions. Finally, ‘microlensing’ comes from relatively light lensing
objects whose distortions of the luminous object cannot be resolved so that one instead searches for a change in that
objects overall luminosity. The most advanced lensing analyses have not only detected dark matter, but have even
allowed astrophysicists to construct three dimensional maps of its distribution [83].

• Both X-ray spectroscopy and gravitational lensing converge with the relatively recent observation of the Bullet cluster
which was formed by the collision of two large galaxy clusters [84]. By using X-ray spectroscopy to image the hot
(luminous) matter and weak gravitational lensing to image mass density, it was seen that the luminous matter lags
behind the total mass as one would expect from weakly-interacting dark matter. This observation effectively puts the
nail in the coffin for alternative theories to dm, such as modified Newtonian gravity.

• A combination of theoretical and experimental cosmological constraints from the cosmic microwave background
(cmb) have cemented the so-called ‘concordance’ or ΛCDM (dark energy with cold dark matter) paradigm as an
accurate description of our universe [85, 86]. The measured matter density of the universe Ωm ≈ 0.04 does not
match its baryonic energy density Ωb ≈ 0.26 so that most the matter in the universe must be composed of
non-baryonic dark matter. Indirect measurements of Ωb include analyses of primordial nucleosynthesis of 4He, 2H
and 7Li [87,88]; the Sunyaev Zel’dovich effect in which the spectrum of X-ray emission from hot gasses is shifted from
inverse scattering off the cmb [89], and the Lyman-α forest whose absorption lines indicate the make up of the
intergalactic medium [90]. The highlight of observational cosmology, however, was the direct measurement of the
cmb spectrum from the cobe [91] and wmap [92] satellites. The measurement of the acoustic peaks in this spectrum
provide the most stringent constraints on dark matter (and dark energy) [93, 94].

• Further evidence comes from the requirement of dark matter in cosmology to generate the density perturbations that
led to large scale structure [95, 96] and to account for big bang nucleosynthesis [97].

In addition to these, recent astrophysical observations may be speculatively interpreted as indirect signals of dark matter:

• The excess of cosmic positrons observed by pamela [98] and later confirmed by Fermi [99] and ams-02 [100].

• The 135 GeV line in the Fermi gamma ray spectrum [101–105].

14



• Observations of scale structure in dwarf galaxies do not match the predictions from N-body simulations of
collisionless dark matter. These include a difference in the densities of dwarf galaxies [106–109], the inability for
massive subhalos to host the brightest observed satellites [110–112], and the discrepancy between the predicted and
number of observed satellites in the Milky Way [113, 114]. These observations suggest that the dm sector may include
additional self-interactions, see, e.g. [115, 116].

One must be careful to note that these purported signals should be taken with a grain of salt: there are multiple sources of
uncertainty and possible explanations within the realm of astrophysics rather than particle physics.

A particularly appealing class of dark matter candidates are weakly-interacting massive particles (wimps). The so-called
‘wimp miracle’ is the observation that a dark matter particle with anO(100)GeV ‘weak scale’ mass and anO(10−39) cm2

‘weak scale’ annihilation cross section generates the correct relic density ΩDM = 0.3. In the past, this has been presented as
evidence for new terascale physics connected to electroweak symmetry breaking and, perhaps, the solution to the Hierarchy
problem. However, this should be taken with a grain of salt. First, the wimp miracle is valid only at the “within a few orders of
magnitude” level. Note that a typical weak cross section is ⟨σv⟩ ∼ pb = 10−36 cm2, so that some amount of tuning is required
in the wimp coupling. In other words, the wimp miracle is a logarithmic miracle.

A stricter restriction comes from a tension between the correct relic abundance and recent direct detection bounds. As of
the writing of this paragraph, the xenon 100 experiment has set an upper limit on the spin-independent elastic wimp-nucleon
cross section on the order of σSI = 2× 10−45 cm2 for a 55 GeV wimp at 90% confidence [117]. A very naïve assumption is that
the annihilation cross section should be roughly of the same order as the direct detection cross section, and so there appears to
be significant tuning required to generate a difference on the order of several orders of magnitude between the two processes.

There are ways to generate honest-to-goodness wimp models, but these appear to be rather special cases in extended
models rather than generic phenomena. None-the-less, the existence of dark matter is a strong signal for physics beyond the
Standard Model. The characteristic mass scale of this sector and the extent to which it interacts with the sm, if at all, remain
open questions.

2.3.5 Other hints

In this section we briefly review additional motivations for physics beyond the Standard Model that, while compelling, will
not be a central part of this thesis.

• The Standard Model gauge group can be embedded into a simple group. One can then suppose that the ‘grand unified’
(gut) group is broken spontaneously into the sm [118] at a high scale, typically 1014 to 1016 GeV. While realistic
models are difficult to construct due to limits on, among other things, proton decay, this idea has a strong aesthetic
appeal. The requirement that the three gauge couplings unify is non-trivial and puts constraints on the matter content
so that SU(5) unification in supersymmetric extensions of the sm is taken as strong motivation for
supersymmetry [119]. Extensions to SO(10) additionally fit the entire sm matter content into a single representation
with exactly one additional particle, the right-handed neutrino [120, 121]. One can then speculate that the
right-handed neutrino mass exists at a much higher scale, e.g. a scale where SO(10)→ SU(5), allowing a see-saw
mechanism as described in Section 2.3.2. A final motivation for unification is that gut models can explain the
observed quantization of charges in the sm.

• The strong charge-parity (cp) phase, ΘQCD in (2.3) parameterizes the topological (instanton) vacua of qcd. Each
value is an inequivalent vacuum with a different energy density. Note that ΘQCD breaks both parity (p) and cp. The
strong cp problem is the observation that all observations of qcd suggest that this sector of the sm respects cp
symmetry so that ΘQCD ≪ 1. This is an apparent fine-tuning of the theory since quantum corrections from the
electroweak sector—which does not respect parity—will cause ΘQCD to run. One popular solution based on
dynamics is the axion [122] [123].

• Baryogenesis is the creation of the asymmetry between baryons and anti-baryons in the early universe which persists
today. The Sakharov conditions for such an asymmetry are (1) baryon number violation, (2) charge (c) and cp
violation, and (3) non-equilibrium interactions [124]. While these conditions are satisfied in the sm during the early
universe, the sm does not appear to be able to generate enough asymmetry to explain the observed universe [125]. In
models of leptogenesis, part of this asymmetry is transferred from the lepton sector by sphalerons [126].
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• Prior to the Higgs discovery the triviality of the quartic coupling λ in (2.8) was a hint for new physics. If the Higgs
mass were too heavy, this coupling would be large and would hit a Landau pole below the Planck scale, perhaps
suggesting a uv completion by new physics. With the input that mh = 125 GeV and, hence, λ = 0.13, a different
picture appears. The negative contributions from top loops dominate the β-function and drive λ negative at high
energies [127]. Thus, instead of a Landau pole, it appears that the Standard Model Higgs potential becomes
unbounded from below. From the Wilsonian perspective we expect higher order terms such as (H†H)3 stabilize a new
vacuum of lower energy and vev v′ ∼ MPl. This suggests that the Standard Model Higgs vacuum is not absolutely
stable. The analysis in [127] pointed out that in the absence of new physics, the 125 GeV Higgs appears to live in a
sliver of metastable parameter space.

2.4 Constraints on new physics

Now that we’ve enumerated reasons our optimism, we present an overview of the types of constraints that a model of new
physics must satisfy.

2.4.1 The Flavor and cp Problems

Note, further, that the limit of vanishing Yukawas y→ 0 enhances the global symmetries of the Standard Model to U(3)5.
Indeed, one of the tools of flavor physics is to treat the Yukawas as spurions for flavor symmetry breaking. Since flavor
observables are sensitive to new heavy states in loops, the non-observation of deviations in the sm sector seems to imply that
the physics of the flavor sector is decoupled or otherwise aligns with this structure. See [128] for a recent application of this
‘minimal flavor violation’ principle to natural models of supersymmetry.

The flavor structure of the Standard Model is intimately linked to the extent to which it may violate cp. For example,
complex phases in the Yukawa matrices are only physical—that is, cannot be rotated away by phase redefinitions in the
fields—when there are at least three generations. In this sense flavor and cp observables constrain models of new physics in
similar ways. In this section we only briefly address flavor-changing neutral currents in mesons; cp observables are more
subtle and will be discussed later in this thesis.

Prospects for the future of flavor physics fall under the banner of ‘intensity frontier’ physics (to distinguish from the energy
and cosmic frontiers) and were recently summarized in [11, 129, 130]. At the moment, the most stringent constraints come
from the quark sector where rare decays of mesons are sensitive to contributions of new particles to fcncs. The standard
approach to apply flavor bounds is to parameterize the new physics contributions in terms of four-fermion
operators [131–133],

c2

Λ2 (q̄OIq)(q̄OJq), (2.28)

where theO are products of γ-matrices and we have suppressed flavor and Lorentz indices for simplicity. One must then
match these observables at the new physics scale and run to the meson scale—the appropriate renormalization factors can be
taken ‘off the shelf ’ from, for example, [134, 135]. Measurements K0–K̄0 mixing, for example, constrain Λ/g ≳ 104 TeV. Even
with loop suppression and factors of the ckm matrix, this suggests that signatures TeV-scale new physics should be accessible
to flavor machines in the near future. Alternately, they impose strict constraints on the flavor structure of models of new
physics.

2.4.2 Electroweak precision observables

An alternate approach to probing the radiative effects of new physics is to consider observables which can be measured with
enough precision to be sensitive to sensitive to higher loop corrections that can probe heavy states.

The electroweak sector of the Standard Model is described by four parameters: the two gauge couplings g and g′, the Higgs
vev v, and the Higgs mass mh. In fact, as described above, only the first three parameters are necessary to describe the
nonlinear Σ model that describes non-Higgs phenomena at energies below v. These, in turn, can be repackaged into three
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independent quantities that are directly well measured by experiments: the Z mass, the Fermi constant, and the fine structure
constant,

M2
Z =

1
4
(g2 + g′2)v2 GF =

1√
2v2

αEM =
g2g′2

4π(g2 + g′2)
. (2.29)

Assuming that the new physics is heavier than the weak scale, electroweak observables only appear in loops. Following the
same type of effective Lagrangian approach,

L = LSM +
∑
i

ci
Λ2Oi +O(Λ−3), (2.30)

where the operatorsO are assumed to respect SU(2)L×U(1)Y. The only dimension-5 operator that does this is the neutrino
mass term in (2.26) which we may neglect since the observed neutrino masses are so small that they force the cutoff for that
term to be too large to affect electroweak observables. Further, since flavor constraints also force a large cutoff scale, it is
sufficient to consider the list of dimension-6 operators that preserve flavor and cp. Such a classification was presented in [136]
and leads to a list of 18 independent operators.

This approach, however, is not particularly intuitive. A more practical approach is to focus on combinations of operators
that can be measured most sensitively [137–140]. To do this, we rewrite the 18 operators in term of the oblique (vacuum
polarization) form factors Π(p2),

Loblique = −
1
2
W3

μΠ33W3μ −W+
μ ΠWWW−μ − 1

2
BμΠBBBμ − BμΠ3BW3μ. (2.31)

When expanding the form factors, note that the Π(0) terms are masses and the p2Π′(0) are kinetic terms. Taking up to
second order in such an expansion about p2 = 0 gives 12 parameters. These are reduced by using the well-measured quantities
(2.30) and then further requiring mγ = 0 so that electromagnetism is unbroken. The result is a list of ‘oblique parameters’, the
most famous of which are the Peskin-Takeuchi parameters [141],

Ŝ =
g
g′

Π′
3B T̂ =

Π33 − ΠWW

M2
W

Û = Π′
WW − Π′

33. (2.32)

These quantities provide a simple language to apply precision bounds to models of new physics. Intuitively Ŝ is sensitive to
new chiral species. T̂, on the other hand, encodes the deviation from the sm ρ parameter,

ρ|tree =
M2

W

M2
Z cos2 θW

= 1. (2.33)

More generally ρ = GNC/GCC is the ratio between the neutral current and the charged current couplings when one integrates
out the massive vector bosons,

Leff = − 1√
2
(
GCCJ+μ J−μ + GNCJZμ J

Zμ) . (2.34)

Note that the tree-level relation ρ = 1 is enforced in the Standard Model through a custodial SO(4) symmetry.
Heuristically one may treat ⟨H†H⟩ as a non-zero vector inR4. Alternately, this is the

SO(4) = SU(2)L × SU(2)R

global symmetry of the Higgs sector where U(1)Y ⊂SU(2)R. Writing H as a bidoublet under SU(2)L×SU(2)R, we note that

⟨H⟩ =
(

v
v

)
(2.35)

so that SU(2)L×SU(2)R is broken to the diagonal subgroup SU(2)V. This unbroken subgroup protects ρ = 1 at tree level.
This is because the W1,2,3 gauge bosons of SU(2)L must transform as triplets under SU(2)V. Since SU(2)V is unbroken at tree
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level, the Wi should have the same mass,

Lgauge, mass = −
1
2
M2

W [(W1)2 + (W2)2]− 1
2
M2

Z (cos θWW3 − sin θWB)2 , (2.36)

so that M2
W = cos θ2WM2

Z. This typically sets a very strong constraint on extensions of the Higgs sector that some models of
new physics require custodial symmetry to be imposed by hand to avoid these bounds.

2.4.3 Dark Matter Constraints

Models of new physics that incorporate dark matter must also pass increasingly stringent bounds from dark matter searches.
The foremost bound comes from requiring that the dark matter candidate realize the correct relic density. For thermally
produced dark matter this is a bound on the mass and annihilation cross section. One requires that the dark matter abundance
that is ‘frozen out’ when the Hubble expansion rate becomes greater than the dm annihilation rate can account for the
observed dark matter density today. As discussed above, one of the most provocative regions of parameter space is when the
dm mass and annihilation cross section are both characteristic of the weak scale so that the ‘wimp’ dark matter may be
associated with electroweak symmetry breaking. See [142] for a review with an emphasis on supersymmetric candidates. It is
worth noting that one may also consider non-thermal dark matter production that somewhat circumvents the restrictions of
thermal relics, two notable examples are the super-wimp framework [143] and the feebly-interacting massive particle
framework [144–146].

Once a model realizes the correct dm relic density, it must also account for the bounds set by direct detection experiments
that probe collisions of dark matter with cryogenic bolometers. To reduce background, direct detection experiments are
typically designed to select events based on two of the following types of criteria:

• Heat. Phonons from the dm collision are registered as a pulse of thermal energy.

• Charge. The recoil of a nucleus from a dm collision an ionize the detector material. Placing the detector in an electric
field allows one to discriminate dm events based on the amount of charge deposited from these ionization events.

• Light. The recoiling nucleus causes the rest of the detector medium to scintillate and emit photons. This signal can
be enhanced with photomultiplier tubes and detected.

In this document we neglect recent purported signals of dark matter that are in conflict with bounds from other direct
detection experiments. The current bound from the Xenon 100 detector sets an upper limit on the spin-independent
wimp-nucleus cross section of 2× 10−45 cm2 for 55 GeV dm [117].

The early history of the universe imposes cosmological bounds not only on dark matter but new light states in an extension
of the Standard Model. Many of these constraints have been examined in context of additional neutrino species [147], though
the bounds can be readily translated to more general light particles. The strictest bounds come from the eras of recombination
and structure formation. New particles can inject energy into the intergalactic medium during recombination and leave an
imprint on the cosmic microwave background. Alternately, these states can smear out early structures. Observations of
galaxies today, for example from the Lyman-α forest, thus constrain the types of particles that may have been active during that
era. These cosmological bounds are an additional handle for models where dark matter interacts primarily with additional
states in a dark sector of the theory. Such models are difficult to probe at colliders but early universe constraints can limit the
types of interactions in the dark sector.

2.4.4 Collider Bounds

The most prominent bounds on new physics comes from direct production of new particles at the Large Hadron Collider. At
the time of this writing, there have yet to be any strong indications of deviations from the Standard Model at the lhc. If new
physics exists, it must either have a characteristic mass scale that is not yet accessible to the 8 TeV run (20/fb) or is otherwise
hidden from current searches.

This non-observation sets the strictest bounds on new ‘colored’ particles charged under SU(3)c such as squarks and
gluinos in supersymmetry. These particles are expected to be produced copiously at the lhc so that their mass scales are
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generically bounded from below by approximately a TeV.This appears especially troublesome since the most popular solutions
to the Hierarchy problem usually invoke a partner to the top quark to cancel the large top contribution to the Higgs mass.

Over the next few years the lhc is expected to ramp up to its 14 TeV design center of mass energy and will hit luminosities
ofO(100)/fb. Collisions at these energies will directly access higher mass scales and the order of magnitude increase in data
will illuminate many more search channels for new physics.

2.5 Directions for new physics

We now distinguish between two types of extensions to the Standard Model: those that are weakly coupled and those that are
strongly coupled. We explain that while this bifurcation is somewhat artificial, it provides a thematic framework for the
context of this work.

2.5.1 Weak coupling: susy-like

Weakly coupled extensions of the Standard Model are those that are most readily described by additional Feynman rules. In
other words, these are additional Lagrangian terms that are manifestly perturbative. The flagship example of this is
supersymmetry, where the electroweak sector of the minimal supersymmetric Standard Model (mssm) inherits the
perturbative couplings of the sm.

As discussed above, the 125 GeV Higgs boson implies a perturbative Higgs quartic coupling λ. This has been interpreted as
a triumph of spontaneous symmetry breaking with weak coupling in contrast to the analogous case of the electromagnetic
symmetry breaking in the Bardeen–Cooper–Schrieffer (bcs) description of superconductivity.

2.5.2 Strong coupling: technicolor-like

An alternate possibility is that the new physics sector is not perturbatively described by its fundamental degrees of freedom.
This is analogous to low energy qcd where the interactions between quarks and gluons are too strongly coupled to be
described by leading order Feynman diagrams.

The prototype for this type of extension of the sm electroweak sector is technicolor, where strong dynamics are used to
break electroweak symmetry [48–50]. While the simplest technicolor models successfully give masses to gauge
bosons [44, 51], an additional extension is required to also give masses to the sm fermions [148, 149]. These models, however,
are strongly constrained by the techni-pion couplings to the sm [150, 151] and by constraints on fcncs [149]. The so-called
‘walking technicolor’ models attempt to circumvent some of these problems by enhancing the techni-condensate through
large quantum effects [152–161].

Stringent constraints from flavor and electroweak precision doomed the simplest technicolor models, and the 125 GeV
Higgs is often interpreted as the tombstone for strong dynamics associated with the electroweak symmetry breaking.

2.5.3 Weakly coupled tales of strong dynamics

The distinction between ‘weak’ and ‘strong’ coupling, however, is somewhat artificial. It is often the case that a strongly
coupled system offers some weakly coupled perturbative description in terms of effective degrees of freedom. The prototype
for this is the nonlinear sigma model (NLΣM), also known as chiral perturbation theory, which describes the spectrum of low
energy qcd based on the Goldstone bosons the flavor symmetry broken by the ⟨q̄q⟩ expectation value. These nonlinear
realizations or ‘phenomenological Lagrangians’ utilize the symmetry breaking structure of the uv theory to describe its ir
degrees of freedom. In fact, the particular choice of parameterization is irrelevant [162, 163].

In the case of the NLΣM, it is clear that the effective low energy description is less fundamental than the qcd Lagrangian,
even though the latter is hopelessly non-perturbative at low energies. In this sense one may argue that qcd, despite its
intractability below its strong coupling scale, should be placed on a higher pedestal from the vantage point of microscopic
descriptions of nature.
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The revolutions in theoretical physics of the 1990s have revised the extent to which an ‘effective theory’ can be considered
a pejorative term. The key development were the discoveries of dualities between quantum field theories (often under the
umbrella of techniques from string theory). Two salient examples are Seiberg duality and the AdS/cft correspondence
(more generally, the holographic principle). Seiberg duality relates two supersymmetric gauge theories in their infrared limits
while AdS/cft relates a (d + 1)-dimensional theory of classical gravity to a ‘very quantum’ d-dimensional conformal theory.
Both examples can be used to avoid the non-perturbativity of a gauge theory by constructing an equivalent weakly-coupled
physical description. These weakly coupled descriptions look very different from the non-perturbative formulation. At the
cost of what appears to be an exotic theory that is completely unrelated to the original, they can offer simple ways to build
models that realize the hopes and dreams of Section 2.3 while avoiding the pitfalls of Section 2.4. The key, however, is to
appreciate that these simple-yet-unusual features describe the same phenomenon of the very quantum regime of the original
theory. In this sense we have a handle for the physical effects of strong dynamics without having to directly deal with the
strongly coupled degrees of freedom.

It is this approach to new physics that we explore in this thesis.
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Yuhsin: I will only use 10 equations in this talk. This is based on
the paper arXiv: 0811.0871.
Csaba: Does that count as an equation?
Johannes: No, it doesn’t even have an equal sign. Don’t you know
what an equation is, Csaba?

27 February 2009

3
Warped Extra Dimensions

The idea that the universe may be hiding extra dimensions that happen to be too small to observe may sound like it
came straight from an old science fiction novel. Since the late 1990s, however, extra dimensions have been a powerful tool for
understanding the behavior of strongly coupled field theories.

3.1 Flat extra dimensions

The original proposal for extra dimensions by Kaluza [164], Klein [165], and later Einstein [166] were attempts to unify
electromagnetism with gravitation; see [167] for a review. Several decades later the development of string theory—originally
as a dual theory to explain the Regge trajectories of hadronic physics—led physicists to revisit the idea of compact extra
dimensions [168–170].

In early models, the non-observation of an additional spatial direction was explained by requiring the compactification
radius to be too small for macroscopic objects. An alternative explanation now referred to as the ‘braneworld’ scenario was
introduced by Rubakov and Shaposhnikov [171]. They suggested that instead of a very small radius of compactification, it
may be that our observed universe is constrained to live in a (3+1)-dimensional subspace of a higher dimensional spacetime.
This idea was revisited as an explanation for the Hierarchy problem by Arkani-Hamed, Dimopoulos, and Dvali in the add or
‘large extra dimension’ model [172–174]. They observed that in such a set up only gravity is required to propagate in the
higher dimensional (bulk) space. In this way, the effective 4D Planck scale is enhanced from the higher dimensional Planck
scale by the volume of the extra spatial dimensions. Gravity is much weaker than the electroweak scale because gravitational
field lines are diluted through more space.

3.2 Warped extra dimensions

Randall and Sundrum proposed an alternate braneworld scenario that explains the hierarchy between the Planck scale and the
weak scale while keeping 5D Planck scale the same order of magnitude as the observed 4D MPl [175]. In the rs framework the
bulk space is warped along the extra dimension. If the brane containing the sm is placed some distance along this gravitational
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well, all of the energy scales are automatically redshifted. When the space is sufficiently warped, even a ‘small’ extra dimension
can produce the many orders of magnitude between MPl and the electroweak scale.

In this document we focus on the rs1 model where the bulk space is bounded by a 4D brane on either end. The ir (or
TeV) brane is placed at a distance where it is redshifted—and hence is a natural subspace for sm fields—while the uv (or
Planck) brane is placed at a position with no redshift. There is also an rs2 model where the uv brane supports the sm and the
ir brane is sent to infinity, but we will not explore this idea further in this thesis.

Extra dimensions and the rs scenario in particular are reviewed in several places. Among the author’s favorites
are [176–180]. In this chapter we will provide a broad overview but will focus on aspects that are not already highlighted in
those reviews.

3.2.1 The rs set up

The rs framework extends Minkowski space with an extra dimension that is a coset space. The particular coset is S1/Z2 which
is called an orbifold, a manifold which in which discrete points are identified. The circle S1 of radius rc is parameterized by a
coordinate y ⊂ [−πrc, πrc] an the orbifold identification can be taken to be y ∼= −y. In this way the physical space is the
interval between y = 0 and y = πrc = L. In this section we follow the treatment of [176].

We want the 5D space to be curved so that we allow it to have a bulk cosmological constant Λ. The bulk action is

S5 =
∫

d4x
∫ +L

−L
dy√g (M3

5R− Λ) , (3.1)

where g is the determinant of the 5D metric, M5 is the 5D Planck scale, and R5 is the 5D Ricci scalar. As discussed above, there
are two 4D branes in the theory. These are placed on the orbifold fixed points y = 0, L. Each brane carries its own 4D
contribution to the action with an induced metric:

SUV =

∫
d4x√gUV (LUV − ΛUV) (3.2)

SIR =

∫
d4x√gIR (LIR − ΛIR) . (3.3)

As shown below, we identify the ir brane as the one which is redshifted so that the 4D LagrangianLIR is identified with the
Standard Model Lagrangian (2.1). uv brane will play an important role for imposing boundary conditions on fields which
propagate in the bulk. For the purposes of the simplest rs models the details of the local uv physics inLUV is irrelevant to the
TeV-scale. For non-minimal models, however, one may make use ofLUV to break symmetries with very controlled mediation
to the sm. This is a natural way, for example, to mediate susy breaking [181]). As we discuss below, the holographic principle
allows us to interpret such mediation in terms of strong dynamics, e.g. [182].

We posit a non-factorizable metric that is warped in the extra dimension,

ds2 = e−2σ(φ)ημνdx
μdxν − r2cdφ

2, (3.4)

where it should be clear that φ is the angular coordinate for the extra dimension. One can convert this into a metric for the
parameter y = rcφ, but it turns out to be more useful to introduce yet another variable, z, such that

ds2 = e−A(z)
(
ημνdx

μdzν − dz2
)
. (3.5)

Recall that the Einstein equation relates the Einstein tensor to the stress energy tensor,

GMN = RMN −
1
2
RgMN =

1
4M3

5
TMN =

gMN

2M3
5
Λ +

gMN

2M3
5
(ΛIRδ(y) + ΛUVδ(y− L))|M,N̸=5 (3.6)

This expression is somewhat tedious to calculate using the metric (3.4). Instead, by moving to a conformally flat frame with
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coordinate z, there is a nice relation between the Einstein tensors of conformally related metrics,

GMN = G̃MN +
d− 2

2

[
1
2
∇̃MA∇̃NA + ∇̃M∇̃NA− G̃MN

(
∇̃K∇̃KA− d− 3

4
∇̃KA∇̃KA

)]
. (3.7)

Setting g̃MN = ηMN, the covariant derivatives become partial derivatives, ∇̃M → ∂M. One can then read off the 55 and μν
components of the Einstein tensor

G55 =
3
2
A′2 Gμν =

3
2
ημν
(
A′′ − 1

2
A′2
)
. (3.8)

We can now solve Einstein’s equation for the 55 and μν components separately. The 55 component is independent of the
brane tension terms and gives

− 3
2
A′2 = − 1

4M3
5
Λe−A(z), (3.9)

from which we may write

A′ = e−A(z)/2
√
− Λ

6M3
5
. (3.10)

The sign inside the square root imposes a negative cosmological constant Λ < 0, and hence the bulk space is five dimensional
anti-de Sitter (AdS5). We can solve this equation using another trick. Define f ≡ e−A/2 and plug into equation (3.10) to get

− f′

f2
=

1
2

√
− Λ

6M3
5
. (3.11)

The general solution of this differential equation is

e−A(z) =
1

(kz + 1)2
, (3.12)

where we’ve defined the curvature k2 = −Λ/12M3
5 . The constant is fixed by imposing e−A(0) = 1, and hence our conformally

flat metric takes the form:

ds2 =
1

(k|z|+ 1)2
(
ημνdx

μdxν − dz2
)
. (3.13)

We have made the critical replacement of z→ |z| to maintain the S1/Z2 orbifold symmetry φ→ −φ, or equivalently z→ −z.
Thus the 55 component of the Einstein equation indeed fixes the warp factor.

We proceed to the μν components. One can see that (3.8) one requires non-vanishing the brane cosmological constants.
(3.13) tells us that A depends on the modulus of z via A = ln[(k|z|+ 1)2]. This means that the second derivative terms in
(3.8) will generate δ functions at the orbifold boundaries z = 0, z1;

A′′ = − 2k2

(k|z|+ 1)2
+

4k
k|z|+ 1

(δ(z)− δ(z− z1)) . (3.14)

These δ-functions must be compensated by localized energy densities on the branes, i.e. brane cosmological constants.
Physically, these brane cosmological constants compensate the 5D bulk cosmological constant so that the induced 4D brane
metric is flat. Inserting equations (3.10) and (3.14) into (3.8),

Gμν = −
3
2
ημν

[
4k2

(k|z|+ 1)2
− 4k(δ(z− zUV)− δ(z− zIR)

k|z|+ 1

]
. (3.15)

Using the definition of k and comparing this to the energy momentum tensor we see that the first term above cancels the bulk
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cosmological constant contribution. The remaining δ-function terms must correspond to the brane tensions such that

− 3
2
ημν

[
−4k(δ(z)− δ(z− z1))

k|z|+ 1

]
=

ημν
4M3

5

[
ΛUVδ(z)− ΛIRδ(z− z1))

k|z|+ 1

]
. (3.16)

Finally, we have a relation between the brane tensions,

ΛIR = −ΛUV =

√
−Λ
24M3

5
. (3.17)

This expresses that we have ‘unloaded’ the 4D curvature into the bulk. While this is a different perspective on the
cosmological constant, we should note that this is a tuning in the values of ΛIR,UV.

3.2.2 Generating the hierarchy

In order to understand how this framework generates the weak-Planck hierarchy, we first explore the low energy theory that is
generated by the rs scenario. We are especially interested in writing the 4D Planck mass MPl and the Standard Model masses
in terms of the remaining unconstrained 5D parameters M5, k (or Λ), and rc. For convenience, we return to the non-conformal
frame,

ds2 = e−2k|y|ημνdx
μdxν − dy2. (3.18)

Note that we have identified
1

(k|z|+ 1)2
= e−2k|y| (3.19)

for convenience here. After this chapter it is more useful to define the z coordinates such that the left-hand side of this
expression is 1/k|z|2 or (R/z)2, where R is the radius of curvature. In particular,

z = Reky k = 1/R. (3.20)

We now derive the 4D effective Planck mass, MPl. We must assume that the radius rc is fixed at some constant value. In the
following section we will motivate a mechanism by which the rc modulus is stabilized. 4D graviton excitations hμν(x) can be
inserted into the metric on top of the flat 4D metric as follows

ds2 = e−2k|y|(ημν + hμν(x))dxμdxν − dy2. (3.21)

Taking the curavture of the hμν(x) perturbation into account, we obtain an additional contribution to the bulk gravitational
action

ΔSg =M3
5

∫
d4x
∫ L

−L
dy e−4k|y|√g̃ e2k|y|R̃. (3.22)

Where g̃μν = ημν + hμν(x) and R̃ is the 4D Ricci tensor formed by g̃μν . By performing the y integral we get a contribution to
the 4D effective action whose coefficient is the 4D effective Planck mass MPl. Explicitly,

M2
Pl = M3

5

∫ L

−L
dy e−2k|y| =

M3
5

k

(
1− e−kL

)
. (3.23)

The key feature in the above equation is that it is insensitive to the size of the extra dimension rc. This is in contrast to other
braneworld scenarios. Further, if we let the 5D parameters take natural values near the fundamental Planck scale, then the 4D
Planck mass is the same order as the 5D Planck mass, MPl ∼ M5.

We now consider the generation of the electroweak scale, v. In the rs model, the Standard Model Lagrangian is part ofLIR.
The presence of the warp factor in√gIR and implicitly in the contraction of vector indices will force us to rescale our fields to
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maintain canonical normalization. This rescaling will be the source of the exponential suppression of the weak scale relative to
the Planck scale. Consider the Higgs sector on the ir brane with a 5D parameter v0 characterizing the Higgs vev,

SH =

∫
d4x√gIR

[
gμνIRDμH(DνH)† − λ(|H|2 − v20)

2
]∣∣∣

y=L
(3.24)

=

∫
d4x e−4kL√g̃

[
e2kL g̃μνDμH(DνH)† − λ(|H|2 − v20)

2
]

(3.25)

Recall that g̃μν is just the Minkowski metric with a 4D gravtion perturbation. Now watch carefully, this is the magical part. In
order to work in an effective 4D low-energy theory, we need to canonically normalize our Higgs field H→ ekLH and so we
write this above line as

SH =

∫
d4x
√

g̃
[
g̃μνDμH(DνH)† − λ(|H|2 − e−2kLv20)

2
]
. (3.26)

This tells us that the effective Higgs action takes its usual 4D form with the vacuum expectation value given by v = e−kLv0.
Since masses are generated by the Yukawa terms after electroweak symmetry breaking, we see that mass terms m0 also become
rescaled by the same factor,

m = e−kLm0. (3.27)

The wondeful result states that dimensionful quantities on the brane have been warped while leaving dimensionless
parameters such as the Yukawa coupling of the Higgs coupling λ unchanged.

Unlike the 4D effective Planck mass MPl ∼ M5, the masses of the electroweak Standard Model particles are exponentially
sensitive to the product kL. To avoid fine-tuning and a ‘hierarchy,’ we expect the ‘fundamental’ dimension 1 parameters M5, k
(or alternately R or Λ), and v0 take natural values on the order of the Planck scale. We see from (3.27) that the 15 orders of
magnitude between the Planck and weak scale can be successfully generated with natural values of krc ≈ 30. We’ve thus
elminated the need for excessive fine-tuning and have removed the ‘problem’ from the hierarchy.

3.2.3 Radius stabilization

Solving the hierarchy problem by introducing of a metric which is exponentially sensitive to the extra dimension appears to be
slight of hand. The statement that krc ∼ 30 does not by itself solve the fine tuning problem in the Standard Model. Specifically,
one might wonder if this is a relic of a nonlinear choice of coordinates. In that case, the ‘miracle’ that krc isO(10) would
actually hide an exponential sensitivity to the precise value of krc. In other words, one might expect that the natural scale at
which rc is stabilized would be rc ∼ 1/k so that krc ∼ 30 appears tuned.

Fortunately, this is not the case. The radius of the extra dimension is a modulus in our theory and should be treated as a
dynamical degree of freedom, rc = r(x, y), known as the radion. It is associated with the 4D scalar component arising form
the decomposition of the 5D metric. Because the radion has no potential in our theory it is a massless particle whose
phenomenology would violate the equivalence principle and Newton’s law. Thus there must be a mechanism to stablize the
radion moduli to dynamically fix radius of our extra dimension to our desired value. This radius stabilization is the key
ingredient for understanding why the exponential hierarchy is physical: the spacetime is warped between the two branes. By
providing a mechanism by which the two branes can be separated in the gravitational well of the extra dimension, fields
propagating in this space are actually redshifted as they ‘fall’ towards the ir brane.

A standard solution in the rs model is the Goldberger-Wise mechanism [183, 184], where radion kinetic and potential
terms conspire against one another to create a radion potential with a desirable vacuum. We briefly outline the general
procedure following [185]. We remark that the Goldberger-Wise mechanism is one simple option to stabilize the size of the
extra dimension, but turns out to be close to what actually happens in string compactifications [186].

Physically we will stabilize the radius of the extra dimension by allowing rc to be generated dynamically. The radion kinetic
term energetically prefers a large radius where derivatives are small. One may balance this by a non-trivial bulk potential for
the radius that can be generated by adding brane-localized potentials.

The approach we take is sometimes referred to as the ‘superpotential’ method, though this is related to the superpotential
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of supersymmetry only in the most general sense that it produces first order equations of motion. The main idea is that we
search for a solution to a bulk scalar field which includes the effect of gravitational backreaction. That is, we seek a solution to
the Einstein equations for a bulk scalar field Φ including, in principle, brane-localized terms. Fortunately, there are a class of
potentials V(Φ) for which a closed solution exist. These potentials are written in terms of an arbitrary superpotential W(Φ) as

V(Φ) =
1
8

(
∂W
∂Φ

)2

− 1
6M3

5
W(Φ)2. (3.28)

Assuming that the vev of Φ respects 4D Lorentz invariance, ⟨Φ⟩ = φ(y), the second order bulk equations can be reduced to
first order equations of motion by quadrature to

φ′(y) =
1
2
∂W(φ)
∂φ

A′(y) =
1

6M4
5
W(φ). (3.29)

We now include the effect of brane-localized terms for Φ coming fromLIR,UV. These can be constrained by requiring that the
surface terms generated from integration by parts vanish and yield the above equations of motion. The result is that

±LIR,UV =
1
2
W′(φ(y = 0, L)) [1 + Φ− φ(y = 0, L)]± L̃IR,UV. (3.30)

Here L̃IR,UV are terms which fix the scalar boundary values φ(y = L, 0). This generates a non-trivial profile for Φ which can be
used to tune the size of rc. As an aside, the radion couples to the ir brane-localized Standard Model fields according to the
trace of the 4D energy-momentum tensor. In this way it carries couplings that are very similar to that of the Higgs boson.
See [187] for a recent exploration of this idea in light of the 125 gev Higgs.

3.3 Modern rs models

Over the last decade, however, the rs model has evolved to address challenges and take advantage of opportunities. Here we
briefly summarize some of the key developments leading up to the ‘modern’ rs scenario which is what is now implied when
theorists refer to the Randall-Sundrum framework. This is important phenomenologically since the signatures of these
models have evolved accordingly.

• Original rs [175]. As described above, the sm is completely localized on the ir brane. The Planck–tev hierarchy is
generated by warping the space between the branes, MPl is warped down to tev at the ir brane. The main signature
are graviton KK modes since gravity is the only thing to propagate in the bulk.

• rs with Bulk Fields [188–190]. It was quickly realized that by pulling the Standard Model fields into the extra
dimension one could solve problems with electroweak precision observables (specifically the S-parameter) and
flavor-changing neutral currents. In order to maintain the solution to the Hierarchy problem, the Higgs remained
localized on the ir brane or highly peaked toward it. An added benefit of this framework is that one can naturally
explain the hierarchy in fermion masses with anarchic Yukawa matrices.

• Custodial rs [191]. Even with bulk fields, the ‘realistic’ rs models suffer from generically large contributions to the
T-parameter. One way to solve this is to impose a custodial symmetry on the model. The bulk gauge symmetry is
SU(2)L × SU(2)R × U(1)X, and the model has additional heavy matter and gauge states.

• Variants and extensions of rs. The above models still have a ‘little hierarchy problem’ owing to the discrepancy
between theO(1–10 tev) ir brane scale and the electroweak scale. Ways to avoid this include Higgsless
models [192], the gaugephobic Higgs [193], and embedding the rs model within a little Higgs framework [194].
Closely related to the little Higgs are the [holographic] composite pseudo-Goldstone Higgs models [195]. In both
cases the Higgs is a pseudo-Goldstone related to some global symmetry breaking. However, the composite Higgs
models have a percent level tuning since the Higgs potential is generated at one-loop, whereas the symmetry structure
of the little Higgs allows a natural separation between v and the global symmetry breaking scale f.
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Alternately, one can ignore the electroweak Hierarchy Problem and use the rs framework as a solution to the little
Hierarchy problem (see [196] and references therein). These ‘littlers’ models can be used for flavor and electroweak
precision while invoking some other solution to the Hierarchy problem. In this sense they are the ‘opposite’ of the rs +
little Higgs models where the warped geometry solves most of the Hierarchy and the little Higgs solves the remaining
little Hierarchy.

3.4 Holographic interpretation

Finally, we address the strongly coupled interpretation of rs scenario. Through the AdS/cft correspondence (more generally,
the holographic principle) [197–199], one may understand the warped extra dimension as the renormalization group flow of
a strongly coupled 4D gauge theory. This idea is explored in a non-stringy context in [180,200–203]. Rather than presenting a
detailed derivation, we will be heuristic and refer the reader to the above references. For an intuitive motivation for why a
higher dimensional theory could plausibly describe the behavior of a strongly coupled 4D theory, consider the following
hypothetical dialogue of a theorist trying to explain his theory of an extra dimension to an experimentalist:

Theorist: I have this great new theory.
Experimentalist: Neat. What does it predict?
Theorist: Well, you have a series of evenly spaced resonances...
Experimentalist: We already discovered that! They’re called hadrons.

The point of the story is that extra dimensions predicts Kaluza-Klein excitations of each bulk field. These can be identified
with bound states of a strongly coupled theory (e.g. qcd). While ‘extra dimensions’ may sound exotic, strong coupling is
something that we know exists in nature. Models of warped extra dimensions give us a handle for the phenomenology of the
low energy behavior of models of new strongly coupled physics.

In the Randall-Sundrum scenario, it is most convenient to work with the standard conformal AdS metric,

ds2 =
(

R
z

)2 (
ημνdx

μdxν − dz2
)

(3.31)

where z takes values between the uv brane R ∼ M−1
Pl and the ir brane R′ ∼ tev−1. In the absence of these branes the

isometries of the space are equivalent to the conformal group SO(2, 4) in four dimensions. In the explicit supersymmetric
realization of AdS/cft correspondence, the isometries of AdS 5 × S5 are dual to theN = 4 superconformal group. As a
cartoon, one can imagine 4D Minkowski slices of AdS. Moving along the interval corresponds to scale transformations since
shifts in z correspond to a rescaling of the induced metric on each slice.

The uv and ir branes thus break the conformal invariance. The uv brane can be understood as a cutoff dependence on the
uv physics associated with the nearly-conformal 4D theory. The excitations near the uv brane correspond to elementary
‘preon’ degrees of freedom: these are the quark-like objects in the gauge theory which are confined at energies much lower
than 1/R. On the other hand, the ir brane corresponds to a spontaneous breaking of conformal invariance. Note that this
brane carries the length/energy scale of the extra dimension: 1/R′ is the scale at which Kaluza-Klein excitations appear. These
are identified with bound states analogous to mesons in qcd.

The profiles of fields in the extra dimension interpolate between the ‘elementary’ 4D degrees of freedom near the uv brane
and the ‘composite’ 4D degrees of freedom near the ir brane. In this sense they determine the extent to which a field is an
admixture of elementary and composite states. This is a key insight for understanding the dynamics of bulk rs fields. Fields
which are peaked near the ir brane like the Higgs are mostly composite. As we show below, one may generate the flavor
hierarchies of the Standard Model in the rs framework by forcing the zero modes of light fields to get exponentially small
masses due to exponentially suppressed couplings with the Higgs due to the warping of the zero mode profiles. In this sense
the electron is very light because it carries very little wavefunction overlap with the Higgs. From the point of view of the
conformal 4D theory, we say that the electron is mostly a fundamental field which is not sensitive to the interactions of the
composite Higgs. The bulk profiles of fields are controlled by their spin and bulk mass parameter. This latter quantity is
identified with the anomalous dimension of the 4D operator.

The gauge symmetries of the bulk theory are identified with global symmetries of the conformal theory. When the bulk
gauge field has a zero mode, there exists a massless 4D gauge field in the strongly coupled theory so that we say that the global
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symmetry is gauged. If, on the other hand, boundary conditions are chosen so that the gauge field has no zero mode, the 4D
gauge symmetry is broken. When the 5D gauge symmetry is broken on the uv brane, the 4D zero mode picks up a Planck
scale mass and completely decouples. We thus interpret this as a purely global symmetry. On the other hand, when the 5D
gauge symmetry is broken ont eir brane, the 4D zero mode picks up a mass on the order of 1/R′. We say that the spontaneous
breaking of conformal invariance also spontaneously breaks the weakly gauged symmetry. This picture is summarized in
Table 3.1. Note that in the the application of the holographic principle to rs models carries some degree of agnosticism since
it is not necessarily true that operators of the elementary degrees of freedom generate the particular anomalous dimensions
that are assumed in the holographic interpretation.

Bulk of AdS ↔ cft

Coordinate (z) along AdS ↔ Energy scale in cft

Appearance of uv brane ↔ cft has a cutoff

Appearance of ir brane ↔ conformal symmetry broken sponta-
neously by cft

kk modes localized on ir brane ↔ composites of cft

Modes on the uv brane ↔ Elementary fields coupled to cft

Gauge fields in bulk ↔ cft has a global symmetry

Bulk gauge symmetry broken
on uv brane

↔ Global symmetry not gauged

Bulk gauge symmetry unbroken
on uv brane

↔ Global symmetry weakly gauged

Higgs on ir brane ↔ cft produces composite Higgs

Bulk gauge symmetry broken
on ir brane by boundary conditions ↔ Strong dynamics that breaks cft also

breaks gauge symmetry

Table 3.1: Relevant rules for model building using the AdS/cft correspondence, table from [177].

As a final remark on holography, we present a brief history of the development of explicitly realized dualities that are
derived from string theory.

• Maldacena [197]. The original AdS/cft correspondence related a gravitational theory on AdS 5×S5 toN = 4
superconformal field theory. This is way too symmetric. Because we know that the isometry group of the gravity
theory is related to the internal symmetry of the gauge theory, we would like to find ways to modify the S5 into a less
symmetric space where still have a handle on the gauge theory.

• kw [204]. Klebanov and Witten found that if the extra dimensions form a conifold, AdS 5×T1,1, then one can break
most of the supersymmetries. This turns out to be dual toN = 1 superconformal field theory. We’ll say a few more
words (but not that much more) about T1, 1 below. This will be as far as we will break the supersymmetry. As long as
the theory is superconformal, however, there will be no rg running and we will not have anything rs-like (where we
recall that the dual picture of rs associates the warping with rg flow)

• kt [205]. Klebanov and Tseytlin found that adding fluxes into the mix (from wrapped D5 branes) generates the
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necessary back reaction to produce the desired ‘warped throat’. We are thus reduced toN = 1 super Yang-Mills. This
is pretty good, but the geometry contains a naked curvature singularity at the tip of the cone. In rs language we would
say that there is no ir brane.

• ks [206]. Klebanov and Strassler then smoothed out the tip of the conifold by blowing up the S3 at the tip to produce
the deformed conifold. The point is that this gets rid of the naked singularity and provides the desired structure for the
ir brane and has a remarkable description in terms of a ‘cascading’ super qcd theory. This duality cascade also offers a
way to understand the holographic duality in terms of the Seiberg duality of supersymmetric gauge theory. One
remaining item for a “realistic” string realization is that the uv end of the conifold must be attached to a compact
manifold. (It’s much easier to work with noncompact conifolds as the tips of compactified conifolds.)

• gkp [207]. Finally, Giddings, Polchinski, and Kachru included the deformed conifold as an appendage to a
Calabi-Yau flux compactification. As we shall see, gkp construction also provides a way to generate the hierarchy in
scales between the ir (ks tip) and the uv (compact manifold) branes.

3.5 Anarchic Flavor in Randall-Sundrummodels

We summarize here the relevant aspects of flavor physics and the rs scenario. For a review of the general framework see
e.g. [177, 180, 201, 208, 209]. We consider a 5D warped interval z ∈ [R,R′] with an infrared (ir) brane at z = R′ ∼ (TeV)−1

and an ultraviolet (uv) brane at z = R ∼ MPl, the AdS curvature scale. In conformal coordinates the metric is

ds2 =
(

R
z

)2

(dxμdxνημν − dz2). (3.32)

One may recover the classic rs conventions with the identifications z = R exp(ky) and k = 1/R, k exp (−kL) = 1/R′.
Fermions are Dirac fields that propagate in the bulk and can be written in terms of left- and right-handed Weyl spinors χ and ψ̄
via

Ψ(x, z) =
(

χ(x, z)
ψ̄(x, z)

)
. (3.33)

In order to obtain a spectrum with chiral zero modes, fermions must have chiral (orbifold) boundary conditions,

ψL(x
μ,R) = ψL(x

μ,R′) = 0 and χR(x
μ,R) = χR(x

μ,R′) = 0, (3.34)

where the subscripts L and R denote the SU(2)L doublet (L) and singlet (R) representations, i.e. the chirality of the zero mode
(SM fermion). The localization of the normalized zero mode profile is controlled by the dimensionless parameter c,

χ(0)c (x, z) =
1√
R′

( z
R

)2 ( z
R′

)−c
fc χ(0)c (x) and ψ(0)

c (x, z) = χ(0)−c (x, z), (3.35)

where c/R is the fermion bulk mass. Here we have defined the RS flavor function characterizing the fermion profile on the IR
brane,

fc =
√

1− 2c
1− (R/R′)1−2c . (3.36)

We assume that the Higgs is localized on the IR brane. The Yukawa coupling is

SYuk =
∫

d4x
(

R
R′

)4 [
− 1√

2
(
Q̄i · H̃ R Yu,ijUj + Q̄i · HRYd,ijDj + Ēi (RYij) Lj · H + h.c.

)]
(3.37)

where Yij are dimensionless 3×3 matrices such that (Y5)ij = RYij is the dimensionful parameter appearing in the 5D
Lagrangian with Y assumed to be a random ‘anarchic’ matrix with average elements of order Y∗. After including warp factors
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and canonically normalizing fields, the effective 4D Yukawa and zero mode mass matrices are

ySMij = fcLi Yijf−cRj mij =
v√
2
ySMij , (3.38)

so that the fermion mass hierarchy is set by the f1 ≪ f2 ≪ f3 structure for both left- and right-handed zero modes. At the same
time, the hierarchical pattern of the ckm matrix is also generated naturally. In other words, the choice of c for each fermion
family introduces additional flavor structure into the theory that generates the zero mode spectrum while allowing the
fundamental Yukawa parameters to be anarchic.

In this document we work in the gauge basis where the bulk mass matrices and the interactions of the neutral gauge bosons
are flavor diagonal but not flavor universal. The Yukawa couplings are non-diagonal in this basis and cause the resulting
fermion mass matrices to be non-diagonal. Since these off-diagonal entries are governed by the small parameter vR′, we will
treat them as a perturbative correction in the mass insertion approximation.

In the Standard Model the diagonalization of the fermion masses transmits the flavor structure of the Yukawa sector to the
kinetic terms via the ckm matrix where it is manifested in the flavor-changing charged current through the W± boson. We
shall use the analogous mass basis in Chapter 5.3 for our calculation of the Yukawa constraints from μ→ 3e and μ→ e
conversion operators. The key point is that in the gauge basis the interaction of the neutral gauge bosons is flavor diagonal but
not flavor universal. The different fermion wave functions cause the overlap integrals to depend on the bulk mass parameters.
Once we rotate into the mass eigenbasis we obtain flavor changing couplings for the neutral kk gauge bosons. This is shown
heuristically in Figure 3.5.1.

In the lepton sector this does not occur for the zero mode photon since its wavefunction remains flat after electroweak
symmetry breaking and hence μ→ eγ remains a loop-level process. Thus for the primary analysis of this paper we choose a
basis where the 5D fields are diagonal with respect to the bulk masses while the Yukawas are completely general. In this basis
all of the relevant flavor-changing effects occur due to the Yukawa structure of the theory with no contributions from W loops.
In the Standard Model, this corresponds to the basis before diagonalizing the fermion masses so that all flavor-changing effects
occur through off-diagonal elements in the Yukawa matrix manifested as mass insertions or Higgs interactions. This basis is
particularly helpful in the 5D mixed position–momentum space framework since the Higgs is attached to the ir brane, which
simplifies loop integrals.

Realistic RS models typically require a mechanism to suppress generically large contributions to the Peskin-Takeuchi T
parameter and the Zbb̄ coupling; a common technique is to extend the bulk gauge symmetry to [191, 195, 210–214]

SU(3)c × SU(2)L × SU(2)R × U(1)X × PLR. (3.39)

Here PLR is a discrete symmetry exchanging the SU(2)L and SU(2)R factors; in order to protect the left-handed Zbb̄ coupling
from anomalously large corrections, the left-handed down type quarks have to be eigenstates under PLR. This in turn requires
enlarged fermion representations with respect to the minimal model. Specifically the quark representations containing the SM
zero modes are (i = 1, 2, 3):

ξi1L =

(
χuiL (−+)5/3 quiL (++)2/3
χdiL (−+)2/3 qdiL (++)−1/3

)
2/3

, (3.40)

ξi2R = uiR(++)2/3 , (3.41)

ξi3R = Ti
3R ⊕ Ti

4R =

 ψ′i
R(−+)5/3

U′i
R(−+)2/3

D′i
R(−+)−1/3


2/3

⊕

 ψ′′i
R (−+)5/3

U′′i
R (−+)2/3

Di
R(++)−1/3


2/3

. (3.42)

Here ξi1L is an SU(2)L × SU(2)R bidoublet, ξi2R is singlet under both SU(2)s, and Ti
3R and Ti

4R are triplets under SU(2)L and
SU(2)R respectively, with all of them carrying U(1)X charge+2/3. The corresponding states of opposite chirality are obtained
by reversing the boundary conditions.

As we will see later, while the additional gauge bosons present in the custodial model do not have a significant impact on
the b→ qγ and b→ qg (q = d, s) amplitudes, the additional fermion modes contribute and generally enhance the effect.
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Higgs

Gauge Boson

QL, tR

Light fermions

Figure 3.5.1: Heuristic representation of the rs model with bulk fields. The Higgs boson is completely localized
on the ir brane and breaks electroweak symmetry. Fermions that are peaked toward the ir brane pick up large
zero mode masses while fermions peaked away from the ir brane have nearly massless zero modes. The gauge bo-
son zero modes are nearly flat so that the overlap integral of the gauge–fermion interaction picks up the orthonor-
mality of the fermion profiles. Those which couple to the Higgs vev become kinked near the ir brane leading to
couplings between zero mode fermions and kk fermions.
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Flip, you only have two options. Either youwork on this calculation
or we go to the reception

Yuhsin Tsai at TASI 2009

4
Derivation of mixedspace propagators

The usual treatment of particles in extra dimensions is to treat them analogously to vibrational modes of a violin
string whose endpoints are attached. In that picture the additional particles predicted by theory are identified with higher
harmonics of the string. In this chapter we present an alternate framework in which the entire tower of possible harmonics are
treated in a unified way.

4.1 Overview

In this chapter we explain how to derive the mixed position-momentum space propagators for a bulk fermion and a gauge
boson in the rs scenario. This mixed formalism carries more technical baggage than the usual Kaluza-Klein decomposition
but often clarifies ambiguities associated with infinite sums in the kk formalism. General formulae for the scalar function
associated with bulk propagators of arbitrary-spin fields in RS can be found in [215]. Here we focus on spin-1/2 and spin-1
fields, highlighting non-trivial aspects of their Lorentz representation.

4.2 The geometry of rs fermions

We begin by reviewing geometrical objects in a warped geometry that may be unfamiliar to those who are used to quantum
field theory on a flat background. Our treatment will be physical rather than mathematical. For an excellent review of more
formal topics, we refer the reader to [20, 21, 23]. For more details from the physics perspective, see [179, 216].

4.2.1 Vielbeins

The familiar γ matrices which obey the Clifford algebra are only defined for flat spaces. Specifically, they live on the tangent
space of our spacetime. In order to define curved-space generalizations of objects like the Dirac operator iγμ∂μ , we need a way
to convert spacetime indices M to tangent space indices a. Vielbeins, eaμ(x), are the geometric objects which do this. The
completeness relations associated with vielbeins allow them to be interpreted as a sort of “square root” of the metric in the
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sense that

gMN(x) = eaM(x)e
b
M(x)ηab, (4.1)

where ηab = diag(+,−, · · · ,−) is the Minkowski metric on the tangent space. For our particular purposes we need the
inverse vielbein, EM

a (x), defined such that

EM
a (x)e

a
N(x) = δMN EM

a (x)e
b
N(x) = δ b

a . (4.2)

The capital ‘E’ for the inverse vielbein is a pedantic notation that helps distinguish eaμ from its inverse. In practice (and later in
this document) we will write EM

a as eMa . Spacetime indices are raised and lowered using the spacetime metric gMN(x) while
tangent space indices are raised and lowered using the flat metric ηab(x).

Physically we may think of the vielbein is in terms of reference frames. The equivalence principle states that at any point
one can always set up a coordinate system such that the metric is flat (Minkowski) at that point. Thus for each point x in space
there exists a family of coordinate systems that are flat at x. For each point we may choose one such coordinate system, which
we call a frame. By general covariance one may define a map that transforms to this flat coordinate system at each point. This is
the vielbein. One can see that it is a kind of local gauge transformation, and indeed this is the basis for treating gravity as a
gauge theory built upon diffeomorphism invariance. Mathematically, the vielbein represents the frame bundle on the
spacetime.

4.2.2 Spin covariant derivative

We are familiar that the covariant derivative is composed of a partial derivative term plus connection terms which depend on
the particular object being differentiated. For example, the covariant derivative on a spacetime vector Vμ is

DMVN = ∂MVN + ΓN
MLV

L. (4.3)

The vielbein allows us to work with objects with a tangent space index, a, instead of just spacetime indices, μ. The γ matrices
allow us to further convert tangent space indices to spinor indices. We would then define a covariant derivative acting on the
tangent space vector Va,

DMVa = ∂MVa + ωa
MbV

b, (4.4)

where the quantity ωa
Mb is called the spin covariant derivative. Consistency of the two equations implies

DMVa = eaNDMVN. (4.5)

This is sufficient to determine the spin connection. It is a fact from differential geometry that the spin connection is expressed
in terms of the veilbeins via [216]

ωab
M =

1
2
gRPe[aR ∂[Meb]P] +

1
4
gRPgTSe[aR eb]T ∂[Se

c
P]e

d
Mηcd (4.6)

=
1
2
eNa
(
∂MebN − ∂NebM

)
− 1

2
eNb (∂MeaN − ∂NeaM)−

1
2
ePaeRb (∂PeRc − ∂ReRc) ecM. (4.7)

When acting on spinors one needs the appropriate structure to convert the a, b tangent space indices into spinor indices.
This is provided by

σab =
1
4
[
γa, γb

]
(4.8)

so that the appropriate spin covariant derivative is

DM = ∂M +
1
2
ωab
M σab. (4.9)
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4.2.3 Antisymmetrization and Hermiticity

The fermionic action on a curved background is

S =

∫
ddx
√
|gd| Ψ

(
iEM

a γa←→DM − m
)

Ψ, (4.10)

where the antisymmetrized covariant derivative is defined by a difference of right- and left-acting derivatives

←→DM =
1
2
DM −

1
2
←−DM. (4.11)

This is somewhat subtle. The canonical form of the fermionic action must be antisymmetric in this derivative in order for the
operator to be Hermitian and thus for the action to be real. In flat space we are free to integrate by parts in order to write a the
action in exclusively terms of a right-acting Dirac operator.

Hermiticity is defined with respect to an inner product. The inner product in this case is given by

⟨Ψ1|OΨ2⟩ =
∫

d5x√g Ψ1OΨ2. (4.12)

A manifestly Hermitian operator isOH = 1
2

(
O +O†), where we recall that

⟨Ψ1|O†Ψ2⟩ = ⟨OΨ1|Ψ2⟩ =
∫

d5x√g OΨ1Ψ2. (4.13)

The definition of an inner product on the phase space of a quantum field theory is a nontrivial matter on curved spacetimes.
Since our spacetime is not warped in the time direction there is no ambiguity in picking a canonical Cauchy surface to
quantize our fields and we may follow the usual procedure of Minkowski space quantization with the usual Minkowski spinor
inner product.

As a sanity-check, consider the case of the partial derivative operator ∂μ on flat space time. The Hermitian conjugate of the
operator is the left-acting derivative,

←−
∂μ , by which we really mean∫

ddx Ψ1∂
†Ψ2 = ⟨Ψ1|∂†

μΨ2⟩ = ⟨∂μΨ1|Ψ2⟩ =
∫

ddx ∂μΨ1Ψ2 =

∫
ddx Ψ1

←−
∂μΨ2 =

∫
ddx Ψ1 (−∂μ)Ψ2.

In the last step we’ve integrated by parts and dropped the boundary term. We see that the Hermitian conjugate of the partial
derivative is negative itself. Thus the partial derivative is not a Hermitian operator. This is why the momentum operator is
given by P̂μ = i∂μ , since the above analysis then yields P̂†

μ = P̂μ , where we again drop the boundary term and recall that the i
flips sign under the bar.

Now we can be explicit in what we mean by the left-acting derivative in (4.10). The operator iEM
a γaDM is not Hermitian

and needs to be made Hermitian by writing it in the formOH = 1
2

(
O +O†). Thus we may write a manifestly Hermitian

Dirac operator as,

Ψ (Dirac)Ψ = Ψ
[ 1
2
(
iEM

a γaDM
)
+

1
2
(
iEM

a γaDM
)†]Ψ (4.14)

= Ψ
i
2
EM
a γaDMΨ +

i
2
EM
a γaDMΨΨ (4.15)

= Ψ
i
2
EM
a γaDMΨ − i

2
EM
a γaDMΨΨ, (4.16)

where we’ve used the fact that EM
a is a real function with no spinor indices. The second term on the right-hand side can be

massaged further,

γaDMΨΨ = Ψ†←−DM
†γa†γ0Ψ = Ψ†(

←−
∂M + ωbc

Mσbc†)γ0γaΨ = Ψ←−DMγaΨ = Ψγa←−DMΨ. (4.17)
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Note that we have used that γM† = γ0γMγ0 and, in the last line, that [σbc, γa] = 0. Putting this all together, we can write down
our manifestly real fermion action as in (4.10),

S =

∫
ddx
√
|g| Ψ

(
iEM

a γa←→DM − m
)

Ψ (4.18)

=

∫
ddx
√
|g|
( i
2
ΨEM

a γaDMΨ − i
2
DMΨEM

a γaΨ − mΨΨ
)
. (4.19)

All of this may seem overly pedantic since integration by parts allows one to go back and forth between the ‘canonical’
form and the usual ‘right-acting only’ form of the fermion kinetic operator. Our interest, however, is to apply this to the
Randall-Sundrum background where integration by parts introduces boundary terms and so it is crucial to take the canonical
form of the Dirac operator as the starting point.

This is sometimes under appreciated in the phenomenological literature on thsi topic. For example, [189] refers to [21] for
the fermionic action on a warped space. The latter, however, assumes a spacetime without boundaries so that integration by
parts may be performed to convert to a right-acting Dirac operator. As shown above, this generates boundary terms on the rs
spacetime. Fortunately, the chiral boundary conditions imposed in [189] cancel the incorrect boundary terms. More
generally—for example, for models with vector matter—this point must be treated with care.

4.3 The Randall-Sundrum Bulk Fermion Action

We now specialize the above analysis to the case of the Randall-Sudrum background.

4.3.1 The rs spin connection

In Appendix 4.A we explicitly derive the spin connection on the rs background. The result is

1
2
ωab
M σab =

1
4z
(
γMγ5 + δ5M

)
(4.20)

so that the spin covariant derivative is

DM =

{
∂μ +

1
4z γμγ5 if M = μ

∂5 if M = 5.
(4.21)

For all the geometric background above, we are led to something rather anticlimactic: the spin connection drops out of the
action.

S =

∫
d5x

i
2

(
R
z

)4 (
ΨγM←→∂MΨ +

1
4z

Ψγμγ5γ
μΨ − 1

4z
γμγ5γμΨΨ

)
, (4.22)

The two spin connection terms cancel since γμγ5γμΨΨ = Ψγμγ5γ
μΨ, so that upon including a bulk mass term,

S =

∫
d5x

i
2

(
R
z

)4

ΨγM←→∂MΨ −
∫

d5x
i
2

(
R
z

)5

mΨΨ =

∫
d5x

i
2

(
R
z

)4

Ψ
(
γM←→∂M −

c
z

)
Ψ, (4.23)

where c = mR = m/k is a dimensionless parameter that is the ratio of the bulk mass to the curvature. We show below that the
bulk mass does not contribute directly to the 4D Kaluza-Klein mass spectrum of the model. Instead, c determines the
localization of the 5D wavefunction. This, in turn, determines the overlap with the Higgs field and the contribution to masses
from electroweak symmetry breaking. More comprehensive discussions can be found in the original paper by Grossman and
Neubert [189] or the review by Gherghetta [202].
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4.3.2 Right-acting RS Fermionic Action

When deriving the Dirac equation from the variational principle we set all of our operators to be right-acting, i.e. acting on Ψ,
so that we can vary with respect to Ψ to get an operator equation for Ψ. Obtaining this is from (4.23) is now a straightforward
matter of integration by parts of the left-acting derivative term. Note that it is crucially important that we pick up a derivative
acting on the metric/vielbein factor (R/z)4. We would have missed this term if he had mistakenly written our original
‘canonical action,’ (4.10), as being right-acting only.

The integration by parts for the M = μ = 0, · · · , 4 terms proceeds trivially since these directions have no boundary and
the metric/vielbein factor is independent of them. Performing the M = 5 integration by parts we find

S =

∫
d4x
∫ R

R′
dz
(

R
z

)4

Ψ
(
i/∂ + iγ5∂5 − i

2
z
γ5 − c

z

)
Ψ + (boundary term)|RR′ . (4.24)

The term in the parenthesis can be identified with the Dirac operator for the Randall-Sundrum model with bulk fermions.
This ‘definition’ is up to conventions regarding the inclusion of the mass term and factors of i. The boundary term is

(boundary) = (R/z)4
(
ψχ − χψ

)∣∣R
R′ , (4.25)

where we’ve written out the Dirac spinor Ψ in terms of two-component Weyl spinors χ and ψ. This term vanishes when we
impose chiral boundary conditions, which we review in the next section. The final form of the rs fermion action is

S =

∫
d4x
∫ R

R′
dz
(

R
z

)4

Ψ
(
i/∂ + iγ5∂5 − i

2
z
γ5 − c

z

)
Ψ. (4.26)

In terms of Weyl spinors this is

S =

∫
d4x
∫ R

R′
dz
(

R
z

)4 (
ψ χ

)(−∂5 +
2−c
z i/∂

i/∂ ∂5 − 2+c
z

)(
χ
ψ

)
, (4.27)

where we use the two-component slash convention /v = vμσμ , /v = vμσμ .

4.3.3 Chiral boundary conditions

Recall that 5D theories are vector-like, meaning that the fundamental spinor representation is a Dirac spinor (containing both
left- and right-handed components) rather than a chiral Weyl spinor. This is understood straightforwardly by considering γ5.
In four dimensions, γ5

4D = iγ0γ1γ2γ3 is a special operator that can be used to identify chiralities via PL,R = 1
2

(
1± γ5

4D

)
. In

5D, however, γ5 is just the γ matrix corresponding to the z direction and there is no analogous ‘special’ matrix associated with
chirality. Note, further, that the Clifford algebra, {γM, γN} = ηMN forces γ5 = −iγ5

4D. The γ0, · · · , γ5 form a basis for the
four component spinor representation of the 5D Clifford algebra. For details of representations of the Clifford algebra in
general dimensionality, see the appendices in the second volume of Polchinksi [217].

The vector nature of 5D spinors is an immediate problem for model-building since the Standard Model is manifestly chiral
and there appears to be no way to write down a chiral fermion without immediately introducing a partner fermion of opposite
chirality and the same couplings.To get around this problem, we can require that only the zero modes of the 5D
fermions—those which are identified with Standard Model states—to be chiral. We show that one chirality of zero modes can
indeed be projected out, while the heavier Kaluza-Klein excitations are vectorlike but massive.

We can project out the zero modes of the wrong-chirality components of a bulk Dirac 5D fermion by imposing chiral
boundary conditions that these states vanish on the branes. Since zero modes have trivial profiles, these boundary conditions
force the mode to be identically zero everywhere. For left-chiral boundary conditions, ψ = 0 on the branes, while for
right-chiral boundary conditions χ = 0 on the branes. Thus we are guaranteed that both terms in (4.25) vanish at z = R,R′

for either chirality.
Imposing these chiral boundary conditions is equivalent to the statement that the compactified extra dimension is an

orbifold. From a phenomenological point of view, the language of boundary conditions is preferred since it avoids potential
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ambiguities with the sign of the fermion mass term. Further, the language of boundary conditions best connects to the actual
process of solving partial differential equations that we follow. This treatment of boundary conditions for compact spaces was
first discussed from this viewpoint in [218].

4.4 Bulk fermion Fields

Bulk fermions in the rs scenarios were explored in a series of papers [188–190, 219–222], where [189] in particular is noted
for its systematic discussion of the bulk action in a non-supersymmetric context. We follow a slightly different approach and
now derive the mixed space propagators for these fields.

The Green’s function equation for the general RS fermion propagator can be solved directly from the Strum-Liouville
equation (see, e.g. [215]), though this can obscure some of the intuition of the results. Here we provide a pedagogical
derivation of the 5D bulk fermion propagator in a flat and warped interval extra dimension.

4.4.1 Flat 5D fermion propagator

First we derive the chiral fermion propagator in a flat interval extra dimension z ∈ (0, L) as a model calculation for the warped
fermion propagator which is presented in Section 4.4.2. A complete set of propagators for a flat 5D interval was derived
in [223] using finite temperature field theory techniques.

We derive these results by directly solving the Green’s function equations. The propagator from a given point x′ to another
point x is given by the two-point Green’s function of the 5D Dirac operator,

D Δ(x, x′) ≡
(
iγM∂M − m

)
Δ(x, x′) = iδ(5)(x− x′), (4.28)

where M runs over 5D indices. We shall treat the noncompact dimensions in momentum space and the finite dimension is in
position space. In this formalism, the Green’s function equation is(

/p + i∂5γ5 − m
)
Δ(p, z, z′) = iδ(z− z′), (4.29)

where we use γ5 = diag(i12,−i12).
This is a first-order differential equation with nontrivial Dirac structure. To solve this equation we define a

pseudo-conjugate Dirac operator (which is neither a complex nor Hermitian conjugate),

D̄ = iγM∂M + m. (4.30)

Using this to “square” the Dirac operator, we can swap the Dirac equation for a simpler Klein-Gordon equation that is second
order and diagonal on the space of Weyl spinors,

DD̄ =

(
∂2
5 − ∂2 − m2

∂2
5 − ∂2 − m2

)
. (4.31)

It is straightforward to solve for the Green’s functions F(p, z, z′) of theDD̄ operator in mixed position-momentum space,

DD̄ F(p, z, z′) =
(
∂2
5 + p2 − m2

∂2
5 + p2 − m2

)(
F−

F+

)
= iδ(z− z′). (4.32)

From these we can trivially construct a solution for the Green’s function of (4.28),

Δ(p, z, z′) ≡ D̄F(p, z, z′) =
(
(−∂5 + m) F− σμpμF+

σ̄μpμF− (∂5 + m) F+

)
. (4.33)
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AL<
+ = spΔz′spL AL>

+ = spz′cpL AR<
+ = 0 AR>

+ = −cpz′spL
BL<
+ = 0 BL>

+ = spz′spL BR<
+ = −cpΔz′ BR>

+ = −cpz′cpL
AL<
− = 0 AL>

− = −cpz′spL AR<
− = spΔz′ AR>

− = −spz′cpL
BL<
− = cpΔz′ BL>

− = −cpz′cpL BR<
− = 0 BR>

− = spz′spL

Table 4.1: Flat case coefficients in (4.35) upon solving with the boundary conditions (4.37–4.40). We have used
the notation cpx = cos χpx, spx = sin χpx, and Δz′ = (L − z′).

We solve this by separating F±(z) into pieces

F±(p, z, z′) =

{
F<
±(p, z, z

′) if z < z′

F>
±(p, z, z

′) if z > z′
(4.34)

and then solving the homogeneous Klein-Gordon equations for each F< and F>. The general solution is

F<,>
± (p, z, z′) = A<,>

± cos(χpz) + B<,>
± sin(χpz), (4.35)

where the eight coefficients A<,>
± and B<,>

± are determined by the boundary conditions at 0, L and z′. The factor χp is the
magnitude of p5 and is defined by

χp =
√

p2 − m2. (4.36)

We impose matching boundary conditions at z = z′. By integrating the Green’s function equation (4.32) over a sliver
z ∈ [z′ − ε, z′ + ε] we obtain the conditions

∂5F>
±(z

′)− ∂5F<
±(z

′) = i, (4.37)

F>
±(z

′)− F<
±(z

′) = 0. (4.38)

These are a total of four equations. The remaining four equations imposed at the branes impose the chirality of the fermion
zero mode and are equivalent to treating the interval as an orbifold. We denote the propagator for the 5D fermion with a
left-chiral (right-chiral) zero mode by ΔL (ΔR). We impose that the Green’s function vanishes if a “wrong-chirality” state
propagates to either brane,

PR ΔL(p, z, z′)
∣∣
z=0,L = PRD̄ FL(p, z, z′)

∣∣
z=0,L = 0, (4.39)

PL ΔR(p, z, z′)
∣∣
z=0,L = PLD̄ FR(p, z, z′)

∣∣
z=0,L = 0, (4.40)

where PL,R = 1
2 (1∓ iγ5) are the usual 4D chiral projection operators. Note from (4.33) that each of these equations is

actually a set of two boundary conditions on each brane. For example, the left-handed boundary conditions may be written
explicitly as

FL
−(p, z, z

′)
∣∣
z=0,L = 0, (4.41)

(∂5 + m)FL
+(p, z, z

′)
∣∣
z=0,L = 0, (4.42)

where we have used that pμ is arbitrary. It is well-known that only one boundary condition for a Dirac fermion needs to be
imposed in order not to overconstrain the first-order Dirac equation since the bulk equations of motion convert boundary
conditions for χ into boundary conditions for ψ [218]. In this case, however, we work with a second-order Klein-Gordon
equation that does not mix χ and ψ. Thus the appearance and necessity of two boundary conditions per brane for a chiral
fermion is not surprising; we are only converting the single boundary condition on Δ(p, z, z′) into two boundary conditions
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for F(p, z, z′).
Solving for the coefficients A<,>

± (p, z) and B<,>
± (p, z) for each type of fermion (left- or right-chiral zero modes) one finds

the results in Table 4.1. Using trigonometric identities one may combine the z < z′ and z > z′ results to obtain

FX
± =

−i cos χp (L− |z− z′|) + γ5℘X cos χp (L− (z + z′))
2χp sin χpL

, (4.43)

where X = {L,R} with ℘L = +1 and ℘R = −1. This result differs from that of [223] by a factor of 2 since that paper treats
the compactified space as an orbifold over the entire S1 rather than just an interval [0, πR]. The fermion Green’s function can
then be obtained trivially from (4.33).

4.4.2 Warped 5D fermion propagator

We now derive the chiral fermion propagator in a warped interval extra dimension following the same strategy as Appendix
4.4.1. The Dirac operator is obtained from the variation of the Randall-Sundrum free fermion action,

SRS(fermion) =
∫

dx
∫ R′

R
dz
(

R
z

)4

Ψ̄
(
iγM∂M − i

2
z
γ5 − c

z

)
Ψ, (4.44)

where c = mR and we have integrated the left-acting derivatives by parts. The Dirac operator is a product of the (R/z)4

prefactor coming from the AdS geometry and an operatorD given by

D = iγM∂M − i
2
z
γ5 − c

z
. (4.45)

We would like to find the mixed position/momentum space two-point Green’s function satisfying

(R/z)4D Δ(p, z, z′) = iδ(z− z′). (4.46)

Following (4.30) we define a pseudo-conjugate Dirac operator

D̄ = iγM∂M − i
2
z
γ5 +

c
z

(4.47)

and ‘square’D into a diagonal second-order operator,

DD̄ =

(
DD̄ − 0

0 DD̄ +

)
DD̄ ± = ∂2 − ∂2

5 +
4
z
∂5 +

c2 ± c− 6
z2

. (4.48)

Next we follow (4.32) and solve for the Green’s function of this squared operator in mixed position/momentum space where
∂2 → −p2,

−(R/z)4DD̄F(p, z, z′) = −
(

R
z

)4 (DD̄ −
DD̄ +

)(
F−

F+

)
= iδ(z− z′). (4.49)

The solution to the Dirac Green’s function equation (4.46) is then given by Δ(p, z, z′) = D̄F(p, z, z′). We shall separate
F(p, z, z′) into solutions for the cases z > z′ and z < z′ following (4.34). The general solution to the homogeneous equation
(4.49) with z ̸= z′ is

F<,>
± (p, z, z′) = A<,>

± z
5
2 Jc± 1

2
(pz) + B<,>

± z
5
2 Yc± 1

2
(pz), (4.50)

where Jn and Yn are Bessel functions of the first and second kinds, A<,>
± and B<,>

± are coefficients to be determined by
boundary conditions, and p is the analog of χp defined by p =

√
pμpμ . Note that this differs from (4.36) since there is no

explicit bulk mass dependence. In (4.50) the bulk masses enter only in the order of the Bessel functions as (c± 1
2 ).
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AL<
+ = −αLz′

5
2Yc− 1

2
(pR) S̃+c (pz′, pR′) AR<

+ = −αRz′
5
2Yc+ 1

2
(pR) S+c (pz′, pR′)

BL<
+ = αLz′

5
2 Jc− 1

2
(pR) S̃+c (pz′, pR′) BR<

+ = αRz′
5
2 Jc+ 1

2
(pR) S+c (pz′, pR′)

AL<
− = −αLz′

5
2Yc− 1

2
(pR) S−c (pz′, pR′) AR<

− = −αRz′
5
2Yc+ 1

2
(pR) S̃−c (pz′, pR′)

BL<
− = αLz′

5
2 Jc− 1

2
(pR) S−c (pz′, pR′) BR<

− = αRz′
5
2 Jc+ 1

2
(pR) S̃−c (pz′, pR′)

Table 4.2: Left-handed rs fermion propagator coefficients: the z > z′ coefficients are obtained by swapping
R ↔ R′ in the arguments of the functions, leaving the αL,R constant.

The matching boundary conditions at z = z′ are given by (4.37) and (4.38) modified by a factor of (R/z′)4 from (4.49),

∂5F>
±(z

′)− ∂5F<
±(z

′) = i(R/z′)−4, (4.51)

F>
±(z

′)− F<
±(z

′) = 0. (4.52)

The chiral boundary conditions are the same as in the flat case, (4.39) and (4.40) with the appropriate insertion of (4.47).

We may now solve for the A and B coefficients. It is useful to write these in terms of common factors that appear in their
expressions. To this end, let us define the prefactors

αL =
iπ
2R4

1
S−c (pR, pR′)

αR =
iπ
2R4

1
S+c (pR, pR′)

(4.53)

and a set of antisymmetric functions

S±c (x, y) = Jc± 1
2
(x)Yc± 1

2
(y)− Jc± 1

2
(y)Yc± 1

2
(x) (4.54)

S̃±c (x, y) = Jc± 1
2
(x)Yc∓ 1

2
(y)− Jc∓ 1

2
(y)Yc± 1

2
(x) (4.55)

With these definitions the coefficients for the left- and right-handed F functions are given in Table 4.2. The FL,R
± functions may

thus be written out succinctly for z ≤ z′ as

FL<
+ = αL

(
zz′
)5/2 S̃+c (pz′, pR′) S̃−c (pR, pz) (4.56)

FL<
− = αL

(
zz′
)5/2 S−c (pz′, pR′) S−c (pR, pz) (4.57)

FR<
+ = αR

(
zz′
)5/2 S+c (pz′, pR′) S+c (pR, pz) (4.58)

FR<
− = αR

(
zz′
)5/2 S̃−c (pz′, pR′) S̃+c (pR, pz) (4.59)

The expressions for z > z′ are obtained by making the replacement {R↔ R′} in the arguments of the Sc functions. We now
use the notation in (4.34) and drop the<,> superscripts. From these the fermion Green’s function can be obtained trivially
from the analog of (4.33),

Δ(p, z, z′) ≡ D̄F(p, z, z′) =
(

D−F− σμpμF+

σ̄μpμF− D+F+

)
, D± ≡ ±

(
∂5 −

2
z

)
+

c
z
. (4.60)

Note that in the UV limit (χp ≫ 1/R) the Bessel functions reduce to phase-shifted trigonometric functions so that we indeed
recover the flat 5D propagators.
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4.4.3 Euclidean warped 5D fermion propagator

Finally, it is convenient to write the Wick-rotated form of the fermion propagators since these will provide the relevant
Feynman rules in loop diagrams such as μ→ eγ. We shall write out the scalar F functions in a convenient form that we use
throughout the rest of this document. The derivation is identical to that outlined above with the replacement p2 = −p2E (i.e.
∂ = i∂E) in the Green’s function equation so that we shall simply state the results. The Euclidean scalar functions are written
in terms of the modified Bessel functions I and K which behave like exponentials in the UV. Let us define the auxiliary
functions

Sc(x±, x′±) = Ic±1/2(x)Kc±1/2(x
′)− Ic±1/2(x

′)Kc±1/2(x) (4.61)
Sc(x±, x′∓) = Ic±1/2(x)Kc∓1/2(x

′)− Ic∓1/2(x
′)Kc±1/2(x) (4.62)

Tc(x±, x′∓) = Ic±1/2(x)Kc∓1/2(x
′) + Ic∓1/2(x

′)Kc±1/2(x). (4.63)

Since we would like to write dimensionless loop integrals, let us define the dimensionless variables y ≡ kER′ and x = kEz,
which are the natural quantities which appear as arguments of the Bessel functions. We write the warp factor as w = (R/R′).
It is convenient to pull out overall factors to write the F functions as

F±(kE, z, z′) = iw−4R′F̃xx′
±,y. (4.64)

The Euclidean scalar functions for x > x′ (i.e. z > z′) are given by

F̃L
− =

(xx′)5/2

y5
ScL(x−, y−)ScL(x

′
−,wy−)

ScL(y−,wy−)
F̃L
+ = − (xx′)5/2

y5
TcL(x+, y−)TcL(x

′
+,wy−)

ScL(y−,wy−)
(4.65)

F̃R
− = − (xx′)5/2

y5
TcR(x−, y+)TcR(x

′
−,wy+)

ScR(y+,wy+)
F̃R
+ =

(xx′)5/2

y5
ScR(x+, y+)ScR(x

′
+,wy+)

ScR(y+,wy+)
. (4.66)

The functions for x < x′ are given by replacing x↔ x′ in the above formulas. With these definitions the Euclidean fermion
propagator given by the analog of (4.60),

Δ(kE, x, x′) ≡ i
R′

w4 D̄F̃xx′
y =

(
yD̃+F̃− σμyμF̃+

σ̄μyμF̃− yD̃−F̃+

)
, D̃± ≡ ±

(
∂x −

2
x

)
+

c
x
. (4.67)

4.5 Bulk gauge fields

We now move on to the case of bulk gauge fields. We follow the approach of [215], though we adapt it to follow the same type
of derivation espoused above for the fermion propagator. The bulk action is

S5 =
∫

d4xdz√g
[
− 1

4
FMNFMN + (brane) + (gauge fixing)

]
(4.68)

4.5.1 Inverting the quadratic term

To derive the propagator, we would like to write the kinetic term in the form AMOMNAN so that we may invert the quadratic
differential operatorOMN. This require judicious integration by parts including the (R/z) factors from the metric and the
measure,√g. The relevant integration is

R
4z

FMNFMN = −R
2
AN∂M

( 1
z
∂M

)
AN +

R
2
AN∂M

( 1
z
∂N

)
AN +

R
2
∂M
( 1

z
AN∂[MAN]

)
, (4.69)
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where the last term integrates to a boundary term. Observe that this boundary term vanishes for both Dirichlet and Neumann
boundary conditions so that it vanishes for μ→ ν and 5th component scalar propagators. It does not vanish, however, for the
case of vector–scalar mixing. For simplicity, we will drop the term here in anticipation that it will be removed by gauge fixing.
With this caveat, the above integration becomes

R
4z

FMNFMN = Aμ

[
R
2z
∂2ημν − R

2
∂z

( 1
z
∂z

)
ημν − R

2z
∂μ∂ν

]
Aν + A5

R
z
∂z∂

μAμ − A5
R
2z
∂2A5. (4.70)

This is now in the desired form: we can read off the quadratic differential operators which encode the propagation of the 5D
gauge bosons. Observe that we have a term that connects the 4D vector Aμ to the 4D scalar A5. In our mixed
position-momentum space formalism, we prefer to leave these as separate fields. As shown below, this term is removed by a
judicious choice of gauge fixing.

4.5.2 Gauge fixing

Before proceeding, we must now gauge fix to remove the gauge redundancy which otherwise appears as unphysical states in
the propagator. Ideally we would like to pick a gauge where the scalar vanishes A5 = 0 and the vector has a convenient gauge,
say, Lorenz gauge ∂μAμ = 0. Unfortunately, these gauges are incompatible. Intuitively this is because we only have a single
gauge fixing functional to work with in the path integral so that we are allowed to set at most one expression to vanish. Instead,
motivated by the potential for vector–scalar mixing from the boundary term of (4.70), we choose a gauge fixing functional
which cancels this mixing term,

Lgauge fix = −
(

R
z

)
1
2ξ

[
∂μAμ − ξz∂z

( 1
z
A5

)]2
(4.71)

We have introduced a gauge fixing parameter ξ which will play the role of the ordinary Rξ gauge fixing parameter in 4D. We can
integrate by parts to convert this to the form AMOMN

gauge fixAN,

Lgauge fix = Aμ
1
2ξ

R
z
∂μ∂νAν − A5

R
z
∂z∂

μAμ + A5
ξ
2
R
z
∂z

[
z∂z

( 1
z
A5

)]
. (4.72)

Observe that the second term here cancels the unwanted mixing term in (4.70). Summing this together with the gauge kinetic
term gives a clean separation for the kinetic terms for the gauge vector and scalar:

Lgauge + Lgauge fix = Aμ

[
R
2z
∂2ημν − R

2
∂z

( 1
z
∂z

)
ημν −

(
1− 1

ξ

)
R
2z
∂μ∂ν

]
Aν (4.73)

+ A5
R
2z

[
−∂2 + ξ

( 1
z2
− 1

z
∂z + ∂2

z

)]
A5 (4.74)

≡ AμOμνAν + A5O5A5. (4.75)

4.5.3 Mixed space propagators

Now that we’ve written out the quadratic part of the gauge Lagrangian in the desired form, we may now invert theOμν andO5

operators to obtain the propagators. We work in momentum space for the Minkowski directions and so identify pμ = i∂μ .
Starting with Δμν ,

Oμν = − R
2z

p2
[
ημν − pμpν

p2
+

1
p2

z∂z

( 1
z
∂z

)
ημν +

1
ξ
pμpν

p2

]
, (4.76)

where it is useful to note that z∂z(
1
z∂z) = ∂2

z − 1
z∂z. We now solve the Green’s function equation,

OμρΔρν = iδ(z− z′)δμν . (4.77)
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At this point, one may wonder whether the right-hand side of this equation should be modified by additional warp factors
coming from either√g or√g55. The answer is no and can be seen by looking at the gauge boson partition function,

Z[A] ∼ eiS+
∫
d4x dz√g JMAM . (4.78)

Here each component AN̂ of the gauge field has a source of the form JM ∼ δ(5)(x− x′)δMN̂ . Note, however, that this is flat space
δ-function is no covariant with respect to the warped 5D metric. The correct form is, in fact,

JM ∼ δ(5)(x− x′)
√g

δMN̂ . (4.79)

Note that the factor of√g in JM cancels that in the measure so that indeed the Green’s function equation (4.77) has the
unwarped δ-function on the right-hand side.

Let us make the ansatz that the Green’s function may be written in terms of two functions Gp(z, z′) and Hp(z, z′),

−iΔμν = ημνGp +
pμpν
p2

Hp. (4.80)

The point will be that this separation will allow us to simplify (4.77) with the complicated differential operator (4.76). In
particular, we show below that F and G will be Green’s functions of simpler operators. Plugging in our ansatz gives

−i
[
ημρ − pμpρ

p2

(
1− 1

ξ

)
+

1
p2

ημρ
(
∂2
z −

1
z
∂z

)](
ηρνGp +

pρpν
p2

Hp

)
= −i

z
R
δ(z− z′)δμν

1
p2
. (4.81)

We now note that the only product on the left-hand side that can generate the δμν on the right-hand side is the product ημρηρν .
Identifying this piece on the left-hand side with the δ-function source indeed yields a simpler Green’s function equation,(

p2 + ∂2
z −

1
z
∂z

)
Gp(z, z′) =

z
R
δ(z− z′). (4.82)

This completely specifies the function F(z, z′) up to boundary conditions. What about the rest of (4.81)? The remaining
terms contain both F and G and must sum to zero:

−(ξ − 1)Gp + Hp +
ξ
p2
(
∂2
z −

1
z
∂z

)
Gp = 0. (4.83)

We now apply a trick: we redefine G in such a way that we can remove the F dependence above. We have a hint since the last
term already contains the differential operator for which F is a Green’s function. Let us thus define

Hp = −Gp + H̃p. (4.84)

Using (4.82) to convert F into δ(z− z′), we end up with a Green’s function equation for G̃,[
p2

ξ
+
(
∂2
z −

1
z
∂z

)]
H̃ =

z
R
δ(z− z′). (4.85)

Now a useful shortcut presents itself. This is precisely the same Green’s function equation as (4.82) except with a rescaled
momentum, p→ p/

√
ξ. Thus, we find that

H̃p(z, z′) = Gp/
√

ξ(z, z
′). (4.86)

And thus both H and G are determined up to boundary conditions. The resulting expression is

Δμν(z, z′) = −i
(

ημν −
pμpν
p2

)
Gp(z, z′)− i

pμpν
p2

Gp/
√

ξ(z, z
′). (4.87)
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4.5.4 Bulk mass deformation

At this point, it is useful to follow through the above derivations in the case where the gauge boson is perturbed by a bulk
mass, m. In the rs models of interest for this document the Higgs is localized on the ir brane and does not generate such a
bulk mass. We show below that instead this exercise will be precisely what is required to solve the propagator for the A5 mode
with unbroken gauge symmetry. The mass perturbation takes the form

ΔSmass =

∫
d4x , dz√g

1
2

(m
R

)2
AMgMNAN =

∫
d4x , dz√g

1
2
R
z

(m
z

)2
AMηMNAN. (4.88)

For our purposes we may ignore the M,N = 5 components. The modified version of the quadratic operator (4.76) for the 4D
vector is

Oμν = − R
2z

p2
[
ημν − pμpν

p2
+

1
p2

z∂z

( 1
z
∂z

)
ημν +

1
ξ
pμpν

p2
− m2

z2
ημν

1
p2

]
. (4.89)

The Green’s function equation for Gp is modified from (4.82) to(
p2 + ∂2

z −
1
z
∂z −

m2

z2

)
Gm

p (z, z
′) =

z
R
δ(z− z′). (4.90)

This is another Green’s function equation which completely specifies Gm
p up to boundary conditions.

4.5.5 Gauge scalar propagator

We now have to tools to determine the propagator for the A5 scalar. The 5D operatorO5 in (4.75) is

O5 =
R
2z

[
p2 + ξ

( 1
z2
− 1

z
∂z + ∂2

z

)]
. (4.91)

The Green’s function equation is

−iO5Δ(5)
p = i

z
R
δ(z− z′). (4.92)

Observe the relative sign to the 4D vector Green’s function equation, (4.81), since z points in a spacelike direction. Dividing
both sides by ξ, we may write this in a suggestive form,(

p2

ξ
+ ∂2

z −
1
z
∂z +

1
z2

)
Δ(5)
p = − 1

ξ
z
R
δ(z− z′). (4.93)

Observe that this takes the same form as (4.90) except the right-hand side has an additional factor of−ξ−1 and the p2/ξ term
on the left-hand side can be interpreted as a mass term with mass m = i. In other words, we may use the Section 4.5.4 analysis
to directly solve for the propagator,

Δ(5)
p =

i
ξ
Gi

p√
ξ
. (4.94)

In principle, one should also calculate the ghost propagators required for gauge invariance. However, since we will not
calculate pure gauge loops, we will avoid this derivation and refer the reader to [215].

4.5.6 Solving the Green’s functions

The solution to the homogeneous version of (4.82), where the right-hand side is set to zero, is

Gp(z, z′) = A(z′)zJ1(kz) + B(z′)zY1(kz). (4.95)
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We fix the original position z′ and separately consider the cases where the propagation position z is greater or less than z′:

Gp(z, z′) =
{

G>
k (z, z

′) if z > z′

G<
k (z, z

′) if z < z′ (4.96)

Now we must impose boundary conditions. Since matching the sm spectrum requires zero modes for the 4D vectors, we
impose Neumann conditions on both branes for these modes. Note, however, that this choice combined with boundary term
in the action (4.70) implies that the natural boundary condition for the 4D singlet is Dirichlet [177]. This is because any other
boundary condition would not permit arbitrary variation of the A5 field on the boundaries. We thus have the boundary
conditions

∂zG>
k (z, z

′)
∣∣
z=R′ = 0 ∂zG<

k (z, z
′)
∣∣
z=R = 0. (4.97)

As a useful trick, we may use the expression

y′p(αx) = αyp−1(αx)−
p
x
yp(αx), (4.98)

for a Bessel function of the first or secondkind, y = J, Y. This gives a simple expression for the derivative of Gp,

∂zGp(z, z′) = z′A(z′)pJ0(pz) + z′B(z′)pY0(pz). (4.99)

The boundary conditions thus give expressions for the coefficients in terms of functions f and g that depend on both z′ and p:

∂zG>
p (R

′, z′) = 0 ⇒
{

A>(z′) = −Y0(pR′) f(z′)
B>(z′) = J0(pR′) f(z′) (4.100)

∂zG<
p (R, z

′) = 0 ⇒
{

A<(z′) = −Y0(pR) g(z′)
B<(z′) = J0(pR) g(z′)

. (4.101)

We next impose matching conditions at z = z′ by integrating the defining Green’s function equation over a sliver of width ε
around z = z′, (4.82): ∫ z′+ε

z′−ε
dz
(
p2 + ∂2

z −
1
z
∂z

)
Gp(z, z′) =

z′

R
. (4.102)

The first term vanishes in the ε→ 0 limit. The last term may be written as∫
dz
z
∂zG =

1
z
G
∣∣∣
z=z′

+

∫
dz
z2

G. (4.103)

This vanishes since G must be continuous across z′ or else ∂zG would have a δ function; G>(z′, z′) = G<(z′, z′). We are
thus left with the expression

∂zG>
p (z

′, z′)− ∂zG<
p (z

′, z′) =
z′

R
. (4.104)

For simplicity, let us introduce a useful shorthand for the Green’s functions that propagate to the same position in the extra
dimension, G>(z′, z′) and G<(z′, z′),

G>(z′, z′) = z′(aY− bJ)f (4.105)

G<(z′, z′) = z′(āY− b̄J)g, (4.106)
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where Y, J refer to Y1(pz′), J1(pz′), f and g are evaluated at z′, and the (a, b, ā, b̄) coefficients correspond to (A>, B>,A<, B<)
in (4.100 – 4.101). With this notation, the solution of (4.104) for f is

f =
1
kR

1
ay− bj

+ g
āy− b̄j
ay− bj

. (4.107)

To obtain the expression for g, we use the continuity of G, G>(z′, z′) = G<(z′, z′). The algebra is somewhat tedious but is
straightforward using a computer algebra system such as Mathematica; the key identity is

Y0(kz′)J1(kz′)− J0(kz′)Y1(kz′) =
2

kπz′
. (4.108)

The resulting expressions for g and f (after plugging in the complete solution for g) are

g =
πz′

2R
aY− bJ
āb− ab̄

f =
πz′

2R
āY− b̄J
āb− ab̄

. (4.109)

We thus have the final expression for the Green’s function,

G>
p (z, z

′) =
π
2

zz′

R
[−Y0(pR)J1(pz′) + J0(kR)Y1(kz′)] [−Y0(pR′)J1(pz)− J0(kR′)Y1(kz)]

J0(kR)Y0(kR′)− Y0(kR)J0(kR′)
. (4.110)

The G<
p (z, z′) solution is given by swapping R↔ R′ in the numerator. Observe that the second factor in the numerator is

obtained from the first from (R→ R′) and (z↔ z′). This completely specifies the 4D vector propagator Δμν through (4.87).
One may apply similar manipulations to determine the general massive Green’s function Gm

p (z, z′) in (4.90). Recall that
this is necessary for determining the 4D scalar A5 propagator. There are two caveats to remember:

• The key modification in the differential operator for this Green’s function is a term−m2/z2. The homogeneous
solution (4.95) is generalized to J1 → J√1+m2 and Y1 → Y√

1+m2 .

• As explained above and in [177], the correct boundary condition for the 4D scalars in the 5D gauge field is Dirichlet.
This is required if one wants to allow arbitrary variation of the gauge fields on the branes when varying the action and
is consistent with the non-observation of adjoint scalars in the low-energy 4D theory.

Specializing to the case m = i which is relevant for the scalar propagator,

Gi>
p (z, z′) =

π
2

zz′

R
[−Y0(pR)J0(pz′) + J0(pR)Y0(pz′)] [−Y0(pR′)J0(pz) + J0(pR′)Y0(pz)]

−Y0(pR)J0(pR′)− Y0(pR′)J0(pR)
, (4.111)

where again Gi<
p (z, z′) is obtained from Gi> by the substitution z↔ z′. The A5 propagator is obtained from this expression

via (4.94).

4.5.7 Wick rotation to Euclidean space

The Euclidean space propagators are related by a wick rotation, p = ipE. Thus one may re-solve the Green’s function equation
with p2 → −p2E. The result changes the Bessel functions J→ K and Y→ I along with several signs. Appropriate formulae are
presented below.

4.6 Bulk Feynman Rules

Here we summarize the 5D position-momentum space Feynman rules used to derive the amplitudes in Chapters 5 and 7. All
couplings are written in terms of 5D quantities. The brane-localized Higgs field is drawn as a dashed line and the fifth
component of a bulk gauge boson is drawn as a dotted line.
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= ig5
(

R
z

)4

γμ

= ie5(p+ − p−)μ

=
i
2
e5g5 v ημν

= i
(

R
R′

)3

Y5

= Δk(z, z′)

= −iημνGk(z, z′)

= iḠk(z, z′)

= εμ(q)f(0)A

=
fc√
R′

( z
R

)2 ( z
R′

)−c
u(p)

= ū(p′)
fc√
R′

( z
R

)2 ( z
R′

)−c

The 5D Lagrangian parameters are related to the usual Standard Model parameters by

g25 = g2SMR lnR′/R (4.112)

e5f(0)A = eSM (4.113)
Y5 = RY, (4.114)

where Y represents an anarchic 4D Yukawa matrix that is related to the Standard Model Yukawa by (??). The fc fermion flavor
functions are defined in (??). The vector propagator functions Gk(z, z′) and Ḡk(z, z′) are explicitly derived in [215], which
also contains generic formulae for analogous functions for fields of general spin and additional gauge boson vertices. Using the
dimensionless x and y variables defined in (5.44) and assuming z > z′, the Euclidean space vector Green’s functions are

Gk(z, z′) =
(R′)2

R
Gy(x, x′) =

(R′)2

R
xx′

y
T10(x, y)T10(x′,wy)

S00(wy, y)
, (4.115)

Ḡk(z, z′) =
(R′)2

R
Ḡy(x, x′) =

(R′)2

R
xx′

y
S00(x, y)S00(x′,wy)

S00(wy, y)
, (4.116)

where

Tij(x, y) = Ii(x)Kj(y) + Ij(y)Ki(x) (4.117)
Sij(x, y) = Ii(x)Kj(y)− Ij(y)Ki(x) (4.118)

and w = R/R′. For z < z′ the above formula is modified by x↔ x′. The three gauge boson couplings are given by
Aμ

W+
ν W−

ρ

= ie5
R
z
[
(k− k+)ρημν + (k− − k)νημρ + (k+ − k−)μηνρ

]
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Aμ

W+
5 W−

5

= ie5
R
z
(k− − k+)μ

Aμ

W+
ν W−

5

= e5
R
z
ημν(∂z − ∂+

z )

Here we have used the convention where all momenta are labeled by the charge of the particle and are flowing into the vertex.
The AμW+

5 W−
ν vertex is given by e5(R/z)ημν(∂μ

z − ∂z). The Euclidan space fermion propagator Δk(z, z′) is given in (4.67).

4.A Derivation of the rs spin connection

In the rs background we may write the vielbein and inverse vielbein as

eaM(z) =
R
z
δaM EM

a (z) =
z
R
δMa . (4.119)

We may write out the spin connection term of the covariant derivative as

ωab
M =

1
2
gRPe[aR ∂[Meb]P]︸ ︷︷ ︸

ωabM (1)

+
1
4
gRPgTSe[aR eb]T ∂[Se

a
P]e

d
Mηcd︸ ︷︷ ︸

ωabM (2)

. (4.120)

This can be simplified using the fact that the vielbein only depends on z. The first part is

ωab
M (1) =

1
2
gRPeaR∂[MebP] −

1
2
gRPebR∂[MeaP] (4.121)

=
1
2
gRPeaR∂MebP −

1
2
gRPeaR∂PebM −

1
2
gRPebR∂MeaP +

1
2
gRPebR∂PeaM (4.122)

= − 1
2z

gRPeaRe
b
Pδ

5
M +

1
2z

gRPeaRe
b
Mδ5P +

1
2z

gRPebRe
a
Pδ

5
M −

1
2z

gRPebRe
a
Mδ5P (4.123)

= − 1
2z

ηabδ5M +
1
2z

gR5eaRe
b
M +

1
2z

ηbaδ5M −
1
2z

gR5ebRe
a
M (4.124)

= − 1
2z

ηab(δ5M − δ5M) +
1
2z

gR5
(
eaRe

b
M − ebRe

a
M

)
(4.125)

= − 1
2z

δR5
(
δaRδ

b
M − δbRδ

a
M

)
(4.126)

=
1
2z

δ[aMδb]5 , (4.127)
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where we’ve used ∂MebP = − 1
z e

b
Pδ5M and the completeness relation gMNeaMebM = ηab. The second part is given by

ωab
M (2) =

1
4
gRPgTSeaRe

b
T∂[Se

c
P]e

d
Mηcd −

1
4
gRPgTSebRe

a
T∂[Se

c
P]e

d
Mηcd (4.128)

=
1
4
gRPgTSeaRe

b
T∂SecPe

d
Mηcd −

1
4
gRPgTSebRe

a
T∂SecPe

d
Mηcd

− 1
4
gRPgTSeaRe

b
T∂PecSe

d
Mηcd +

1
4
gRPgTSebRe

a
T∂PecSe

d
Mηcd (4.129)

= − 1
4z

gRPgTSeaRe
b
Tδ

5
Se

c
Pe

d
Mηcd +

1
4z

gRPgTSebRe
a
Tδ

5
Se

c
Pe

d
Mηcd

+
1
4z

gRPgTSeaRe
b
Tδ

5
Pe

c
Se

d
Mηcd −

1
4z

gRPgTSebRe
a
Tδ

5
Pe

c
Se

d
Mηcd (4.130)

=
1
4z

(
−ηacgT5ebTe

d
Mηcd + ηbcgT5eaTe

d
Mηcd + gR5ηbceaRe

d
Mηcd − gR5ηacebRe

d
Mηcd

)
(4.131)

=
1
4z

(
δT5 δ

b
Tδ

d
Mδad − δT5 δ

a
Te

d
Mδbd − δR5 δ

a
Rδ

d
Mδbd + δR5 δ

b
Rδ

d
Mδad
)

(4.132)

=
1
2z

(
δb5δ

a
M − δa5δ

b
M − δa5δ

b
M + δb5δ

a
M

)
(4.133)

=
1
2z

δ[aMδb]5 . (4.134)

Note that these vanish identically for M = 5. We can now write out the spin-connection part of the covariant derivative,

1
2
ωab
M σab =

1
2

( 1
z
δ[aMδb]5

)
M̸=5

1
4
[
γa, γb

]
(4.135)

=
1
4z
(
γMγ5 + δ5M

)
, (4.136)

where we’ve inserted a factor of δ5M to cancel the (γ5)
2 when M = 5. (Note that the natural convention is that (γ5)2 = −1

since this is what satisfies the 5D Clifford algebra.)
Finally, the spin connection part of the covariant derivative is

1
2
ωab
M σab =

1
4z
(
γMγ5 + δ5M

)
(4.137)

so that the spin covariant derivative is

DM =

{
∂μ +

1
4z γμγ5 if M = μ

∂5 if M = 5.
(4.138)
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Liam: Can you give an estimate for ℏ?
Flip: I can do better: it is exactly 1.

Qualifying exam, 18 November 2008

5
Warped Penguins

Penguin diagrams encode exotic quantum processes where particles of one type are transformed into particles of
another type. These processes are especially sensitive to deviations from the Standard Model and are a natural place to search
for new physics. In theories of extra dimensions, however, it is not always clear whether one may calculate the rates for these
penguins predictively. This chapter uses the formalism of the previous chapter to perform an explicit calculation and show that
it is indeed insensitive to quantum corrections.

5.1 Overview

We present an analysis of the loop-induced magnetic dipole operator in the Randall-Sundrum model of a warped extra
dimension with anarchic bulk fermions and an ir brane-localized Higgs. These operators are finite at one-loop order and we
explicitly calculate the branching ratio for μ→ eγ using the mixed position/momentum space formalism. The particular
bound on the anarchic Yukawa and Kaluza-Klein (kk) scales can depend on the flavor structure of the anarchic matrices. This
effect encapsulates the misalignment between the bulk mass parameters and the Yukawa matrices in flavor space. We quantify
how these models realize this misalignment. We also review tree-level lepton flavor bounds in these models and show that
these are are in mild tension with the μ→ eγ bounds from typical models with a 3 tev Kaluza-Klein scale. Further, we
illuminate the nature of the one-loop finiteness of these diagrams and show how to accurately determine the degree of
divergence of a five-dimensional loop diagram using both the five-dimensional and kk formalism. This power counting can be
obfuscated in the four-dimensional Kaluza-Klein formalism and we explicitly point out subtleties that ensure that the two
formalisms agree. Finally, we remark on the existence of a perturbative regime in which these one-loop results give the
dominant contribution.

5.2 Introduction

The Randall-Sundrum (rs) set up for a warped extra dimension is a novel framework for models of electroweak symmetry
breaking [175]. When fermion and gauge fields are allowed to propagate in the bulk, these models can also explain the
fermion mass spectrum through the split fermion proposal [189, 190, 224]. In these anarchic flavor models each element of
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the Yukawa matrices can take naturalO(1) values because the hierarchy of the fermion masses is generated by the exponential
localization of the fermion wave functions away from the Higgs field [225, 226].

The same small wavefunction overlap that yields the fermion mass spectrum also gives hierarchical mixing
angles [225, 227–229] and suppresses tree-level flavor-changing neutral currents (fcncs) by the rs-gim
mechanism [225, 226]. This built-in protection, however, may not always be sufficient to completely protect against the most
dangerous types of experimental fcnc constraints. In the quark sector, for example, the exchange of Kaluza-Klein (kk)
gluons induces left-right operators that contribute to cp violation in kaons and result in generic bounds ofO(10− 20 tev) for
the kk gluon mass [209, 230–234]. To reduce this bound one must either introduce additional structure (such as horizontal
symmetries [235, 236] or flavor alignment [237, 238]) or alternately gain severalO(1) factors [239] by promoting the Higgs
to a bulk field, inducing loop-level qcd matching, etc. This latter approach is limited by tension with loop-induced
flavor-violating effects [240].

The leptonic sector of the anarchic model is similarly bounded by fcncs. Agashe, Blechman and Petriello recently studied
the two dominant constraints in the lepton sector: the loop-induced μ→ eγ photon penguin from Higgs exchange and the
tree-level contribution to μ→ 3e and μ→ e conversion from the exchange of the Z boson kk tower [241]. These processes
set complementary bounds due to their complementary dependence on the overall magnitude of the anarchic Yukawa
coupling, Y∗. While μ→ eγ is proportional to Y3

∗ due to two Yukawa couplings and a chirality-flipping mass insertion, the
dominant contribution to μ→ 3e and μ→ e conversion comes from the nonuniversality of the Z boson near the ir brane. In
order to maintain the observed mass spectrum, increasing the Yukawa coupling pushes the bulk fermion profiles away from
the ir brane and hence away from the flavor-changing part of the Z. This reduces the effective four-dimensional (4D) fcnc
coupling so that these processes are proportional to Y−1

∗ . For a given kk gauge boson mass, these processes then set an upper
and lower bound on the Yukawa coupling which are usually mutually exclusive.

A key feature of the lepton sector is that one expects large mixing angles rather than the hierarchical angles in the
Cabbibo-Kobayashi-Maskawa (ckm) matrix. One way to obtain this is by using a global flavor symmetry for the lepton
sector [242] (see also [243, 244]). Including these additional global symmetries can relax the tension between the two
bounds. For example, imposing an A4 symmetry on the leptonic sector completely removes the tree-level constraints [242].
Another interesting possibility for obtaining large lepton mixing angles is to have the wavefunction overlap for the neutrino
Yukawa peak near the uv brane [245]. For generic models with anarchic fermions, however, [241] found that the tension
between μ→ eγ and tree-level processes (μ→ 3e and μ→ e conversion) push the gauge boson kk scale to be on the order of
5–10 tev.

The main goal of this paper is to present a detailed one-loop calculation of the μ→ eγ penguin in the rs model with a
brane-localized Higgs and to show that this amplitude is finite.

To perform the calculation and obtain a numerical result we choose to work in the five-dimensional (5D) mixed
position/momentum space formalism [223, 246]. This setup is natural for calculating processes on an interval with
brane-localized terms, as shown in Figure 5.2.1. In particular, there are no sums over kk modes, the chiral boundary
conditions are fully incorporated in the 5D propagators, and the uv behavior is clear upon Wick rotation where the basis of
Bessel functions becomes exponentials in the 4D loop momentum. The physical result is, of course, independent of whether
the calculation was done in 5D or in 4D via a kk decomposition. We show explicit one-loop finiteness in the kk decomposed
theory and remark upon the importance of taking into account the correct number of kk modes relative to the momentum
cutoff when calculating finite 5D loops.

The chapter is organized as follows: We begin in Section 5.3 by summarizing tree-level constraints on the anarchic Yukawa
scale. We refer to Chapter 3.5 for a review of the conventions of the anarchic rs model. We then proceed the analysis of
μ→ eγ. The dipole operators involved in this process are discussed in Section 5.4 and the relevant coefficient is calculated
using 5D methods in Section 5.5. In Section 5.6 we discuss the origin of finiteness in these operators in both the 5D and 4D
frameworks. We remark on subtleties in counting the superficial degree of divergence, the matching of the number of kk
modes with any effective 4D momentum cutoff, and remark on the expected two-loop degree of divergence. We conclude
with an outlook for further directions in Section 5.7. In Appendix 5.A we highlight the matching of local 4D effective
operators to nonlocal 5D amplitudes. Next in Appendices 5.B and 5.C we give estimates for the size of each diagram and
analytic expressions for the (next-to)leading μ→ eγ diagrams. Appendix 5.D focuses on the formalism of quantum field
theory in mixed position/momentum space and power counting. Finally, in Appendix 5.E we explicitly demonstrate a subtle
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flavor rotations. In this basis the only source for flavor violation are the Yukawa couplings, thus
every contribution to the amplitude contains brane-localized Yukawa vertices. If the loop extends
into the bulk then it must be finite by locality. Thus the only potentially divergent contributions
are 4D loops that are fully localized on the IR brane. However, the theory restricted to the IR
brane is a renormalizable 4D theory with no tree-level dipole operators. Thus one can apply
the usual argument that absence of suitable localized counter-terms requires that the µ → eγ
amplitude must be finite in the full 5D theory as well. The behavior of the theory in its UV
limit, i.e. at energies much greater than the curvature of the space, is effectively flat so that our
argument for finiteness holds for a generic 5D theory on an interval, irrespective of warping.

To perform the calculation and get a numerical result we choose to work in the 5D mixed
position/momentum space formalism [10, 11]. This setup is natural for calculating processes on
an interval with brane-localized terms, as shown in Fig. 1. In particular, there are no sums over KK
modes, the chiral boundary conditions are fully incorporated in the 5D propagators, and the UV
behavior is clear upon Wick rotation where the basis of Bessel functions become exponentials in
the 4D loop momentum. The physical result is, of course, independent of whether the calculation
was done in 5D or in 4D via a KK decomposition. We comment briefly in the appendices on the
4D calculation and show explicitly that the KK sum also converges.

µ

γ

e

Figure 1: A contribution to µ→ eγ from a brane-localized Higgs. The dashed line represents the
Higgs while the cross represents a Yukawa coupling with a Higgs vev.

The paper is organized as follows: We begin in Section 2 by establishing our conventions
and reviewing the general flavor structure of anarchic Randall-Sundrum models. In Section 3 we
summarize tree-level constraints on the anarchic Yukawa scale and discuss the effect of imposing a
custodial symmetry on the leptonic sector. We then proceed with the main purpose of this work,
the analysis of µ → eγ. The dipole operators involved in this process are discussion in Section 4
and the relevant coefficient is calculated using 5D methods in Section 6. We discuss the origin of
the finiteness of these operators in in Section 5 and conclude with an outlook for further directions
in Section 8. Appendices B and C provide details on the derivation of the 5D position/momentum
space propagators in flat and warped intervals. These results are used in Appendix D to explicitly
demonstrates the cancellation of of the µ→ eγ penguin diagrams in the UV limit where the theory
is effectively flat. Finally, in Appendix E we discuss the origin of this finiteness from the point of
view of a KK decomposition.

2

Figure 5.2.1: A contribution to μ → eγ from a brane-localized Higgs. The dashed line represents the Higgs
while the cross represents a Yukawa coupling with a Higgs vev.

cancellation in the single-mass insertion neutral Higgs diagram that is referenced in Section 5.6.

5.3 Tree-level constraints from μ → 3e and μ → e conversion

For a fixed kk gauge boson mass MKK, limits on μ→ 3e and μ→ e conversion in nuclei provide the strongest lower bounds
on the anarchic Yukawa scale Y∗. These tree-level processes are parameterized by Fermi operators generated by Z and Z′

exchange, where the prime indicates the kk mode in the mass basis. The effective Lagrangian for these lepton flavor-violating
Fermi operators are traditionally parameterized as [247]

L =
4GF√

2

[
g3(̄eRγμμR)(̄eRγμeR) + g4(̄eLγμμL)(̄eLγ

μeL) + g5(̄eRγμμR)(̄eLγμeL)

+g6(̄eLγμμL)(̄eRγμeR)
]
+

GF√
2
ēγμ(v− aγ5)μ

∑
q

q̄γμ(v
q − aqγ5)q, (5.1)

where we have only introduced the terms that are non-vanishing in the rs set up, and use the normalization where
vq = Tq

3 − 2Qq sin2 θ. The axial coupling to quarks, aq, vanishes in the dominant contribution coming from coherent
scattering off the nucleus. The g3,4,5,6 are responsible for μ→ 3e decay, while the v, a are responsible for μ→ e conversion in
nuclei. The rates are given by (with the conversion rate normalized to the muon capture rate):

Br(μ→ 3e) = 2(g23 + g24) + g25 + g26 , (5.2)

Br(μ→ e) =
peEeG2

FF2
pm3

μα3Z4
eff

π2ZΓcapt
Q2

N(v
2 + a2), (5.3)

where the parameters for the conversion depend on the nucleus and are calculated in the Feinberg-Weinberg
approximation [248] and we write the charge for a nucleus with atomic number Z and neutron number N as

QN = vu(2Z + N) + vd(2N + Z). (5.4)
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. The most sensitive experimental constraint comes from muon conversion in 48
22Ti, for which

Ee ∼ pe ∼ mμ, Fp ∼ 0.55, Zeff ∼ 17.61, Γcapt ∼ 2.6 · 10
6

s
. (5.5)

We now consider these constraints for a minimal model (where feL = feR , fμL = fμR) and for a model with custodial protection.

5.3.1 Minimal rs model

In order to calculate the coefficients in the effective Lagrangian (5.1), we need to estimate the flavor-violating couplings of the
neutral gauge bosons in the theory. In the basis of physical kk states all lepton flavor-violating couplings are the consequence
of the non-uniformity of the gauge boson wave functions. Let us first consider the effect of the ordinary Z boson, whose wave
function is approximately (we use the approximation (2.19) of [249] with a prefactor for canonical normalization)

h(0)(z) =
1√

R log R′
R

[
1 +

M2
Z

4
z2
(
1− 2 log

z
R

)]
. (5.6)

The coupling of the Z to fermions can be calculated by performing the overlap integral with the fermion profiles in (??) and is
found to be

gZff = gZSM

(
1 +

(MZR′)2 log R′
R

2(3− 2c)
f2c

)
. (5.7)

After rotating the fields to the mass eigenbasis we find that the off-diagonal coupling of the Z boson to charged leptons is given
by the nonuniversal term and is approximately

gZeμL,R ≈
(
gZSM
)L,R Δ(0)

eμ ≡
(
gZSM
)L,R (MZR′)2 log R′

R

2(3− 2c)
feL,R fμL,R . (5.8)

Using these couplings one can estimate the coefficients of the 4-Fermi operators in (5.1),

g3,4 = 2g2L,RΔ
(0)
eμ g5,6 = 2gLgRΔ(0)

eμ (v± a) = 2gL,RΔ(0)
eμ , (5.9)

where the gL,R are proportional to the left- and right-handed charged lepton couplings to the Z in the Standard Model,
gL = − 1

2 + s2W and gR = s2W. The Z′ exchange contribution to μ→ 3e (μ→ e) is a 15% (5%) correction and the γ′ exchange
diagram is an additional 5% (1%) correction; we shall ignore both here. We make the simplifying assumption that feL = feR
and fμL = fμR and then express these in terms of the Standard Model Yukawa couplings as f =

√
λ/Y∗. The expressions for

the lepton flavor-violating processes are then

Br(μ→ 3e) = 10−13
(

3 tev
MKK

)4 ( 2
Y∗

)2

(5.10)

Br(μ→ e)Ti = 2 · 10−12
(

3 tev
MKK

)4 ( 2
Y∗

)2

. (5.11)

The current experimental bounds are Br(μ→ 3e) < 10−12 [250] and Br(μ→ e)Ti < 6.1 · 10−13 [251] so that μ→ e
conversion provides the most stringent constraint,(

3 tev
MKK

)2( 2
Y∗

)
< 0.5. (5.12)

For a 3 tev Z′, the anarchic Yukawa scale must satisfy Y∗ ≳ 3.7, which agrees with [241].
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5.3.2 Custodially protected model

Since the bound in (5.12) is model dependent, one might consider weakening this constraint by having the leptons transform
under the custodial group

SU(2)L × SU(2)R × U(1)X × PLR, (5.13)

where PLR is a discrete L↔ R exchange symmetry. Such a custodial protection was introduced in [211] to eliminate large
corrections to the Zbb̄ vertex in the quark sector. It was later found that this symmetry also eliminates some of the fcncs in the
Z sector [209] so that one might also expect it to alleviate the lepton flavor violation bounds. We shall now estimate the extent
to which custodial symmetry can relax the bound on Y∗. Further discussion including neutrino mixing can be found in [252].

To custodially protect the charged leptons one choses the (L,R)X representation (2, 2)0 for the left-handed leptons,
(3, 1)0 ⊕ (1, 3)0 for the charged right-handed leptons, and (1, 1)0 for the right-handed neutrinos. There are two neutral zero
mode gauge bosons, the Standard Model Z and γ, and three neutral kk excitations, γ′,Z′ and ZH, where the latter two are
linear combinations of the Z and ZX boson modes. The coupling of the left handed leptons to the ordinary Z and the Z′ are
protected since those couplings are exactly flavor universal in the limit where PLR is exact. The breaking of PLR on the uv
brane leads to small residual contributions which we neglect. The remaining flavor-violating couplings for the left-handed
leptons come from the exchange of ZH and the γ′, while the right-handed leptons are unprotected.

Since (v− a) couples to right-handed leptons its coupling is unprotected and is the same as in (5.9). For (v + a), on the
other hand, the leading-order effect comes from the Z(1) component of the ZH, whose composition in terms of gauge kk states
is [209]

ZH = cos ξZ(1) + sin ξZ(1)
X + βZ(0), (5.14)

where Z(0) is the flat zero mode Z-boson which does not contribute to fcncs, cos ξ ≈
√ 1

2 − s2W/cW, and β is a small
correction of orderO(v2/M2

KK). The flavor-changing coupling of the kk gauge bosons is analogous to that of kk gluons
in [230],

gZ
(1)eμ

L,R ≈
(
gZSM
)L,R ΔL,R(1)

eμ ≡
(
gZSM
)L,R√log

R′

R
γc feL,R fμL,R , (5.15)

where

γc =

√
2

J1(x1)

∫ 1

0
dx x1−2cJ1(x1 x) ≈

√
2

J1(x1)
0.7x1

2(3− 2c)
(5.16)

and x1 = MKKR′ is the first zero of J0(x). The analogous γ(1) coupling is given by gZSM → e. Taking into account the ZH and
γ(1), the (v + a) effective coupling to left-handed leptons is

(v + a) = 2gL gKK
M2

Z

M2
KK

(
cos2 ξ +

QZX
N

QN
cos ξ sin ξ

)
ΔL(1)
eμ + 2s2Wc2W gKK

M2
Z

M2
KK

Qγ
N

QN
ΔL(1)
eμ . (5.17)

The cos ξ sin ξ term in the parenthesis represents the Z(1)
X component of the ZH which couples to the quarks in the nucleus via

QZX
N = − 1√

2
cW cos ξ (5Z + 7N)− 2

√
2

cos ξ
sW

g′

g
(Z + N), gKK =

1√
logR′/R

. (5.18)

The gKK factor gives the universal (flavor-conserving) coupling of kk gauge bosons to zero mode fermions. Qγ
N is the electric

charge of the nucleus normalized according to (5.3), Qγ
N = 2Z.

Minimizing over the flavor factors feL,R and fμL,R subject to the zero mode fermion mass spectrum and comparing to the
experimental bound listed above (5.12), we find that the conversion rate must satisfy(

3 tev
MKK

)2( 2
Y∗

)
< 1.6. (5.19)
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lowering the bound to Y∗ ≳ 1 for a 3 tev kk gauge boson scale.

5.4 Operator analysis of μ → eγ

We work in ’t Hooft–Feynman gauge (ξ = 1) and a flavor basis where all bulk masses ci are diagonal. The 5D amplitude for
μ→ eγ takes the form

CH · L̄iσMNEjFMN, (5.20)

where it is understood that the 5D fields should be replaced by the appropriate external states which each carry an
independent z position in the mixed position/momentum space formalism. These positions must be separately integrated
over when matching to an effective 4D operator so that (5.20) can be thought of as a dimension-8 5D scattering amplitude
whose prefactor C is a function of the external state positions, as explained in Appendix 5.A. When calculating this amplitude
in the mixed position/momentum space formalism, the physical external state fields have definite kk number, which we take
to be zero modes. The external field profiles and internal propagators depend on 4D momenta and z-positions so that vertex
z-positions are integrated from z = R to z = R′ while loop momenta are integrated as usual.

After plugging in the wave functions for the fermion and photon zero modes, including all warp factors, matching the gauge
coupling, and expanding in Higgs-induced mass insertions, the leading order 4D operator and coefficients for μ→ eγ are

R′2 e
16π2

v√
2
fLi
(
akℓYikY†

kℓYℓj + bijYij

)
f−Ej L̄

(0)
i σμνE(0)

j F(0)
μν + h.c. (5.21)

The term proportional to three Yukawa matrices comes from the diagrams shown in Figs. 5.5.1 and 5.5.2, while the
single-Yukawa term comes from those in Figure 5.5.3. In the limit where the bulk masses are universal, we may treat the
Yukawas as spurions of the U(3)3 lepton flavor symmetry and note that these are the products of Yukawas required for a
chirality-flipping, flavor-changing operator.

In anarchic flavor models, however, the bulk masses for each fermion species is independent and introduce an additional
flavor structure into the theory so that the U(3)3 lepton flavor symmetry is not restored even in the limit Y→ 0. The indices
on the dimensionless akℓ and bij coefficients encode this flavor structure as carried by the internal fermions of each diagram.
Because the lepton hierarchy does not require very different bulk masses, both akℓ and bij are nearly universal.

Next note that the zero-mode mass matrix (??) introduces a preferred direction in flavor space which defines the mass
basis. In fact, up to the non-universality of bij, the single-Yukawa term in (5.21) is proportional to—or aligned—with (??).
Hence upon rotation to the mass basis, the off-diagonal elements of this term are typically much smaller than its value in the
flavor basis [253, 254] and would be identically zero if the bulk masses were universal. Given a set of bulk mass parameters,
the extent to which a specific off-diagonal element of the bij term is suppressed depends on the particular structure of the
anarchic 5D Yukawa matrix. This is a novel feature since the structure of the underlying anarchic Yukawa is usually washed out
in observables by the hierarchies in the fc flavor functions.

On the other hand, a product of anarchic matrices typically indicates a very different direction in flavor space from the
original matrix so that the aij term is not aligned and we may simplify the product to∑

k,ℓ

akℓYikY†
kℓYℓj = aY3

∗ (5.22)

for each i and j. Here we have defined the prefactor a; different definitions can include an overallO(1) factor from the sum over
anarchic matrix elements. We have used the anarchic limit and the assumption that neither akℓ nor bij vary greatly over
realistic bulk mass values. This assumption is justified in Section 5.5 where we explicitly calculate these coefficients to leading
order. Further, we have assumed that the scales of the anarchic electron and neutrino Yukawa matrices are the same so that
(YE)ij ∼ (YN)ij ∼ Y∗.

To determine the physical μ→ eγ amplitude from this expression we must go to the standard 4D mass eigenbasis by
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performing a bi-unitary transformation to diagonalize the Standard Model Yukawa,

λSM = ULλ(diag)U†
R, (5.23)

where the magnitudes of the elements of the unitary matrices UL,R are set, in the anarchic scenario, by the hierarchies in the
flavor constants

(UL)ij ∼
fLi
fLj

for fLi < fLj . (5.24)

For future simplicity, let us define the relevant part of the bijYij matrix after this rotation,

bY∗ =
∑
k,ℓ

(UL)2kbkℓYkℓ(U†
R)ℓ1. (5.25)

The traditional parameterization for the μ→ eγ amplitude is written as [241]

−iCL,R

2mμ
ūL,R σμν uR,LFμν, (5.26)

where uL,R are the left- and right-handed Dirac spinors for the leptons. Comparing (5.21) with (5.26) and using the
magnitudes of the off-diagonal terms in the UL rotation matrix in (5.24), we find that in the mass eigenbasis the coefficients
are given by

CL = (aY3
∗ + bY∗)R′2 e

16π2
v√
2
2mμfL2 f−E1 , (5.27)

CR = (aY3
∗ + bY∗)R′2 e

16π2
v√
2
2mμfL1 f−E2 . (5.28)

The μ→ eγ branching fraction and its experimental bound are given by

Br(μ→ eγ)thy =
12π2

(GFm2
μ)2

(|CL|2 + |CR|2), (5.29)

Br(μ→ eγ)exp < 1.2 · 10−11. (5.30)

While the generic expression for Br(μ→ eγ) depends on the individual wave functions fL,−E, the product CLCR is fixed by
the physical lepton masses and the relation C2

L + C2
R ≥ 2CLCR so that one can put a lower bound on the branching ratio

Br(μ→ eγ) ≥ 6 |aY2
∗ + b|2 α

4π

(
R′2

GF

)2 me

mμ
≈ 5.1 · 10−8 |aY2

∗ + b|2
(

3 tev
MKK

)4

. (5.31)

Thus for a 3 tev kk gauge boson scale we obtain an upper bound on Y∗

|aY2
∗ + b|

(
3 tev
MKK

)2

≤ 0.015. (5.32)

Note that the b coefficient is independent of Y∗ so that sufficiently large b can rule out the assumption that the 5D Yukawa
matrix can be completely anarchic—i.e. with no assumed underlying flavor structure—at a given kk scale no matter how small
one picks Y∗. This is a new type of constraint on anarchic flavor models in a warped extra dimension. Conversely, if b is of the
same order as a and has the opposite sign, then the bounds on the anarchic scale Y∗ are alleviated. We will show below that b
is typically suppressed relative to a but can, in principle, take a range of values between b = −0.5 and 0.5. For simplicity we
may use the case b = 0 as a representative and plausible example, in which case the bound on the anarchic Yukawa scale is

Y∗ ≤ 0.12 |a|−
1
2 . (5.33)

In Section 5.5.4 we quantify the extent to which the b term may affect this bound. Combined with the lower bounds on Y∗
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H0,G0 Z Z Z

H0,G0 Z5 Z5 Z5

Figure 5.5.1: Neutral boson diagrams contributing to the a coefficient defined in (5.22). Fermion arrows denote
the zero mode chirality, i.e. the SU(2) representation. External legs whose arrows do not point outward have an
implicit external mass insertion. Dotted lines represent the fifth component of a bulk gauge field. Analytic forms
for these diagrams are given in Appendix 5.C.

from tree-level processes in Section 5.3, this bound typically introduces a tension in the preferred value of Y∗ depending on
the value of a. In other words, it can force one to either increase the kk scale or introduce additional symmetry structure into
the 5D Yukawa matrices which can reduce a in (5.22) or force a cancellation in (5.32).

5.5 Calculation of μ → eγ in a warped extra dimension

In principle, there are a large number of diagrams contributing to the a and b coefficients even when only considering the
leading terms in a mass insertion expansion. These are depicted in Figs. 5.5.1–5.5.3. Fortunately, many of these diagrams are
naturally suppressed and the dominant contribution to each coefficient is given by the two diagrams shown in Figure 5.5.4.
Analytic expressions for the leading and next-to-leading diagrams are given in Appendix 5.C along with an estimate of the size
of each contribution.

The flavor structure of the diagrams contributing to the b coefficient is aligned with the fermion zero-mode mass
matrix [226, 241]. The rotation of the external states to mass eigenstates thus suppresses these diagrams up to the bulk mass
(c) dependence of internal propagators which point in a different direction in flavor space and are not aligned. Since kk modes
do not carry very strong bulk mass dependence, the diagrams which typically give the largest contribution after alignment are
those which permit zero mode fermions in the loop. We provide a precise definition of the term “typically” in Section 5.5.2.

The Ward identity requires that the physical amplitude for a muon of momentum p to decay into a photon of polarization ε
and an electron of momentum p′ takes the form

M = εμMμ ∼ εμūp′
[
(p + p′)μ − (mμ + me)γμ] up. (5.34)

This is the combination of masses and momenta that gives the correct chirality-flipping tensor amplitude in (5.26). This
simplifies the calculation of this process since one only has to identify the coefficient of the ūp′(p + p′)μu term to determine
the entire amplitude; all other terms are redundant by gauge invariance [255]. The general strategy is to use the Clifford
algebra and the equations of motion for the external spinors to determine this coefficient. This allows us to directly write the
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W W,W5 W5,W W5

H± H± H±,W

Figure 5.5.2: Charged boson diagrams contributing to the a coefficient following the conventions in Fig-
ure 5.5.1. Analytic forms for these diagrams are given in Appendix 5.C.

finite physical contribution to the amplitude without worrying about the regularization of potentially divergent terms which
are not gauge invariant. In Section 5.6.1 we will further use this observation to explain the finiteness of this amplitude in 5D.

In addition to the diagrams in Figs. 5.5.1–5.5.3, there are higher-order diagrams with an even number of additional mass
insertions and brane-to-brane propagators. Following the Feynman rules in Appendix 4.6, each higher-order pair of mass
insertions is suppressed by an additional factor of(

/k
k

R′4

R4 · (−i)
R3

R′3 RY∗
v√
2

)2

∼ 1
2
(
Y∗R′v

)2 ∼ O(10−2), (5.35)

since we assume anarchic Yukawa matrices, Y∗ ∼ 2. We are thus justified in considering only the leading-order terms in the
mass insertion approximation.

We now present the leading contributions to the a and b coefficients. Other diagrams give a correction on the order of 10%
of these results. We provide explicit formulas and numerical estimates for the next-to-leading order corrections in Appendix
5.C.

5.5.1 Calculation of a

We now calculate the leading-order contribution to the amplitude to determine the a coefficient in (5.22). As discussed above,
it is sufficient to compute the coefficient of the (p + p′)μ term in the amplitude. The dominant contribution to a comes from
the W boson diagrams in Figure 5.5.4a. This is because diagrams with 5D gauge bosons are enhanced relative to the Higgs
diagrams by a factor of lnR′/R ∼ 37. Further, the W diagrams are enhanced over the Z diagrams due to the size of their
respective Standard Model couplings to leptons. Additional suppression factors can arise from the structure of each diagram
and are discussed in Appendix 5.B. Explicit calculation confirms that the W loop with two internal mass insertions indeed
gives the leading contribution to a.

The charged and neutral boson diagrams have independent flavor structures, (YEY†
NYN)μe and (YEY†

EYE)μe respectively.
The anarchic Yukawa assumption implies that both of these terms should be of the same order, Y3

∗. However one must
remember that there may be a relative sign between these contributions depending on the specific anarchic YN and YE

matrices. In other words, a = acharged ± aneutral where the sign cannot be specified generically. However, because
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W W,W5 W5,W W

Z Z Z H±,W

Figure 5.5.3: Diagrams contributing to the b coefficient following the conventions in Figure 5.5.1. Not shown:
zero mass-insertion Z5 diagram. Analytic forms for these diagrams are given in Appendix 5.C.

aneutral ≪ acharged, we ignore the neutral boson loops, though these neutral boson diagrams may become appreciable if one
allows a hierarchy between the overall scales of the YN and YE matrices.

The W loop in Figure 5.5.4a contains an implicit mass insertion on the external muon leg. As explained in Appendix 5.B,
the 5D fermion propagator between this mass insertion and the loop vertex is dominated by the kk mode which changes
fermion chirality. This is because the chirality-preserving piece of the propagator goes like /p. Invoking the muon equation of
motion gives a factor of f(0)μ (vR′)f(0)μ ∼ (mμR′) for the external leg. This is much smaller than the f(0)μ (vR′)f(KK)μ factor from
the chirality-flipping part of the propagator. Compared to the mass insertion connecting the zero mode external muon to a kk
intermediate state, the mass insertion connecting two zero mode fermions is smaller by a factor of the exponentially
suppressed zero mode profile¹.

Using the Feynman rules in Appendix 4.6, the amplitude this diagram is

Mμ|(p+p′) =
i

16π2 (R
′)2fcLμ Y

3
∗f−cEe

ev√
2

(
g2

2
ln

R′

R

)(
R′v√

2

)2

I2MIW ūp′(p + p′)μup, (5.36)

where I2MIW = −0.31 is a dimensionless loop integral. Taking R′v/
√

2 = .17 and g2/2 ln(R′/R) = 7.3, the a coefficient in
(5.22) is

a = −0.065. (5.37)

5.5.2 Calculation of b

As discussed above, the diagrams contributing to b are sensitive to the structure of the anarchic Yukawa matrix relative to that
of the non-universal internal bulk fermion masses. For example, if the bulk mass parameters were universal, then the b
coefficient operator would be aligned and the off-diagonal element would vanish. The sign of this off-diagonal term is a
function of the initial anarchic matrix so that the b term may interfere constructively or destructively with the a term
calculated above. We numerically generate anarchic matrices whose elements have random sign and random values between

¹We thank Martin Beneke, Paramita Dey, and Jürgen Rohrwild for pointing this out.
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(a) W (b) H±,W (b) Z

Figure 5.5.4: The leading diagrams contributing to the a and b coefficients following the same conventions as
Figure 5.5.1.

0.5 and 2 to determine the distribution of probable Yukawa structures. Such a distribution is peaked about zero so that the
choice b = 0 is a reasonable simplifying assumption. For a more detailed description of the range of bounds accessible by the
anarchic rs scenario, one may use the 1σ value of |b| as characteristic measure of how large an effect one should expect from
generic anarchic Yukawas.

The dominant contributions to the b coefficient are shown in Figure 5.5.4b. These are the diagram with a charged
Goldstone and a W in the loop and the diagram with a Z and a single mass insertion in the loop. Following the analysis in in
Appendix 5.B.4, these diagrams can have zero mode fermions propagating in the loop and hence are sensitive to the bulk mass
parameters of the internal fermions being summed in the loop. This, in turn, implies that the diagrams are more robust against
alignment upon rotating to the zero mode mass basis.

The amplitudes associated with this diagram are

M(1MIZ)|(p+p′)μ =
i

16π2

(
R′)2 fcLYEf−cE

ev√
2

(
gZLgZR ln

R′

R

)
× I1MIZ, (5.38)

M(0MIHW)|(p+p′)μ =
i

16π2

(
R′)2 fcLYEf−cE

ev√
2

(
g2

2
ln

R′

R

)
× I0MIHW, (5.39)

where gZL,R is the Standard Model coupling of the Z to left- and right-handed leptons respectively. The values for the
dimensionless integrals are given in (5.75) and (5.76).

After scanning over anarchic matrices as defined above, the 1σ value for the b coefficient is

|b1σ | = 0.03. (5.40)

Here we take the 1σ value of the b coefficient assuming the bulk masses of the minimal model cL = cR as a representative
benchmark for a plausible general estimate of the generically allowed range of b.

5.5.3 Modifications in custodial modes

In Section 5.3.2 it was shown that custodial symmetry weakens the bounds from tree-level fcncs. Since we would like to
assess the tension between tree- and loop-level bounds, we should also examine the effect of the additional custodial modes
on μ→ eγ. These additional diagrams are described by the same topologies as those in Figs. 5.5.1–5.5.3 but differ by
replacing internal lines with custodial bosons and fermions. The expression for the amplitude differs by coupling constants
and the use of propagators with different boundary conditions, but not in the overall structure of each amplitude and so are
straightforward to extract from the minimal model expressions. The leading topologies are unchanged so that it is sufficient to
consider the custodial versions of the diagrams in Figure 5.5.4.

For the two-mass-insertion W diagram, there are two additional diagrams with custodial fermions: one with a WL and the
other with a WR in the loop. The PLR symmetry enforces that the couplings are identical while the different boundary
conditions modify the definitions of the internal propagators so that the only difference comes from the value of the
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dimensionless integral in (5.36). The each diagram contributes a dimensionless integral I = −0.2, so that the a coefficient is
modified to

acust. = −0.15. (5.41)

Custodial diagrams do not contribute to the b coefficient at leading order. For example, one might consider the diagram
with a Z loop where the Z is replaced by a ZX, the orthogonal mixture of the custodial X and W3

R bosons. However, leptons
carry no X charge so that the effective coupling is only to right chiral modes. For μR → eLγ, such a diagram would not be
allowed. The leading custodial b coefficient diagrams are an order of magnitude smaller than the minimal model diagrams and
we shall ignore them in this paper.

5.5.4 Constraints and tension

0.5

1.0

1.5

0 2 4 6 8 M
KK

Y
*

(a)Minimal model

0.5

1.0

1.5

0 2 4 6 8 M
KK

Y
*

(b)Custodial model

Figure 5.5.5: Bounds on the anarchic Yukawa and kk scales in the minimal (a) and custodial (b) models from
tree- and loop-level constraints, (5.12), (5.19), and (5.32). Each curve rules out the region to its left. The solid
hyperbola is the appropriate tree-level bound. The thick solid straight line is the b = 0 loop-level bound. The
red dashed (blue dotted) curve is the loop-level bounds in the case where b has the same (opposite) sign as a and
takes its 1σ magnitude |b| = |b|1σ = 0.03.

We can now estimate the upper bound on the anarchic Yukawa scale Y∗ in (5.32),

|aY2
∗ + b|

(
3 tev
MKK

)2

≤ 0.015. (5.32)

First let us consider the scenario where the b coefficient takes its statistical mean value, b = 0, and MKK = 3 tev. In this case
the minimal model suffers aO(10) tension between the tree-level lower bound on Y∗ and the loop-level upper bound,

Y∗ > 4 Y∗ < 0.5. (5.42)
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The custodial model slightly alleviates this tension,

Y∗ > 1.25 Y∗ < 0.3. (5.43)

These discrepancies should be interpreted as an assessment on the extent to which the 5D Yukawa matrices may be generically
anarchic. The tension in the bounds above imply that for MKK = 3 tev, one must accept some mild tuning in the relative sizes
of the 5D Yukawa matrix. This is shown by the hyperbola and solid line in Figure 5.5.5.

Alternately, one may ask that assuming totally anarchic Yukawas, what is the minimum value of MKK for which the tension
is alleviated? In the minimal model the tree- and loop-level bounds allow mutually consistent Yukawa scales for MKK > 6
starting at Y = 1. Similarly, for the custodial model the tree- and loop-level bounds allow consistent values for MKK > 4.75
starting at Y = 0.5.

Next one may consider the effect of the b coefficient which is sensitive to the particular flavor structure of the anarchic 5D
Yukawa matrix relative to the choice of fermion bulk mass parameters. The 1σ range of b values for randomly generated
anarchic matrices is b ∈ (−0.03, 0.03). Because this term is independent of Y∗, the value of b can directly constraint the kk
scale. For the 1σ value this sets MKK ≳ 4 tev, as can be seen from the intersection of the red dashed lines and blue dotted lines
with the horizontal axes in Figure 5.5.5.

The most interesting range for b, however, is the regime where it can cancel the a term in term in (5.32). In such a regime
the loop level bounds can deviate significantly from the prediction with only the a coefficient, allowing one to relax the
constraints on Y∗ and MKK. However, because the 1σ value of b is an order of magnitude smaller than a in the lepton sector,
this region is disfavored by tree-level bounds. For broad model-building purposes, the key point is that the effect of the b
coefficient lines in Figure 5.5.5 represent the freedom to reduce (or enhance) the loop-level constraints through the
misalignment of the anarchic Yukawas relative to the bulk masses. This misalignment comes from the choice of two
independent spurions in flavor space and is not a tuning in the hierarchies of the Yukawa matrices.

In Figure 5.5.5 the red dashed line shows the bound when b takes its 1σ magnitude and has an opposite sign from a; the
cusp at MKK = 0 represents the case where the a and b terms cancel. The blue dotted line shows the case where b takes its 1σ
magnitude and has the same sign as a. What is important to note is that as one takes |b| less than |b|1σ , these lines continuously
converge upon the straight line corresponding to b = 0 so that any combination of Y∗ and MKK between the upper red dashed
line and the blue dotted line can be plausibly achieved within the anarchic paradigm. Let us make the caveat that the above
values are estimates atO(10%) accuracy. Specific results depend on model-dependent factors such as the extent to which the
matrices are anarchic, the relative scale of the charged lepton and neutrino anarchic values, or extreme values for bulk masses.
For completeness we provide analytic formulas for the leading and next-to-leading order diagrams in Appendix 5.C.

5.6 Power counting and finiteness

We now develop an intuitive understanding of the finiteness of this 5D process, highlight some subtleties associated with the
kk versus 5D calculation of the loop diagrams², and estimate the degree of divergence of the two-loop result. Our primary
tool is naïve dimensional analysis, from which we may determine the superficial degree of divergence for a given 5D diagram.
Special care is given to the treatment of brane-localized fields and the translation between the manifestly 5D and kk
descriptions.

5.6.1 4D and 5D theories of bulk fields

It is instructive to review key properties of μ→ eγ in the Standard Model. This amplitude was calculated by several
authors [255, 257–260]. Two key features are relevant for finiteness:

1. Gauge invariance cancels the leading order divergences. The Ward identity requires qμMμ = 0, whereMμ is the
amplitude with the photon polarization peeled off and qμ is the photon momentum. This imposes a nontrivial
q-dependence onM and reduces the superficial degree of divergence by one.

²The finiteness of dipole operators has been investigated in gauge-higgs unified models where a higher-dimensional gauge
invariance can render these terms finite [256]. Here we do not assume the presence of such additional symmetries.
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2. Lorentz invariance prohibits divergences which are odd in the loop momentum, k. In other words,
∫

d4k /k/k2n = 0.
After accounting for the Ward identity, the leading contribution to the dipole operator is odd in k and thus must
vanish. Specifically, one of the /k terms in a fermion propagator must be replaced by the fermion mass m.

Recall that the chiral structure of this magnetic operator requires an explicit internal mass insertion. In the Standard Model
this is related to both gauge and Lorentz invariance so that it does not give an additional reduction in the superficial degree of
divergence. Before accounting for these two features, naïve power counting in the loop integrals appears to suggest that the
Standard Model amplitude is logarithmically divergent from diagrams with two internal fermions and a single internal boson.
Instead, one finds that these protection mechanisms force the amplitude to go as M−2 where M is the characteristic loop
momentum scale.

We can now extrapolate to the case of a 5D theory. First suppose that the theory is modified to include a noncompact fifth
dimension: then we could trivially carry our results from 4D momentum space to 5D except that there is an additional loop
integral. By the previous analysis, this would give us an amplitude that goes as M−1 and is thus finite. Such a theory is not
phenomenologically feasible but accurately reproduces the uv behavior of a bulk process in a compact extra dimension so
long as we consider the uv limit where the loop momentum is much larger than the compactification and curvature scales.
This is because the uv limit of the loop probes very small length scales that are insensitive to the compactification and any
warping. This confirms the observation that μ→ eγ in Randall-Sundrum models with all fields (including the Higgs) in the
bulk is uv–finite [241]. In the case where there are brane-localized fields, this heuristic picture is complicated since the
μ→ eγ loop is intrinsically localized near the brane and is sensitive to its physics; we address this issue below.

5.6.2 Bulk fields in the 5D formalism

We may formalize this power counting in the mixed position/momentum space formalism. This also generalizes the above
argument to theories on a compact interval. Each loop carries an integral d4k and so contributes+4 to the superficial degree
of divergence. We can now consider how various features of particular diagrams can render this finite.

1. Gauge invariance (p + p′). As argued above and shown explicitly in (5.34), the Ward identity identifies the gauge
invariant contribution to this process to be proportional to (p + p′)μ , which reduces the overall degree of divergence
by one.

2. Bulk Propagators. The bulk fermion propagators in the mixed position/momentum space formalism have a
momentum dependence of the form /k/k ∼ 1 while the bulk boson propagators go like 1/k. This matches the power
counting from summing a tower of kk modes. Note that this depends on k =

√
k2 so that the Lorentz invariance in

Section 5.6.1 for a noncompact extra dimension is no longer valid.

3. Bulk vertices (dz), overall z-momentum conservation. Each bulk vertex carries an integral over the vertex position
which brings down an inverse power of the momentum flowing through it. This can be seen from the form of the bulk
propagators, which depend on z in the dimensionless combination kz up to overall warp factors. In the Wick-rotated
uv limit, the integrands reduce to exponentials so that their integrals go like 1/k. In momentum space this suppression
is manifested as the momentum-conserving δ function in the far uv limit where the loop momentum is much greater
than the curvature scale.
An alternate and practical way to see the 1/k scaling of an individual dz integral comes from the Jacobian as one shifts
to dimensionless integration variables,

y = kER′ x = kEz (5.44)

so that y ∈ [0,∞] plays the role of the loop integrand and x ∈ [yR/R′, y] plays the role of the integral over the interval
extra dimension. These are the natural objects that appear as arguments in the Bessel functions contained in the bulk
field propagators, as demonstrated in Appendix 4.4.3. In these variables each dx brings down a factor of 1/y from the
Jacobian of the integration measure. These variables are natural choices because they relate distance intervals in the
extra dimension to the scales that are being probed by the loop process. The physically relevant distance scales are
precisely these ratios.
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4. Overall z-momentum conservation. We must make one correction to the bulk vertex suppression due to overall
z-momentum conservation. This is most easily seen in momentum space where one δ-function from the bulk vertices
conserves overall external momentum in the extra dimension and hence does not affect the loopmomentum. Inmixed
position/momentum space this is manifested as one dz integral bringing down an inverse power of only external
momenta without any dependence on the loop momentum. We review this in Appendix 5.D, where we discuss the
passage between position and momentum space. The overall z-momentum conserving δ-function thus adds one unit
to the superficial degree of divergence to account for the previous overcounting of dz ∼ 1/k suppressions.

5. Derivative coupling. The photon couples to charged bosons through a derivative coupling which is proportional to
the momentum flowing through the vertex. This gives a contribution that is linear in the loop momentum, kμ .

6. Chirality: mass insertion, equation of motion. To obtain the correct chiral structure for a dipole operator, each
diagram must either have an explicit fermion mass insertion or must make use of the external fermion equation of
motion (EOM). For a bulk Higgs field, each fermion mass insertion carries a dz integral which goes like 1/k. As
described in Section 5.5, the use of the EOM corresponds to an explicit external mass insertion. Thus fermion
chirality reduces the degree of divergence by one unit.

We may now straightforwardly count the powers of the loop momentum to determine the superficial degree of divergence
for the case where the photon is emitted from a fermion (one boson and two fermions in the loop) or a boson (two bosons
and one fermion in the loop). The latter case differs from the former in the number of boson propagators and the factor of kμ

in the photon Feynman rule.

Neutral Charged
Boson Boson

Loop integral (d4k) +4 +4
Gauge invariance (p + p′) −1 −1
Bulk fermion propagators 0 0

Bulk boson propagator −1 −2
Bulk vertices (dz) −3 −3

Overall z-momentum +1 +1
Derivative coupling 0 +1

Mass insertion/EOM −1 −1
Total degree of divergence −1 −1

The WH± diagram in Figure 5.5.3 is a special case since it has neither a derivative coupling nor an additional chirality flip, but
these combine to make no net change to the superficial degree of divergence. We confirm our counting in Section 5.6.1 that
the superficial degree of divergence for universal extra dimension where all fields propagate in the bulk is−1 so that the
flavor-changing penguin is manifestly finite.

Before moving on to the case of a brane-localized boson, let us remark that this bulk counting may straightforwardly be
generalized to the case of a bulk boson with brane-localized mass insertions. To do this, we note that the brane-localized mass
insertion breaks momentum conservation in the z direction and this no longer contributes+1 to the degree of divergence. On
the other hand, each mass insertion no longer contributes−1 from the dz integral so that the changes in the “overall
z-momentum” and “mass insertion/EOM” counting cancel out. We find that diagrams with a bulk gauge boson and
brane-localized mass insertions have the same superficial degree of divergence as the lowest order diagrams in a bulk mass
insertion expansion.

5.6.3 Bulk fields in the kk formalism

All of the power counting from the 5D position/momentum space formalism carries over directly to the kk formalism with
powers of mKK treated as powers of k. The position/momentum space propagators already carry the information about the
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Figure 5.6.1: One-mass-insertion neutral scalar diagrams. The leading order k-dependence of each diagram can-
cels when the two are summed together.

entire kk tower as well as the profiles of each kk mode. Explicitly converting from a 5D propagator to a kk reduction,

Δ5D(k, z, z′) =
∑
n

f(n)(z)Δ(n)
KK(k)f

(n)(z′), (5.45)

where f(n) is the profile of the nth kk mode. The sum over kk modes is already accounted for in the 5D propagator; for
example, for a boson Δ(n)

KK ∼ 1/k2 while Δ5D ∼ 1/k. The vertices between kk modes are given by the dz integral over each
profile, which reproduces the same counting since each profile depends on z as a function of m(n)

KKz. Conservation of
z-momentum is replaced by conservation of kk number in the uv limit of large kk number.

Indeed, it is almost tautological that the kk and position/momentum space formalisms should match for bulk fields since
the process of kk reducing a 5D theory implicitly passes through the position/momentum space construction. This will
become slightly more nontrivial in the case of brane-localized fields. We shall postpone a discussion of mixing between kk
states until Section 5.6.5.

5.6.4 Brane fields in the 5D formalism

The power counting above appears to fail for loops containing a brane-localized Higgs field. The brane-localized Higgs
propagator goes like 1/k2 rather than 1/k for the bulk propagator, but this comes at the cost of two vertices that must also be
brane-localized, thus negating the suppression from the dz integrals. The charged Higgs has two brane-localized Higgs
propagators, but loses a third dz integral from the brane-localized photon emission. Finally, there are no additional
contributions from the brane-localized fermion mass insertions nor are there any corrections from the conservation of overall
z-momentum since it is manifestly violated by the brane-localized vertices (see Appendix 5.D for a detailed discussion). In the
absence of any additional brane effects, both types of loops would be logarithmically divergent, as discussed in [241].

Fortunately, two such brane effects appear. First consider the two neutral Higgs diagrams in Figure 5.5.1. The diagram with
no mass insertion requires the use of an external fermion equation of motion which still reduces the superficial degree of
divergence by one so that it is finite. The diagram with a single mass insertion is finite in the Standard Model due to a
cancellation between the Higgs and neutral Goldstone diagrams, as discussed in Section 5.5. More generally, even for a single
type of brane-localized field, there is a cancellation between diagrams in Figure 5.6.1 where the photon is emitted before and
after the mass insertion. This can be seen by writing down the Dirac structure coming from the fermion propagators to leading
order in the loop momentum,

Ma ∼ /kγμ/k/k − kγμk/k = k2 (/kγμ − γμ/k) (5.46)
Mb ∼ /k/kγμ/k − /kkγμk = k2 (γμ/k − /kγμ) (5.47)

The terms with three factors of /k are contributions where “correct-chirality” fermions propagate into the bulk, while the terms
with only one /k are contributions where “wrong-chirality” fermions propagate into the bulk. The structure of the latter terms
comes from the γ5∂z term in the Dirac operator. The structures above multiply scalar functions which, to leading order in k,
are identical for each term. From the Clifford algebra it is clear that (5.46) and (5.47) cancel so that the contribution that is
nonvanishing in the uv must be next-to-leading order in the loop momentum. In Appendix 5.E this cancellation is connected
to the chiral boundary conditions on the brane and is demonstrated with explicit flat-space fermion propagators. We thus find
that the brane-localized neutral Higgs diagrams have an additional−1 contribution to the superficial degree of divergence.

Next we consider the charged Goldstone diagrams. These diagrams have an additional momentum suppression coming
from a positive power of the charged Goldstone mass M2

W appearing in the numerator due to a cancellation within each
diagram. In fact, we have already seen in Section 5.5.1 how such a cancellation appears. For the single-mass-insertion charged
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Goldstone diagram in Figure 5.5.2, we saw in (5.69) that the form of the 4D scalar propagators and the photon-scalar vertex
cancels the leading-order loop momentum term multiplying the required (p + p′)μ . The cancellation introduces an additional
factor of M2

W/(k2 −M2
W) so that the superficial degree of divergence is reduced by two. Note that the position/momentum

space propagators for a bulk Higgs have a different form than that of the 4D brane-localized Higgs and do not display the same
cancellation. In the kk picture this is the observation that the cancellation in (5.69) takes the form M2

KK/(k2 −M2
KK), which

does not provide any suppression for heavy kk Higgs modes.
Finally, the diagrams where the photon emission vertex mixes the W and brane-localized charged Goldstone are special

cases. The photon vertex carries neither a dz integral nor a kμ Feynman rule and hence makes no net contribution to the
degree of divergence. A straightforward counting including the brane-localized Goldstone, bulk W, and the single bulk vertex
thus gives a degree of divergence of−1.

We summarize the power counting for a brane-localized Higgs as follows:

Neutral Charged W–H±

boson boson mixing
Loop integral (d4k) +4 +4 +4

Gauge invariance (p + p′) −1 −1 −1
Brane boson propagators −2 −4 −2

Bulk boson propagator 0 0 −1
Bulk vertices (dz) −1 0 −1

Photon Feynman rule 0 +1 0
Brane chiral cancellation −1 0 0
Brane M2

W cancellation 0 −2 0
Total degree of divergence −1 −2 −1

It may seem odd that the brane-localized charged Higgs loop has a different superficial degree of divergence than the other 5D
cases, which heretofore have all been−1. This, however, should not be surprising since the case of a brane-localized Higgs is
manifestly different from the universal extra dimension scenario. It is useful to think of the brane-localized Higgs as a limiting
form of a kk reduction where the zero mode profile is sharply peaked on the ir brane. The difference between the bulk and
brane-localized scenarios corresponds to whether or not one includes the rest of the kk tower.

5.6.5 Brane fields in the kk formalism

Let us now see how the above power counting for the brane-localized Higgs manifests itself in the Kaluza-Klein picture [241].
Observe that this power counting for both the W–H± and the charged boson loops are trivially identical to the 5D case due to
the arguments in Section 5.6.3. For example, the M2

W cancellation is independent of how one treats the bulk fields. The neutral
Higgs loop, however, is somewhat subtle since the “chiral cancellation” is not immediately obvious in the kk picture.

We work in the mass basis where the fermion line only carries a single kk sum (not independent sums for each mass
insertion) and the zero mode photon coupling preserves kk number due to the flat A(0) profile. In this basis the internal
fermion line carries one kk sum and it is sufficient to show that for a single arbitrarily large kk mode the process scales like
1/M2

KK. The four-dimensional power counting in Section 5.6.1 appears to give precisely this, except that Lorentz invariance no
longer removes a degree of divergence. This is because this suppression came from the replacement of a loop momentum /k by
the fermion mass m. For an arbitrarily large kk mode, the fermion mass itself is the loop momentum scale and so does not
reduce the degree of divergence. In the absence of any additional suppression coming from the mixing of kk modes, it would
appear that the kk power counting only goes like 1/MKK so that the sum over kk modes should be logarithmically divergent,
in contradiction with the power counting for the same process in the 5D formalism.

We shall now show that the pair of Yukawa couplings for the neutral Higgs also carries the expected 1/k factor that renders
these diagrams finite and allows the superficial degrees of divergence to match between the kk and 5D counting. It is
instructive to begin by defining a basis for the zero and first kk modes in the weak (chiral) basis. We denote left (right) chiral
fields of kk number a by χ(a)L,R (ψ

(a)
L,R) where the L,R refers to SU(2)L doublets and singlets respectively. We can arrange these
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χ̂2 ψ̂1

ψ̂J χ̂J

ŷ2J MJJ
ŷJ1

Figure 5.6.2: The fermion line in the mass basis for diagrams with an internal kk mode (J > 3). For simplicity
we do not show the internal photon insertion.

into vectors

χ =
(
χ(0)Li

, χ(1)Ri
, χ(1)Li

)
ψ =

(
ψ(0)
Ri

, ψ(1)
Ri
, ψ(1)

Li

)
, (5.48)

where i runs over flavors. It is helpful to introduce a single index J = 3a+ i where i = 1, 2, 3 according to flavor and a = 0, 1, 2
according to kk mode (writing a = 2 to mean the first kk mode with opposite chirality as the zero mode). Thus the external
muon and electron are χ2 and ψ1 respectively, while an internal kk mode takes the form χJ or ψJ with J > 3. This convention
in (5.48) differs from that typically used in the literature (e.g. [241]) in the order of the last two elements of ψ. This basis is
useful because the kk terms are already diagonal in the mass matrix (ψMχ + h.c.),

M =

m11 0 m13

m21 MKK,1 m23

0 0 MKK,2

 (5.49)

where each element is a 3× 3 block in flavor space and we have written

m =
v√
2
f(a)Ri Y∗f(b)Lj ≪ MKK, (5.50)

with indices as appropriate and MKK diagonal. Let us define ε = v/MKK to parameterize the hierarchies in the mass matrix.
For a bulk Higgs, these terms are replaced by overlap integrals and the M32 block is nonzero, though this does not affect our
argument. Note that MKK,1 and MKK,2 are typically not degenerate due toO(m) differences in the doublet and singlet bulk
masses. In the gauge eigenbasis the Yukawa matrix is given by

y =
√

2
v

M
∣∣∣∣
MKK=0

∼

1 0 1
1 0 1
0 0 0

 , (5.51)

where we have assumed fL, fR, Y∗ ∼ O(1) for simplicity since the hierarchies in the f(0)s do not affect our argument. The 1
elements thus refer to blocks of the same order of magnitude that are not generically diagonal. The 0 blocks must vanish by
gauge invariance and chirality.

We now rotate the fields in (5.48) to diagonalize the mass matrix (5.49); we indicate this by a caret, e.g. χ̂. In this basis the
Yukawa matrix is also rotated y→ ŷ. The fermion line for this process is shown in Figure 5.6.2; the Yukawa dependence of the
amplitude is

M∼ ŷ1JŷJ2. (5.52)

First let us note that in the unrealistic case where ŷ = y, one of the Yukawa factors in (5.52) is identically zero for all internal
kk modes, J > 3. One might then expect that the mass rotation would induce a mixing of the zero modes with the kk modes
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that inducesO(ε) blocks into the Yukawa matrix,

ŷ ?∼

1 ε 1
1 · · · · · ·
ε · · · · · ·

 . (5.53)

If this were the case then the product ŷ1JŷJ2 would not vanish, but would be proportional to ε ∼ 1/MKK, which is precisely the
kk dependence that we wanted to show. While this intuition is correct and captures the correct physics, the actual Yukawa
matrix in the mass basis has the structure (c.f. (67) in [241])

ŷ ∼

 1 1 + ε −1 + ε
1 + ε · · · · · ·
1− ε · · · · · ·

 . (5.54)

The newO(1) elements come from the large rotations induced by the m21 and m13 blocks. These factors cancel out so that we
still have the desired ŷ1JŷJ2 ∼ ε relation. Physically this is because theseO(1) factors come from the “large” rotation from
chiral zero modes to light Dirac SM fermions. Thus they represent the “wrong-chirality” coupling of the external states
induced by the usual mixing of Weyl states from a Dirac mass. This does not include the mixing with the heavy kk modes,
which indeed carries the above ε factors so that the final result is

ŷ1JŷJ2 ∼ ε ∼ 1
MKK

, (5.55)

giving the correct−1 contribution to the superficial degree of divergence for the neutral Higgs diagrams to render them
manifestly finite.

A few remarks are in order. First let us emphasize again that promoting the Higgs to a bulk field makes the 3–2 block of the
y matrix nonzero. This does not affect the above argument so that the kk decomposition confirms the observation that the
amplitude with a bulk Higgs is also finite [241]. Of course, for a bulk Higgs the power counting in Section 5.6.2 gives a more
direct check of finiteness. Next, note that without arguing the nature of the zeros in the gauge basis Yukawa matrix or the
physical nature of the ε mixing with kk modes, it may appear that the 1/MKK dependence of ŷ1JŷJ2 requires a “miraculous” fine
tuning between the matrix elements of (5.54). Our discussion highlights the physical nature of this cancellation as the mixing
with heavy states that is unaffected by theO(1)mixing of light chiral states.

Finally, let us point out that the above arguments are valid for the neutral Higgs diagram where y = yE, the charged lepton
Yukawa matrix. The analogous charged Higgs diagram contains neutrino Yukawa matrices yN so that there is no additional 1/k
from mixing.

5.6.6 Matching kk and loop cutoffs

There is one particularly delicate point in the single-mass-insertion neutral Higgs loop in the kk reduction that is worth
pointing out because it highlights the relation between the kk scales M(n)

KK and the 5D loop momentum. To go from the 5D to
the 4D formalism we replace our position/momentum space propagators with a sum of Kaluza-Klein propagators,

Δ5D(k, z, z′) =
N∑

n=0

f(n)(z)
/k + Mn

k2 −M2
n
f(n)(z′). (5.56)

The full 5D propagator is exactly reproduced by summing the infinite tower of states, N→∞. More practically, the 5D
propagator with characteristic momentum scale k is well-approximated by at least summing up to modes with mass Mn ≈ k.
Modes that are much heavier than this decouple and do not give an appreciable contribution. Thus, when calculating
low-energy, tree-level observables in 5D theories, it is sufficient to consider only the effect of the first few kk modes. On the
other hand, this means that one must be careful in loop diagrams where internal lines probe the uv structure of the theory. In
particular, significant contributions from internal propagators near the threshold Mn ≈ k would be missed if one sums only to
a finite kk number while taking the loop integral to infinity. This is again a concrete manifestation of the remarks below (5.44)
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that the length scales probed by a process depend on the characteristic momentum scale of the process.
Indeed, a Kaluza-Klein decomposition for a single neutral Higgs yields

|M|(p+p′)μ =
gv

16π2 fμf−eūe(p + p′)μuμ ×
1

M2

[
c0 + c1

( v
M

)2
+O

( v
M

)3]
(5.57)

for some characteristic kk scale M ≈ MKK and dimensionless coefficients ci that include a loop integral and kk sums. In order
to match the 5D calculation detailed above, we shall work in the mass insertion approximation so that there are now two kk
sums in each coefficient. The leading c0 term is especially sensitive to the internal loop momentum cutoff Λ relative to the
internal kk masses,

c0 = −λ2
N∑

n=1

N∑
m=1

λ2 (n2 + m2) + 2n2m2

4 (n2 + λ2)2 (m2 + λ2)2
≡ − 1

λ2
N∑

n=1

N∑
m=1

ĉ0(n,m), (5.58)

where we have written mass scales in terms of dimensionless numbers with respect to the mass of the first kk mode:
Mn ∼ nMKK and Λ ∼ λMKK. It is instructive to consider the limiting behavior of each term ĉ(n,m) for different ratios of the
kk scale (assume n = m) to the cutoff scale λ:

ĉ0(n, n) −→
(n

λ

)2
for n≪ λ (5.59)

ĉ0(n, n) −→
(n

λ

)0
for n ≈ λ (5.60)

ĉ0(n, n) −→
(

λ
n

)4

for n≫ λ. (5.61)

We see that the dominant contribution comes from modes whose kk scale is near the loop momentum cutoff while the other
modes are suppressed by powers of the ratio of scales. In particular, if one calculates the loop for any internal mode of finite kk
number while taking the loop cutoff to infinity, then the c0 contribution vanishes because the n ≈ λ contributions are
dropped. From this one would incorrectly conclude that the leading order term is c1 and that the amplitude is orders of
magnitude smaller than our 5D calculation. Thus one cannot consistently take the 4D momentum to infinity without
simultaneously taking the 5D momentum (i.e. kk number) to infinity. Or, in other words, one must always be careful to
include the nonzero contribution from modes with n ≈ λ. One can see from power counting on the right-hand side of (5.58)
that so long as the highest kk number N and the dimensionless loop cutoff λ are matched, c0 gives a nonzero contribution
even in the λ →∞ limit.

This might seem to suggest uv sensitivity or a nondecoupling effect³. However, we have already shown that μ→ eγ is
uv-finite in 5D. Indeed, our previous arguments about uv finiteness tell us that the overall contribution to the amplitude from
large loop momenta (and hence high kk numbers) must become negligible; we see this explicitly in the uv limit of (5.58).
The key statement is that the kk scale and the uv cutoff of the loop integral must be matched, N ≳ λ. This can be understood
as maintaining momentum-space rotational invariance in the microscopic limit of the effective theory (much smaller than the
curvature scale). Further, the prescription that one must match our kk and loop cutoffs N ≳ λ is simply the statement that we
must include all the available modes of our effective theory. It does not mean that one must sum a large number of modes in an
effective kk theory. In particular, one is free to perform the loop integrals with a low cutoff Λ ∼ MKK so that only a single kk
mode runs in the loop. This result gives a nonzero value for c0 which matches the order of magnitude of the full 5D calculation
and hence confirms the decoupling of heavy modes.

5.6.7 Two-loop structure

As with any 5D effective theory, the rs framework is not uv complete. This nonrenormalizability means that it is possible for
processes to be cutoff-sensitive. Since an effective μ→ eγ operator (in the sense of Appendix 5.A) cannot be written at tree
level, there can be no tree-level counter term and so we expect the process to be finite at one-loop order, as we have indeed

³Further discussion of these points can be found in the appendix of [3].
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Figure 5.6.3: Yin-Yang and double rainbow topologies of two-loop diagrams. The dotted line represents either a
gauge or Higgs boson. We have omitted the photon emission and an odd number of mass insertions.

confirmed above. In principle, however, higher loops need not be finite.
The one-loop analysis presented thus far assumes that we may work in a regime where the relevant couplings are

perturbative. In other words, we have assumed that higher-loop diagrams are negligible due to an additional g2/16π2

suppression, where g is a generic internal coupling. This naturally depends on the divergence structure of the higher-loop
diagrams. If such diagrams are power-law divergent then it is possible to lose this window of perturbativity even for relatively
low uv cutoff Λ ∼ MKK. We have shown that even though naïve dimensional analysis suggests that the μ→ eγ amplitude
should be linearly divergent in 5D, the one-loop amplitudes are manifestly finite.

Here we argue that the two-loop diagrams should be no more than logarithmically divergent for bulk bosons so that there
is an appreciable region of parameter space where the process is indeed perturbative and the one-loop analysis can be trusted.
This case is also addressed in [241]. The relevant topologies are shown in Figure 5.6.3. In this case, the power counting
arguments that we have developed in this section carry over directly to the two-loop diagrams:

Loop integrals (d4k) +8
Gauge invariance (p + p′) −1

Bulk boson propagators −2
Bulk vertices (dz) −5

Total degree of divergence 0

We find that the superficial degree of divergence is zero so that the process is, at worst, logarithmically divergent.
The power counting for the brane-localized fields is more subtle, as we saw above. Naïve power counting suggests that the

two-loop, brane-localized diagrams are no more than quadratically divergent. However, just as additional cancellations
manifested themselves in the one-loop, brane-localized case, it may not be unreasonable to expect that those cancellations
might carry over to the two-loop diagrams. Checking the existence of such cancellations requires much more work we leave
this to a full two-loop calculation.

5.7 Outlook and Conclusion

We have presented a detailed calculation of the μ→ eγ amplitude in a warped rs model using the mixed position/momentum
representation of 5D propagators and the mass insertion approximation, where we have assumed that the localized Higgs vev
is much smaller than the kk masses in the theory. Our calculation reveals potential sensitivity to the specific flavor structure of
the anarchic Yukawa matrices since this affects the relative signs of coefficients that may interfere constructively or
destructively. We thus find that while generic flavor bounds can be placed on the lepton sector of rs models, one can
systematically adjust the structure of the YE and YN matrices to alleviate the bounds while simultaneously maintaining anarchy.
In other words, there are regions of parameter space which can improve agreement with experimental constraints without fine
tuning. Conversely, one may generate anarchic flavor structures which—for a given kk scale—cannot satisfy the μ→ eγ
constraints for any value of the anarchic scale Y∗. Over a range of randomly generated anarchic matrices, the parameter
controlling this Y∗-independent structure has a mean value of zero and a 1σ value which can push the kk scale to 4 tev.
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It is interesting to consider the case where MKK = 3 tev where kk excitations are accessible to the LHC. When the b
coefficient takes its statistical mean value, b = 0, the minimal model suffers aO(10) tension between the tree-level lower
bound on Y∗ and the loop-level upper bound,

Y∗ > 4 Y∗ < 0.5. (5.62)

This tension is slightly alleviated in the custodial model,

Y∗ > 1.25 Y∗ < 0.3. (5.63)

Thus for MKK = 3 tev one must one must accept some mild tuning in the relative sizes of the 5D Yukawa matrix. Figure 5.5.4
summarizes the bounds including the effect of the b coefficient.

On the other hand, we know that anarchic models generically lead to small mixing angles (see however [245]). These fit
the observed quark mixing angles well but are in stark contrast with the lepton sector where neutrino mixing angles are large,
O(1), and point to additional flavor structure in the lepton sector. For example in [242] a bulk A4 non-Abelian discrete
symmetry is imposed on the lepton sector. This leads to a successful explanation of both the lepton mass hierarchy and the
neutrino mixing angles (see also [261]) while all tree-level lepton number-violating couplings are absent, so the only bound
comes from the μ→ eγ amplitude.

We have also provided different arguments for the one-loop finiteness of this amplitude which we verified explicitly
through calculations. We have illuminated how to correctly perform the power counting to determine the degree of
divergence from both the 5D and 4D formalisms. The transition between these two pictures is instructive and we have
demonstrated the importance of matching the number of kk modes in a 4D EFT to any 4D momentum cutoff in loop
diagrams. The power-counting analysis can be particularly subtle for the case of brane-localized fields and we have shown how
one-loop finiteness can be made manifest. Finally, we have addressed the existence of a perturbative regime in which these
one-loop results give the leading result by arguing that the bulk field two-loop diagrams should be at most logarithmically
divergent and that it is at least feasible that the brane-localized two-loop diagrams may follow this power counting.

In addition to μ→ eγ, there is an analogous flavor-changing dipole-mediated process in the quark sector, b→ sγ with
additional gluon diagrams with the same topology as the Z diagrams described here. Because of operator mixing, connecting
the b→ sγ amplitude to qcd observables requires the Wilson coefficients for both the photon penguin C7γ and the gluon
penguin C8g. A discussion can be found in [226], though there it was expected that these penguins would be logarithmically
divergent. Further, it would be interesting to note whether the experimental bounds on this process admits the small-Y∗
region of parameter space where the b term may be of the same order as the a term. We leave the explicit evaluation of the
b→ sγ amplitude in warped space to future work [3].

5.A Matching 5D amplitudes to 4D EFTs

The standard procedure for comparing the loop-level effects of new physics on low-energy observables is to work with a
low-energy effective field theory in which the uv physics contributes to the Wilson coefficient of an appropriate local effective
operator by matching the amplitudes of full and effective theories. In this appendix we briefly remark on the matching of 5D
mixed position/momentum space amplitudes to 4D effective field theories, where some subtleties arise from notions of
locality in the extra dimension.

The only requirement on the 5D amplitudes that must match to the 4D effective operator is that they are local in the four
Minkowski directions. There is no requirement that the operators should be local in the fifth dimension since this dimension
is integrated over to obtain the 4D operator. Thus the 5D amplitude should be calculated with independent external field
positions in the extra dimension. Heuristically, one can write this amplitude as a nonlocal 5D operator

O5(x, zH, zL, zE, zA) = H5(x, zH) · L̄5(x, zL) σMN E5(x, zE)FMN(x, zA). (5.64)

Note that this object has mass dimension 8. In the 5D amplitude the fields are replaced by external state wavefunctions and
this is multiplied by a “nonlocal coefficient” c5(zH, zL, zE, zA) which includes integrals over internal vertices and loop
momenta as well as the mixed position/momentum space propagators to the external legs. To match with the low-energy 4D
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operator we impose that the external states are zero modes and decompose them into 4D zero-mode fields multiplied by a 5D
profile f(z) of mass dimension 1/2,

Φ5(x, z)→ Φ(0)(x)f(0)(z). (5.65)

Further, we must integrate over each external field’s z-position. Thus the 4D Wilson coefficient and operator are given by

c4O4(x) =
∫ [∏

i

dzi

]
c5(zH, zE, zL, zA)f(0)H (zH)f(0)E (zE)f(0)L (zL)f(0)A (zA) H · L̄ σμν EFμν, (5.66)

where the fields on the right-hand side are all zero modes evaluated at the local 4D point x. Note that these indeed have the
correct 4D mass dimensions, [O4] = 6 and [c] = −2.

Finally, let us remark that we have treated the 5D profiles completely generally. In particular, there are no ambiguities
associated with whether the Higgs field propagates in the bulk or is confined to the brane. One can take the Higgs profile to be
brane-localized,

fH(zH) ∼
√

R′δ(z− R′), (5.67)

where the prefactor is required by the dimension of the profiles. With such a profile (or any limiting form thereof) the passage
from 5D to 4D according to the procedure above gives the correct matching for brane-localized fields.

5.B Estimating the size of each diagram

As depicted in Figs. 5.5.1–5.5.3, there are a large number of diagrams contributing to the a and b coefficients even when only
considering the leading terms in a mass-insertion expansion. Fortunately, many of these diagrams are naturally suppressed and
the dominant contribution to each coefficient is given by the two diagrams shown in Figure 5.5.4. This can be verified
explicitly by using the analytic expressions for the leading and next-to-leading diagrams are given in Appendix 5.C. In this
appendix we provide some heuristic guidelines for estimating the relative sizes of these diagrams.

5.B.1 Relative sizes of couplings

First note that after factoring out terms in the effective operator in (5.21), Yukawa couplings give order one contributions
while gauge couplings give an enhancement of g2SM lnR′/R, where gSM is the appropriate Standard Model coupling. This gives
a factor of∼ 5 (7) enhancement in diagrams with a W over those with a Z (H).

5.B.2 Suppression mechanisms in diagrams

Next one can count estimate suppressions to each diagram coming from the following factors

A. Mass insertion,∼ 10−1/insertion. Each fermion mass insertion on an internal line introduces a factor ofO(vR′).
This comes from the combination of dimensionful factors in the Yukawa interaction and the additional fermion
propagator.

B1. Equation of motion,∼ 10−4. Higgs diagrams without an explicit chirality-flipping internal mass insertion must swap
chirality using the muon equation of motion ū(p)/p = mμu(p). This gives a factor ofO(mμR′) and is equivalent to
external mass insertion that picks up the zero-mode mass.

B2. External mass insertion,∼ 10−1. Alternately, when a loop vertex is in the bulk, an external mass insertion can pick
up the diagonal piece of the propagator—see (5.127)—representing the propagation of a zero mode into a
‘wrong-chirality’ kk mode. Unlike the off-diagonal piece which imposes the equation of motion, this is only
suppressed by theO(vR′)mentioned above⁴. One can equivalently think of this as an insertion of the kk mass which

⁴We thank Martin Beneke, Paramita Dey, and Jürgen Rohrwild for pointing this out.
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mixes the physical zero and kk modes.

C. Higgs/Goldstone cancellation,∼ 10−3. The H0 and G0 one-mass-insertion loops cancel up to
O ((m2

H − m2
Z)/m2

KK) because the two Goldstone couplings appear with factors of i relative to the neutral Higgs
couplings⁵.

D. Proportional to charged scalar mass,∼ 10−2. The leading loop-momentum term in the one-mass-insertion
brane-localized H± loop cancels due to the form of the photon coupling relative to the propagators. The
gauge-invariant contribution from such a diagram is proportional to (MWR′)2. This is shown explicitly in (5.69)
below.

To demonstrate the charged scalar mass proportionality, we note that the amplitude for the one mass insertion charged
Higgs diagram in Figure 5.5.2 is

Mμ = −R2
(

R
R′

)6 ev√
2
fcLμ Y

3
∗f−cEe

∫
d4k
(2π)4

ūp′Δ
R
kΔ

L
kup

(2k− p− p′)μ

[(k− p′)2 −M2
W][(k− p)2 −M2

W]
. (5.68)

Remembering that the 5D fermion propagators go like Δ ∼ /k/k, this amplitude naïvely appears to be logarithmically
divergent. However, the Ward identity forces the form of the photon coupling to the charged Higgs to be such that the leading
order term in k2 cancels. This can be made manifest by expanding the charged Higgs terms in p and p′,

(2k− p− p′)μ

[(k− p′)2 −M2
W][(k− p)2 −M2

W]
=

(p + p′)μ

(k2 −M2
W)

2

[
k2

k2 −M2
W
− 1
]
=

M2
W(p + p′)μ

(k2 −M2
W)

3 , (5.69)

where we have dropped terms of orderO(m2
μ/M2

W). Thus see that the coefficient of the gauge-invariant contribution is finite
by power counting. After Wick rotation, this amplitude takes the form

Mμ(1MIH±)
∣∣
(p+p′) =

2i
16π2 (R

′)2fcLμ Y
3
∗f−cEe

ev√
2
(R′MW)

2I1MIH± ūp′(p + p′)up, (5.70)

where I1MIH± is a dimensionless integral given in (5.C). We see that the amplitude indeed carries a factor of (MWR′)2.

5.B.3 Dimensionless integrals

Estimating the size of dimensionless integrals over the loop momentum and bulk field propagators (such as I1MIH±) is more
subtle and is best checked through explicit calculation. However, one may develop an intuition for the relative size of these
integrals.

Note that the fifth component of a bulk gauge field naturally has boundary conditions opposite that of the
four-vector [177] so that the fifth components of Standard Model gauge fields have Dirichlet boundary conditions. This
means that diagrams with a W5H±A vertex vanish since the brane-localized Higgs and bulk W5 do not have overlapping
profiles. Further, loops with fifth components of Standard Model gauge fields and internal mass insertions tend to be
suppressed since the mass insertions attach the loop to the ir brane. In the uv limit the loop shrinks towards the brane and
has reduced overlap with the fifth component gauge field.

Otherwise the loop integrals are typicallyO(0.1). The particular value depends on the propagators and couplings in the
integrand.

5.B.4 Robustness against alignment

As discussed in Section 5.5.2, the flavor structure of the diagrams contributing to the b coefficient is aligned with the fermion
zero-mode mass matrix [226, 241]. Contributions to this coefficient vanish in the zero mode mass basis in the absence of
additional flavor structure from the bulk mass (c) dependence of the internal fermion propagators. The diagrams which

⁵We thank Yuko Hori and Takemichi Okui for pointing this out.
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ψ(0) χ(n) ψ̄(n) ψ̄(m) χ(m) χ(0)

Figure 5.B.1: Alignment of the external mass insertion diagrams with Standard Model gauge bosons. χ and ψ
are left- and right-chiral Weyl spinors respectively. The gauge boson vertices don’t change fermion chirality so
that the internal fermion must be a chirality-flipping kk mode. We have neglected the contribution where the
external mass insertion connects two zero mode fermions since this is suppressed by mμR′.

generally give the largest contribution after passing to the zero mode mass basis are those with with the strongest dependence
on the fermion bulk masses. Since zero mode fermion profiles are exponentially dependent on the bulk mass parameter, a
simple way to identify potential leading diagrams is to identify those which may have zero mode fermions propagating in the
loop.

This allows us to neglect diagrams with an external mass insertion and a 4D vector boson in the loop. As shown in
Figure 5.B.1, such diagrams do not permit intermediate zero modes to leading order. Note, however, that diagrams with an
external mass insertion and the fifth component of gauge boson are allowed to have zero mode fermions in the loop. Indeed, a
diagram with a W5 and Wμ in the loop would permit zero mode fermions but is numerically small due to the size of the
W5AWμ coupling. The dominant diagrams for the b coefficient are the H±W± loop and the Z loop with an internal mass
insertion. In the kk reduction, the misalignment comes from diagrams with zero mode fermions and kk gauge bosons.

5.C Analytic expressions

We present analytic expressions for the leading and next-to-leading diagrams contributing to μ→ eγ. We label the diagrams
in Figs. 5.5.1–5.5.3 according to the number of Higgs-induced mass insertions and the internal boson(s). For example, the
two-mass-insertion W diagram in Figure 5.5.4a is referred to as 2MIW. Estimates for the size of each contribution are given in
Appendix 5.B. We shall only write the coefficient of the ūp′(p + p′)μup term since this completely determines the
gauge-invariant contribution.

5.C.1 Dominant diagrams

As discussed in Section 5.5, the leading diagrams contributing to the a and b coefficients are

M(2MIW) =
i

16π2 (R
′)2fcLμ YEY†

NYNf−cEe
ev√
2

(
g2

2
ln

R′

R

)(
R′v√

2

)2

I2MIW (5.71)

M(0MIHW) =
i

16π2

(
R′)2 fcLYEf−cE

ev√
2

(
g2

2
ln

R′

R

)
I0MIHW, (5.72)

M(1MIZ) =
i

16π2

(
R′)2 fcLYEf−cE

ev√
2

(
gZLgZR ln

R′

R

)
I1MIZ, (5.73)

We have explicitly labeled the 4D (dimensionless) anarchic Yukawa matrices whose elements assumed to take values of order
(YE)ij ∼ (YN)ij ∼ Y∗, but have independent flavor structure. Note that we have suppressed the flavor indices of the Yukawas
and the dimensionless integrals. Diagrams with a neutral boson and a Yukawa structure YEY†

EYE also contribute to the a
coefficient, but these contributions are suppressed relative to the dominant charged boson diagrams above. These diagrams
may become appreciable if one permits a hierarchy in the relative YE and YN anarchic scales, in which case one should also
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consider the Z boson diagrams whose analytic forms are given below. The dimensionless integrals are

I2MIW =− 3
2

∫
dy dx1dx2dx3 y3

(
y
x1

)cL+2 ( y
x2

)4 ( y
x3

)
F̃L1y
+,yF̃

Ryy
−,yD̃−F̃Ly2

−,yF̃
L2yμ
+,yμ

∂

∂kE

(
G13

y G32
y
)

(5.74)

I0MIHW =

∫
dy dx

( y
x

)2+cL ( 1
2
√

2
y2

y2 + m2
HR′2 F̃L1y

+,y y ∂kE Gxy
y

)
(5.75)

I1MIZ =−
∫

dy dx1dx2dx3
(

y
x1

)2+cL ( y
x2

)2−cE ( y
x3

)4

(y ∂kEG
12) y2×(

− D̃+F̃R23
+,y D̃−F̃R3y

−,y F̃
Ly1
+,y + F̃R2x3

−,y F̃R3y
−,y F̃

Ly1
+,y

− F̃R2y
−,y D̃−F̃Ly3

−,y D̃+F̃L31
+,y + F̃R2y

−,y F̃
Ly3
+,y F̃

L31
+,y

)
. (5.76)

where x = kEz, y = kER′, and yμ = mμR′. The significance of these dimensionless variables is discussed below (5.44). The
dimensionless Euclidean-space propagator functions F̃ are defined in (4.65 – 4.66), where the upper indices of the F functions
define the propagation positions. For example, FR3y represents a propagator from z = R′ to z = z3. Similarly, Gy and Ḡy are
defined in (4.115) and (4.116).

5.C.2 Subdominant a coefficient diagrams

The diagrams containing a brane-localized Higgs loop are

M(nMIH±) =
i

16π2

(
R′)2 fcLYEY†

NYNf−cE
ev√
2
InMIH± , (5.77)

M(nMIH0) =
i

16π2

(
R′)2 fcLYEYEY†

Ef−cE
ev√
2
I0MIH0 . (5.78)

Here n = 0, 1 counts the number of internal mass insertions in the diagram. The gauge boson loops are

M(nMIZ(5)) =
i

16π2

(
R′)2 fcLYEY†

EYEf−cE
ev√
2

(
gZLgZR ln

R′

R

) (
v√
2
R′
)2

InMIZ(5) , (5.79)

M(2MIww) =
i

16π2

(
R′)2 fcLYEY†

NYNf−cE
ev√
2

(
g2

2
ln

R′

R

) (
v√
2
R′
)2

× I2MIww. (5.80)
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Where n = 2, (1 + 2), 3 with (1 + 2) referring to a single internal mass insertion and two external mass insertions. 2MIww
represents 2MIW5W5, 2MIWW5 and 2MIW5W. The dimensionless integrals are

I1MIH0 =

∫
dy dx y2

( y
x

)4 [
− 2F̃Lyx

+,y F̃
Lxy
+,y F̃

Ryy
−,y

y2

y2 + (MHR′)2

+ F̃Lyx
+,y F̃

Lxy
+,y F̃

Ryy
−,y

y4

(y2 + (mHR′)2)2
− 1

2

(
y ∂kE F̃

Lyx
+,y

)
F̃Lxy
+,y F̃

Ryy
−,y

y2

y2 + (MHR′)2

− 1
2

(
y ∂kE D̃−F̃Lyx

−,y

)
D̃+F̃Lxy

+,y F̃
Ryy
−,y

1
y2 + (MHR′)2

+ 2F̃Lyy
+,y D̃+F̃Ryx

+,y D̃−F̃Rxy
−,y

1
y2 + (MHR′)2

− F̃Lyy
+,y D̃+F̃Ryx

+,y D̃−F̃Rxy
−,y

y2

(y2 + (MHR′)2)2
+

1
2

(
y ∂kE F̃

Lyy
+,y

)
D̃+F̃Ryx

+,y D̃−F̃Rxy
−,y

1
y2 + (MHR′)2

+ F̃Lyy
+,y F̃

Ryx
−,y F̃

Rxy
−,y

y2

y2 + (MHR′)2
+

1
2

(
y ∂kE F̃

Lyy
+,y

)
F̃Ryx
−,y F̃

Rxy
−,y

y2

y2 + (MHR′)2

+
1
2
F̃Lyy
+,y

(
y ∂kE F̃

Ryy
−,y

)
F̃Rxy
−,y

y2

y2 + (MHR′)2
+

1
2
F̃Lyy
+,y

(
y ∂kE D̃+F̃Ryx

+,y

)
D̃−F̃Rxy

−,y
1

y2 + (MHR′)2
,
]
. (5.81)

I1MIH± =

∫
dy F̃Lyy

+,yF̃
Ryy
+,y

2 y5

(y2 + (MWR′)2)3
(5.82)

I0MIH± =

∫
dy F̃Ryy

−,y
y5

(y2 + (MHR′)2)3
(5.83)

I0MIH0 =

∫
dy dx y2

( y
x

)4
F̃Lyx
+,y F̃

Lxy
+,y

y2

(y2 + (MHR′)2)2
(5.84)

I2MIZ =

∫
dy dx1dx2dx3

(
y
x1

)2+cL ( y
x2

)4 ( y
x3

)4

×{
y ∂kE G13

y D̃+F̃L3yμ
+,yμ

[
y2
(
F̃L12
+,yF̃

L2y
+,y F̃

Ryy
−,y D̃−F̃Ly3

−,y + F̃L1y
+,y F̃

Ry2
−,y F̃

R2y
−,y D̃−F̃Ly3

−,y

+ F̃L1y
+,y F̃

Ryy
−,y D̃−F̃R2y

−,y F̃
L23
−,y + F̃L1y

+,y F̃
Ryy
−,y F̃

Ly2
+,y D̃−F̃L23

−,y

)
−
(
D̃−F̃L12

−,y D̃+F̃L2y
+,y F̃

Ryy
−,y D̃−F̃Ly3

−,y + F̃L1y
+,y D̃+F̃Ry2

+,y D̃−F̃R2y
−,y D̃+F̃Ly3

+,y

)]}
, (5.85)

I2MIZ5 =−
∫

dy dx1dx2dx3
(

y
x1

)2+cL ( y
x2

)4 ( y
x3

)4

×

1
2

[
y ∂kE Ḡ13

y D̃+F̃L3yμ
+,yμ

(
y2 F̃L12

−,y D̃+F̃L2y
+,y F̃

Ryy
+,y

)]
, (5.86)

I(1+2)MIZ =−
∫

dy dx1dx2dx3
(

y
x1

)4 ( y
x2

)4 ( y
x3

)4

×[
D̃+F̃Rye1

+,ye D̃+F̃L2yμ
+,yμ G21

y − (4 + y ∂kE)
(
D̃−F̃R1y

−,y F̃
R3y
−,yD̃−F̃L32

−,y + F̃R13
+,y D̃−F̃R3y

−,y D̃−F̃L32
−,y

+ D̃−F̃R1y
−,y D̃−F̃Ly3

−,y F̃
L32
−,y + D̃−F̃R1y

−,y F̃
Ly3
+,y D̃−F̃L32

−,y

)]
, (5.87)

I(1+2)MIZ5 =−
∫

dy dx1dx2dx3
(

y
x1

)4 ( y
x2

)4 ( y
x3

)4

D̃+F̃Rye1
+,ye D̃+F̃L3yμ

+,yμ Ḡ13
y

1
2

[
F̃R12
−,y y ∂kE

(
F̃R2y
−,y F̃

Ly3
+,y

)
+ y ∂kE

(
D̃+F̃R12

+,y

)
D̃−F̃R2y

−,y F̃
Ly3
+,y

F̃R1y
−,y D̃−F̃Ly2

−,y y ∂kE

(
D̃+F̃L23

+,y

)
+ y ∂kE

(
y2 F̃R1y

−,y F̃
Ly2
+,y

)
F̃L23
+,y

]
, (5.88)

77



The integral for 3MIZ and 3MIZ5 can be written as

I3MIZ/Z5 =
1
2

∫
dy dx1dx2dx3

(
y
x1

)2+cL ( y
x2

)2−cE ( y
x3

)4

G13
y

8∑
i=1

Mi y ∂kE Ni. (5.89)

For 3MIZ, the (M,N) pairs are (
M1 , N1

)
=
(
F̃L12
+,y , y4 F̃L2y

+,y F̃
Ryy
−,y F̃

Lyy
+,y F̃

Ry3
−,y

)
, (5.90)(

M2 , N2

)
=
(
−y2 D̃+F̃L2y

+,y F̃
Ryy
−,y F̃

Lyy
+,y F̃

Ry3
−,y , D̃−F̃L12

−,y

)
, (5.91)(

M3 , N3

)
=
(
−y2 F̃R2y

−,y F̃
Lyy
+,y F̃

Ry3
−,y , −y2 F̃L1y

+,y F̃
Ry2
−,y

)
, (5.92)(

M4 , N4

)
=
(
F̃L1y
+,y D̃+F̃Ry2

+,y , −y2 D̃−F̃R2y
−,y F̃

Lyy
+,y F̃

Ry3
−,y

)
, (5.93)(

M5 , N5

)
=
(
−y2 F̃L1y

+,y F̃
Ryy
−,y F̃

Ly2
+,y , −y2 F̃L2y

+,y F̃
Ry3
−,y

)
, (5.94)(

M6 , N6

)
=
(
D̃+F̃L2y

+,y F̃
Ry3
−,y , −y2 F̃L1y

+,y F̃
Ryy
−,y D̃−F̃Ly2

−,y

)
, (5.95)(

M7 , N7

)
=
(
F̃R23
−,y , y4 F̃L1y

+,y F̃
Ryy
−,y F̃

Lyy
+,y F̃

Ry2
−,y

)
, (5.96)(

M8 , N8

)
=
(
−y2 F̃L1y

+,y F̃
Ryy
−,y F̃

Lyy
+,y D̃+F̃Ry2

+,y , D̃−F̃R23
−,y

)
. (5.97)

For 3MIZ5, the (M,N) pairs are (
M1 , N1

)
=
(
−y2 D̃+F̃L1y

+,y F̃
Ryy
−,y F̃

Lyy
+,y F̃

Ry2
−,y , D̃+F̃R23

+,y

)
, (5.98)(

M2 , N2

)
=
(
F̃R23
+,y , −y2 D̃+F̃L1y

+,y F̃
Ryy
−,y F̃

Lyy
+,y D̃+F̃Ry2

+,y

)
, (5.99)(

M3 , N3

)
=
(
D̃+F̃L1y

+,y F̃
Ryy
−,y D̃−F̃Ly2

−,y , D̃+F̃L2y
+,y D̃+F̃Ry3

+,y

)
, (5.100)(

M4 , N4

)
=
(
F̃L2y
+,y D̃+F̃Ry3

+,y , −y2 D̃+F̃L1y
+,y F̃

Ryy
+,y F̃

Ly2
+,y

)
, (5.101)(

M5 , N5

)
=
(
D̃+F̃L1y

+,y F̃
Ry2
−,y , −y2 F̃R2y

−,y F̃
Lyy
+,y D̃+F̃Ry3

+,y

)
, (5.102)(

M6 , N6

)
=
(
D̃−F̃R2y

−,y F̃
Lyy
+,y D̃+F̃Ry3

+,y , D̃+F̃L1y
+,y D̃+F̃Ry2

+,y

)
, (5.103)(

M7 , N7

)
=
(
F̃L12
−,y , −y2 D̃+F̃L2y

+,y F̃
Ryy
−,y F̃

Lyy
+,y D̃+F̃Ry3

+,y

)
, (5.104)(

M8 , N8

)
=
(
−y2 F̃L2y

+,y F̃
Ryy
−,y F̃

Lyy
+,y D̃+F̃Ry3

+,y , D̃+F̃L12
+,y

)
. (5.105)

The integrals for the W5 loops are

I2MIW5W5 =−
∫

dy dx1dx2dx3
(

y
x1

)2+cL ( y
x2

)4 ( y
x3

)
×{ 1

2
y2 D̃+F̃L1y

+,y F̃
Ryy
−,y F̃

Ly2
+,y D̃+F̃L2yμ

+,yμ

[
4 Ḡ13

y Ḡ23
y + y ∂kE

(
Ḡ13

y Ḡ23
y

)]}
, (5.106)

I2MIW5W =−
∫

dy dx1dx2dx3
(

y
x1

)2+cL ( y
x2

)4 ( y
x3

)
×[ 1

2
y2 F̃L1y

+,y F̃
Ryy
−,y F̃

Ly2
+,y D̃+F̃L2yμ

+,yμ

(
y ∂kE G13

y ∂z Ḡ23
y − y ∂kE∂z G13

y Ḡ23
y

)]
, , (5.107)
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I2MIWW5 =−
∫

dy dx1dx2dx3
(

y
x1

)2+cL ( y
x2

)4 ( y
x3

)
×[ 1

2
D̃+F̃L1y

+,y F̃
Ryy
−,y D̃−F̃Ly2

−,y D̃+F̃L2yμ
+,yμ

(
y ∂kE G23

y ∂z Ḡ13
y − y ∂kE∂z G23

y Ḡ13
y

)]
. (5.108)

5.C.3 Subdominant b coefficient diagrams

M(nMIZ /Z5) =
i

16π2

(
R′)2 fcLYEf−cE

ev√
2

(
gZLgZR ln

R′

R

)
InMIZ / Z5 , (5.109)

M(0MIW) =
i

16π2

(
R′)2 fcLYEf−cE

ev√
2

(
g2

2
ln

R′

R

)
I0MIW, (5.110)

M(0MIW5) =
i

16π2 (R
′)2fcLμ YEf−cEe

ev√
2

(
g2

2
ln

R′

R

)
I0MIW5 (5.111)

where n = 0, 1 counts the number of internal mass insertions.

I1MIZ5 =

∫
dy dx1dx2dx3

(
y
x1

)2+cL ( y
x2

)2−cE ( y
x3

)4

×

1
2

[
F̃L13
−,y y ∂kE

(
D̃+F̃L3y

+,y D̃+F̃Ry2
+,y

)
Ḡ12

y − D̃+F̃L13
+,y y ∂kE

(
F̃L3y
+,y D̃+F̃Ry2

+,y Ḡ
12
y

)
− 4 D̃+F̃L13

+,y F̃
L3y
+,y D̃+F̃Ry2

+,y Ḡ
12
y + D̃+F̃L1y

+,y F̃
Ry3
−,y

(
y ∂kE D̃+F̃R32

+,y

)
Ḡ12

y

− D̃+F̃L1y
+,y D̃+F̃Ry3

+,y y ∂kE

(
F̃R32
+,yḠ

12
y

)
− 4 D̃+F̃L1y

+,y D̃+F̃Ry3
+,y F̃

R32
+,y Ḡ

12
y

]
. (5.112)

I0MIZ =

∫
dy dx1dx2dx3

(
y
x1

)2+cL ( y
x2

)4 ( y
x3

)4

×

y ∂kE G13
y D̃+F̃L3yμ

+,yμ

(
D̃−F̃L12

−,y F̃
L23
−,y + F̃L12

+,y D̃−F̃L23
−,y

)
, (5.113)

I0MIZ5 =−
∫

dy dx1dx2dx3
(

y
x1

)2+cL ( y
x2

)4 ( y
x3

)4

×{ 1
4

D̃+F̃L23
+,y D̃+F̃L3yμ

+,yμ

[
F̃L12
−,y

(
4Ḡ13

y + y ∂kE Ḡ13
y

)
+ y ∂kE F̃L12

−,y Ḡ
13
y

]}
, (5.114)

I0MIW =−
∫

dy dx1dx2dx3
(

y
x1

)2+cL ( y
x2

) (
y
x3

)4

×

3
2
y ∂kE

(
G13

y G32
y

)
D̃−F̃L12

−,y D̃LF̃
+3yμ
L,yμ (5.115)

I0MIW5 =

∫
dy dx1dx2dx3

(
y
x1

)cL+2( y
x2

)4( y
x3

)
{

y
2
F̃L1y
+,yD̃+F̃L2yμ

+,yμ

(
∂

∂kE
∂

∂x3
G13

y

)
Ḡ32

y +
y
2
F̃L12
+,yD̃+F̃L2yμ

+,yμ

(
∂

∂kE
∂

∂x3
G32

y

)
Ḡ13

y

− D̃+F̃L12
+,yD̃+F̃L2yμ

+,yμ

[
2Ḡ13

y Ḡ23
y +

y
2

∂

∂kE

(
Ḡ13

y Ḡ32
y
)]}

. (5.116)

5.C.4 Custodial Models

For custodially protected models, one must include loops with the custodial partners of fermions and gauge bosons. See,
e.g., [209] for details of the additional field content of such models. The new particles have mixed boundary conditions, (−+)
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or (+−). For the chirality flipping process μ→ e γ, Yukawa insertions on the ir brane only allow fermions carrying either
(++) or (−+) boundary conditions running in the loop. This limits the number of the new diagrams to be considered. The
new fermion propagators can be obtained by making the replacement F̃→ Ẽ. Writing the boundary condition in terms of the
Weyl components of the Dirac spinor, ẼL corresponds to the boundary condition

(
ψ(+−), χ̄(−+)

)
, while ẼR corresponds to(

ψ(−+), χ̄(+−)

)
. For x > x′, the Ẽ-functions can be written as follows:

ẼL
− =

(xx′)5/2

y5
Sc(x−, y−)Tc(x′−,wy+)

Tc(y−,wy+)
ẼL
+ = − (xx′)5/2

y5
Tc(x+, y−)Sc(x′+,wy+)

Tc(y−,wy+)
(5.117)

ẼR
− = − (xx′)5/2

y5
Tc(x−, y+)Sc(x′−,wy−)

Tc(y+,wy−)
ẼR
+ =

(xx′)5/2

y5
Sc(x+, y+)Tc(x′+,wy−)

Tc(y+,wy−)
. (5.118)

The x < x′ expressions are obtained by replacing x↔ x′. Gauge bosons with (−+) boundary conditions can also appear in
custodial loops. The corresponding propagator for x > x′ is G→ H with

Hk(x, x′) =
(R′)

2

R
xx′

y
T10(x, y) S11(x′,wy)

T10(wy, y)
. (5.119)

The T and S are defined in Appendix. (4.6), and the x < x′ case can be obtained by x↔ x′.

5.D Position, momentum, and position/momentum space

In order to elucidate the power counting in Section 5.6 and to provide some motivation for the structure of the propagators in
Appendix 4.4.1, we review the passage between Feynman rules in position, momentum, and mixed position/momentum
space. For simplicity we shall work with massless scalar fields on a flat (Minkowski) d-dimensional background, but the
generalization of the salient features to higher spins is straightforward. In position space, the two-point Green’s function for a
particle propagating from x′ to x is

D(x, x′) =
∫

d̄ dk
i
k2

e−ik·(x−x′), (5.120)

a momentum-space integral over a power-law in k times a product of exponentials in k · x and k · x′. Each vertex carries a ddx
integral representing each spacetime point at which the interaction may occur. When some dimensions are compact, the
associated integrals are reverted to discrete sums and the particular linear combination of exponentials is shifted to maintain
boundary conditions. Further, when dimensions are warped the exponentials become Bessel functions. In this Appendix we
will neglect these differences and focus on general features since the uv behavior of each of the aforementioned scenarios (i.e.
for momenta much larger than any mass, compactification, or warping scales) reduces to the flat noncompact case presented
here.

In 4D it is conventional to work in full momentum space where the Feynman rules are derived by performing the ddx
integrals at each vertex over the exponential functions from each propagator attached to the vertex and amputating the
external propagators. This generates a momentum-conserving δ-function at each vertex which can be used to simplify the d̄ dk
integrals in each propagator. For each diagram one such δ-function imposes overall conservation of the external momenta and
hence has no dependence on any internal momenta. For a loop diagram this means that there is a leftover d̄ dk which
corresponds to the integration over the loop momentum. Thus the momentum space formalism involves separating the
exponentials in k · x from the rest of the Green’s function and performing the ddx integral to obtain δ-functions.

To go to the mixed position/momentum space formalism we pick one direction, z, and leave the dependence on that
position in the propagator while integrating over the z-component of the momentum, kz in (5.120). We shall write the
Minkowski scalar product of the (d− 1)momentum-space directions as k2 so that the full d-dimensional scalar product is
k2 − k2z. The Feynman rule for each vertex now includes an explicit dz integral which must be performed after including each
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p1

p2

p3

k2

k3

k1

z1

z2

z3

Figure 5.D.1: A simple loop diagram to demonstrate the power counting principles presented. The lines labeled
pi represent the net external momentum flowing into each vertex so that pzi corresponds to the kk mass of the ith
external particle.

of the position/momentum space propagators, which take the form

Δ(k, z, z′) =
∫

d̄ kz
i

k2 − k2z
eikz(z−z′). (5.121)

The (d− 1) other exponentials and momentum integrals are accounted in the usual momentum-space formalism. This object
goes like Δ ∼ 1/k, which indeed has the correct dimensionality for the sum over a kk tower of scalar propagators. Similarly,
the massless bulk fermion propagator is

Δ(k, z, z′) =
∫

d̄ kz
i(/k − kzγ5)

k2 − k2z
eikz(z−z′), (5.122)

where we may now identify the scalar functions F ∼ dkzeikz(z−z′)/(k2 − k2z) in (4.33) and (4.49).

It is thus apparent that the mixed formalism contains all of the same integrals and factors as the momentum-space
formalism, but that these are packaged differently between vertex and propagator Feynman rules. By identifying features
between the two pictures one may glean physical intuition in one picture that is not manifest in the other. For example, the
observation in the mixed formalism that each bulk vertex on a loop brings down a power of 1/k is straightforwardly
understood to be a manifestation of momentum conservation in the momentum space picture.

On the other hand, the mixed formalism is much more intuitive for brane-localized effects. Interactions with fields on the
brane at z = L carry δ(z− L) factors in the vertex Feynman rules. Such interactions violate momentum conservation in the
z-direction. In the kk formalism this manifests itself as the question of when it is appropriate to sum over an independent
tower of kk modes. This is easily quantified in the mixed formalism since the dz integrals are not yet performed in the
Feynman rules and we may directly insert δ(z− L) terms in the expression for the amplitude.

As a concrete example, consider the loop diagram with three vertices shown in Figure 5.D.1. It is instructive to explicitly
work out loop z-momentum structure of this diagram in the case where all vertices are in the bulk and observe how this
changes as vertices are localized on the brane. To simplify the structure, let us define the product of momentum-space
propagators

f(k1, k2, k3) ≡
3∏

i=1

i
k2i − (kzi )2

. (5.123)
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Using
∫

dz exp(izk) = δ(k), the bulk amplitude is proportional to

M∼
∫

dz1 dz2 dz3 dkz1 dk
z
2 dk

z
3 f(k1, k2, k3) eiz1(k1+p1−k2)z eiz2(k2+p3−k3)z eiz3(k3+p3−k1)z (5.124)

∼
∫

dz2 dz3 dkz2 dk
z
3 f(k2 − p1, k2, k3) eiz2(k2+p3−k3)z eiz3(k3+p3−k2+p1)z (5.125)

∼
∫

dz3 dkz3 f(k3 − p2 − p1, k3 − p2, k3) eiz3(p1+p2+p3)z . (5.126)

We have implicitly performed the associated d(d−1)x integrals at each step. The final dz3 integral gives the required δ-function
of external momenta while leaving an unconstrained dkz3 loop integral. Each dkz/(k2 − k2z) ∼ 1/k represents the entire kk
tower associated with an internal line. The removal of two dkz integrals by δ-functions is a manifestation of the 1/k
suppression coming from each dz integral with the caveat that the “last” dz integral only brings down powers of external
momenta and hence does not change the power of loop momenta. This explains the “overall z-momentum” contribution to
the superficial degree of divergence in Section 5.6.2.

Next consider the case when the z3 vertex is brane localized so that its Feynman rule is proportional to δ(z3 − L). This
only affects the last line of the simplification by removing the dz3 integral. Physically this means that z-momentum (KK
number) needn not be conserved for this process. Since the z3 exponential is independent of any loop momenta, this does not
affect the superficial degree of divergence.

On the other hand, if z2 is also brane localized, then the δ(z2 − L) from the vertex prevents the dz2 integral in the second
line from giving the δ(k2 + p2 − k3) that cancels the dkz2 integral. Thus the process has an additional dkz2 integral which now
increases the degree of divergence. In the 4D formalism this is manifested as an additional independent sum over kk states. It
is now also clear that setting z1 to be brane localized prevents the dkz1 from being cancelled and hence adds another unit to the
degree of divergence. This counting is trivially generalized to an arbitrary number of vertices and different types of internal
propagators. For a loop with V vertices, VB of which are in the bulk, the key points are:

1. If V = VB, then the dz integrals reduce the superficial degree of divergence by (VB − 1).

2. If, on the other hand, V > VB so that there is at least one brane-localized vertex, then the dz integrals reduce the
superficial degree of divergence by VB.

Intuitively the z-momentum nonconservation coming from brane-localized interactions can be understood as the particle
picking up an arbitrary amount of momentum as it bounces off the brane (a similar picture can be drawn for the
orbifold [262]). Alternately, it reflects the uniform spread in momentum associated with complete localization in z-position.
While this may seem to imply sensitivity to arbitrarily high scale physics on the brane, a negative degree of divergence will
prevent the loop from being sensitive to uv physics. In other words, we are free to treat brane-localized fields as having
δ-function profiles independent of the physics that generates the brane.

Finally, note that we have assumed that each fermion mass insertion is brane localized. In 5D this means that higher-order
diagrams in the fermion mass-insertion approximation are not suppressed by momentum since each additional
brane-to-brane propagator goes like∼ /k/k after accounting for the dkz integrals. Instead, these mass insertions are suppressed
only by the relative sizes of the Higgs vev and compactification scale, (vR′)2 ∼ .01. It is perhaps interesting to note that our
analysis further suggests that in 6D with a Higgs localized on a 4D subspace, there are two additional momentum integrals
coming from a mass insertion so that each vev-to-vev propagator goes like a positive power of the momentum∼ /k causing the
mass-insertion approximation to break down.

5.E Finiteness of the brane-localized neutral Higgs diagram

As explained in Section 5.6.4, the finiteness of the one-loop result and logarithmic divergence at two-loop order becomes
opaque to naïve 5D power counting arguments when the Higgs is brane-localized. Additional cancellations of leading-order
terms in loop momentum are required to sensibly interpolate between the superficial degree of divergence of the bulk and
brane-localized scenarios. For the charged Higgs this cancellation mechanism came from an M2

W insertion, which led to an
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additional 1/k2 factor relative to the bulk field. Here we shall elucidate the finiteness of the single-mass-insertion
brane-localized neutral scalar loop.

At one-loop order this finiteness can be seen explicitly by the cancellation between the neutral Higgs and the neutral
Goldstone. However, there is an additional chiral cancellation that occurs between the two diagrams associated a single
intermediate neutral boson. Indeed, because the Higgs and neutral Goldstone do not appear to completely cancel at two-loop
order, this additional cancellation is necessary for the power-counting arguments given in Section 5.6.7.

We highlight this cancellation in two ways. The pure momentum space calculation highlights the role of the chiral
boundary conditions, while the mixed position/momentum space calculation shows an explicit cancellation while including
the full scalar structure the amplitude.

5.E.1 Momentum space

Here we shall see that 4D Lorentz invariance combined with the chiral boundary conditions forces the uv divergence of the
two diagrams in Figure 5.6.1 to cancel.

We first note that the propagators to the photon vertex each have an endpoint in the bulk. This implies that the
leading-order contributions to these propagators in the uv limit are proportional to the uncompactified flat-space 5D
propagators,

Δ =

(
Δψχ Δψψ

Δχ χ Δχψ

)
∼ 1

k2 − k25

(
ik5 kμσμ

kμ σ̄μ −ik5

)
=

kμγμ + k5γ5

k2 − k25
, (5.127)

where we have written Δψχ to mean the propagation of a left-handed Weyl spinor χ into a right-handed spinor ψ. The terms
along the diagonal come from k5γ5 and represent the chirality-flipping part of the propagator. The boundary conditions
require the wrong-chirality modes, the SU(2) doublet ψL and SU(2) singlet χR, to vanish on the ir brane. Thus, the fermion
may propagate to the wrong-chirality spinor in the bulk only if it propagates back to the correct-chirality spinor when it
returns to the brane. For an internal left-handed Weyl fermion χL, the portion of the amplitude coming from the photon
emission takes the form

Δχ χσμΔχ χ + Δχψ σ̄μΔψχ ∼ (kα σ̄α) σμ
(
kβσ̄β

)
+ (k5)2σ̄μ. (5.128)

Combining with the analogous expression for a right-handed Weyl fermion in the loop, the relevant part of the photon
emission amplitude can be written as

/kγμ/k + (k5)2γμ

(k2 − k25)2
, (5.129)

where these terms correspond to a fermion of the correct and incorrect chirality propagating into the brane. The second term
can be simplified using ∫

dk5
(k5)2

(k2 − k25)2
=

∫
dk5

−k2

(k2 − k25)2
, (5.130)

which can be confirmed by Wick rotating both sides, k2 → −k2E, and performing the dk5 integral explicitly. Now it is easy to
see that the divergent contributions from the diagrams in Figure 5.6.1 cancel. The boundary conditions force brane-to-brane
propagators to go like /k with no γ5 part. Thus we may write the internal fermion structure of the amplitudes as

M(a) +M(b) ∼ /k (/kγμ/k − k2γμ) + (/kγμ/k − k2γμ) /k = 0. (5.131)

The key minus sign between the two terms in the photon emission comes from the chiral boundary conditions that force the
second term to pick up the relative sign between the two diagonal blocks of γ5.

Let us remark that it is crucial that the denominator in (5.130) contains exactly two propagators or else the equality would
not hold. One might be concerned that the brane-to-brane propagator should also contribute an additional factor of (k2 − k25)
to the denominator (the k5γ5 term vanishes in the numerator from boundary conditions). Such a factor is indeed present in
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the full calculation, but because 5D Lorentz invariance is broken on the brane, k5 is not conserved there and this factor actually
includes a different, uncorrelated fifth momentum component, k̃5, which can be taken the be independent of the dk5 integral.
This is a manifestation of the principles in Appendix 5.A. As a check, one can perform the dk̃5 integral for this brane-to-brane
propagator and obtain the same /k/|k| uv behavior found in the careful derivation performed in Appendix 4.4.1.

5.E.2 Position/momentum space

In Appendix 4.4.1 we derived the flat-space bulk fermion propagator,

Δ(p, x5, x′5) =
(
/p − iγ5∂5 + m

) −i cos χp (L− |x5 − x′5|) + γ5℘(X) cos χp (L− (x5 + x′5))

2χp sin χpL
, (5.132)

where the zero mode chirality is given by X = {L,R} with ℘(L) = +1 and ℘(R) = −1. We then argued at the end of
Appendix 4.4.2 that the propagators in a warped extra dimension reduce to this case up to overall phases. Thus we expect the
amplitudes to have the same uv behavior up to finite factors. The relevant flat-space one-loop diagrams contributing to the
operator (5.20) are shown in Figure 5.6.1. We start with Figure ?? and assume that the decay is from μL to eR. The loop
propagators with (x5, x′5) = (L, z), (z, L) and (L, L) can be written as

Δ(k′, L, z) = −i
/k′ cos χk′z− iγ5χk′ sin χk′z

χk′ sin χk′L
PR (5.133)

Δ(k, z, L) = −i
/k cos χkz + iγ5χk sin χkz

χk sin χkL
PR (5.134)

Δ(k, L, L) = −i
/k cos χkL
χk sin χkL

PR, (5.135)

where k′ = k + q. We have used the chiral boundary conditions to simplify Δ(k, L, L). Since we are interested in the uv
behavior we have dropped the terms proportional to the bulk mass m from the internal propagators because these are finite.
Combining the propagators together and doing the same calculation for Figure ??, the amplitudes become

Mμ
(a) =

∫
d4k
(2π)4

dz ū(p′)

{
/k′ γμ /k f(k, z) + χkχk′ γμ g(k, z)

χkχk′ [(p + k)2 − m2
H]

}
/k cot χkL

χk
u(p) (5.136)

Mμ
(b) =

∫
d4k
(2π)4

dz ū(p′)
/k′ cot χk′L

χk′

{
/k′ γμ /k f(k, z) + χkχk′ γμ g(k, z)

χkχk′ [(p + k)2 − m2
H]

}
u(p) (5.137)

where we have written

f(k, z) = −
cos(χk+qz) cos(χkz)
sin χk+qL sin χkL

(5.138)

g(k, z) = −
sin(χk+qz) sin(χkz)
sin χk+qL sin χkL

. (5.139)

Note that all of the z dependence is manifestly contained in sines and cosines. Further we have neglected the
flavor-dependence of the χk factors since these also come from the bulk masses via (4.36) and are negligible in the uv.

Upon Wick rotation the trigonometric functions become hyperbolic functions which are exponentials in the Euclidean
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momentum,

cos χkz→ cosh(χkEz) =
1
2

(
eχkE z + e−χkE z

)
(5.140)

sin χkz→ i sinh(χkEz) =
i
2

(
eχkE z − e−χkE z

)
. (5.141)

We may now replace the trigonometric functions with the appropriate Euclidean exponentials. Since we are concerned with
the uv behavior, we may drop terms which are exponentially suppressed for large k over the entire range of z. The remaining
terms are simple exponentials and can be integrated over the interval. One finds that the trigonometric terms in (5.136) and
(5.137) yield the expression

i
χkE+q + χkE

→ −1
χk+q + χk

, (5.142)

where on the right we have reversed our Wick rotation to obtain a Minkowski space expression for the terms which are not
exponentially suppressed in Euclidean momentum. After doing this, the leading order term in cot χL in (5.136) and (5.137)
equals i−1 and the terms in the braces become{

(/k + /q) γμ /k − χk+qχk γμ

χkχk+q (χk + χk+q) [(p + k)2 − m2
H]

}
, (5.143)

which gives the numerator of (5.131).
In terms of these quantities the potentially divergent amplitudes can be written as

Mμ
(a) =

∫
d4k
(2π)4

1
(χk+q + χk)[(p + k)2 − m2

H]
ū(p)

{
(/k + /q)
χk+q

γμ − γμ /k
χk

}
u(p + q) (5.144)

Mμ
(b) =

∫
d4k
(2π)4

1
(χk+q + χk)[(p + k)2 − m2

H]
ū(p)

{
γμ /k

χk
−

(/k + /q)
χk+q

γμ

}
u(p + q), (5.145)

therefore these two terms cancel each other in the uv and the operator (5.20) is finite.
Higher mass insertions do not spoil this cancellation since these are associated with internal brane-to-brane propagators

whose uv limit goes like Δ(k) ∼ /k/χk. The chiral structure of the effective operator (5.20) requires that only diagrams with
an odd number of mass insertions contribute. Using the uv limit Δ(k)2 → 1 one notes that the divergence structure reduces
to the case above.
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What is the most important symbol in physics?
Is it this, +? Or this, −? Maybe this =? No, the most impor-
tant symbol is this∼. Tell me the order of magnitude, the [scaling].
That is the physics.

Yuval Grossman, 21 August 2008

6
Warped hadronic penguins

In the previous chapter we explored the effects of a ‘warped’ extra dimension on the simplest penguin processes involving
leptons. In this chapter we extend that analysis to the phenomenology of quarks. Unlike the previous chapter, quarks are stuck
in bound states so that their penguin transitions must be unraveled from the interactions of the hadrons that contain them.

6.1 Overview:

We calculate contributions to the photon and gluon magnetic dipole operators that mediate b→ sγ and b→ dγ transitions in
the Randall-Sundrum model of a warped extra dimension with anarchic bulk fermions and a brane localized Higgs. Unlike the
Standard Model, there are large contributions to the left-handed b quark decays, parameterized by the Wilson coefficient C′

7,
due to the pattern of bulk fermion localization, and sizable contributions from the gluonic penguins, C(′)

8 , through
renormalization group mixing. Further, unlike the Randall-Sundrum result for μ→ eγ, the unprimed Wilson coefficients
receive non-negligible contributions from the misalignment of the bulk fermion spectrum with the Standard Model flavor
sector. We compare the size of effects and the constraints imposed by the branching ratios Br(B→ Xsγ) and ⟨Br(B→ Xdγ)⟩
within the minimal and the custodial model. Within the custodial framework, we study the effect on a number of benchmark
observables and find that Br(B→ Xsμ+μ−) and the forward-backward asymmetry in B→ K∗μ+μ− remain close to their
Standard Model predictions. On the other hand, there can be large enhancements of the time-dependent cp asymmetry in
B→ K∗γ and the transverse asymmetry A(2)

T .

6.2 Introduction

The Randall-Sundrum (rs) scenario of a warped extra dimension provides an elegant solution to the hierarchy
problem [175, 188–190, 219, 220] and a way to understand strongly coupled dynamics through the AdS/cft
correspondence [197, 200, 203, 219]. For reviews see [176, 177, 180, 201]. One of the promising phenomenological features
to come out of this framework is an explanation of the Standard Model (SM) flavor structure through the split-fermion
scenario [189, 190, 224, 263]. In these models the Yukawa matrices are anarchic and the spectrum of fermion masses is
generated by the exponential suppression of zero mode wavefunctions with a brane-localized Higgs [226]. This also
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automatically generates hierarchical mixing angles [226–228] and suppresses many tree-level flavor-changing neutral currents
(fcncs) through the rs-gim mechanism [226]. In order to protect against large contributions to the T parameter coming
from bulk gauge fields, one may introduce a gauged custodial symmetry [191] that is broken on the boundaries; a
straightforward discrete extension of such a symmetry also protects against corrections to the Zbb̄ vertex [211, 212] and flavor
changing couplings of the Z boson to left-handed down-type quarks [209, 234].

These flavor protection mechanisms are not always sufficient to completely protect rs models from stringent experimental
flavor constraints. In the quark sector, the tree-level exchange of Kaluza-Klein (KK) gluons and neutral electroweak gauge
bosons contributes to meson-antimeson mixing and induces left-right operators. These operators are not present in the sm
and receive a significant enhancement through qcd effects due to their large anomalous dimension. In the kaon system they
are also chirally enhanced by a factor of m2

K/m2
s . These contributions lead to new cp violating effects in the kaon system,

namely the well-measured observable εK, and result in generic bounds ofO(10− 20 tev) for the kk gluon
mass [208, 209, 230, 231, 233, 264, 265]. To reduce this bound, one must introduce additional structure such as horizontal
symmetries [235, 236], flavor alignment [237, 238], or an extended strong sector [266]. Alternately, one may promote the
Higgs to a bulk field [239] to localize the fermion zero modes closer to the UV brane.

Additional constraints on the rs flavor sector come from loop-induced dipole operators through penguin diagrams. The
first estimates for these operators were performed in [225–227, 241] assuming UV sensitivity at all loops within the 5D
effective theory and a calculation within the two-site approach was performed in [239]. In [226] the bound
MKK > O(10 tev) was derived from the constraint on the neutron electric dipole moment. The rs dipole contributions lead
to dangerously large effects in direct cp violation in the K→ ππ decays measured by the ratio ε′/ε [240]. Combining the
bound from the latter ratio with the εK constraint leads to a lower bound on the kk scale independent of the strength of the
5D Yukawa. More recently it was shown that even for the brane Higgs scenario the one-loop induced magnetic penguin
diagrams are finite in rs and can be calculated effectively in a manifestly 5D formalism [2]. The lepton flavor violating penguin
μ→ eγ sets bounds on the kk and anarchic Yukawa scales that are complementary to tree-level processes, so the tension
between these bounds quantifies the degree of tuning required in the 5D Yukawa matrix [241].

In this chapter we examine the calculation and phenomenological observables of the quark sector processes b→ qγ
(q = s, d) in the rs framework with a brane-localized Higgs field using the mixed position–momentum space formalism.
These processes differ from their leptonic analogs for various reasons beyond the spectrum and diagrams involved. Firstly,
while the branching ratio of μ→ eγ is only bounded from above, the branching ratios for B→ Xsγ and, to a lesser extent,
B→ Xdγ are well-measured and in good agreement with the SM. Secondly, theoretical predictions are more involved due to
the renormalization group (rg) evolution from the kk scale to the B meson scale and hadronic effects at the latter scale. The
RG running over this large range of energy scales introduces a sizable mixing between the various effective operators, so that
one must also include the effects of the magnetic gluon penguin C(′)

8 in addition to the magnetic photon penguin C(′)
7 .

We calculate the C(′)
7 and C(′)

8 Wilson coefficients of the quark dipole operators in Section 6.3. We provide explicit
formulae for the dominant rs contributions to the Wilson coefficients at the kk scale in both the minimal and custodial
models and analyze the size of these contributions. In Sections 6.4 and 6.5, we subsequently perform the RG evolution down
to the B meson scale and obtain predictions for the branching ratios Br(B→ Xs,dγ).

Finally, in Section 6.6, we investigate the phenomenological implications on a number of benchmark observables related to
the photon and gluon penguin operators. We first show that these operators give non-negligible constraints for both minimal
and custodial models. We then restrict our attention to realistic models with a bulk custodial symmetry
SU(2)L × SU(2)R × U(1)X × PLR and consider the effect of benchmark observables on points in parameter space that pass
tree-level constraints as evaluated in [231]. Rather than performing a detailed analysis of all observables provided by the
B→ Xsγ, B→ K∗γ, B→ Xsμ+μ− and B→ K∗μ+μ− decay modes, we focus on a number of benchmark observables in
order to illustrate the pattern of effects and leave a more detailed analysis for future work. Specifically we study:

• The branching ratio Br(B→ Xsγ) and the cp averaged branching ratio ⟨Br(B→ Xdγ)⟩ which we impose as
constraints on our parameter scan.

• The branching ratio Br(B→ Xsμ+μ−) and the forward backward asymmetry AFB in B→ K∗μ+μ−. Stringent data
that are in good agreement with the sm exist for both observables, placing strong bounds on various new physics (np)
scenarios. The custodial rs model naturally predicts small effects in these observables since they are rather insensitive
to np contributions to the primed magnetic Wilson coefficients.
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• The time-dependent cp asymmetry SK∗γ in B→ K∗γ and the transverse asymmetry A(2)
T in B→ K∗μ+μ−, evaluated

in the region of low dimuon invariant mass 1 GeV2 < q2 < 6GeV2.

Since the rs contributions generally exhibit the hierarchy ΔC′
7 ≫ ΔC7 [225, 226] the latter observables are particularly

suited to look for rs contributions. cp asymmetries in radiative B decays were already suggested in [225, 226] as good probes
to look for rs effects. We quantify the possible size of effects and study the possible rs contributions to the various
observables in a correlated manner. We also included the transverse asymmetry A(2)

T , which has not been considered in the
context of rs models before.

6.3 Calculation of the b → qγ Penguin in rs

We now calculate the rs contributions to the b→ qγ and b→ qg (q = d, s) decays. These contributions are calculated at the
kk scale MKK ∼ 1/R′; in subsequent sections we will relate these to renormalization group (RG) evolved coefficients and
observables at the low scale∼ mb.

We only evaluate the dominant diagrams, working in Feynman gauge and the mass insertion approximation, where the
expansion parameter is vR′/

√
2 ∼ O(0.1). We have checked explicitly that the diagrams presented here dominate those that

were neglected by at least an order of magnitude; a more detailed calculation is beyond the scope of this work and, in our
opinion, premature before the discovery of rs kk modes. We refer to [2] for details of the 5D calculation, Feynman rules, and
guidelines for estimating the dominant diagrams. For additional notation and conventions, especially with respect to the
custodially protected model, see [209]. See Appendix 6.D for comments on theory uncertainties.

6.3.1 Effective Hamiltonian for b → qγ transitions

The b→ qγ (q = d, s) transitions are most conveniently described by an effective Hamiltonian in the operator product
expansion, see e. g. [134] for a review. The dipole terms most sensitive to new physics are

Heff = − GF√
2
V∗
tqVtb

[
C7(μ)Q7(μ) + C′

7(μ)Q
′
7(μ) + C8(μ)Q8(μ) + C′

8(μ)Q
′
8(μ)

]
+ h.c., (6.1)

where we neglect terms proportional to V∗
uqVub. The effective operators are

Q7 =
e

4π2 mb(q̄σμνPRb)Fμν Q′
7 =

e
4π2 mb(q̄σμνPLb)Fμν (6.2)

Q8 =
gs
4π2 mb(q̄σμνTaPRb)Gμν,a Q′

8 =
gs
4π2 mb(q̄σμνTaPLb)Gμν,a, (6.3)

where PL,R = (1∓ γ5)/2. In this document we will focus on new contributions from the rs model to these operators. There
are also contributions from non-dipole operators Q1,...,6 and their chirality-flipped (primed) counterparts, but these are far
less sensitive to np and can be assumed to be equal to their sm contributions¹.

At leading order in the sm, the primed Wilson coefficients C′
7,8 are suppressed by ms/mb and therefore negligible, so the

relevant Wilson coefficients at the scale MW are

CSM
7 (MW) = −

1
2
D′

0(xt) , CSM
8 (MW) = −

1
2
E′
0(xt), (6.4)

where xt = m2
t/M2

W, and D′
0(xt) ≈ 0.37 and E′

0(xt) ≈ 0.19 are loop functions given explicitly in (3.15–3.16) of [135]. In
what follows we refer to the rs contributions to these operators as ΔC(′)

7,8 .

¹The impact of flavor changing neutral gauge bosons on the operators Q1,...,6 has recently been studied in [267]. Since the
relevant contributions in rs are suppressed both by the kk scale and the rs gim mechanism, the contributions are expected to
be small and will be neglected in this paper.
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6.3.2 Structure of the amplitude

In order to calculate the b→ (s, d)γ and b→ (s, d)g penguins, we work in a manifestly 5D framework. Unlike the 4D kk
reduction, this procedure automatically incorporates the entire kk tower² at the cost of an expansion with respect to the
Higgs-induced mass term (∼ vR′).

Using the on-shell condition for the photon, the general form of the left-to-right chirality fLi (p)→ fRj (p′)γ amplitude, C7,
in a 5D theory can be written as [2, 255]

MLi→Rj =
ie

16π2
vR′2
√

2

∑
k,ℓ

(
akℓY†

ikYkℓY†
ℓj + bijY†

ij

)
fQi fDj ū

R
p′
[
(p + p′)μ − (mb + mq)γμ] uLp εμ (6.5)

where ε is the photon polarization. The chirality flipped amplitude is given by the conjugate of this result,
MRi→Lj = (MLj→Ri)

†. The expression for the gluon penguin is analogous with the appropriate substitutions. Using the
fermion equations of motion, the term in the square brackets gives the required dipole structure σμνFμν , so a simple way to
identify the gauge-invariant contribution to the amplitude is to determine the coefficient of the (p + p′)μ term [255]. In [2]
this observation was used to show the manifest one-loop finiteness of these dipole transitions in 5D theories. Matching (6.5)
to the effective Hamiltonian (6.1) yields expressions for the rs contributions to the Wilson coefficients, ΔC.

We refer to the coefficients akℓ and bij in (6.5) as the anarchic and the misalignment contributions, respectively. They are
products of couplings and dimensionless integrals whose flavor indices reflect the bulk mass dependence of internal
propagators. Upon diagonalizing the sm fermion mass matrix, the anarchic term a is not diagonalized and generally remains
anarchic. On the other hand, in the limit where the bulk masses are degenerate, the flavor structure of the b term is aligned
with the sm Yukawa matrices and thus contains no flavor-changing transitions in the mass basis [226, 239, 241]. This
alignment is pronounced for the first and second generation fermions because their bulk masses are nearly degenerate, but
special care is required for the third generation quarks since these are localized towards the ir brane. The physical
contribution of the b coefficient comes from the robustness of off-diagonal elements of bijYijfQi fDj after passing to the basis in
which YijfQi fDj is diagonalized. Contrary to the usual assumption of Yukawa anarchy, the overall size of the b term depends on
the misalignment of the specific anarchic Yukawa matrix relative to the set of bulk masses as flavor spurions. One expects
diagrams with internal zero modes to give the dominant contributions, since these are the most sensitive to the bulk mass
spectrum and hence robust against diagonalization; this intuition is confirmed by our numerical scans. One measure of this
effect is the 1σ standard deviation from b = 0 in a scan over random anarchic matrices [2]; we use this to identify the
dominant contributions to this misalignment term.

By assumption, the anarchic contribution is independent of the sm flavor sector, so there is no analogous alignment
suppression to the a coefficient. However, depending on the internal modes in the loop, each diagram contributing to this
term carries one of two possible independent flavor spurions that can be built out of the Yukawa matrices that may enter this
product: Y†

uYuY†
d and Y†

dYdY†
d . These matrices may have arbitrary relative phase, so the two terms may add either

constructively or destructively. The misalignment contribution is a third independent flavor spurion, which also carries a
relative phase dependent on the particular choice of parameters.

We express the anarchic (a) and misalignment (b) coefficients in terms of dimensionless integrals, which are defined in
Appendix 6.A. To explicitly demonstrate the calculation of diagrams in the 5D mixed position/momentum space formalism,
we present a sample calculation of the anarchic contribution to C7 in Appendix 6.B. The C8 diagrams where a gluon is emitted
from an internal gluon have integral results that are typicallyO(1) while the integrals for the other diagrams are typically
O(10−1) in magnitude. Note that the contribution to a from each diagram matches what is expected from a naive dimensional
analysis. This is in contrast to the analogous calculation for μ→ eγ, where the leading diagrams are smaller than the naive
estimated size. There are thus no problems with the two-loop contribution yielding a larger contribution than expected from
the perturbative expansion.

Below we present the calculation for the right-to-left chirality (unprimed) Wilson coefficients ΔC7,8 for b→ q; the
left-to-right chirality (primed) Wilson coefficients are obtained by Hermitian conjugation of the q→ b amplitude. The
anarchic contribution to the left-to-right chirality coefficients are enhanced over the right-to-left coefficients by a factor of

² An alternate method of including the entire kk tower based on residue theorems was presented in [268], though it obfus-
cates the physical intuition presented below.
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fbL/fbR , while the misalignment contribution is of the same order of magnitude. This behavior is explained qualitatively in
Appendix 6.C and demonstrated numerically in Section 6.6.

6.3.3 Calculation of ΔC(′)
7

Figure 6.3.1 shows the dominant contributions to the C7 photon penguin operator. The rs contribution to the b→ qγ

H−

D Q

Q U

U

Y†
d

Yu

Y†
u

(a)Charged Goldstone loop

G

Q

Q

D

D Q

Y†
d

G

Q

Q

D Q

Y†
d

(b)Gluon (Gμ or G5) loops with a single mass insertion

Figure 6.3.1: Leading contributions to the anarchic (a) and misalignment (b) terms of the C7 Wilson coeffi-
cient. Arrows indicate SU(2)L representation; this is equivalent to labeling the chirality of the zero mode for sm
fields. Here Q, U and D denote the 5D chiral fermion fields containing the sm left-handed doublets and right-
handed up and down singlets, respectively. H− is the charged component of the Higgs doublet that serves as the
Goldstone boson of W− after electroweak symmetry breaking, and G is the 5D gluon field. Additional diagrams
related by exchanging the order of the mass insertion and photon emission are left implicit.

Wilson coefficient is

ΔC7 =
−vR′2

8mb GF
(V∗

tqVtb)
−1
∑
ijkℓ

(UDL
qi )

†fQd
i
fDj

∑
k,ℓ

akℓYu†
ik Yu

kℓY
d†
ℓj + bijYd†

ij

UDR
jb . (6.6)

UDL,R are the rotation matrices between the 5D gauge and the light down quark mass bases.
Note that throughout our analysis we use the tree level matching condition for the 5D gauge couplings and neglect

possible brane kinetic terms that may alter this matching. While this affects the misalignment contribution to C(′)
7 and the

calculation for C(′)
8 , the anarchic contribution to C(′)

7 , containing only one gauge coupling vertex instead of three, remains
relatively unaffected. Since the latter gives the dominant contribution to the observables discussed in section 6.6, we do not
expect this assumption to have a significant impact on our predictions.

ΔC7: anarchic contribution

The dominant anarchic contribution is the diagram with one mass insertion and a charged Higgs (Goldstone) in the loop,
Figure 6.3.1a. Note that this diagram is not present in the analogous leptonic penguin, which has a neutrino in the loop. The
analogous diagram with the photon emitted off the charged Higgs propagator is found to be suppressed by a factor of
(mWR′)2 ∼ 10−2 due to an algebraic cancellation [2], while the one with the mass insertion on an external fermion leg is
suppressed by mq/v since the external brane-to-brane fermion propagator must be a zero-mode. All other diagrams contain
two additional mass insertions—necessary to obtain the required structure of a product of three Yukawas—and are therefore
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also suppressed by a factor of (vR′/
√

2)2 ∼ 10−2. Of these neglected diagrams, the next-to-leading diagrams contributing to
this coefficient are gluon loops with three mass insertions, which carry a gauge coupling enhancement of g2s lnR′/R ≈ 36 but
are suppressed due to the two additional mass insertions, the quark charge (Qd = −1/3), and different topologies; they are
∼ 5% corrections to the leading contribution. Note that these diagrams carry an independent flavor structure (Y†

dYdY†
d) and

can interfere either constructively or destructively with Figure 6.3.1a.
The value for the a coefficient in (6.6) coming from the penguin in Figure 6.3.1a is a dimensionless integral whose explicit

form is given in (6.63),

a = QuIC7a , (6.7)

where Qu = 2/3 is the charge of the internal up-type quark.

ΔC7: misalignment contribution

The dominant misalignment contributions come from gluon diagrams with a single mass insertion. As shown in Figure 6.3.1b,
this insertion can either be on an internal or external fermion line. All other diagrams contain electroweak couplings and
hence are subdominant. The final misalignment contribution in (6.6) is

b = Qd
4
3

(
g2s ln

R′

R

)
IC7b . (6.8)

Here Qd is the charge of the internal down-type quark, 4/3 is a color factor, lnR′/R is a warp factor associated with bulk gauge
couplings, and IC7b is a dimensionless integral defined in (6.64).

6.3.4 Calculation of ΔC(′)
8

The gluon penguin operators C8 and C′
8 differ from their photon counterparts due to additional qcd vertices available and the

magnitude of the qcd coupling, g25D/R = g2s lnR′/R ≈ 36. Because of this, the dominant diagrams contributing to b→ qg
cannot be obtained from b→ qγ by simply replacing the photon with a gluon in the leading diagrams for C(′)

7 . The general
expression for ΔC8 is the same as that for ΔC7 in (6.6), with coefficients a and b coming from the diagrams shown in
Figure 6.3.2.

H−

D Q

Q U

U

Y†
d

Yu

Y†
u

Gμ

Q D

Y†
d

Yd

Y†
d

D Q

(a)Charged Goldstone and three mass insertion gluon loops. Not
shown: gluon loop with two and three internal line mass insertions.

Gμ

D Q

Yu

D Q

(b)One mass insertion gluon
loop

Figure 6.3.2: Leading contributions to the a and b terms of the C8 Wilson coefficient following the notation of
Figure 6.3.1. Gμ refers to only the gluon four-vector.
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ΔC8: anarchic contribution

There are two classes of dominant contributions to the anarchic (a) coefficient in C(′)
8 . In addition to the charged Higgs

diagrams analogous to Figure 6.3.1a, there are gluon diagrams with three mass insertions on the fermion lines, which are now
sizable due to the size of the strong coupling constant and the three-point gauge boson vertex (as mentioned earlier, the
dimensionless integral associated with this digram isO(1), while all other diagrams haveO(0.1) integrals). Of the latter class,
one only needs to consider diagrams with at most one mass insertion on each external leg since sequential insertions on an
external leg are suppressed by factors of mqR′. Note that these two sets of diagrams contribute with different products of
Yukawa matrices; while the Higgs diagrams are proportional to Y†

uYuY†
d , the gluon diagrams are proportional to Y†

dYdY†
d . Thus

these two terms may add either constructively or destructively and may even add with different relative sizes if there is a
hierarchy between the overall scale of the up- and down-type 5D anarchic Yukawas. The a coefficient is

a = IC7a ⊕
3
2

(
g2s ln

R′

R

)2 (R′v√
2

)2

IGC8a , (6.9)

where we have written⊕ to indicate that the two terms carry independent flavor spurions. Here IC7a is the same dimensionless
integral appearing in (6.7). The second term includes color factors, warped bulk gauge couplings, and explicit mass insertions
in addition to the dimensionless integral IC8a defined in (6.67).

ΔC8: misalignment contribution

The single mass insertion gluon emission diagram in Figure 6.3.2b gives the dominant misalignment term. Additional
diagrams with the gluon emission from the quark line are suppressed by a relative color factor of 1/6 versus 3/2 and can be
neglected. Diagrams with a scalar (G5) gluon or the mass insertion on an external leg do not carry an internal fermion zero
mode and become negligible after rotation to the mass basis, as discussed earlier. Diagrams with electroweak gauge bosons in
the loop are suppressed due to the smaller size of the gauge coupling. The expression for the dominant diagram is

b =
3
2

(
g2s ln

R′

R

)
IC8b . (6.10)

with IC8b defined in (6.71). We have again pulled out an explicit color factor and the warped bulk gauge coupling.

6.3.5 Modifications from custodial symmetry

In models with a gauged bulk custodial symmetry, the additional matter content may also contribute to the b→ qγ(g)
transitions. By construction, boundary conditions for custodial fermions are chosen such that they have no zero modes. The
misalignment (b) coefficients do not receive any significant corrections from custodial diagrams: diagrams with custodial
gauge bosons are suppressed due to electroweak couplings, while those with custodial fermions do not carry internal fermion
zero modes and become negligible after rotation to the mass basis.

The leading custodial contributions to the anarchic (a) coefficients are shown in Figure 6.3.3; these are the same diagrams
that contribute to the anarchic (a) terms of the C7 and C8 Wilson coefficients and now appear with additional custodial
fermions, denoted by U′, U′′, and D′. These are the only custodial diagrams that give contributions comparable to those in
Figure 6.3.1 and Figure 6.3.2. The remaining diagrams consist of W and Z loops, which, as mentioned earlier, are suppressed
by a factor of∼ 10−2 relative to the Higgs loops due to the two additional mass insertions, and remain negligible despite the
larger multiplicity due to the extended electroweak sector.

Since the custodial fermions U′, U′′, and D′ have the same ir boundary condition as their sm counterparts but the
opposite UV boundary condition, and since the localization of the Higgs pulls the loop towards the ir brane, the contribution
of these custodial diagrams is well-approximated by the contributions of their sm counterparts. Since the minimal model
diagrams are dominated by the kk fermion contribution, it is reasonable that the custodial modes should contribute
approximately equally to the process.
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Y†
d

D Q

Figure 6.3.3: Additional custodial diagrams contributing to the C7 and C8 coefficients.

Observe that each of these custodial contributions is proportional to Y†
dYdY†

d . In particular, the custodial Higgs diagrams
carry a flavor structure that is independent of that of their minimal model counterparts. Also, note that the U′ and U′′

couplings to the charged Higgs come with a factor of 1/
√

2 while the D′ coupling to the Higgs does not [231]. Thus the
additional custodial diagrams contribute an analytic structure that is nearly identical to the minimal model diagrams except for
the Yukawa matrices, which now come with the product Y†

dYdY†
d . Since this is independent of the Y†

dYuY†
u flavor spurion in the

minimal model diagrams, the addition of the custodial diagrams generically enhances the penguin amplitude by less than the
factor of two that one would obtain in the limit Yd = Yu. This shows that while custodial symmetry can be used to suppress
tree-level flavor changing effects in rs models, this comes at the cost of generically enhancing loop-level flavor processes.

6.4 Radiative B decays

We now examine the physical observables most directly related to the parton-level b→ q(γ, g) operators derived above: B
meson decays with an on-shell photon.

6.4.1 The B → Xs,dγ decay

The sm predictions for the inclusive decays B→ Xs,dγ are [269, 270]

Br(B→ Xsγ)SM = (3.15± 0.23) · 10−4 , ⟨Br(B→ Xdγ)⟩SM = (15.4+2.6
−3.1 ) · 10

−6 . (6.11)

These can be compared to the measured values [271]

Br(B→ Xsγ)exp = (3.55± 0.27) · 10−4 , ⟨Br(B→ Xdγ)⟩exp = (14± 5) · 10−6 . (6.12)

Here ⟨Br(B→ Xdγ)⟩ refers to the cp averaged branching ratio in which the hadronic uncertainties cancel to a large
extent [272]. We have extrapolated the experimental value for ⟨Br(B→ Xdγ)⟩ to the photon energy cut Eγ > 1.6GeV used
for the theory prediction.

Rather than performing an extensive error analysis, we simply require the new rs contributions to fulfill the constraints

ΔBr(B→ Xsγ) = Br(B→ Xsγ)exp − Br(B→ Xsγ)SM = (0.4± 0.7) · 10−4 , (6.13)
ΔBr(B→ Xdγ) = ⟨Br(B→ Xdγ)⟩exp − ⟨Br(B→ Xdγ)⟩SM = −(1± 11) · 10−6 . (6.14)

Neglecting all uncertainties associated with np contributions, these constraints represent the 2σ ranges when combining
experimental and theoretical uncertainties in quadrature. Although the data and prediction for B→ Xdγ are currently less
precise than those for B→ Xsγ, an important and partly complementary constraint can be obtained from the former decay, as
recently pointed out in [270]. Since the data for B→ Xdγ lie slightly below the sm prediction, ΔBr(B→ Xdγ) < 0 is
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somewhat favored, leaving little room for np contributing to C′
7. In contrast, a positive np contribution to Br(B→ Xsγ) is

welcome to bring the theory prediction closer to the data. We note that if the tree level values for the ckm parameters are used
instead of the sm best fit values, the predicted central value for ⟨Br(B→ Xdγ)⟩SM rises to about 19 · 10−6, increasing the
tension with the data.

6.4.2 Master formula for Br(B → Xsγ)

Following the strategy of [267, 273, 274], which use the results of [275], the “master formula” for the inclusive B→ Xsγ
branching ratio in terms of the sm branching ratio, BrSM, and np contributions to the Wilson coefficients is

Br(B→ Xsγ) = BrSM + 0.00247
[
|ΔC7(μb)|

2 + |ΔC′
7(μb)|

2 − 0.706 Re(ΔC7(μb))
]
. (6.15)

The rs contributions to ΔC(′)
7 (μb) are obtained from the RG evolution of ΔC(′)

7 and ΔC(′)
8 , calculated in Section 6.3 at the

high scale MKK = 2.5 tev, down to the B scale, μb = 2.5 GeV,

ΔC(′)
7 (μb) = 0.429 ΔC(′)

7 (MKK) + 0.128 ΔC(′)
8 (MKK) . (6.16)

All known sm non-perturbative contributions have been taken into account while the rs contribution is included at leading
order neglecting uncertainties. This approach is an approximation to studying the effects of rs physics on the decay in
question; however, in view of the other uncertainties involved—such as the the mass insertion approximation and taking into
account only the leading diagrams—this approach gives sufficiently accurate results to estimate the size of rs contributions. A
more accurate and detailed analysis is beyond the scope of our analysis and, in our view, premature before the discovery of rs
kk modes.

6.4.3 Master formula for ⟨Br(B → Xdγ)⟩
A master formula can be obtained in a similar manner for the CP-averaged B→ Xdγ branching ratio. Using the expressions
collected in [270, 274, 276] we find

⟨Br(B→ Xdγ)⟩ = ⟨BrSM⟩+ 10−5
[
1.69

(
|ΔC7|2 + |ΔC′

7|2
)
+ 0.24

(
|ΔC8|2 + |ΔC′

8|2
)

+ 1.06 Re
[
ΔC7ΔC∗

8 + ΔC′
7ΔC′∗

8
]
− 3.24 Re(ΔC7)

− 0.16 Im(ΔC7)− 1.03 Re(ΔC8)− 0.04 Im(ΔC8)
]
, (6.17)

where all of the rs contributions to the b→ d Wilson coefficients ΔC(′)
7,8 are evaluated at MKK.

6.4.4 Analytic estimate of constraints

Assuming anarchic Yukawa couplings, one may estimate the size of the rs contributions to the Wilson coefficients in terms of
the anarchic coefficients in Section 6.3.3,

|ΔC7(MKK)
b→s,dγ | ∼ 1

4
√

2GF
aY2

∗R
′2 ∼ 0.015 aY2

∗

(
R′

1 tev−1

)2

, (6.18)

|ΔC′
7(MKK)

b→sγ | ∼ 1
4
√

2GF
aY2

∗R
′2 ms

mb|Vts|2
∼ 0.18 aY2

∗

(
R′

1 tev−1

)2

, (6.19)

|ΔC′
7(MKK)

b→dγ | ∼ 1
4
√

2GF
aY2

∗R
′2 md

mb|Vtd|2
∼ 0.20 aY2

∗

(
R′

1 tev−1

)2

, (6.20)

where we neglect the misalignment contributions. Here Y∗ is the average size of the anarchic Yukawa couplings Yij which we
assume to be equal for Yu and Yd.
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Generically the contribution to the chirality-flipped operator C′
7 is larger than the one to C7 by more than an order of

magnitude. This is a direct consequence of the hierarchical pattern of quark masses and ckm angles: in order to fit the
observed spectrum, the left-handed bL quark has to be localized close to the ir brane, and consequently its flavor violating
interactions are far more pronounced than those of the right-handed bR.

Neglecting the subdominant contributions from ΔC7 and ΔC(′)
8 , we can constrain the size of ΔC′

7 by making use of the
data on Br(B→ Xsγ) and ⟨Br(B→ Xdγ)⟩. We obtain the following constraints from the master formulas and the
experimental constraints quoted above:

|ΔC′
7(MKK)

b→sγ | < 0.47 , |ΔC′
7(MKK)

b→dγ | < 0.77 . (6.21)

Using (6.19–6.20) and a ∼ 0.33 we can derive an upper bound on the size of the Yukawa couplings, Y∗,

Y∗R′

tev−1 < 2.8 from B→ Xsγ , (6.22)

Y∗R′

tev−1 < 3.4 from B→ Xdγ , (6.23)

For R′ = 1 tev−1 these are of the same order as the perturbativity bound on the Yukawa coupling [230]. We see that the
generic constraint from B→ Xsγ is slightly stronger than that from B→ Xdγ due to the larger uncertainties in the latter case.
However, since they only differ by anO(1) factor, in specific cases the latter constraint may be more restrictive, so one must
take both processes into account when constraining the rs parameter space.

6.4.5 cp asymmetry in B → K∗γ

Like many extensions of the sm, rs generally induces large cp violating phases. It is thus of great interest to also study cp
violation in b→ sγ transitions. While the direct cp asymmetry in the inclusive B→ Xsγ decay is in principle highly sensitive
to np contributions, in practice the sm contribution is dominated by long-distance physics and therefore plagued by large
non-perturbative uncertainties [277]. Consequently, a reliable prediction in the presence of np is difficult.

Fortunately, a theoretically much cleaner observable is provided by the B→ K∗γ decay. While its branching ratio is
plagued by the theoretical uncertainty of the B→ K∗ form factors, this form factor dependence largely drops out of the
time-dependent cp asymmetry [278–280]

Γ(B̄0(t)→ K̄∗0γ)− Γ(B0(t)→ K∗0γ)
Γ(B̄0(t)→ K̄∗0γ) + Γ(B0(t)→ K∗0γ)

= SK∗γ sin(ΔMdt)− CK∗γ cos(ΔMdt) . (6.24)

The coefficient SK∗γ is highly sensitive to new rs contributions. At leading order it is given by [279, 281]

SK∗γ ≃
2

|C7|2 + |C′
7|2

Im
(
e−iφdC7C′

7
)
, (6.25)

where the Wilson coefficients are to be taken at the scale μb. φd is the phase of B0–B̄0 mixing, which has been well measured in
B0 → J/ψKS decays to be sin φd = 0.67± 0.02 [271].

From (6.25) we see that SK∗γ is very sensitive to new phsyics in the chirality flipped operator C′
7 and vanishes in the limit

C′
7 → 0. Consequently the sm prediction is suppressed by the ratio ms/mb and is therefore very small [280],

SSMK∗γ = (−2.3± 1.6)% . (6.26)

Measuring a sizable cp asymmetry SK∗γ would thus not only be a clear sign of physics beyond the sm, but unambiguously
indicate the presence of new right handed currents. The present experimental constraint [271, 282, 283],

SexpK∗γ = −16%± 22%, (6.27)

is still subject to large uncertainties but already puts strong constraints on np in b→ s transitions [281]. A significant
improvement is expected soon from lhcb, and the next generation B factories will reduce the uncertainty even further.

96



6.5 Semileptonic B decays

Semileptonic B decays such as B→ Xsμ+μ− and B→ K∗μ+μ− offer an interesting opportunity to not only look for
deviations from the sm, but also to identify the pattern of np contributions and therewith distinguish various np scenarios.
These decays receive contributions from semileptonic four-fermion operators (̄sb)(μ̄μ) in addition to the magnetic dipole
operators discussed earlier. While the dipole operators receive rs contributions first at the one-loop level as required by gauge
invariance, the four fermion operators are already affected at tree level by the exchange of the Z boson and the heavy
electroweak kk gauge bosons.

In this section we discuss the effective Hamiltonian for b→ sμ+μ− transitions. Subsequently we will review a number of
benchmark observables that are relevant for the study of rs contributions.

6.5.1 Effective Hamiltonian for b → sμ+μ− transitions

The effective Hamiltonian for b→ sμ+μ− reads

Heff = Heff(b→ sγ)− GF√
2
V∗
tsVtb

[
C9V(μ)Q9V(μ) + C′

9V(μ)Q
′
9V(μ)

+C10A(μ)Q10A(μ) + C′
10A(μ)Q

′
10A(μ)

]
+ h.c. , (6.28)

where we neglect the terms proportional to V∗
usVub, and

Q9V = 2(̄sγμPLb)(μ̄γμμ) Q′
9V = 2(̄sγμPRb)(μ̄γμμ) (6.29)

Q10A = 2(̄sγμPLb)(μ̄γμγ5μ) Q′
10A = 2(̄sγμPRb)(μ̄γμγ5μ). (6.30)

In the sm only the unprimed Wilson coefficients are relevant. At the scale MW they are given by

CSM
9V (MW) =

α
2π

[
Y0(xt)
sin2 θW

− 4Z0(xt)
]

CSM
10A(MW) = −

α
2π

Y0(xt)
sin2 θW

(6.31)

where xt = m2
t/M2

W and the dimensionless loop functions Y0(xt) ≈ 0.94 and Z0(xt) ≈ 0.65 are explicitly written in (3.27)
and (3.28) of [135].

While C(′)
7 and C(′)

8 receive the loop-level rs contributions calculated in Section 6.3, C(′)
9V and C(′)

10A are corrected at tree
level from the new flavor-changing couplings to the Z boson and the exchange of neutral electroweak gauge boson kk modes.
In this analysis we only keep the leading contribution to each of these operators, i.e. we consider ΔC(′)

7γ,8G at one loop and
ΔC(′)

9V,10A at tree level. Strictly speaking, such an approach leads to an inconsistent perturbative expansion, but it is reasonable
to expect that the one loop corrections to the latter Wilson coefficients are sub-dominant with respect to the tree level
contributions, and by considering only the rs tree level contribution one should still capture the dominant np effects.

Explicit expressions for ΔC(′)
9V and ΔC(′)

10A can be straightforwardly obtained from [234]. These expressions can be written
in terms of RG invariants ΔY(′) and ΔZ(′) and the coupling α, which itself is only very weakly scale dependent above MW.
Thus one may use these expressions to directly write the rs contributions at the scale MW,

ΔC9V =
α
2π

[
ΔYs

sin2 θW
− 4ΔZs

]
(6.32)

ΔC′
9V =

α
2π

[
ΔY′

s

sin2 θW
− 4ΔZ′

s

]
(6.33)

ΔC10A = − α
2π

ΔYs

sin2 θW
(6.34)

ΔC′
10A = − α

2π
ΔY′

s

sin2 θW
(6.35)
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The functions ΔY(′) and ΔZ(′) are given by

ΔYs = − 1
V∗
tsVtb

∑
X

Δμμ
L (X)− Δμμ

R (X)
4M2

Xg2SM
Δbs
L (X) , (6.36)

ΔY′
s = − 1

V∗
tsVtb

∑
X

Δμμ
L (X)− Δμμ

R (X)
4M2

Xg2SM
Δbs
R (X) , (6.37)

ΔZs =
1

V∗
tsVtb

∑
X

Δμμ
R (X)

8M2
Xg2SM sin2 θW

Δbs
L (X) , (6.38)

ΔZ′
s =

1
V∗
tsVtb

∑
X

Δμμ
R (X)

8M2
Xg2SM sin2 θW

Δbs
R (X) . (6.39)

Here the summation runs over X = Z,Z(1),A(1) in the minimal model and over X = Z,ZH,Z′,A(1) in the custodial model.
The flavor violating 4D fermion gauge boson couplings Δij

L,R(X) depend on the overlap of the fermion profile with the
corresponding gauge boson profile. Their explicit form depends on both the fermion and gauge boson mixing matrices. The
explicit expressions are complicated and unilluminating, hence we do not quote them here but refer the reader to Appendix A
of [234]. Furthermore

g2SM =
GF√

2
α

2π sin2 θW
. (6.40)

The tree level contributions to b→ sμ+μ− transitions in the minimal rs model are evaluated in [208] without making the
approximations of taking into account only the first kk modes or treating the Higgs vacuum expectation value as a
perturbation. In this paper we are mainly interested in the effects of∼ 2.5 tev kk modes. As these are ruled out in the
minimal model by precision electroweak constraints, we focus on the phenomenological effects of the custodial rs model on
these transitions.

For the study of observables related to b→ sμ+μ−, it is useful to introduce the effective Wilson coefficients at the scale μb
that include the effects of operator mixing,

Ceff
7 = (Ceff

7 )SM + ΔC7(μb) , C′eff
7 = (C′eff

7 )SM + ΔC′
7(μb) , (6.41)

Ceff
9V(q

2) = (Ceff
9V)SM(q

2) +
2π
α

ΔC9V , C′eff
9V =

2π
α

ΔC′
9V , (6.42)

Ceff
10A = (Ceff

10A)SM +
2π
α

ΔC10A , C′eff
10A =

2π
α

ΔC′
10A . (6.43)

The sm values of the effective Wilson coefficients can be found in Table 2 of [284], which also gives the q2 dependence of
(Ceff

9V)SM(q2) in terms of a linear combination of the other Wilson coefficients. While in principle all contributions have to be
taken at the scale μb, the np contributions to C(′)

9V,10A are invariant under renormalization group evolution.

With these effective Wilson coefficients at the B scale, we are now equipped to study observables in b→ sμ+μ−

transitions. While this system offers a plethora of observables for study, a detailed analysis of all of them is beyond the scope
of this paper, and we concentrate on studying a few benchmark observables that are particularly relevant for rs physics. A
numerical analysis is presented in Section 6.6.

In passing we would like to remark on the pattern of contributions to C(′)
9V,10A in the custodial model, as pointed out

in [234]. Due to the suppression of flavor violating ZdiLd̄
j
L couplings by the discrete PLR symmetry, the main contributions

arise in the primed Wilson coefficients C′
9V,10A, which are absent in the SM. Since the right-handed b quark, localized

significantly further away from the ir brane than the left-handed one, is far less sensitive to flavor violating effects introduced
by the rs kk modes, the rs effects in Y(′)

s ,Z(′)
s turn out to be rather small (typically below 10%). This pattern is very different

from the minimal model, where the PLR suppression mechanism is absent and large tree level flavor violating Z couplings to
left-handed down-type quarks are present.
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6.5.2 Benchmark observables

Br(B → Xsμ+μ−)

For very low lepton invariant mass q2 → 0, the B→ Xsμ+μ− transition is completely dominated by the photon pole and
doesn’t provide any new insight with respect to the B→ Xsγ decay discussed above. Furthermore, in the intermediate region
6GeV2 < q2 < 14.4GeV2 the sensitivity to np is very small, as the decay rate in this region is completely dominated by charm
resonances. Hence one usually restricts oneself to either the low q2 region 1 GeV2 < q2 < 6GeV2, or the high q2 region
q2 > 14.4GeV2. In what follows we will consider only the low q2 region. While the high q2 region is potentially interesting
since it exhibits a small tension between sm prediction [285] and experimental data [286, 287], it is far less sensitive to np in
C(′)
7 , which is the main focus of this study. In the custodial rs model, the tension in the high q2 region cannot be resolved since

the new contributions to C(′)
9V,10A are generally small [234]. In addition, the high q2 region is subject to larger theoretical

uncertainties.
In the low q2 region, adapting the formulae of [288] to the more general case of complex np contributions, we find

Br(B→ Xsμ+μ−)low q2 = Br(B→ Xsμ+μ−)low q2
SM + ΔBr(B→ Xsμ+μ−)low q2 (6.44)

with the NNLL prediction [289]
Br(B→ Xsμ+μ−)low q2

SM = (15.9± 1.1) · 10−7 (6.45)

and the np contribution [288]

ΔBr(B→ Xsμ+μ−)low q2 ≃ 10−7 ·
[
− 0.517 Re(ΔC7(μb))− 0.680 Re(ΔC′

7(μb))

+ 2.663 Re(δC9V)− 4.679 Re(δC10A)

+ 27.776
(
|ΔC7(μb)|

2 + |ΔC′
7(μb)|

2)
+ 0.534

(
|δC9V|2 + |δC′

9V|2
)

+ 0.543
(
|δC10A|2 + |δC′

10A|2
)

+ 4.920 Re
(
ΔC7(μb)δC

∗
9V + ΔC′

7(μb)δC
′∗
9V
) ]

, (6.46)

where we defined
δCi =

2π
α

ΔCi. (6.47)

Note that we dropped all interference terms between unprimed and primed contributions since they are suppressed by a
factor ms/mb and therefore small. The only exception is the term linear in ΔC′

7, which receives a large numerical enhancement
factor, and is therefore non-negligible; hence we keep it in our analysis.

The measurements of BaBar [286] and Belle [287] yield the averaged value

Br(B→ Xsμ+μ−)low q2
exp = (16.3± 5.0) · 10−7. (6.48)

As lhcb is not well suited for performing inclusive measurements, a significant reduction of uncertainties will only be feasible
at the next generation B factories Belle-II and SuperB [290–293].

B → K0∗(→ πK)μ+μ−

While the inclusive B→ Xsμ+μ− mode is theoretically very clean, such measurements are experimentally challenging, and
competitive results (in particular for angular distributions) will not be available before the Belle II and SuperB era [290–293].
For this reason, exclusive decay modes have received well-deserved attention. An especially interesting decay is
B→ K∗(→ Kπ)μ+μ−, where a plethora of angular observables can be studied thanks to the four-body final
state [281, 284, 294–299]. These can provide detailed information on the operator and flavor structure of the underlying np
scenario.
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The downside is that many B→ K∗(→ Kπ)μ+μ− observables, such as the branching ratio and differential decay
distribution, are plagued by large theoretical uncertainties in the determination of the B→ K∗ matrix elements governed by
long-distance non-perturbative qcd dynamics. These matrix elements are most conveniently described by a set of seven form
factors. Presently, the best predictions for these form factors at large final state meson K∗ energies, i.e. small lepton invariant
mass q2, stem from qcd sum rules at the light cone [300]. Furthermore, non-factorizable corrections are calculated using qcd
factorization, which is only valid in the low q2 regime.³ On the other hand, as mentioned above, at very low q2 < 1 GeV2 the
b→ sμ+μ− transition is dominated by the C(′)

7 contributions due to the infrared photon pole and therefore does not provide
any insight beyond what is already obtained from b→ sγ. Consequently, we henceforth restrict our attention to the range
1 GeV2 ≤ q2 ≤ 6GeV2.

Fortunately, it is possible to partly circumvent the theoretical uncertainties by studying angular observables that are less
dependent on the form factors in question. Detailed analyses of their np sensitivity and discovery potential have been
performed by various groups, both model-independently and within specific np scenarios [281, 284, 294–297]. We leave such
a detailed analysis in the context of rs models for future work. We focus instead on two benchmark observables, the forward
backward asymmetry AFB, which is experimentally well constrained, and the transverse asymmetry A(2)

T , which offers unique
sensitivity to np in the primed Wilson coefficients.

We note that the recently measured cp asymmetry A9 [305, 306], as defined in [284, 307], is also very sensitive to np in C′
7

and therefore is in principle an interesting observable to look for rs effects. Because it is sensitive to the phase of C′
7, it yields

partly complementary information with respect to the cp conserving transverse asymmetry A(2)
T . Although this cp asymmetry

is theoretically very clean, contrary to those studied in [296], we leave a detailed study within rs for future work.

Forward backward asymmetry The forward-backward asymmetry AFB in B→ K∗μ+μ− decays is defined by

AFB(q2) =
1

dΓ/dq2

(∫ 1

0
d(cos θμ)

d2Γ
dq2d(cos θμ)

−
∫ 0

−1
d(cos θμ)

d2Γ
dq2d(cos θμ)

)
, (6.49)

where θμ is the angle between the K∗ momentum and the relative momentum of μ+ and μ−. AFB has recently received a lot of
attention as data from BaBar, Belle, and the Tevatron seem to indicate a deviation from the sm, albeit with low statistical
significance [305,308,309]. On the other hand, recent lhcb data [?] show excellent agreement with the sm prediction, and as
uncertainties are presently dominated by statistics, an improved measurement should be available soon.

A precise theoretical determination of AFB is appealing since it offers a sensitive probe of the helicity of np contributions.
To leading order, the forward backward asymmetry is proportional to [307]

AFB(q2) ∝ Re
[(

C9V(q2) +
2m2

b

q2
C7

)
C∗
10A −

(
C′
9V +

2m2
b

q2
C′
7

)
C′∗
10A

]
, (6.50)

where we dropped the superscript “eff” for the effective Wilson coefficients at the scale μb, (6.41–6.43). From (6.50) we can
see explicitly that AFB does not receive contributions from the interference of different chirality operators (unprimed and
primed). Consequently, with the sm contribution being the dominant effect, potential non-standard effects in AFB arise
mainly from np in C7 and C9V. On the other hand, AFB is rather insensitive to np in the primed Wilson coefficients C′

7γ,9V,10A.
AFB has been studied in the context of the minimal rs model considering only tree level contributions and omitting loop

level dipole contributions to C(′)
7 [208], where small positive contributions to AFB were found. While AFB is very sensitive to

np effects in C7, the rs dipole contributions we calculated predict rather small contributions to this Wilson coefficient. On the
other hand, AFB is insensitive to C′

7, where rs effects are expected to be more pronounced over the SM. Thus the overall
prediction of small deviations of AFB from the sm obtained in [208] remains consistent with our calculations. Note that the
restriction to tree level rs effects is not necessarily a good approximation for observables sensitive to C′

7, such as FL, which was
also studied in [208]. A detailed study including one-loop contributions to the dipole operators would therefore be desirable
but lies beyond the scope of the present analysis.

³Significant progress has recently been made on the form factor predictions in the large q2 region [301–304]; nevertheless
we will not consider this kinematic regime since it is less sensitive to np entering C(′)

7 than the low q2 region.
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In the custodial rs model, due to the protection of the ZdiLd̄
j
L vertex [231], the rs contributions to C9V,10A are highly

suppressed, and only the new contributions to the primed operators are relevant. As AFB is insensitive to the latter Wilson
coefficients, it remains very close to the sm prediction.

We conclude that rs effects in the forward backward asymmetry AFB are generally small, so the recent data from lhcb do
not pose any stringent constraint on the minimal or custodial model, the latter being even more insensitive to rs contributions.

Transverse asymmetry A(2)
T The asymmetries A(i)

T , which are introduced in [295, 310], offer a particularly good probe
of np in b→ sμ+μ− transitions since at leading order they are free of any hadronic uncertainties and are given in terms of
calculable short distance physics. In this paper we will restrict ourselves to the study of the asymmetry

A(2)
T =

|A⊥|2 − |A∥|2

|A⊥|2 + |A∥|2
. (6.51)

Here A⊥ and A∥ are the transversity amplitudes [310] describing the polarization of the K∗ and the μ+μ− pair; both are
transverse with linear polarization vectors perpendicular (⊥) or parallel (∥) to each other. In the limit of heavy quark
(mB →∞) mass and large K∗ energy (small q2), this asymmetry takes a particularly simple form [296]

A(2)
T (q2) =

2 [Re(C′
10AC∗

10A) + F2 Re(C′
7C∗

7 ) + FRe(C′
7C∗

9V)]

|C10A|2 + |C′
10A|2 + F2 (|C7|2 + |C′

7|2) + |C9V|2 + 2FRe(C7C∗
9V)

(6.52)

with F = 2mbmB/q2, and we have again dropped the superscript “eff” from the Wilson coefficients. In this limit it is clear that
A(2)
T is independent of form factors and is governed only by calculable short distance physics, making this observable

theoretically clean. Second, we notice that since the primed Wilson coefficients are highly suppressed in the sm, (A(2)
T )SM is

very small. A(2)
T therefore offers unique sensitivity to np entering dominantly in the primed operators C′

7γ,9V,10A. This
asymmetry is thus a benchmark observable for discovering rs physics in B→ K∗μ+μ− decays. We investigate the possible
size of rs contributions to this channel in our numerical analysis in the next section.

A first measurement of A(2)
T by cdf [305] is still plagued by large uncertainties. lhcb has recently put more stringent

constraints on this asymmetry, and more precise measurements will be possible in the near future [306]. With 10fb−1 of data,
lhcb is expected to reach a sensitivity of about±0.16.

6.6 Numerical analysis

6.6.1 Strategy

In this section we present a numerical analysis of the observables introduced in the previous sections. To this end we follow
the following strategy:

1. The first goal is to understand the generic pattern of effects induced by rs penguins on flavor observables. We generate
a set of parameter points that satisfy the known experimental constraints from quark masses and ckm parameters.
However, we do not yet impose any additional flavor bounds so as not to be biased by their impact. With these points
we evaluate the new rs contributions to the Wilson coefficients ΔC(′)

7 and ΔC(′)
8 at the kk scale for both the minimal

and the custodial model. Subsequently we calculate the new contributions to the branching ratios of B→ Xs,dγ and
analyze the constraints.
Note that the same set of parameter points is used for the minimal and the custodial model in this case, in order to
minimize the sampling bias on the results obtained.

2. The second goal is to understand the effect of the rs penguins on the existing parameter space for realistic rs models.
We restrict our attention to the custodial model, which can be made consistent with electroweak precision tests for kk
scales as low as MKK ≃ 2.5 tev. In addition to quark masses and ckm parameters, we now also impose constraints
from ΔF = 2 observables which are analyzed at length in [231]. After evaluating the size of the effects in the
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Figure 6.6.1: rs contributions to the b → s Wilson coefficients C7(MKK) (upper left), C′
7(MKK) (upper right),

C8(MKK) (lower left) and C′
8(MKK) (lower right) in the minimal (red, dashed) and custodial (blue, solid) mod-

els, and from the misalignment contribution alone (black, dotted).

B→ Xs,dγ branching ratios and their constraint on the model, we study the benchmark observables outlined above,
namely the cp asymmetry in B→ K∗γ, the branching ratio Br(B→ Xsμ+μ−), and the transverse asymmetry A(2)

T in
B→ K∗μ+μ− decays.

Throughout our analysis we restrict ourselves to 1/R′ = 1 tev, so that the lowest kk gauge bosons have a mass of
MKK ≃ 2.5 tev. We note that in the minimal model such low kk masses are already excluded due to unacceptably large
corrections to electroweak precision observables. However, we use the same mass scale for both the minimal and custodial
models to enable a straightforward comparison of the two sets of results. Furthermore, we restrict the fundamental Yukawa
couplings to lie in their perturbative regime, i. e. |Yij| ≤ 3. More details on the parameter scan can be found in [231].

6.6.2 General pattern of rs contributions

This part of the numerical analysis is dedicated to determining the size of np effects generated by the rs kk modes in the
dipole operators C7, C′

7 and C8, C′
8 mediating the b→ (s, d)γ and b→ (s, d)g transitions respectively. We advise caution

when interpreting the density of points since these distributions are influenced by the details of the parameter scan performed.
The qualitative features in our plots should however remain unaffected by the scanning procedures.

The first row of Figure 6.6.1 shows the rs contributions to C7(MKK) and C′
7(MKK) in the
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Figure 6.6.2: rs contributions to the b → sγ Wilson coefficients C7 (left) and C′
7 (right), evaluated at the scale

μb = 2.5 GeV. The minimal model distribution is shown in red (dashed), and the custodial one in blue (solid).

b→ s system. Observe that the total rs contribution (dashed red and solid blue distributions, corresponding to the minimal
and custodial model) to the primed Wilson coefficient is typically an order of magnitude larger than the corresponding effect
in the unprimed Wilson coefficient. This matches the naive expectation that the bL → sR transition should be enhanced
relative to bR → sL due to the hierarchy fQ3 ≫ fbR of fermion localizations. Furthermore the custodial contribution is
somewhat enhanced relative to the minimal one, due to the additional fermion modes running in the loop. Also shown, in
black (dotted), is the contribution to C7(MKK) and C′

7(MKK) generated by only the misalignment term, which is equal for the
minimal and the custodial models. Unlike the anarchic term, this contribution is generically comparable in both cases. This
naively unexpected behavior is explained in Appendix 6.C. While it is subdominant but non-negligible in the case of C7(MKK),
it turns out to be generally irrelevant in the case of C′

7(MKK).
The second row of Fig. 6.6.1 shows the results for the gluonic penguin Wilson coefficients C8 and C′

8. The values at the kk
scale are larger than the corresponding values of C7 and C′

7 by about an order of magnitude due to the large contribution from
the diagram containing the non-Abelian SU(3)c vertex, which is absent in the b→ sγ penguin. Other than that, the pattern of
effects is qualitatively similar to that for C(′)

7 : the primed Wilson coefficient is larger than the unprimed coefficient by about an
order of magnitude, and the custodial model yields somewhat bigger effects than the minimal model. Furthermore, the
misalignment contributions to the unprimed and primed Wilson coefficients are again roughly comparable; consequently, its
effect is negligible in C′

8 but can be sizable in C8.
To facilitate comparison with other models of np, Fig. 6.6.2 shows the rs contributions to the b→ sγ Wilson coefficients

C7 (left) and C′
7 (right) evaluated at the scale μb = 2.5 GeV, i.e. taking into account the RG evolution and operator mixing

with C(′)
8 . The rs contribution to C7 turns out to be small and typically constitues less than a few percent of the sm value

C′
7(μb)

SM = −0.353. On the other hand, C′
7 is suppressed by ms/mb in the sm, so the unsuppressed contribution from rs

dominates, though its value is still typically smaller than C7(μb)
SM.

Next, we examine the relative importance of the various rs contributions to the effective b→ sγ Wilson coefficients at the
scale μb. Fig. 6.6.3 shows the size of the two main anarchic contributions to ΔC(′)

8 (MKK) (see Fig. 6.3.2a for the relevant
Feynman diagrams) normalized to the anarchic contribution to ΔC(′)

7 (MKK) (see Fig. 6.3.1a). For a straightforward
comparison, we also include the relevant RG evolution factors from eq. (6.16). The ratio of the Higgs penguin contribution to
ΔC(′)

7 (MKK) and ΔC(′)
8 (MKK), shown by the black (dotted) peak, is constant and equal for both the minimal and custodial

model. As the relevant diagrams depend on the same loop integral and the same combination of Yukawa couplings, their
relative size at the kk scale is simply given by the electric charge Qu of the up-type quark coupled to the photon. After
including the RG running down to the scale μb, the Higgs penguin contribution to C(′)

8 turns out to be roughly a 50%
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Figure 6.6.3: Relative sizes of anarchic contributions to the Wilson coefficients C7(μb) (left) and C′
7(μb) (right)

from the RG evolution and operator mixing of ΔC(′)
8 from MKK to μb, normalized to the Higgs penguin contribu-

tion to ΔC(′)
7 (MKK), with relevant RG evolution factors included. The black (dotted) peak shows the ratio of the

Higgs penguin contribution to ΔC(′)
8 (MKK). The red (dashed) and blue (solid) distributions show the ratio of

the gluon penguin to ΔC(′)
8 (MKK) for the minimal and custodial model respectively.

correction to the effect of the anarchic ΔC(′)
7 (MKK) contribution.

The effect of the gluon penguin diagram in ΔC(′)
8 (MKK) depends on a different loop integral and a different combination of

Yukawa couplings than the Higgs diagram in ΔC(′)
7 (MKK). Consequently its relative size, again including the relevant rg

factors, varies considerably within the minimal (shown in red, dashed line) and the custodial (shown in blue, solid line) model.
Observe that the distribution for the minimal model is rather symmetric and peaked around 1, implying that the rs b→ s g
loop generally contributes as much as the rs b→ sγ loop in low energy observables, even yielding the dominant rs
contribution in parts of the parameter space. This is in contrast with the sm case, where the C8 contribution only gives a few
percent correction to the dominant C7 contribution. In the custodial model the gluon penguin contribution becomes even
more important, so that the peak of the distribution gets shifted above 1. Since, as opposed to the Higgs penguin, the
additional custodial gluon penguin diagram shown in Fig. 6.3.3 carries the same Yukawa spurion as the minimal model
diagram, they simply add constructively, further enhancing the effect of the gluonic penguin contribution. Neglecting these
contributions or even the C(′)

8 contribution as a whole, as sometimes done in the literature, would therefore be a rather poor
approximation. Note that the relative importance of the gluon penguin diagrams depends crucially on the matching of the 5D
to the 4D strong gauge coupling. Invoking one loop level matching rather than tree level matching as done here whould reduce
their relative size by roughly a factor of four. On the other hand the presence of brane kinetic terms could further enhance the
gluonic penguin contribution.

For the sake of completeness Fig. 6.6.4 shows the Wilson coefficients for the b→ d system, in analogy to Fig. 6.6.1. The
pattern of effects is very similar to the case of the b→ s system discussed above.

Figure 6.6.5 shows the predicted deviations from the sm in the B→ Xs,dγ branching ratios in the minimal and custodial
models. We observe that in both models these branching ratios typically obtain a moderate positive np contribution well
within the current experimental and theoretical uncertainties. Nevertheless, the decays in question put nontrivial constraints
on parts of the rs parameter space and should be included in a complete analysis of rs flavor phenomenology. As expected
from the size of the Wilson coefficients, the custodial model induces somewhat larger effects than the minimal model.

Interestingly, this pattern of effects is very different from that of the ADD model of a universal extra dimension [311],
where the kk excitations affect mainly the Wilson coefficient C7, while the opposite-chirality Wilson coefficient C′

7 remains
very small [312, 313]. Since the ADD contribution interferes destructively with the sm contribution, a rather pronounced
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Figure 6.6.4: rs contributions to the b → d Wilson coefficients C7(MKK) (upper left), C′
7(MKK) (upper right),

C8(MKK) (lower left) and C′
8(MKK) (lower right) in the minimal model (red, dashed), the custodial model (blue,

solid), and from the misalignment contribution alone (black, dotted).

Figure 6.6.5: rs contribution to Br(B → Xsγ) (left) and ⟨Br(B → Xdγ)⟩ in the minimal (red, dashed) and
custodial (blue, solid) model. The experimental constraints according to (6.13) and (6.14) are displayed as grey
bands.
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Figure 6.6.6: cp asymmetry SK∗γ as a function of Br(B → Xsγ). The black-and-white dot indicates the central
sm prediction, while the dashed lines show the experimental central values. The grey bands display the experi-
mental 1σ and 2σ ranges for SK∗γ . We omit showing the uncertainty in Br(B → Xsγ) as it covers the whole range.

suppression of Br(B→ Xsγ) is predicted, which was used in [314] to derive the bound 1/R > 600GeV on the radius R of the
extra dimension.

We also investigated the dependence of the size of the rs contribution to Br(B→ Xsγ) and ⟨Br(B→ Xdγ)⟩ on the
average Yukawa coupling Y∗, but did not find any significant correlation within our parameter scan. These findings at first sight
seem to contradict the analytic estimate in section 6.4.4. Recall that these estimates have been performed in the fully anarchic
limit where Y∗ is the only free parameter in the Yukawa sector. On the other hand, our scan varies all independent parameters
in the flavor sector, so thatO(1) deviations from the fully anarchic ansatz are intrinsic. The dependence on these additional
parameters fully hides the dependence on Y∗; note also that the latter only varies over anO(1) range.

6.6.3 Effects on benchmark observables

We now restrict our attention to the custodial model and consider only parameter points that agree with the existing
constraints from ΔF = 2 transitions, as analyzed in [231]. We also impose the bounds from the B→ Xs,dγ decays as
approximated in (6.13–6.14), so that all points displayed in the plots lie within the experimentally allowed region.

Since the dipole operators depend on a different combination of rs flavor parameters from the tree level contributions to
ΔF = 2 processes [231] and ΔF = 1 rare decays [234], observables related to the various sectors are essentially uncorrelated;
hence we do not show any numerical results here.

Figure 6.6.6 shows the correlation between the time-dependent cp asymmetry SK∗γ and the branching ratio of B→ Xsγ.
Observe that SK∗γ can receive large enhancements relative to its tiny sm value. While non-standard effects in SK∗γ are possible
for any value of Br(B→ Xsγ), large effects are more likely with enhanced values of the branching ratio. This is related to the
fact that rs contributions dominantly affect C′

7. While the sm prediction for B→ Xsγ is in good agreement with data, it lies
below the central value, and an enhancement of this branching ratio is preferred. One can also see that large enhancements are
possible in SK∗γ , and that the present experimental 2σ range excludes only a small fraction of the rs parameter space.

The decay B→ Xsμ+μ− poses strong constraints on various extensions of the sm, hence it is worth studying it in the
custodial rs model. Figure 6.6.7 shows the custodial rs branching ratio Br(B→ Xsμ+μ−) in the low q2 region as a function
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Figure 6.6.7: Correlation between Br(B → Xsγ) and Br(B → Xsμ+μ−) for q2 ∈ [1, 6]GeV2. The black-and-
white dot indicates the central sm prediction, while the dashed lines show the experimental central values. We
omit showing the experimental and theoretical uncertainties as they cover the whole range.

Figure 6.6.8: Transverse asymmetry A(2)
T as a function of q2, for a few parameter points. The sm prediction is

indicated by the thick black line, while each blue line corresponds to an rs parameter point.
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Figure 6.6.9: Correlation between SK∗γ and A(2)
T (q2 = 1 GeV2). The black-and-white dot indicates the central

sm prediction, while the dashed line shows the experimental central value. The grey bands display the experimen-
tal 1σ and 2σ ranges for SK∗γ .

of Br(B→ Xsγ). We observe that the enhancement in the custodial rs model is rather small, typically below 10%. Due to the
experimental and theoretical uncertainties involved, this channel does not put any significant constraint on the model.

Observables far more sensitive to np in C′
7 can be constructed from the angular distribution of B→ K∗μ+μ−. Of

particular interest is the transverse asymmetry A(2)
T , whose q2 dependence is shown in Figure 6.6.8. Observe that large

enhancements relative to the small sm value are possible, in particular in the very small q2 region< 2 GeV2. This pattern can
be understood from (6.52): the C′

7 contribution is enhanced at small q2 due to a 1/q2 factor, see also [296,315]. Also note that
the custodial rs model predicts a zero crossing for A(2)

T at q2 ∼ 2.7GeV2. The differential asymmetry would exhibit a very
different shape if the dominant np contribution appeared in C′

10A. This underlines the model-discriminating power of the A(2)
T

asymmetry—in the custodial rs model a deviation from the sm is most likely to be observed for small q2, whereas other
models that dominantly affect C′

10A predict large effects for larger q2. This pattern is particularly interesting in light of lhcb
and the next generation B factories, which will soon be able to measure this asymmetry.

Finally, one may consider a possible correlation between SK∗γ and A(2)
T . Both observables are mostly affected by a large C′

7,
hence some nontrivial correlation can be expected. On the other hand, SK∗γ is cp violating while A(2)

T is cp conserving, so the
phase of C′

7 can wash out such correlations. Figure 6.6.9 shows A(2)
T (q2 = 1 GeV2) as a function of SK∗γ , where a nontrivial

linear anti-correlation is seen between the two observables in question. However, this correlation is visibly weakened by the
impact of the phase of C′

7, as expected.

6.7 Conclusions

In this paper we have performed an explicit 5D calculation of the dominant contributions to the Wilson coefficients C7, C′
7,

and C8, C′
8 that mediate the b→ s, dγ and b→ s, d g transitions respectively, in the rs setup with bulk fermions and gauge

bosons and an ir-brane localized Higgs. We have evaluated the relevant diagrams for both the minimal scenario with only the
sm gauge group in the bulk, and for the custodial model with the electroweak gauge group extended by SU(2)R and a discrete
PLR symmetry. Our main findings from this analysis can be summarized as follows:

• The rs contributions to C′
7 typically exceed those to C7 by an order of magnitude, and the latter remain a rather small

correction to the sm value. This pattern can be understood by considering the bulk profiles of the quark fields
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involved: the primed Wilson coefficient describes the decay of a left-handed b quark, which, being localized towards
the ir brane, is more sensitive to flavor violating effects than the right-handed b quark entering C7. Analogous
comments apply regarding the hierarchy C8 ≪ C′

8.

• Contrary to the sm, where C8 < C7, rs contributions to the gluonic penguins are larger than the ones to the photonic
penguins. This results from the large contributions from the diagram containing the non-abelian triple gluon (kk
gluon) vertex, which is absent in C(′)

7 and does not change flavor in the SM. In addition, the renormalization group
mixing of C(′)

7 and C(′)
8 is more pronounced due to the large separation of the MKK and mb scales. Consequently,

gluonic penguin contributions have a significant impact on b→ s, dγ, comparable to or larger than the photonic
penguin contribution. This is in contrast to the sm, where they yield only a few percent correction to the photonic
Wilson coefficients at the mb scale.

• In all cases, the dominant effect comes from the anarchic contributions, which are not aligned with the sm quark mass
matrices. However, the unprimed (right to left) operators pick up appreciable contributions from misalignment
diagrams, which are proportional to the sm quark mass matrices up to a dependence on the bulk spectrum. This is
because, in contrast to the anarchic diagrams, the misalignment diagrams are not suppressed by the bR wave function
relative to the bL wavefunction, as explained in Appendix 6.C.

• The impact on the Wilson coefficients in question is somewhat larger in the custodial model than in the minimal
model, since the extended fermion content that was introduced to reconcile the model with the Zbb̄ constraint yields
additional contributions.

For a study of the phenomenological implications of these new contributions, we restricted our attention to the custodial
model since the minimal model is not consistent with electroweak precision constraints for low kk masses MKK = 2.5 tev. To
this end, following [231] we performed a parameter scan of the 5D bulk masses and fundamental Yukawa coupling matrices,
imposing constraints from quark masses and ckm parameters and from meson-antimeson mixing. We studied the bounds
provided by the branching ratios Br(B→ Xsγ) and ⟨Br(B→ Xdγ)⟩ and the effects in a number of benchmark observables,
namely the time-dependent cp asymmetry SK∗γ , the inclusive branching ratio Br(B→ Xsμ+μ−) and the forward-backward
asymmetry AFB and the transverse asymmetry A(2)

T in B→ K∗μ+μ−, where we found the following patterns:

• The branching ratios of the radiative inclusive B→ Xs,dγ decays provide a non-negligible constraint on rs models
and exclude roughly 15% of the parameter points generated for the custodial model that were in agreement with
bounds from ΔF = 2 observables. A complete phenomenological study should therefore take these constraints into
account. However, since the major part of parameter space survives, no useful bound on the kk scale can be derived.

• Due to more precise data and sm theory prediction, Br(B→ Xsγ) generally puts a stronger constraint on the rs
parameter space than ⟨Br(B→ Xdγ)⟩. The latter observable is still useful as it yields complementary information on
the allowed parameter space.

• As the rs contributions enter dominantly through the primed operators, a modest enhancement of the B→ Xs,dγ
branching ratios can be expected, although a slight suppression is not rigorously excluded. Such an enhancement
would be welcome in B→ Xsγ, where the data lie somewhat above the sm value, albeit still in good agreement. On
the other hand, for B→ Xdγ the central values of the sm and the data are in excellent agreement and the uncertainties
are sizable, and no prefered sign for the np contribution can be deduced.

• The inclusive branching ratio Br(B→ Xsμ+μ−) and the forward backward asymmetry AFB in B→ K∗μ+μ− receive
very small corrections from rs physics and remain in good agreement with recent data. While we restricted our
analysis to the low q2 region, these statements also apply to the high q2 region since the latter region is mostly sensitive
to np in the electroweak Wilson coefficients C(′)

9V,10A, which remain SM-like in the custodial model.

• We identify the time-dependent cp asymmetry SK∗γ in B→ K∗γ decays and the transverse asymmetry A(2)
T in the

low q2 region of B→ K∗μ+μ− as promising benchmark observables to look for large effects generated by the
custodial rs model. Both observables are known to be very sensitive to the primed Wilson coefficients, in particular
C′
7, which is dominantly affected by rs contributions. Furthermore, studying the q2 dependence of A(2)

T allows for a
clear distinction of models such as the custodial rs model that dominantly affect C′

7 from models that predict large np
effects in the electroweak Wilson coefficient C′

10A.
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In summary, our analysis shows that radiative and semileptonic B decays offer intriguing possibilities to find deviations
from the sm generated by rs kk modes and anarchic Yukawa structure. If such effects are found at the lhcb and the next
generation B factories, it will be particularly interesting to study the plethora of observables provided by these decay modes in
a correlated manner, which offers the ability to distinguish rs with custodial symmetry from other np scenarios that predict a
different pattern of effects.

6.A Dimensionless Integrals for Leading Diagrams

This appendix defines the dimensionless integrals associated with the leading contributions to the a and b terms of the dipole
Wilson coefficients C7,8 in Section 6.3. Details of the derivation of these integrals are found in the appendix of [2]. In the mass
insertion approximation the Standard Model contribution appears as an infrared pole, which we subtract.

6.A.1 Propagator functions

We use dimensionless integration variables x ≡ kEz ∈ [wy, y] and y ≡ kER′ ∈ [0,∞], where kE is the Euclidean loop
momentum and w = (R/R′) is the warp factor. The integrals are expressed with respect to the functions that appear in the
mixed position–Euclidean momentum space fermion propagator,

Δ(kE, x, x′) ≡ i
R′

w4 D̄F̃xx′
y =

(
yD̃−F̃− σμyμF̃+

σ̄μyμF̃− yD̃+F̃+

)
, D̃± ≡ ±

(
∂x −

2
x

)
+

c
x
. (6.53)

where the F̃ functions are defined for x > x′ (i.e. z > z′) by

F̃L
− =

(xx′)5/2

y5
ScL(x−, y−)ScL(x

′
−,wy−)

ScL(y−,wy−)
F̃L
+ = − (xx′)5/2

y5
TcL(x+, y−)TcL(x

′
+,wy−)

ScL(y−,wy−)
(6.54)

F̃R
− = − (xx′)5/2

y5
TcR(x−, y+)TcR(x

′
−,wy+)

ScR(y+,wy+)
F̃R
+ =

(xx′)5/2

y5
ScR(x+, y+)ScR(x

′
+,wy+)

ScR(y+,wy+)
. (6.55)

The analogous functions for x < x′ are given by replacing x↔ x′ in the above formulas. S and T function are products of
Bessel functions,

Sc(x±, x′±) = Ic±1/2(x)Kc±1/2(x
′)− Ic±1/2(x

′)Kc±1/2(x) (6.56)
Sc(x±, x′∓) = Ic±1/2(x)Kc∓1/2(x

′)− Ic∓1/2(x
′)Kc±1/2(x) (6.57)

Tc(x±, x′∓) = Ic±1/2(x)Kc∓1/2(x
′) + Ic∓1/2(x

′)Kc±1/2(x). (6.58)

Similarly, the mixed position–Euclidean momentum space vector propagators are−iημνG and iḠ for the 4-vector and scalar
parts respectively. For x < x′, the G functions are,

Gk(z, z′) =
(R′)2

R
Gy(x, x′) =

(R′)2

R
xx′

y
T10(x, y)T10(x′,wy)

S00(wy, y)
, (6.59)

G5k(z, z′) =
(R′)2

R
Ḡy(x, x′) =

(R′)2

R
xx′

y
S00(x, y)S00(x′,wy)

S00(wy, y)
, (6.60)

where

Tij(x, y) = Ii(x)Kj(y) + Ij(y)Ki(x) (6.61)
Sij(x, y) = Ii(x)Kj(y)− Ij(y)Ki(x). (6.62)

For z < z′ the above formula is modified by x↔ x′.
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6.A.2 C7 integrals

We label vertices such that the external fermion legs attach to vertices 1 and 3, and the photon or gluon is emitted at vertex 2.
Propagators attached to the brane x = y signify Yukawa couplings or mass insertions, which may change the fermion flavor as
labeled by its bulk mass, c. We have left this c dependence implicit in the following expressions.

IC7a =

∫
dy dx y2

( y
x

)4 [
− 2F̃Lyx

+,y F̃
Lxy
+,y F̃

Ryy
−,y

y2

y2 + (MWR′)2

+ F̃Lyx
+,y F̃

Lxy
+,y F̃

Ryy
−,y

y4

(y2 + (MWR′)2)2
− 1

2

(
y ∂kE F̃

Lyx
+,y

)
F̃Lxy
+,y F̃

Ryy
−,y

y2

y2 + (MWR′)2

− 1
2

(
y ∂kE D̃−F̃Lyx

−,y

)
D̃+F̃Lxy

+,y F̃
Ryy
−,y

1
y2 + (MWR′)2

+ 2F̃Lyy
+,y D̃+F̃Ryx

+,y D̃−F̃Rxy
−,y

1
y2 + (MWR′)2

− F̃Lyy
+,y D̃+F̃Ryx

+,y D̃−F̃Rxy
−,y

y2

(y2 + (MWR′)2)2
+

1
2

(
y ∂kE F̃

Lyy
+,y

)
D̃+F̃Ryx

+,y D̃−F̃Rxy
−,y

1
y2 + (MWR′)2

+ F̃Lyy
+,y F̃

Ryx
−,y F̃

Rxy
−,y

y2

y2 + (MWR′)2
+

1
2

(
y ∂kE F̃

Lyy
+,y

)
F̃Ryx
−,y F̃

Rxy
−,y

y2

y2 + (MWR′)2

+
1
2
F̃Lyy
+,y

(
y ∂kE F̃

Ryy
−,y

)
F̃Rxy
−,y

y2

y2 + (MWR′)2

+
1
2
F̃Lyy
+,y

(
y ∂kE D̃+F̃Ryx

+,y

)
D̃−F̃Rxy

−,y
1

y2 + (MWR′)2

]
. (6.63)

The C7b integral is the sum of two parts corresponding to diagrams with an internal gluon (G) or scalar gluon (G5) in the loop,

IC7b = I(G)C7b
+ I(G5)

C7b
. (6.64)

Each of these terms include diagrams with a single mass insertion, either on the incoming, internal, or outgoing fermion line.

IC7b =

∫
dy dx1 dx2 dx3 y

(
y
x2

)4

∂kEG
31

{ 1
2

(
y
x1

)2+cL ( y
x3

)4

D̃+F̃L(x3mbR′/y)(mbR′)
+,(mbR′)

(
D̃−F̃L12

−,y F̃
L23
−,y + F̃L12

+,y D̃−F̃L23
−,y
)

+
1
2

(
y
x1

)4 ( y
x3

)2−cR
D̃+F̃R(mbR

′)(x1mbR
′/y)

+,(mbR′)

(
D̃−F̃R12

−,y F̃
R23
−,y + F̃R12

+,y D̃−F̃R23
−,y
)

+

(
y
x1

)2+cL ( y
x3

)2−cR (
− D̃+F̃R32

+,y D̃−F̃R2y
−,y F̃

Ly1
+,y + y2 F̃R32

−,y F̃
R2y
−,y F̃

Ly1
+,y

− D̃−F̃Ly2
−,y D̃+F̃L21

+,y F̃
R3y
−,y + y2 F̃R3y

−,y F̃
Ly2
+,y F̃

L21
+,y

)}
(6.65)
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I′C7b =

∫
dy dx1 dx2 dx3

1
2

(
y
x2

)4

{( y
x1

)2+cL ( y
x3

)4

D̃+F̃L(x3mbR′/y)(mbR′)
+,(mbR′)

×(
F̃L12
−,y D̃+F̃L23

+,y (y ∂kEG
31
5 + 4G31

5 ) + y G31
5 (D̃+F̃L23

+,y ∂kE F̃
L12
−,y − F̃L23

+,y ∂kE D̃+F̃L12
+,y )

)
+

(
y
x1

)4( y
x3

)2−cR
D̃+F̃R(mbR′)(x1mbR′/y)

+,(mbR′)
×(

F̃R12
−,y D̃+F̃R23

+,y (y ∂kEG
31
5 + 4G31

5 ) + y G31
5 (D̃+F̃R23

+,y ∂kE F̃
R12
−,y − F̃R23

+,y ∂kE D̃+F̃R12
+,y )

)
+

(
y
x1

)2+cL ( y
x3

)2−cR
×(

D̃+F̃L12
+,y (4 + y ∂kE)(F̃

L2y
+,y D̃+F̃Ry3

+,y G
13
5 )− y F̃L12

−,y∂kE (D̃+F̃L2y
+,y D̃+F̃Ry3

+,y )G
13
5

+ D̃+F̃L1y
+,y D̃+F̃Ry2

+,y (4 + y ∂kE)(F̃
R23
+,y G

13
5 ) − y D̃+F̃L1y

+,y F̃
Ry2
−,y G

13
5 ∂kE D̃+F̃R23

+,y

)}
(6.66)

6.A.3 C8 integrals

The C8a integral contains a piece identical to the C7a integral associated with the charged Higgs loop as well as gluon loop
diagrams with three mass insertions,

IC8a = I(1)C8a
+ 2I(2)C8a

+ I(3)C8a
. (6.67)

The gluon loops are labeled by the number of internal mass insertions, so that I(1)C8a
is associated with the diagram with an

external mass insertion on each leg, and the factor of two on I(2)C8a
accounts for the two possible placements of the external mass

insertion⁴.

I(1)C8a
=

∫
dy dx1dx2dx3

(
y
x1

)4 ( y
x2

)(
y
x3

)4

×

D̃+F̃Ry1
+,ys D̃−F̃R10

−,y D̃−F̃Ly3
−,y D̃+F̃L3y

+,yb

{
− 5

2
y∂kE

(
G12

y G23
y

)
+ 10G12

y G23
y

}
, (6.68)

I(2)C8a
=

∫
dy dx1dx2dx3

(
y
x1

)2+cL ( y
x2

)(
y
x3

)4

y3×

F̃L1y
+,y F̃

Ryy
−,y D̃−F̃Ly3

−,y D̃+F̃L(x3mbR′/y)(mbR′)
+,(mbR′)

∂kE(G
12
y G23

y ) (6.69)

I(3)C8a
=

∫
dy dx1dx2dx3

(
y
x1

)2+cL ( y
x2

)(
y
x3

)2−cR
y2×

F̃L1y
+,y F̃

Ry3
−,y F̃

Lyy
+,y F̃

Ryy
−,y

{
− 5

2
y ∂kE

(
G12

y G23
y

)
+ 10G12

y G23
y

}
. (6.70)

For C8b, the only dominant diagram is the gluon loop with an internal mass insertion. All other analogous diagrams (e.g. mass
insertion on an external leg, or loops with G5) contain no zero modes and hence give negligible contributions after alignment.

IC8b =

∫
dy dx1dx2dx3

(
y
x1

)2+cL ( y
x2

)(
y
x3

)2−cR
y2×

F̃L1y
+,y F̃

Ry3
−,y

{
− 5

2
y ∂kE

(
G12

y G23
y

)
+ 10G12

y G23
y

}
. (6.71)

⁴ These integrands differ by L↔ R, but the integrals are approximately the same.
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6.B ChargedHiggs diagram calculation

As an example of how to calculate diagrams in the mixed position/momentum formalism, we present the calculation of the
leading contribution to the anarchic piece of the C7 operator coming from the charged Higgs diagram in Figure 6.3.1a. As
discussed in Section 6.3.2, it is sufficient to compute the coefficient of the pμ term in the amplitude. This allows us to directly
write the finite physical contribution to the amplitude without worrying about regularization of potentially divergent terms.
In addition to the bulk fermion propagators in mixed position/momentum space, Δ(p, z, z′), which are given in
Appendix 6.A.1, the relevant Feynman rules are given by

D Q

H

=

(
R
R′

)3

Y5

f f

Aμ

=

(
R
z

)4

eγμ

A derivation of the propagators and a more complete set of Feynman rules is given the appendix of [2]. The amplitude for the
diagram with a b of momentum p decaying into a photon of momentum−q and a s of momentum p′ is

Mμ =
ev√
2

R8

R′6 YskY†
kℓYℓb

∫
d4k
(2π)4

∫ R′

R
dz
(

R
z

)4

ūQs(p
′)fQs [G

μ]kℓ fDbuDb(p)ΔH(k− p) (6.72)

where k and ℓ index the flavors of the internal fermions and ΔH is the 4D Higgs propagator. Writing k′ = k + q, the Dirac
structure Gμ for the diagram with the mass insertion before (a) or after (b) the photon emisison is[

Gμ
(a)

]
kℓ
= ΔDk(k

′,R′, z) γμ ΔDk(k, z,R
′) ΔQℓ(k,R

′,R′), (6.73)[
Gμ

(b)

]
kℓ
= ΔDk(k

′,R′,R′) ΔQℓ(k,R
′, z) γμ ΔQℓ(k, z,R

′). (6.74)

We may now expand the fermion propagators in terms of scalar functions F, which are the Minkowski space versions of the F̃
functions defined in Appendix 6.A.1 to simplify the Dirac structure and write the integrand in the form

ūQs

(
ḡ(n)kℓ γμ/k + g(n)kℓ

/k′γμ
)

PR uDb ΔH(k− p) n ∈ {a, b} , (6.75)

where g(n) is a scalar function that takes the form

g(a)kℓ (z, k, k′) = k2
[
F−
Dk(k

′,R′, z)
] [

F−
Dk(k, z,R

′)
] [

F+
Qℓ
(k,R′,R′)

]
(6.76)

g(b)kℓ (z, k, k′) =
[
F−
Dk(k

′,R′,R′)
] [

D̃−F−
Qℓ
(k′,R′, z)

] [
D̃+F+

Qℓ
(k, z,R′)

]
. (6.77)

The derivative operators D̃± are defined in (6.53). ḡ(n) has a similar definition but, as we show below, drops out of the final
expression.

To identify the pμ coefficient, which in turn determines the coefficient of the C7 effective operator, Taylor expand in p and
q and perform the integral. It is sufficient to take only the leading order terms since higher terms are suppressed by the ratio of
the external fermion masses to the characteristic loop energy scale (e.g. mH or 1/R′). The terms proportional to g(a) and g(b)

thus can be expanded as

g(z, k, k′)/k′γμΔH(k− p) =
(

g +
∂g
∂k′

k · q
k

)∣∣∣∣
k′=k

(
/k + /q

)
γμ (ΔH(k) + 2k · pΔ2

H(k)) (6.78)
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The ḡ terms yield expressions proportional to γμ
/p and γμ /p′. By using the Clifford algebra and the equations of motion for the

external particles one can show that these terms are proportional to mbγμ and 2p′μ − msγμ respectively. Thus these terms can
be ignored since these do not contribute to the pμ coefficient. The g terms, on the other hand, contribute expressions of the
form (

k2gΔ2
H(k)−

1
2
k
∂g
∂k′

ΔH(k)− 2gΔH(k)
)

pμ, (6.79)

where we write k =
√

kμkμ and g is evaluated at q = 0, i.e. k′ = k.
Finally, the coefficient akℓ of the amplitude (6.5) can be written with respect to the Wick-rotated integral of the prefactor

multiplying pμ ,

akℓ = −2i
∑
n=a,b

∫ ∞

0
dy
∫ y

0
dx y2

( y
x

)4{
y2g(n)ΔH +

y
2
∂g(n)

∂y′
+ 2g(n)

}
ΔH, (6.80)

where we have defined the dimensionless integration variables x = −ikz, y = −ikR′, and y′ = −i(k + q)R′. This is
equivalent to replacing the Minkowski space functions F(kR′, zR′, z′R′) with the Euclidean space functions F̃(y, x, x′)
defined in Appendix 6.A.1. The g and ΔH functions are evaluated at k→ iy and mH → mHR′. These are now completely
scalar expressions that can be evaluated numerically. The explicit form of the integrand is given in (6.63).

Other diagrams are calculated following a similar algorithm with the caveat that diagrams with bulk gauge bosons have 5D
propagators, which carry additional space integrals over the extra dimension.

6.C Estimating the size of the misalignment contribution

In this appendix we clarify a subtlety in the size of the anarchic contributions (ΔC(′)
7,8a) versus the misalignment contributions

(ΔC(′)
7,8b) to the Wilson coefficients, as defined in Section 6.3.2. For the anarchic contributions the relative sizes of the

right-to-left (unprimed) coefficients to the left-to-right (primed) coefficients are given by the relative size of the fbL and fbR
wavefunctions on the ir brane. On the other hand, the misalignment contributions for the two chiral transitions do not follow
this pattern and are, in fact, of the same order of magnitude. We show here that this apparent inconsistency can be understood
by accounting for cancelations coming from the rotation to the sm fermion mass basis.

For simplicity, consider the 2× 2 matrix of misalignment diagrams qRj → qLi where we only consider the second and third
generations. This transition is given by the bij term in (6.5), which we may parameterize as

(misalignment term)ij ∼
(
(b− c− d) y11 (b− c + d) y12
(b + c− d) y21 (b + c + d) y22

)
. (6.81)

Here we have written b as an average scale for the bij matrix, and yij = fQiY
†
d ijfDj . The c ∼ 10−1 and d ∼ 10−2 terms represent

deviations from the average. In particular, the c deviations account for the effect of an internal bL (whose zero mode profile is
very different from that of the light quarks) while the d deviations account for the smaller effect of an internal bR.

In order to pass to the physical basis, one must apply to this matrix the same rotation that diagonalizes the sm mass matrix,
which is proportional to y. The off-diagonal terms of the rotated misalignment matrix give the C7 and C′

7 coefficients (the
argument for C8 is identical), (

1 δ
δ′ 1

)
(misalignment term)

(
1 γ
γ′ 1

)
∼
(

C7b

C′†
7b

)
. (6.82)

The parameters δ and γ are ratios of the left- and right-handed zero mode wavefunctions on the brane; the primed and
unprimed parameters are related by a minus sign.

We focus on order of magnitude estimates, so we introduce a numerical parameter ε ∼ 10−1. Normalizing the Yukawa to
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y22 = 1, our parameters are approximately

c ∼ ε d ∼ ε2 y11 ∼ ε3 y12 ∼ ε2 y21 ∼ ε δ(′) ∼ ε2 γ(′) ∼ ε. (6.83)

Note that ε is merely a fiducial quantity, not an expansion parameter of the model. We now apply the rotation (6.82) and study
the order of magnitude of the off-diagonal terms. By construction the terms proportional to b are completely diagonalized. We
consider the terms proportional to c (fbL) and d (fbR) separately.

6.C.1 Misalignment from fbL
First consider the terms proportional to c, which are split by the relative size of fbL versus fsL from internal zero mode
propagators. The part of the C′†

7b term proportional to c goes like

C′†
7b

∣∣∣
c
∼
(
y21 + γ′ y22

)
− δ′

(
γ′ y12 + y11

)
. (6.84)

Naively the first term is ofO(ε) and appears to dominate the expression. This, however, does not account for relations coming
from alignment. Observe that the minus sign here comes from the choice of parameterization in (6.81). Further, observe that
changing the relative sign in (6.84) is equivalent to changing the sign of c in the top row of (6.81). In this case, however, the c
matrix would be completely aligned with the sm mass matrix and the off diagonal term (6.84) would vanish. Thus the first and
second terms in (6.84) must be of the same order of magnitude in order for them to cancel when the relative sign is
swapped—in other words, (y21 + γ′ y22) ∼ ε5 in order to match the naive order of magnitude of the second term. We thus have

c C′
7b
∣∣
c ∼ ε6. (6.85)

This observation reflects the key cancelation that causes the relative size of the primed and unprimed misalignment terms to
differ from that of the anarchic terms of the amplitude.

The contribution to the C7b term proportional to c is

C7b|c ∼ δ (γ y21 + y22)− (γ y11 + y12) . (6.86)

Unlike C′
7b, both terms in the above expression are dominated by theirO(ε2) components and we find

c C7b|c ∼ ε ε2 = ε3, (6.87)

as expected from a naive estimate.

6.C.2 Misalignment from fbR
We perform the same analysis on the terms proportional to d, which implicitly encode the split between terms that carry
factors of fbR versus fsR from internal propagators. For C7b we have

C7b|d ∼ (y12 + δy22)− γ (y11 + δ y21) . (6.88)

Following the argument that the terms should cancel when the sign is swapped and using this to estimate the size of each
bracketed term, one finds d C7b|d ∼ ε6, so that the net contribution of the d term is subdominant to (6.87).

On the other hand, the fbR misalignment in the C′
7b term cannot be neglected,

C′
7b
∣∣
d ∼ γ′ (δ′ y12 + y22

)
−
(
δ′ y11 + y21

)
. (6.89)

Here both terms areO(ε) so that the total contribution is

d C′†
7b

∣∣∣
d
∼ ε3, (6.90)
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which dominates over the term proportional to c in (6.85).

6.C.3 Size of misalignment coefficients

Thus the final order of magnitude estimate for the C7b and C′
7b coefficients are

C7b ∼ c C7b|c ∼ ε3 (6.91)

C′
7b ∼ d C′†

7b

∣∣∣
d
∼ ε3, (6.92)

so that unlike the anarchic contribution, the right-to-left (unprimed) and left-to-right (primed) Wilson coefficients are of the
same order of magnitude.

6.D Comments on 5D dipole theory uncertainties

Finite 5D loop effects carry subtleties associated with cutoffs and UV sensitivity⁵. While the one loop contribution discussed
in this paper is manifestly finite, higher loops are potentially divergent and require explicit calculations. Here we focus on the
sensitivity of the finite loop-level result to UV physics at, for example, the strong coupling scale where the 5D theory is
expected to break down. In [241] it was pointed out that the naive dimensional analysis (NDA) for a brane and a bulk Higgs
differ due to the dimension of the Yukawa coupling—the NDA two-loop contribution for the former gives anO(1) correction
relative to the one loop result, whereas this is not expected for the latter. In this appendix we comment on subtleties coming
from 5D Lorentz invariance that may plausibly avoid this ‘worst case’ NDA estimate. Indeed, the NDA for the one-loop
contribution to these dipole operators is logarithmically divergent; one may understand the correct one-loop finiteness as
coming from 5D Lorentz symmetry.

These comments are meant to demonstrate non-trivial points in these calculations that require particular care when
drawing conclusions about UV sensitivity in these processes; a more careful investigation with explicit calculations of these
effects is beyond the scope of this work.

Note that the general features of the phenomenological picture presented in Section 6.6 are unchanged even if there are
O(1) corrections to the Wilson coefficients.

6.D.1 kk decomposition

5D Lorentz invariance imposes that in the kk reduced theory, the 4D loop momentum cutoff should be matched to the
number of kk modes in the effective theory. This was mentioned in [2] to motivate a manifestly 5D calculation by pointing
out that naively taking the finite 4D loop cutoff to infinity drops terms of the form (nMKK/Λ)2, where nMKK is approximately
the mass of the nth kk mode. Indeed, from the 4D perspective this may appear to suggest a non-decoupling effect where the
dominant contribution comes from heavy kk states so that the calculation seems to be sensitive to UV physics.

However, as demonstrated in Figure 6.D.1, imposing 5D Lorentz invariance requires that each kk mode carries a different
4D momentum cutoff. In particular, the nth kk mode carries a smaller 4D cutoff Λn than that of the first kk mode, Λ1 since the
momentum integral must fall within the circle of radius Λ, the 5D momentum space cutoff. Thus in 4D the high kk modes are
not sensitive to the same cutoff as lower kk modes. This gives a sense in which 4D decoupling can manifest itself while
preserving 5D Lorentz invariance. In this sense it is difficult to use this matching to diagnose UV sensitivity.

As a qualitative and demonstrative estimate, one can use the expression in Section 6.6 of [2] for a neutral Higgs diagram
and impose a kk number dependent cutoff for each state in the loop so that 5D Lorentz invariance is imposed as in
Figure 6.D.1. One finds that, for example, in a sum of 200 kk modes, the highest 20 modes only contribute∼ 20% to the total
result.

⁵We thank K. Agashe, J. Hubisz, and G. Perez for discussions on these subtleties.
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Figure 6.D.1: A sketch of the 5D momentum space where the circle of radius Λ represents the boundary of a
5D Lorentz invariant loop momentum integration region. Marks on the kz axis show the masses of kk states.
Dashed lines demonstrate that the 4D loop cutoff which respects 5D Lorentz invariance depends on the particu-
lar kk mode.

6.D.2 5D cutoff

y=R’kE

I(y)

Λ = 5 TeV

Figure 6.D.2: Plot of the charged Higgs integrand as a function of the dimensionless loop momentum in the
position/momentum space picture. The dashed line is a heuristic 5D cutoff Λ representing the strong coupling
scale. The shaded region represents the error from taking the loop momentum to infinity rather than Λ; the con-
tribution of this shaded region is approximately 15% of the total integral.

Another way to diagnose UV sensitivity is to consider the effect of a cutoff in the 5D picture, for example, by setting a
cutoff at Λ = 5 tev representing the strong coupling scale at which the 5D theory breaks down. Figure 6.D.2 shows the
dimensionless integral associated with the charged Higgs loop, where y = R′kE is the dimensionless variable representing the
loop momentum. Observe that the dominant contribution to the effect does not come from arbitrarily large y but rather in the
peak at low values of y. Cutting off the integral at Λ = 5 tev (dashed line) gives an error of approximately 15%, which is
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comparable to the subleading diagrams that were not included in this analysis.
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Flip: Before I leave, do you know how to use BibTeX?
Csaba: Yes, of course.
[15 hours later, Flip’s phone rings as he gets to his hotel]
Flip: Hey Csaba, what’s up?
Csaba: Where are all the references??

7–8 April 2010

7
Supersymmetry

Supersymmetry is one of the leading candidates for physics beyond the Standard Model. It is an extension of
quantum field theory to quantum extra dimensions that anticommute. In this way it relates between ‘force’ particles to ‘matter’
particles.

7.1 Introduction to Supersymmetry

Around the same time that the Beatles released Sgt. Pepper’s Lonely Hearts Club Band, Coleman and Mandula published their
famous ‘no-go’ theorem which stated that the most general symmetry Lie group of an S-matrix in four dimensions is the direct
product of the Poincaré group with an internal symmetry group [316]. In other words, there can be no mixing of spins within
a symmetry multiplet.

Ignorance is bliss, however, and physicists continued to look for extensions of the Poincaré symmetry for some years
without knowing about Coleman and Mandula’s result. In particular, Golfand and Likhtman extended the Poincaré group
using Grassmann operators [317], ‘discovering’ supersymmetry (susy) in physics. Independently, early string theorists where
applying similar ideas in two dimensions to insert fermions into a budding theory of superstrings. In this chapter we explore
how susy evades the Coleman–Mandula theorem and further highlight remarkable features of supersymmetric field theories.
Key papers in the development of supersymmetry are found in [318], while personal descriptions of its discovery have been
collected in [319].

Our treatment of susy will be very lopsided. For a working background in supersymmetric field theory, there is now a
wealth of standard textbooks and review articles available. In this chapter we shall instead focus on front-loading our
exploration with the foundational material and leave phenomenological details to the reader. In this spirit, most of this
chapter will be devoted to the susy algebra and its immediate consequences. Appendices 7.A and 7.B review background
material on the Lorentz and Poincaré algebras while simultaneously establishing our notations and conventions.
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7.2 The Poincaré Algebra

The Poincaré group describes the symmetries of Minkowski space and is composed of transformations of the form

xμ → x′μ = Λμ
νx

ν + aμ, (7.1)

where aμ parameterizes translations and Λμ
ν parameterizes transformations of the Lorentz group containing rotations and

boosts. We can write elements of the Poincaré group as {(Λ, a)}. A pure Lorentz transformation is thus (Λ, 0) while a pure
translation is (1, a). Elements are multiplied according to the rule

(Λ2, a2) · (Λ1, a1) = (Λ2Λ1, Λ2a1 + a2.). (7.2)

Note that these transformations do not commute,

(Λ, 0) · (1, a) = (Λ, Λa) (7.3)
(1, a) · (Λ, 0) = (Λ, a). (7.4)

Thus the Poincaré group is not a direct product of the Lorentz group and the group of 4-translations, but rather a semi-direct
product. Locally the Poincaré group is represented by the algebra

[Mμν,Mρσ ] = i(Mμσηνρ + Mνρημσ −Mμρηνσ −Mνσημρ) (7.5)
[Pμ, Pν] = 0 (7.6)

[Mμν, Pσ ] = i(Pμηνσ − Pνημσ). (7.7)

The M are the antisymmetric generators of the Lorentz group,

(Mμν)ρσ = i(δμρδ
ν
σ − δμσδ

ν
ρ), (7.8)

and the P are the generators of translations. We recognize in (7.5) the usual O(3) Euclidean symmetry by taking
μ, ν, ρ, σ ∈ {1, 2, 3} and noting that at most only one term on the right-hand side survives. This coincides with the algebra for
angular momenta, J. Equation (7.6) says that translations commute, while (7.7) says that the generators of translations
transform as vectors under the Lorentz group. The factors of i are required so that the generators P and M are Hermitian. See
Section 4.2.3 for an explicit discussion of Hermiticity. A convenient matrix representation of this algebra is: M P

0 0 1

 . (7.9)

The ‘translation’ part of the Poincaré algebra is trivial and requires no further elucidation. It is the Lorentz algebra that yields
the interesting features of our fields under Poincaré transformations.

7.3 The susy algebra

SUSY evades the Coleman-Mandula theorem by generalizing the symmetry from a Lie algebra to a graded Lie algebra. This
has the property that ifOa are operators, then

OaOb − (−1)ηaηbObOa = iCe
abOe, (7.10)

where,

ηa =
{

0 ifOa is bosonic
1 ifOa is fermionic (7.11)
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The Poincaré generators Pμ,Mμν are both bosonic generators with (A, B) = ( 1
2 ,

1
2 ), (1, 0)⊕ (0, 1) respectively. In

supersymmetry, on the other hand, we add fermionic generators, QA
α ,Q

B
α̇ . Here A, B = 1, · · · ,N label the number of

supercharges and α, α̇ = 1, 2 are Weyl spinor indices. We primarily focus on simple supersymmetry whereN = 1. The case
N > 1 is referred to as extended supersymmetry.

Haag, Lopuszanski, and Sohnius [320] showed in 1974 that ( 1
2 , 0) and (0, 1

2 ) are the only generators for supersymmetry.
For example, it would be inconsistent to include generators Q̃ in the representation (A, B = ( 1

2 , 1)). The resulting algebra is

[Mμν,Mρσ ] = i(Mμνηνρ + Mνρημσ −Mμρηνσ −Mνσημρ) (7.12)
[Pμ, Pν] = 0 (7.13)

[Mμν, Pσ ] = i(Pμηνσ − Pνημσ) (7.14)

[Qα,Mμν] = (σμν) β
α Qβ (7.15)

[Qα, Pμ] = 0 (7.16)

{Qα,Qβ} = 0 (7.17)
{Qα,Qβ̇} = 2(σμ)αβ̇Pμ (7.18)

We’re already familiar with (7.12) – (7.14) from the Poincaré algebra. The remaining terms are motivated by their index and
symmetry structure.

7.3.1 Commutators with Internal Symmetries

By the Coleman-Mandula theorem, we know that internal symmetry generators commute with the Poincaré generators. For
example, the Standard Model gauge group commutes with the momentum, rotation, and boost operators. This carries over to
the susy algebra. For an internal symmetry generator Ta,

[Ta,Qα] = 0. (7.19)

This is true with one exception. The SUSY generators come equipped with their own internal symmetry, called R-symmetry.
There exists an automorphism of the supersymmetry algebra,

Qα → eitQα (7.20)

Qα̇ → e−itQα̇, (7.21)

for some transformation parameter t. This is a U(1) internal symmetry. Applying this symmetry preserves the SUSY algebra.
If R is the generator of this U(1), then its action on the SUSY operators is given by

Qα → e−iRtQαeiRt. (7.22)

By comparing the transformation of Q under (7.22) and (7.22), we find the corresponding algebra,

[Qα,R] = Qα (7.23)
[Qα̇,R] = −Qα̇. (7.24)

7.4 N = 1 supersymmetry

In Appendix 7.B we summarize the representations of the Poincaré group. We now explore what happens when this is
extended byN = 1 supersymmetry. C1 = P2 is still a Casimir operator. This means that all the particles in a susy multiplet
have the same mass. Now, however, C2 = W2 is no longer a Casimir. This is intuitive since we saw that the Pauli-Lubanski
vector is associated with spin spin and supersymmetry mixes particles of different spins into a single irreducible
representation. This is, of course, how it evades the Coleman-Mandula theorem.
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In place of C2, we can define another Casimir operator, C̃2, in a somewhat oblique way:

C̃2 ≡ CμνCμν (7.25)
Cμν ≡ BμPν − BνPμ (7.26)

Bμ ≡ Wμ −
1
4
Qα̇(σμ)

α̇αQα. (7.27)

Thus our irreducible representations still have two labels, but the second one is no longer related directly to spin.

7.4.1 Massless Multiplets

As before we can boost into a frame where pμ = (E, 0, 0, E). Explicit calculation shows that both Casimir operators vanish,

C1 = C̃2 = 0. (7.28)

Now consider the now-familiar anticommutator of Q and Q and write it out explicitly as

{Qα,Qβ̇} = 2(σμ)αβ̇Pμ = 2E(σ0 + σ3)αβ̇ = 4E
(

1 0
0 0

)
. (7.29)

In components,

{Q1,Q1̇} = 4E {Q2,Q2̇} = 0. (7.30)

Recall that the Q is really short-hand for the complex conjugate of Q. Thus the product Qα̇Qα for α̇ = α is something like |Qα|2
and is non-negative. Thus the second equation tells us that for any massless state |pμ, λ⟩,

Q2|pμ, λ⟩ = 0. (7.31)

To be explicit, one can write

0 = ⟨pμ, λ|{Q2,Q2̇}|p
μ, λ⟩ (7.32)

= ⟨pμ, λ|Q2Q2̇|p
μ, λ⟩+ ⟨pμ, λ|Q2̇Q2|pμ, λ⟩ (7.33)

=
∣∣Q2̇|pμ, λ⟩

∣∣2 + |Q2|pμ, λ⟩|2 , (7.34)

from which each term on the right hand side must vanish and we obtain (7.31).

Using (7.30) we can define raising and lowering operators,

a ≡ Q1

2
√

E
a† ≡ Q1̇

2
√

E
. (7.35)

These satisfy the relation {a, a†} = 1. Consider the spin of a massless state after acting with these operators:

J3a|pμ, λ⟩ = (aJ3 − [a, J3]) |pμ, λ⟩ (7.36)

=
(
λ − 1

2

)
a|pμ, λ⟩. (7.37)

We have used the fact that [J3,Q1,2] = ∓ 1
2Q1,2. We find that if we start with a state |pμ, λ⟩ of helicity λ, then acting with

a ∼ Q1 produces a state of helicity (λ − 1
2 ). Similarly, because [J3,Q1̇,2̇] = ± 1

2Q1̇,2̇, acting with a† ∼ Q1̇ produces a state of
helicity (λ + 1

2 ).
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Evidently, we can generate the following states:

|pμ, λ⟩ helicity λ (7.38)

a|pμ, λ⟩ helicity
(
λ − 1

2

)
(7.39)

a†|pμ, λ⟩ helicity
(
λ +

1
2

)
. (7.40)

From this we can build a supermultiplet. We start with a state that is annihilated by the lowering operator, i.e. a state of
minimum helicity |Ω⟩ = |pμ, λ⟩ such that a|Ω⟩ = 0. The next state we can construct comes from acting on |Ω⟩ with a
creation operator,

a†|Ω⟩ = |pμ, (λ +
1
2
)⟩. (7.41)

From here, acting with another creation operator, a†a†|Ω⟩, vanishes since a†a† ≡ 0 from the Grassmann nature of the SUSY
generator. To exhaust our possibilities, aa†|Ω⟩ = (1− a†a)|Ω⟩ = |Ω⟩. Thus our masslessN = 1 supersymmetry multiplet
has only two states, |pμ, λ⟩ and |pμ, (λ + 1

2 )⟩. We have paired a bosonic and a fermionic state, so we’re happy that this is
supersymmetric in an intuitive way. We haven’t said anything about what the lowest helicity λ is, and in fact we are free to
choose this.

Let us note here that nature respects the discrete cpt symmetry. Thus if we construct a model of a massless supermultiplet
that is not cpt self-conjugate, then we are obliged to also add a partner cpt-conjugate multiplet as well. For example, if λ = 1

2 ,
then our construction yields a multiplet with a fermion of helicity λ = 1

2 and a vector partner with helicity λ = 1. cpt
invariance mandates that we must also have a fermion with helicity λ = − 1

2 and a vector partner with helicity λ = −1. More
generally, cpt compels us to fill in our massless multiplets with states |pμ,±λ⟩ and |pμ,±(λ + 1

2 )⟩.

7.4.2 Massive Multiplets

Having fleshed out the massless supermultiplet, do the same for the massive multiplets. In this case we boost to a particle’s rest
frame,

pμ = (m, 0, 0, 0). (7.42)

The Casimir operators are given by

C1 = m2 C̃2 = 2m4YiYi, (7.43)

where Y = Ji − 1
4m

(
Qσ iQ

)
is the superspin. The nice feature of the superspin is that

[Yi, Yj] = iεijkYk, (7.44)

that is they satisfy the same algebra as the angular momentum operators, Ji. Thus we can label a multiplet by its mass m and
superspin y, the root of the eigenvalue of Y2. As before, we can work out the anticommutator of the susy generators acting on
a state with pμ = (m, 0, 0, 0):

{Qα,Qβ̇} = 2m
(

1 0
0 1

)
. (7.45)

We now have two sets of raising and lowering operators,

a1,2 =
1√
2m

Q1,2 a†1,2 =
1√
2m

Q1̇,2̇. (7.46)
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These satisfy the anticommutation relations

{ap, a†q} = δpq {ap, aq} = 0 {a†p , a†q} = 0. (7.47)

As before we define a ground state |Ω⟩ that is annihilated by both a1 and a2, a1,2|Ω⟩ = 0. Note that for the ground state,
Y|Ω⟩ = J|Ω⟩, and so we can label the ground state by

|Ω⟩ = |m, y = j; pμ, j3⟩. (7.48)

The spin in the z-direction, j3, takes values from−y to y and so there are (2y + 1) ground states.

We can now act on |Ω⟩ with creation operators. The resulting states are

a†1 |Ω⟩ = |m, j = y +
1
2
; pμ, j3⟩ (7.49)

a†2 |Ω⟩ = |m, j = y− 1
2
; pμ, j3⟩. (7.50)

We see that a†1 |Ω⟩ has 2(y + 1
2 ) + 1 = 2y + 2 states while a†2 |Ω⟩ has 2(y− 1

2 ) + 1 = 2y states. This can be understood group
theoretically, since

1
2
⊗ j = (j− 1

2
)⊕ (j +

1
2
) (7.51)

We’re going to want to keep track of these to make sure that our bosonic and fermionic degrees of freedom match.

Unlike the massless case, we can now form a state with two creation operators,

a†1 a
†
2 |Ω⟩ = −a†2 a

†
1 |Ω⟩ = |m, j = y; pμ, j3⟩ = |Ω′⟩. (7.52)

This state looks very similar to the base state Ω, but the two are not equivalent: Ω′⟩ is annihilated by the a†s rather than the as:

a†1,2|Ω′⟩ = 0 (7.53)
a1,2|Ω⟩ = 0. (7.54)

The a†p and ap are related by a parity transformation:

a†1,2︸︷︷︸
(0, 12 )

↔ a1,2︸︷︷︸
( 1
2 ,0)

, (7.55)

and so the above equation suggests that |Ω⟩ and |Ω′⟩ are also related by parity. Then we can define parity eigenstates

|±⟩ = |Ω⟩ ± |Ω′⟩. (7.56)

For y = 0 the |+⟩ is a scalar while |−⟩ is a pseudoscalar. We can see that the fermionic and bosonic states have the same
number of degrees of freedom. |Ω⟩ and |Ω′⟩ each have 2y + 1 states, while a†1,2|Ω⟩ give (2y + 1)± 1 states. Hence there sums
are each 4y + 2, and hence the number of fermionic and bosonic states are equal.

In summary, for y > 0, we have the states

|Ω⟩ = |m, j = y; pμ, j3⟩ (7.57)
|Ω′⟩ = |m, j = y; pμ, j3⟩ (7.58)

a†1 |Ω⟩ = |m, j = y +
1
2
; pμ, j3⟩ (7.59)

a†2 |Ω⟩ = |m, j = y− 1
2
; pμ, j3⟩. (7.60)
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For y = 0, we have the states

|Ω⟩ = |m, j = 0; pμ, j3⟩ (7.61)
|Ω′⟩ = |m, j = 0; pμ, j3⟩ (7.62)

a†1 |Ω⟩ = |m, j =
1
2
; pμ, j3 = ±

1
2
⟩. (7.63)

7.4.3 Equality of Fermionic and Bosonic States

In any susy multiplet, the number nB of bosons equals the number nF of fermions. To show this, make use of the operator
(−)F, which assigns a ‘parity’ to a state depending on whether it is a boson (|B⟩) or fermion (|F⟩):

(−)F|B⟩ = |B⟩ (−)F|F⟩ = −|F⟩. (7.64)

Observe that this operator anticommutes with the susy generators since

(−)FQα|F⟩ = (−)F|B⟩ = |B⟩ = Qα|F⟩ = −Qα(−)F|F⟩. (7.65)

Let us now calculate the following curious-looking trace:

Tr
{
(−)F{Qα,Qβ̇}

}
= Tr

{
(−)FQαQβ̇ + (−)FQβ̇Qα

}
(7.66)

= Tr

 −Qα(−)FQβ̇︸ ︷︷ ︸
Using anticommutator

+ Qα(−)FQβ̇︸ ︷︷ ︸
Using cyclicity of trace

 (7.67)

= 0. (7.68)

But since {Qα,Qβ̇} = 2(σμ)αβ̇Pμ , the above trace is

Tr
{
(−)F2(σμ)αβ̇Pμ

}
= 2(σμ)αβ̇PμTr

(
(−)F

)
, (7.69)

and hence Tr
(
(−)F

)
= 0. This trace is called the Witten index and will plays a central role in susy breaking. The Witten

index can be written more explicitly as a sum over bosonic and fermionic states,

Tr
(
(−)F

)
=
∑
B

⟨B|(−)F|B⟩+
∑
F

⟨F|(−)F|F⟩ (7.70)

=
∑
B

⟨B|B⟩ −
∑
F

⟨F|F⟩ (7.71)

= nB − nF. (7.72)

Thus the vanishing of the Witten index implies that nB = nF, or that there are an equal number of bosonic and fermionic states.

7.5 Superspace

We would like to transfer our algebraic understanding of supersymmetry to a geometric (or ‘field-theoretical’) understanding of
the transformation of fields in susy multiplets. Superspace, developed by Strathdee and Salam in 1974 [321, 322], is a
convenient way to do this. Our main goal will be to identify the elements of the susy algebra (the generators of
supersymmetry) with differential operators acting on fields.
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Figure 7.5.1: Illustration of a coset space.

7.5.1 Coset spaces

Lie groups are also manifolds. For example, forU(1), we may write g = eiα with α ∈ [0, 2π]. Thus the manifold associated with
G is a circle, MU(1) = S1. Similarly, one finds that the manifold associated with SU(2) is a 3-sphere, MSU(2) = S3. Cosets, G/H
(“elements of G that aren’t in H”), can be used to define more general manifolds. A coset is composed of equivalence classes,

g ≡ gh, ∀h ∈ H. (7.73)

This coset can be used to define submanifolds of G. For example S2 is given by SU(2)/U(1). We may draw this heuristically:
Here the x- and y-axes represent the transformation parameters for the SU(2) generators. The manifold for SU(2) is
represented by the light green square. The dotted red line represents a section of U(1) that we would like to identify as part of
the equivalence class for a point g. The solid blue line represents the coset SU(2)/U(1). More generally, we may write
Sn = SO(n + 1)/SO(n).

We would like to use a cosets space to define superspace through supersymmetry (or ‘super Poincaré’ symmetry). As an
illustrative example, we may define Minkowski space as the coset space ‘Poincaré/Lorentz’, or P/SO(3, 1)↑ where P is the
Poincaré group.This is an intuitive statement since one can map the generators of translations with points on Minkowski space,

gP = ei(ωμνM
μν+aμPμ), (7.74)

while the generators of the Lorentz group take the form

gL = ei(ωμνM
μν). (7.75)

One can thus identify the coset manifold with the translation parameters,

MPoincaré/Lorentz = {aμ}. (7.76)

Multiplication of group elements correspond to successive translations on the Minkowski manifold. This is, of course, a bit of
overkill for the rather trivial case of Minkowski space.

We now generalize this idea to an (arguably) non-trivial case: the coset space (N = 1 super-Poincaré)/Lorentz, or
SP/SO(3, 1)↑. We call the resulting manifoldN = 1 superspace. The generators of the super-Poincaré group take the form

gSP = ei(ωμνM
μν+aμPμ+θαQα+θα̇Q

α̇), (7.77)
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were ωμν and aμ are the usual commuting ‘c-number’parameters for the Poincaré group while θ and θ are anticommuting
Grassmann parameters. Thus we may write coordinates forN = 1 superspace as

{aμ, θα, θα̇}. (7.78)

In this sense, supersymmetry is a fermionic extra dimension. The products θQ and θQ are commuting objects, and so we may
write the susy algebra using commutators,

{Qα,Qα̇} = 2(σμ)αα̇Pμ ⇒ [θαQα, θ
β̇Qβ̇] = 2θα(σμ)αβ̇θ

β̇Pμ. (7.79)

This will allow us to apply useful results from non-graded Lie algebras, such as the Baker-Campbell-Hausdorff formula for the
product of exponentiated generators.

Armed with this spacetime extended by Grassmann coordinates, we may proceed to define superfields as a generalization
of the usual fields that live on Minkowski space. These fields contain entire susy multiplets of component Minkowski-space
fields.

7.5.2 Grassmann calculus

Now that we’ve generalized Minkowski space to superspace, we would like to write Lagrangian densities on superspace such
that the action is given by an integration over d4x d2θ d2θ. In order to do this recall the calculus of Grassmann variables [323].

Superspace extends Minkowski space with two spinor degrees of freedom, θα and θα̇ . It is useful to review conventions for
the calculus of fermionic Weyl spinor variables.

We may define differentiation in the usual way,

∂

∂θα
θβ = δβα

∂

∂θα̇
θβ̇ = δβ̇α̇. (7.80)

Note that ∂/∂θα transforms as a lower-index left-handed spinor (i.e. ψα-type) and ∂/∂θα̇ transforms as an upper-index
right-handed spinor (i.e. χ α̇-type). This is completely analogous to the case of vector derivatives where ∂/∂xμ transforms as a
lower-index object. One may further check that

∂

∂θα
(θθ) = 2θα

∂

∂θα̇
(θθ) = 2θα̇. (7.81)

Following the convention of (7.80), however, we run into an immediate issue of consistency that requires some care. Suppose
we naively defined the ∂/∂θα and ∂/∂θα̇ partial derivatives in the same way. Then we’d run into problems since (ignoring the
index height on the Kronecker δ),

∂

∂θα
θβ = δβα

?
=

∂

∂θα
θβ, (7.82)

while we also have, from (7.202),

∂

∂θα
θβ = − ∂

∂θα
θβ. (7.83)

The only way for (7.82) and (7.83) to be consistent is if both types of derivatives are identically zero... which would make for a
pitifully trivial theory indeed. Thus our naive guess in (7.82) must not be correct. A more careful analysis shows

∂

∂θα
θβ = εαβ

∂

∂θβ
εαγθγ (7.84)

= − ∂

∂θα
θα. (7.85)

127



Since we’ve already defined at the variable θ has its index raised and lowered like a usual left-handed Weyl spinor, we are led to
the following definitions for raising and lowering indices on spinor derivatives,

∂

∂θα
= −εαβ

∂

∂θβ
∂

∂θα̇
= −εα̇β̇

∂

∂θβ̇
. (7.86)

We define the two-dimensional integral as ∫
d2θ ≡ 1

2

∫
dθ1 dθ2 (7.87)

such that ∫
d2θ (θθ) = 1. (7.88)

We use the same normalization for the right-handed superspace coordinates, and can thus write the integral over both θ and θ
as ∫

d2θ
∫

d2θ (θθ)(θθ) =
∫

d4θ (θθ)(θθ) = 1, (7.89)

where we have defined measure d4θ = d2θ d2θ.
Finally, we can introduce an inner product for superfields,

⟨F(x, θ, θ) , G(x, θ, θ)⟩ =
∫

d4x d4θ F∗(x, θ, θ)G(x, θ, θ). (7.90)

This means that we can also define a superspace Hermitian conjugation operation, †. For example, using integration by parts
the Hermitian conjugate of the (Minkowski) spacetime derivative behaves as

∂ †
μ = −∂μ. (7.91)

This Hermitian conjugation is antilinear (i.e. it “represents an involutive anti-homomorphism”), for complex coefficients a, b
and superfields φ, ψ,

(aφ + bψ)† = φ†a∗ + ψ†b∗ (7.92)

(φψ)† = ψ†φ†. (7.93)

7.5.3 General superfields

We can now define superfields as scalar functions of superspace. These superfields are complete susy multiplets containing
fields of different spins. We may Taylor expand a superfield S(xμ, θα, θα̇) in its Grassmann variables,

S(xμ, θα, θα̇) = a(x) + θαbα(x) + θα̇cα̇(x) + θθ d(x) + θθ e(x)

+ θαfαβ̇(x)θ
β̇
+ θθ θα̇gα̇(x) + θθ θαhα(x) + θθ θθ j(x), (7.94)

where we’ve used the fact that the spinor expansion is finite. The components a(x), bα(x), · · · are fields on Minkowski space
and we see that the Taylor expansion requires them to have certain spins. Terms like θα s β

α (x)θβ can be written as a
contribution to d(x). Further, by (7.207), we may write the field fαβ̇(x) as a vector,

fαβ̇(x) = Vμ(x)(σμ)αβ̇. (7.95)
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Thus let us rewrite our superfield expansion using a standard notation,

S(xμ, θα, θα̇) = ϕ(x) + θψ(x) + θχ(x) + θθ M(x) + θθ N(x)

+ (θσμθ)Vμ(x) + θθ θλ(x) + θθ θρ(x) + θθ θθ D(x), (7.96)

where we have suppressed spinor indices using our convention for the contraction of those indices.

7.6 susy differential operators

To be a ‘true’ superfield, S(x, θ, θ)must transform properly under susy. Let us refresh our memory with the transformation of
non-susy fields on Minkowski space in non-supersymmetric field theory. Recall that a Minkowski-space field φ(x) transforms
under translations,

φ→ e−iaμPμ φ eia
μPμ, (7.97)

where Pμ is the abstract generator of translations and φ is being thought of as an operator. Alternately, we can think of φ as a
function that transforms under translations via the differential operatorP ,

φ(x)→ eia
μPμφ(x) = φ(x + a). (7.98)

By comparing both transformations for infinitesimal parameter a, we find that

δφ = i[φ, aμPμ] = iaμPμφ = aμ∂μφ, (7.99)

that is: we may write the differential operator as

P = −i
∂

∂xμ
. (7.100)

We now perform the same analysis for the susy generators Qα and Qα̇ . As an operator, a superfield S transforms under
infinitesimal parameters εα and εα̇ as

S(x, θ, θ)→ e−i(εQ+εQ) S(x, θ, θ) ei(εQ+εQ). (7.101)

Alternately, we may define superspace differential operatorsQ andQ so that the superfields transform as

S(x, θ, θ)→ ei(εQ+εQ) S(x, θ, θ) = S(x + δx, θ + ε, θ + ε). (7.102)

We’ve written in a motion in Minkowski space, δx, with the foresight that supersymmetry transformations are a “square root”
of translations so we ought to provide for the susy differential operators also having some Minkowski space component. The
most general form that δx can take given the parameters εα and εα̇ is

δxμ = −ic(εσμθ) + ic∗(θσμε), (7.103)

where we have demanded that δx ∈ R and c is a constant that we would like to determine. From an analogous argument as
that forP , we can look at infinitesimal transformations to determine the susy differential operators:

δS = i[S, εQ + εQ] = i
(
εQ+ εQ

)
S, (7.104)
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from which we find

εαQα = −iεα
∂

∂θα
− cεα(σμ)αα̇θ

α̇ ∂

∂xμ
(7.105)

εα̇Q
α̇
= −iεα̇

∂

∂θα̇
+ c∗θα(σμ)αα̇εα̇

∂

∂xμ
. (7.106)

We would like to ‘peel off ’ the transformation parameters ε and ε. This is straightforward for the first equation since the ε
appears with the same index height and on the left of the spinor structure for every term,

Qα = −i
∂

∂θα
− c(σμθ)α

∂

∂xμ
. (7.107)

Technically we should say that (7.105) holds for any value of εα , thus (7.107) must hold. However, we have to do a bit of work
to remove the εα̇ from (7.106) and then subsequently lower the index onQα̇ ,

εα̇Q
α̇
= −iεα̇

∂

∂θα̇
+ c∗(θσμ)γ̇ εγ̇ α̇εα̇

∂

∂xμ
(7.108)

= −iεα̇
∂

∂θα̇
− c∗εα̇(θσμ)γ̇ εγ̇ α̇

∂

∂xμ
(7.109)

Qα̇
= −i

∂

∂θα̇
− c∗(θσμ)γ̇ εγ̇ α̇

∂

∂xμ
. (7.110)

To lower the index we must remember that we pick up a minus sign on the spinor derivative, c.f. (7.86).

Qα̇ = i
∂

∂θα̇
− c∗(θσμ)γ̇ εγ̇ β̇εα̇β̇

∂

∂xμ
(7.111)

= i
∂

∂θα̇
+ c∗(θσμ)γ̇

∂

∂xμ
, (7.112)

where we’ve used εα̇β̇ε
β̇γ̇ = δ γ̇α̇ . In order to satisfy the SUSY anticommutation relation {Qα,Q β̇} = 2(σμ)αβ̇ = Pμ , one must

have Re c = 1. We shall choose c = 1. In summary, the differential operators associated with our susy generators are given by,

P = −i
∂

∂xμ
(7.113)

Qα = −i
∂

∂θα
− (σμθ)α

∂

∂xμ
(7.114)

Qα̇ = i
∂

∂θα̇
+ (θσμ)α̇

∂

∂xμ
. (7.115)

A few remarks are in order:

• These differential operators satisfy the susy algebra in the sense of a (graded) Lie derivative.

• The operator
(
εQ+ εQ

)
is Hermitian in the sense of the inner product on superspace (7.90). This is self-consistent

since we work with unitary representations of our coset.

• These operators are equivalent to left-multiplication on the supersymmetric coset space.

One may form additional differential operators from right-multiplication on the supersymmetric coset space. These
objects are identified with the susy covariant derivatives. These are the horizontal lifts in the susy coset space that should be
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identified with susy parallel transport. They are:

Dα =
∂

∂θα
+ i(σμ)αβ̇θ

β̇
∂μ (7.116)

Dα̇ = −
∂

∂θα̇
− iθβ(σμ)βα̇∂μ. (7.117)

The differential operators satisfy

{Dα,Qβ} = {Dα,Qβ̇} = {Dα̇,Qβ} = {Dα̇,Qβ̇} = 0. (7.118)

In particular, this implies that the SUSY covariant derivatives commute with a supersymmetry transformation,[
D, εQ+ εQ

]
=
[
D, εQ+ εQ

]
= 0, (7.119)

and soDαS andDα̇S are superfields.

7.7 Transformation of superfields

The action of susy on particles can best be seen how the susy differential operators act upon superfields,
(iεQ+ iεQ) S(x, θ, θ). Writing iS = i(εQ+ εQ),

iS · ϕ(x) = −i(εσμθ) ∂μϕ + i(θσμε)∂μϕ (7.120)

iS · θψ(x) = εψ(x)− i(εσμθ) θ ∂μψ(x) + i(θσμε) θ ∂μψ(x) (7.121)

iS · θχ(x) = −i(εσμθ) θ ∂μχ(x) + εχ(x) + i(θσμε) θ ∂μχ(x) (7.122)

iS · θθ M(x) = 2 εθ M(x)− i(εσμθ) θθ ∂μM(x) (7.123)

iS · θθ N(x) = 2 εθ N(x) + i(θσμε) θθ ∂μN(x) (7.124)

iS · (θσμθ)Vμ(x) = (εσμθ)Vμ(x)− i(εσνθ) (θσμθ) ∂νVμ(x)

+ (θσμε)Vμ(x) + i(θσνε)(θσμθ) ∂νVμ(x) (7.125)

iS · θθ θλ(x) = 2εθ θλ(x)− i(εσμθ) θθ θ ∂μλ(x) + θθ ελ(x) (7.126)

iS · θθ θρ(x) = θθ ερ(x) + 2εθ θρ(x) + i(θσμε) θθ θ ∂μρ(x) (7.127)

iS · θθ θθ D(x) = 2 εθ θθ D(x) + 2 θθ εθ D(x). (7.128)

The sum of all of these terms is the change in the superfield S(x, θ, θ). On the right-hand sides of these equations we have
terms with different powers of θ and θ. These correspond to the transformation of the component Minkowski-space field with
the appropriate power of the Grassmann variables. For example, the terms on the right-hand side that have no powers of θ or θ
are contributions to δϕ(x), the terms linear in θ with no θ are contributions to δψ(x), and so forth.
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After carefully using spinor identities to simplify the transformations, one arrives at the component transformations:

δϕ(x) = εψ(x) + εχ(x) (7.129)
δψ(x) = 2εM(x) + σμε(i∂μϕ(x) + Vμ(x)) (7.130)
δχ(x) = 2εM(x)− εσμ(i∂μϕ(x)− Vμ) (7.131)

δM(x) = ελ(x)− i
2
∂μψ(x)σμε (7.132)

δN(x) = ερ(x) +
i
2
εσμ∂μχ(x) (7.133)

δVμ(x) = εσμλ(x) + ρ(x)σμε +
i
2
(∂νψ(x)σμσνε − εσνσμ∂

ν χ(x)) (7.134)

δλ(x) = 2εD(x) +
i
2
(σνσμε)∂μVν(x) + i(σμε)∂μM(x) (7.135)

δρ(x) = 2εD(x)− i
2
(σνσμε)∂μVν(x) + i(σμε)∂μN(x) (7.136)

δD(x) =
i
2
∂μ(εσμλ(x)− ρ(x)σμε). (7.137)

And there we go! That’s it. The susy transformation of a general (scalar) superfield. Take a good look at them, bask in their
glory, tattoo them to the insides of your eyelids. That’s supersymmetry for you.

What can we glean from this? Well, first of all, you should notice that, as expected, susy transformations swaps bosons and
fermions. The transformation for a fermionic field is composed of a linear combination of bosonic fields, and vice-versa. The
factors of ε, ε, σμ , and ∂μ float around to make sure indices match on the left- and right-hand sides. This is all self-consistent
and we can pat ourselves on the back for doing such a good job of keeping indices in order, but it’s not particularly insightful

There’s something else in these equations, however, that’s staring you right in the face. The transformation of D(x) is a total
derivative. It’s the only component of the general superfield that is a total derivative. This is precisely the property required for
a susy invariant term in the Lagrangian.

7.8 Irreducible superfields

While the susy transformation of a general superfield is a useful expression, we prefer to build our theories out of irreducible
representations. One can construct irreducible representations by applying various constraints to the general superfield. For
example:

1. chiral superfield: Φ(x, θ, θ) such thatDΦ = 0.

2. antichiral superfield: Φ(x, θ, θ) such thatDΦ = 0.

3. vector (real) superfield: V(x, θ, θ) such that V = V†.

4. linear superfield L(x, θ, θ) such thatD2L = 0 and L = L†.

7.9 Putting together the ingredients of a supersymmetric theory

At this point one may pick one’s favorite review article or textbook on supersymmetry for the construction of supersymmetric
Lagrangians. For these topics, then, we will be terse and only highlight how key points come together.

The basic building blocks of a realistic tev-scale supersymmetric extension of the Standard Model are chiral and vector
superfields. The chiral superfields furnish Weyl fermions so that we may associate each Standard Model matter field with a
chiral superfield. The vector superfields, on the other hand, encode gauge bosons.

In order to write down a supersymmetric Lagrangian, one must identify objects which are invariant under the
supersymmetry transformation up to a total derivative. Any residual total derivative transformation vanishes in the spacetime
integral of the action. We have already identified the D-term above as a candidate action. This turns out to be a component of
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a vector superfield called the Kähler potential. It encodes the kinetic terms of a theory. The form for the kinetic terms of chiral
superfields Φ with charge q under a gauge field with vector superfield V is

L =

∫
d4θ K = Φ†eqVΦ. (7.138)

Note that K is forced by the vector superfield condition to be real. We may add higher order real terms that obey the
symmetries of the theory. These will correspond to non-renormalizable derivative interactions.

The restriction on chiral superfield can be recast into a restriction onto a holomorphic slice of superspace. To see this,
define the superspace coordinate

yμ = xμ + iθσμθ̄. (7.139)

The chiral superfield restriction D̄Φ = 0 then takes the form

Φ(y, θ) = ϕ(y) +
√

2θψ(y) + θθF(y). (7.140)

In other words, Φ depends only on y and θ, not θ̄. What is even more intriguing is that the transformation of the F(y)
component under susy is

δF = i
√

2̄εσ̄μ∂μψ. (7.141)

This is a total derivative and is another candidate for a susy Lagrangian term. Since it only depends on one superspace
coordinate, it is holomorphic. Such a contribution is called a superpotential and is denoted W,

L =

∫
d2θ W + h.c. . (7.142)

Since the product of any chiral superfields is also a chiral superfield, W can be a product of any number of chiral superfields
but no other types of superfields. The ‘h.c.’ is the Hermitian conjugate built out of antichiral superfields and is required for the
action to be real. The holomorphy of the superpotential provides a great degree of theoretical control over the theory. In
particular, one may show that the terms in the superpotential are not perturbatively renormalized. This non-renormalization
term protects the Higgs mass in supersymmetric extensions of the Standard Model and is a powerful tool for solving the
Hierarchy problem. Finally, the kinetic term for the gauge bosons lives in a special chiral superfield whose lowest component
is the spin-1/2 gaugino λα . This takes the form

Wα(y, θ) = −
1
8
D̄2e−2VDαe2V. (7.143)

The corresponding Lagrangian term is

L =

∫
d2θ W2 + h.c. . (7.144)

With these ingredients it is straightforward to construct the susy-respecting part of the minimal supersymmetric Standard
Model (mssm). What remains is to parameterize the ‘soft’ breaking of supersymmetry that can account for the
non-observation of equal-mass superpartner particles while also preserving the cancellation of quadratic divergences in scalar
masses.

7.A The Lorentz Group

7.A.1 The Lorentz Group

Let us now explore the Lorentz group, which is sometimes called the homogeneous Lorentz group to disambiguate it from the
Poincaré group which is sometimes called the inhomogeneous Lorentz group. The Lorentz group is composed of the
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transformations that preserve the Minkowski inner product, ⟨xμ, xν⟩ = xμημνx
ν = xμxμ . In particular, for xμ → x′μ = Λμ

νxν ,
we have (

Λμ
ρx

ρ) ημν (Λν
σx

σ) = xρηρσx
σ . (7.145)

From this we may deduce that the fundamental transformations of the Lorentz group satisfy the relation

Λμ
ρ ημν Λν

σ = ηρσ . (7.146)

For simplicity we may write this in matrix notation where write matrices with suppressed indices are written in boldface

ΛTηΛ = η. (7.147)

Generators of the Lorentz Group

Let’s spell out the procedure for determining the generators of the Lorentz group. We will later follow an analogous procedure
to determine the generators of supersymmetry. We start by writing out a finite Lorentz transformation as the exponentiation

Λ = eitW, (7.148)

where t is a transformation parameter and W is the Hermitian generator we’d like to determine. Note that (7.148) only
encodes transformations that are connected to the identity. We discuss below why this is the subgroup of present interest.

Plugging (7.148) into (7.147) and setting t = 0, we obtain the relation

ηW + WTη = 0, (7.149)

or with explicit indices, Wμν + Wνμ = 0. Thus the generators W are 4× 4 antisymmetric matrices characterized by six real
transformation parameters so that there are six generators. Let us thus write the exponent of the finite transformation (7.148)
as

itWλσ = itωμν (Mμν)
λσ , (7.150)

where ωμν is an antisymmetric 4× 4 matrix parameterizing the linear combination of the independent generators and (Mμν)
λσ

are the Hermitian generators of the Lorentz group. The μ, ν indices label the six generators, while the λ, σ indices label the
matrix structure of each generator. This verifies that (7.8) indeed furnishes a basis for the generators of the Lorentz group.

Components of the Lorentz Group

The full Lorentz group has four disconnected parts. The definition (7.147) implies that

(det Λ)2 = 1 (Λ0
0)

2 −
∑
i

(Λ i
0 )

2 = 1, (7.151)

where the first equation comes from taking a determinant and the second equation comes from taking ρ = σ = 0 in (7.146).
From these equations we see that

det Λ = ±1 Λ0
0 = ±

√
1 +
∑
i

(Λ i
0 )2. (7.152)

The choice of the signs on the right-hand sides of these equations labels the four components of the Lorentz group. There is
no connected path in the space of Lorentz transformations that can change these signs.

The component of the Lorentz group with det Λ = +1 contains the identity element and is a subgroup that preserves
parity. In order to preserve the direction of time, we further choose Λ0

0 ≥ 1. We shall specialize to this subgroup, which is
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called the orthochronous Lorentz group, SO(3, 1)↑+ which further satisfies

det Λ = +1 Λ0
0 ≥ 1. (7.153)

Other parts of the Lorentz group can be obtained from SO(3, 1)↑+ by applying the transformations

ΛP = diag(+,−,−,−) ΛT = diag(−,+,+,+). (7.154)

Here ΛP and ΛT respectively refer to parity and time-reversal transformations. One may thus write the Lorentz group in terms
of ‘components’ (not necessarily ‘subgroups’),

SO(3, 1) = SO(3, 1)↑+ ⊕ SO(3, 1)↑− ⊕ SO(3, 1)↓+ ⊕ SO(3, 1)↓−, (7.155)

where the up/down arrow refers to Λ0
0 greater/less than±1, while the± refers to the sign of det Λ. Again, only SO(3, 1)↑±

form subgroups. In this document we exclusively work with the orthochronous Lorentz group so that we will drop the± and
write this as SO(3, 1)↑. The fact that the Lorentz group is not simply connected is related to the existence of a ‘physical’ spinor
representation, as we will mention below.

The Lorentz Group is related to SU(2)× SU(2)

Locally the Lorentz group is ‘related’ to the group SU(2)× SU(2), so that one might suggestively write

SO(3, 1) ≈ SU(2)× SU(2). (7.156)

One can explicitly separate the Lorentz generators Mμν into the generators of rotations, Ji, and boosts, Ki:

Ji =
1
2
εijk Mjk Ki = M0i, (7.157)

where εijk is the usual antisymmetric Levi-Civita tensor. J and K satisfy the algebra

[Ji, Jj] = iεijkJk [Ki,Kj] = −iεijkJk [Ji,Kj] = iεijkKk. (7.158)

We can now define ‘nice’ combinations of these two sets of generators,

Ai =
1
2
(Ji + iKi) Bi =

1
2
(Ji − iKi). (7.159)

The resulting algebra decouples into two SU(2) algebras,

[Ai,Aj] = i εijk Ak [Bi,Bj] = i εijk Bk [Ai, Bj] = 0. (7.160)

Note, however, that from (7.159) that these generators are not Hermitian (gasp!). Recall that a Lie group is generated by
Hermitian operators. Thus we have been careful not to say that SU(3, 1) is either isomorphic or homomorphic to
SU(2)× SU(2). For example, SU(2)× SU(2) is manifestly compact while the Lorentz group cannot be since the elements
corresponding to boosts can be arbitrarily far from the origin. This is all traced back to the sign difference in the time-like
component of the metric, i.e. the difference between SO(4) and SO(3, 1). While rotations are Hermitian and generate unitary
matrices, boosts are anti-Hermitian and generate anti-unitary matrices. At this level, then, our representations are non-unitary.

We needn’t worry about the precise sense in which SO(3, 1) and SU(2)× SU(2) are related, the point is that we may label
particle representations of SO(3, 1) by the quantum numbers of SU(2)× SU(2), (A,B). This is because we label particles by
their transformation under the algebra of the group. For example, a Dirac spinor is in the ( 1

2 ,
1
2 ) = ( 1

2 , 0)⊕ (0, 1
2 )

representation, i.e. the direct sum of two Weyl reps. To connect back to nature, the physical meaning of all this is that we may
write the spin of a representation as J = A + B.
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So how are SO(3, 1) and SU(2)× SU(2) actually related?

We’ve been deliberately vague about the exact relationship between the Lorentz group and SU(2)× SU(2). The precise
relationship between the two groups are that the complex linear combinations of the generators of the Lorentz algebra are
isomorphic to the complex linear combinations of the Lie algebra of SU(2)× SU(2).

LC(SO(3, 1)) ∼= LC(SU(2)× SU(2)) (7.161)

We are careful not to say that the Lie algebras of the two groups are identical, it is important to emphasize that only the
complexified algebras are identifiable. The complexification of SU(2)× SU(2) is the special linear group, SL(2,C). In the next
subsection we identify SL(2,C) as the universal cover of the Lorentz group. First, however, we show that the Lorentz group is
isomorphic to SL(2,C)/Z2. We discuss this topic from an orthogonal direction in Section 7.A.1.

The Lorentz group is isomorphic to SL(2,C)/Z2

While the Lorentz group and SU(2)× SU(2) are neither related by isomorphism nor homomorphism, we can concretely
relate the Lorentz group to SL(2,C). More precisely, the Lorentz group is isomorphic to the coset space SL(2,C)/Z2

SO(3, 1) ∼= SL(2,C)/Z2 (7.162)

Recall that four-vectors in Minkowski space can be equivalent represented as complex Hermitian 2× 2 matrices via
Vμ → Vμσμ , where the σμ are the usual Pauli matrices,

σ0 =
(

1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (7.163)

SL(2,C) is the group of complex 2× 2 matrices with unit determinant. It is spanned precisely by these Pauli matrices. For
simplicity we will not distinguish between the Lie group (SL(2,C)) and its algebra (L[SL(2,C)]). This is not worth the extra
notational baggage since the meaning is clear in context. Explicitly, we associate a vector x with either a vector in Minkowski
spaceM4 spanned by the unit vectors eμ ,

x = xμeμ = (x0, x1, x2, x3) , (7.164)

or with an equivalent matrix in SL(2,C),

x = xμσμ =

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
. (7.165)

Note the lowered indices on the components of xμ , i.e. (x0, x1, x2, x3) = (x0,−x1,−x2,−x3). The four-vector components
are recovered from the SL(2,C)matrices via

x0 =
1
2
Tr(x), xi =

1
2
Tr(xσ i). (7.166)

The latter of these is easy to show by expanding x = x010 + xiσ i and then noting that 1σ i ∝ σ i, σ jσ i|j ̸=i ∝ σkk̸=i, and
σ iσ i|no sum ∝ 1. Thus only the σ iσ i term of xσ i has a trace, so that taking the trace projects out the other components.

For the Minkowski four-vectors, we already understand how a Lorentz transformation Λ acts on a [covariant] vector xμ

while preserving the vector norm,

|x|2 = x20 − x21 − x22 − x23. (7.167)

This is just the content of (7.147), which defines the Lorentz group.
For Hermitian matrices, there is an analogous transformation by the action of the group of invertible complex matrices of

unitary determinant, SL(2,C). For N ∈ SL(2,C), N†xN is also in the space of Hermitian 2× 2 matrices. Such
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transformations preserve the determinant of x,

det x = x20 − x21 − x22 − x23. (7.168)

The equivalence of the right-hand sides of s (7.167) and (7.168) are very suggestive of an identification between the Lorentz
group SO(3, 1) and SL(2,C). Indeed, (7.168) implies that for each SL(2,C)matrixN, there exists a Lorentz transformation Λ
such that

N†xμσμN = (Λx)μσμ. (7.169)

A key feature is now apparent: the map from SL(2,C)→ SO(3, 1) is two-to-one. This is clear since the matrices N and−N
yield the same Lorentz transformation, Λμ

ν . Hence it is not SO(3, 1) and SL(2,C) that are isomorphic, but rather SO(3, 1) and
SL(2,C)/Z2.

The point is that one will miss something if one only looks at representations of SO(3, 1) and not the representations of
SL(2,C). This ‘something’ is the spinor representation. How should we have known that SL(2,C) is the important group?
One way of seeing this is noting that SL(2,C) is simply connected as a group manifold.

By the polar decomposition for matrices, any g ∈ SL(2,C) can be written as the product of a unitary matrix U times the
exponentiation of a traceless Hermitian matrix h,

g = Ueh. (7.170)

We may write these matrices explicitly in terms of real parameters a, · · · , g;

h =

(
c a− ib

a + ib −c

)
U =

(
d + ie f + ig
−f + ig d− ie

)
. (7.171)

Here a, b, c are unconstrained while d, · · · , g must satisfy

d2 + e2 + f2 + g2 = 1. (7.172)

Thus the space of 2× 2 traceless Hermitian matrices {h} is topologically identical toR3 while the space of unit determinant
2× 2 unitary matrices {U} is topologically identical to the three-sphere, S3. Thus we have

SL(2,C) = R3 × S3. (7.173)

As both of the spaces on the right-hand side are simply connected, their product, SL(2,C), is also simply connected. This is a
‘nice’ property because we can write down any element of the group by exponentiating its generators at the identity. But even
further, since SL(2,C) is simply connected, its quotient space SL(2,C)/Z2 = SO(3, 1)↑ is not simply connected.

Universal cover of the Lorentz group

The fact that SO(3, 1)↑ is not simply connected should bother you. In the back of your mind, your physical intuition should be
unsatisfied with non-simply connected groups. This is because simply-connected groups have the very handy property of
having a one-to-one correspondence between representations of the group and representations of its algebra; i.e. we can write
any element of the group as the exponentiation of an element of the algebra about the origin.

In quantum field theory fields transform according to representations of a symmetry’s algebra, not representations of the
group. Since SO(3, 1)↑ is not simply connected, the elements of the algebra at the identity that we used do not tell the whole
story. They were fine for constructing finite elements of the Lorentz group that were connected to the identity, but they don’t
capture the entire algebra of SO(3, 1)↑.

Now we’re in a pickle. Given a group, we know how to construct representations of an algebra near the identity based on
group elements connected to the identity. But this only characterizes the entire algebra if the group is simply connected.
SO(3, 1)↑ is not simply connected. Fortunately, there’s a trick. It turns out that for any connected Lie group, there exists a
unique ‘minimal’ simply connected group that is homeomorphic to it called the universal covering group.
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Stated slightly more formally, for any connected Lie group G, there exists a simply connected universal cover G̃ such that
there exists a homomorphism π : G̃→ G where G ∼= G̃/ ker π and ker π is a discrete subgroup of the center of G̃. Phew, that
was a mouthful. For the Lorentz group this statement is SO(3, 1)↑ ∼= SL(2,C)/Z2. Thus the key statement is:

The Lorentz group is covered by SL(2,C).

The point is that the homomorphism π is locally one-to-one and thus G and G̃ have the same Lie algebras. Thus we can
determine the Lie algebra of G away from the identity by considering the Lie algebra for G̃ at the identity. This universal
covering group of SO(3, 1)↑ is often referred to as Spin(3, 1). The name is no coincidence, it has everything to do with the
spinor representation.

Projective representations

It may not be clear why the above rigamarole is necessary or interesting. In some sense, the spinor representation is necessarily
the ‘most basic’ representation of four-dimensional spacetime symmetry.

Recall that when we write unitary representations U of a group G, we have U(g1)U(g2) = U(g1g2) for g1, g2 ∈ G. In
quantum physics, however, physical states are invariant under phases, so we have the freedom to be more general with our
multiplication rule for representations: U(g1)U(g2) = U(g1g2) exp(iφ(g1, g2)). Such ‘representations’ are called projective
representations. In other words, quantum mechanics allows us to use projective representations rather than ordinary
representations.

Not every group admits ‘inherently’ projective representations. In cases where such reps are not allowed, a representation
that one tries to construct to be projective can have its generators redefined to reveal that it is actually an ordinary
non-projective representation. The relevant mathematical result for our purposes is that groups which are not simply
connected—such as the Lorentz group—do admit inherently projective representations.

The Lorentz group is doubly connected, i.e. going over any loop twice will allow it to be contracted to a point. This means
that the phase in the projective representation must be±1. One can consider taking a loop in the Lorentz group that
corresponds to rotating by 2π along the ẑ-axis. Representations with a projective phase+1 will return to their original state
after a single rotation, these are the particles with integer spin. Representations with a projective phase−1 will return to their
original state only after two rotations, and these correspond to fractional-spin particles, or spinors.

Lorentz representations are non-unitary and non-compact

We have shown that representations of the Lorentz group are not unitary. The generators of boosts are imaginary. This makes
them anti-unitary rather than unitary. From the point of view of quantum mechanics this is the appears to be the kiss of death
since we know that only unitary representations preserve probability.

This non-unitarity from the factor of i associated with boosts, (7.159). This factor of i is crucial since is is related to the
non-compactness of the Lorentz group. Totations are compact since the rotation parameter lives on a circle (θ = 0 and
θ = 2π are identified) while boosts are non-compact since the rapidity can take on any value along the real line. The dreaded
factor of i, then, is deeply connected to the structure of the group. In fact, it’s precisely the difference between SO(3, 1) and
SO(4), i.e. the difference between space and time: a minus sign in the metric. To make the situation look even more grim,
even if we were able to finagle a way out of the non-unitarity issue (and we can’t), there is a theorem that unitary
representations of non-compact groups are infinite-dimensional. There is nothing infinite-dimensional about the particles we
hope to describe with the Lorentz group. This is looking like quite a pickle!

Up until now we have considered representations of the Lorentz group as if they would properly describe particles. The
key is that one must look at full Poincaré group (incorporating translations as well as Lorentz transformations) to develop a
consistent picture. Adding the translation generator P to the algebra cures this apparent non-unitarity. The cost for these
features, as mentioned above, is that the representations will become infinite dimensional, but this infinite dimensionality is
well-understood physically: we can boost into any of a continuum of frames where the particle has arbitrarily boosted
four-momentum.
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This is why it is not troubling that the Lorentz group does not furnish satisfactory particle representations. They actually
end up being rather useful for describing fields, where the non-unitarity of the Lorentz representations isn’t a problem because
the actual states in the quantum Hilbert space are the particles which are representations of the full Poincaré group.

7.A.2 Spinors are the fundamental representation of SL(2,C)

The fundamental representation of the universal cover of the Lorentz group, SL(2,C), are spinors. In four dimensions it is
natural to work with two-component spinors; see [24] for a comprehensive review.

Let us start by defining the fundamentaland conjugate (or antifundamental) representations of SL(2,C). These are just
the matrices N β

α and (N∗)
β̇

α̇ . The dots on the indices are a book-keeping device to keep the fundamental and the conjugate
indices from getting mixed up. One cannot contract a dotted with an undotted SL(2,C) index; this would be like trying to
contract spinor indices (α or α̇) with vector indices (μ): they index two totally different representations.

We are particularly interested in the objects that these matrices act on. Let us thus define left-handed Weyl spinors, ψ, as
those acted upon by the fundamental rep and right-handed Weyl spinors, χ, as those that are acted upon by the conjugate rep.
Again, do not be startled with the extra jewelry that our spinors display. The bar on the right-handed spinor just serves to
distinguish it from the left-handed spinor. Explicitly,

ψ′
α = N β

α ψβ χ′α̇ = (N∗)
β̇

α̇ χ β̇. (7.174)

7.A.3 Invariant Tensors

We know that ημν is invariant under SO(3, 1) and can be used (along with the inverse metric) to raise and lower SO(3, 1)
indices. For SL(2,C), we can build an analogous tensor, the unimodular antisymmetric tensor

εαβ =
(

0 1
−1 0

)
. (7.175)

Unimodularity (unit determinant) and antisymmetry uniquely define the above form up to an overall sign. The choice of sign
(ε12 = 1) is a convention. As a mnemonic, εαβ = i (σ2)αβ, but note that this is not a formal equality since σ2 does does not have
the correct index structure. This tensor is invariant under SL(2,C) since

ε′αβ = ερσN α
ρ N β

σ = εαβ detN = εαβ. (7.176)

We can now use this tensor to raise undotted SL(2C) indices:

ψα ≡ εαβψβ. (7.177)

To lower indices we can use an analogous unimodular antisymmetric tensor with two lower indices. For consistency, the
overall sign of the lowered-indices tensor must be defined as

εαβ = −εαβ, (7.178)

so that raising and then lowering returns us to our original spinor:

εαβεβγ = δγα . (7.179)

This is to ensure that the upper- and lower-index tensors are inverses, i.e. so that the combined operation of raising then
lowering an index does not introduce a sign. Dotted indices indicate the complex conjugate representation, ε∗αβ = εα̇β̇. Since ε
is real we thus use the same sign convention for dotted indices as undotted indices,

ε1̇2̇ = ε12 = −ε1̇2̇ = −ε12. (7.180)
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We may raise dotted indices in exactly the same way:

χ α̇ ≡ εα̇β̇χ β̇. (7.181)

In order to avoid sign errors, it is a useful mnemonic to always put the ε tensor directly to the left of the spinor whose indices it
is manipulating, this way the index closest to the spinor contracts with the spinor index. In other words, one needs to be
careful since εαβψβ ̸= ψβε

βα . In summary:

ψα = εαβψβ ψα = εαβψβ χα = εα̇β̇ψ β̇ χ α̇ = εα̇β̇χ
β̇. (7.182)

7.A.4 Contravariant representations

Now that we’re familiar with the ε tensor, we can tie up a loose end from Section 7.A.2. We introduced the fundamental and
conjugate representations of SL(2,C). What happened to the contravariant representations that transform under the inverse
matrices N−1 and N∗−1? For a general group, e.g. GL(N,C), these are unique so that we have a total of four different
representations.

It turns out that for SL(2,C) these contravariant representations are group theoretically equivalent to the fundamental and
conjugate representations presented above. Using the antisymmetric tensor εαβ (ε12 = 1) and the unimodularity of
N ∈ SL(2,C),

εαβNα
γN

β
δ = εγδ detN (7.183)

εαβNα
γN

β
δ = εγδ (7.184)(

NT) α
γ εαβNβ

δ = εγδ (7.185)

εαβNβ
δ =

[(
NT)−1

] γ

α
εγδ (7.186)

And hence by Schur’s Lemma N and (NT)−1 are equivalent. Similarly, N∗ and (N†)−1 are equivalent. This is not surprising
since we already knew that the antisymmetric tensor, ε, is used to raise and lower indices in SL(2,C). Thus the equivalence of
these representations is no more ‘surprising’ than the fact that Lorentz vectors with upper indices are equivalent to Lorentz
vectors with lower indices. Explicitly, then, the contravariant representationstransform as

ψ′α = ψβ(N−1)
α

β χ′α̇ = χ β̇(N∗−1)
α̇

β̇
. (7.187)

We summarize the different representations for SL(2,C):

Representation Index Structure Transformation
Fundamental Lower ψ′

α = N β
α ψβ

Conjugate Lower dotted χ′α̇ = (N∗)
β̇

α̇ χ β̇
Contravariant Upper ψ′α = ψβ(N−1)

α
β

Contra-conjugate Upper dotted χ′α̇ = χ β̇(N∗−1)
α̇

β̇

.

Occasionally textbooks will write the conjugate and contravariant-conjugate transformations in terms of Hermitian
conjugates,

χ′α̇ = χ β̇(N
†)

β̇
α̇ χ′α̇ = (N†−1)α̇β̇χ

β̇. (7.188)

We do not advocate this notation since Hermitian conjugates are a bit delicate notationally in quantum field theories. For
more details about the representations of SL(2,C), see the appendix of Wess and Bagger [324].
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7.A.5 Stars and Daggers

It is useful at this point to clarify notation. When dealing with classical fields, the complex conjugate representation is the
usual complex conjugate of the field, ψ → ψ∗. When dealing with quantum fields, on the other hand, it is conventional to
write a Hermitian conjugate; i.e. ψ → ψ†. This is because the quantum field contains creation and annihilation operators. The
Hermitian conjugate here is the quantum version of complex conjugation.

This is the same reason why Lagrangians are often writtenL = term+ h.c.. In classical physics, the Lagrangian is a scalar
quantity so one could just ‘c.c.’ (complex conjugate) rather than ‘h.c.’ (Hermitian conjugate). In qft, however, the fields in the
Lagrangian are operators that must be Hermitian conjugated. When taking a first general relativity course, some students
develop a dangerous habit: they think of lower-index objects as row vectors and upper-index objects as column vectors, so that

VμWμ =
(
V0 V1 V2 V3

)
·


W0

W1

W2

W3

 . (7.189)

Thus they think of the covariant vector as somehow a ‘transpose’ of contravariant vectors. This is is a bad, bad, bad habit and
those students must pay their penance when they work with spinors. In addition to confusion generated from the
antisymmetry of the metric and the anticommutation relations of the spinors, such students become confused when reading
an expression like ψ†

α because they interpret this as

ψ†
α

?
= (ψ∗

α )
T = (ψ α̇)

T ?
= ψ α̇ (7.190)

Wrong! Fail! Go directly to jail, do not pass go! The dagger (†) on the ψ acts only on the quantum operators in the field ψ, it
doesn’t know and doesn’t care about the Lorentz index. Said once again, with emphasis: There is no ‘transpose’ in the quantum
Hermitian conjugate!

To be safe, one could always write the Hermitian conjugate since this is ‘technically’ always correct. The meaning, however,
is not always clear. Hermitian conjugation is always defined with respect to an inner product. Anyone who shows you a
Hermitian conjugate without an accompanying inner product might as well be selling you a used car with no engine.

In [matrix] quantum theory the inner product comes with the appropriate Hilbert space. This is what is usually assumed
when you see a dagger in qft. In quantum wave mechanics, on the other hand, the Hermitian conjugate is defined with
respect to the L2 inner product,

⟨f, g⟩ =
∫

dx f∗(x) g(x), (7.191)

so that its action on fields is just complex conjugation. The structure of the inner product still manifests itself, though. Due to
integration by parts, the Hermitian conjugate of the derivative is non-trivial,(

∂

∂x

)†

= − ∂

∂x
. (7.192)

As you know very well we’re really just looking at different aspects of the same physics. The main point is that the inner
product on the infinite dimensional function space is different from the inner product that we are used to from finite
dimensional representations.

It is worth making one further note about notation. Sometimes authors will write

ψ α̇ = ψ†
α . (7.193)

This is technically correct, but it can be a bit misleading since one shouldn’t get into the habit of thinking of the bar as some
kind of operator. The bar and its dotted index are notation to distinguish the right-handed representation from the left-handed
representation. The content of the above equation is the statement that the conjugate of a left-handed spinor transforms as a
right-handed spinor.
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7.A.6 Tensor representations

Now that we’ve said a few things about raised/lowered and dotted/undotted indices, it’s worth repeating the mantra of tensor
representations of Lie groups: symmetrize, antisymmetrize, and trace.Recall the familiar SU(N) case. We can write down tensor
representations by just writing out the appropriate indices, e.g. if ψa → Ua

bψ
b and ψa → U† b

a ψb, then we can write an
(n,m)-tensor Ψ and its transformation as

Ψi1···im
j1···jm → Ui1

i′1
· · ·Uin

i′n
U† j′1

j1 · · ·U
† j′m
jm Ψi′1 ···i

′
m
j′1 ···j′m

. (7.194)

This, however, is not generally an irreducible representation. In order to find the irreps, we can make use of the fact that
tensors of symmetrized/antisymmetrized indices don’t mix under the matrix symmetry group. For U(N),

Ψij → Ψ′ij = Ui
kU

j
ℓΨ

kℓ (7.195)

Ψji → Ψ′ji = Uj
ℓU

i
kΨ

ℓk (7.196)

= Ui
kU

j
ℓΨ

ℓk, (7.197)

thus if P(i, j) is the operator that swaps the indices i↔ j, then Ψij and Ψji = P(i, j)Ψij transform in the same way. P(i, j)
commutes with the matrices of U(N), and hence we may construct simultaneous eigenstates of each. This means that the
eigenstates of P(i, j), i.e. symmetric and antisymmetric tensors, form invariant subspaces under U(N). This argument is
straightforwardly generalized to any matrix group and arbitrarily complicated index structures. Thus we may commit to
memory an important lesson: we ought to symmetrize and antisymmetrize our tensor representations.

There are two more tricks we can invoke to further reduce our tensor reps. The first is taking the trace. For U(N) we know
from basic linear algebra that the trace is invariant under unitary rotations; it is properly a scalar quantity. What this amounts
to for a general tensor is taking the contraction of an upper index i and lower index j with the Kronecker delta, δji. This is
guaranteed to commute with the symmetry group because δji is invariant under U(N). This is analogous to εαβ being an
invariant tensor of SL(2,C).

A second trick applicable to SU(N) (but not U(N)) comes from the invariant tensor εi1···iN . This is invariant under SU(N)
since

Ui′1
i1 · · ·U

i′N
iN εi′1 ···i′N = detUεi1···iN = εi1···iN . (7.198)

Thus any time one has N antisymmetric indices of an U(N) tensor, one can go ahead and drop them. Note that this is totally
different from the εαβ of SL(2,C).

For SL(2,C) the irreducible two-index ε tensor tells us that we can always reduce any tensorial representation into direct
sums irreducible tensors which are symmetric in their dotted and (separately) undotted indices,

Ψα1···α2n α̇1···α̇2m = Ψ(α1···α2n)(α̇1···α̇2m). (7.199)

We label such an irreducible tensor-of-spinor-indices with the SO(3, 1) notation (n,m). In this notation the fundamental left-
(ψ) and right-handed (χ̄) spinors transform as ( 1

2 ,0) and (0, 12 ) respectively. One might now want to consider how to reduce
Poincaré tensor products following the analogous procedure that textbooks present for SU(2). Recall that
SO(3) ∼= SU(2)/Z2 so that such an analogy amounts to ‘promoting’ SO(3) to SO(3, 1).

7.A.7 Lorentz-Invariant Spinor Products

Armed with a metric to raise and lower indices, we can define the inner product of spinors as the contraction of upper and
lower indices. Note that in order for inner products to be Lorentz-invariant, one cannot contract dotted and undotted indices.

There is a very nice short-hand that is commonly used in supersymmetry that allows us to drop contracted indices. Since
it’s important to distinguish between left- and right-handed Weyl spinors, we have to be careful that dropping indices doesn’t
introduce an ambiguity. This is why right-handed spinors are barred in addition to having dotted indices. Let us now define
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the contractions

ψχ ≡ ψα χα ψχ ≡ ψ α̇ χ
α̇. (7.200)

Note that the contractions are different for the left- and right-handed spinors. This is a choice of convention such that

(ψχ)† ≡ (ψα χα)
† = χ α̇ψ

α̇ ≡ χψ = ψχ. (7.201)

The second equality is worth explaining. Why is it that (ψαχα)
† = χ α̇ψ

α̇? Recall from that the Hermitian conjugation acts on
the creation and annihilation operators in the quantum fields ψ and χ. The Hermitian conjugate of the product of two
Hermitian operators AB is given by B†A†. The coefficients of these operators in the quantum fields are just c-numbers
(‘commuting’ numbers), so the conjugate of ψα χα is

(
χ†
)
α̇

(
ψ†)α̇ .

Now let’s get back to our contraction convention. Recall that quantum spinor fields are Grassmann, i.e. they anticommute.
Thus we show that with our contraction convention, the order of the contracted fields don’t matter:

ψχ = ψα χα = −ψα χ
α = χαψα = χψ (7.202)

ψχ = ψ α̇ χ
α̇ = −ψ α̇ χ α̇ = χ α̇ψ

α̇
= χψ. (7.203)

7.A.8 Vector-like Spinor Products

Notice that the Pauli matrices give a natural way to go between SO(3, 1) and SL(2,C) indices. Using (7.169),

(xμσμ)αα̇ → N β
α (xνσν)βγ̇N∗ γ̇

α̇ (7.204)
= (Λ ν

μ xν)σμ
αα̇. (7.205)

Then we have

(σμ)αα̇ = N β
α (σν)βγ̇(Λ−1)μνN

∗ γ̇
α̇ . (7.206)

One could, for example, swap between the vector and spinor indices by writing

Vμ → Vαβ̇ ≡ Vμ(σμ)αβ̇. (7.207)

We can define a ‘raised index’ σ matrix,

(σμ)α̇α ≡ εαβεα̇β̇(σμ)ββ̇ (7.208)

= (1,−σ). (7.209)

Note the bar and the reversed order of the dotted and undotted indices. The bar is just notation to indicate the index structure,
similarly to the bars on the right-handed spinors.

Now an important question: How do we understand the indices? Why do we know that the un-barred Pauli matrices have
lower indices αα̇ while the barred Pauli matrices have upper indices α̇α? Clearly this allows us to maintain our convention
about how indices contract, but some further checks might help clarify the matter. Let us go back to the matrix form of the
Pauli matrices (7.163) and the upper-indices epsilon tensor (7.175). One may use ε = iσ2 and to directly verify that

εσμ = σTμ ε, (7.210)

and hence

σμ = εσTμ ε
T. (7.211)

Now let us write these in terms of dot-less indices—i.e. write all indices without dots, whether or not they ought to have
dots—then we can restore the indices later to see how they turn out. To avoid confusion we’ll write dot-less indices with
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lowercase Roman letters α, β, γ, δ → a, b, c, d.

(σμ)ad = εab(σμT)bc(εT)cd (7.212)

= εab(σμ)cbεdc (7.213)

= εabεdc(σμ)cb. (7.214)

We already know what the dot structure of the σμ is, so we may go ahead and convert to the dotted/undotted lowercase Greek
indices. Thus c, b→ γ, β̇. Further, we know that the εs carry only one type of index, so that a, d→ α̇, δ. Thus we see that the
σμ have a dotted-then-undotted index structure. A further consistency check comes from looking at the structure of the γ
matrices as applied to the Dirac spinors formed using Weyl spinors with our index convention.

7.A.9 Generators of SL(2,C)

We now show how Lorentz transformations act on Weyl spinors. The objects that obey the Lorentz algebra, (7.5), and
generate the desired transformations are given by the matrices,

(σμν) β
α =

i
4
(σμσν − σνσμ) β

α (σμν)α̇β̇ =
i
4
(σμσν − σνσμ)α̇β̇. (7.215)

It is important to note that these matrices are Hermitian.The assignment of dotted and undotted indices are deliberate: they
tell us which generator corresponds to the fundamental versus the conjugate representation. The choice of which one is
fundamental versus conjugate, of course, is arbitrary. Thus the left and right-handed Weyl spinors transform as

ψα →
(
e−

i
2 ωμνσ

μν) β

α
ψβ χ α̇ →

(
e−

i
2 ωμνσ

μν)α̇

β̇
χ β̇. (7.216)

We can invoke the SU(2)× SU(2) representation (and we use that word very loosely) of the Lorentz group from (7.157)
to write the left-handed σμν generators as

Ji =
1
2
εijkσ jk =

1
2
σ i Ki = σ0i = −

i
2
σ i. (7.217)

One then finds

Ai =
1
2
(Ji + iKi) =

1
2
σ i Bi =

1
2
(Ji − iKi) = 0. (7.218)

The left-handed Weyl spinors ψα are ( 1
2 , 0) spinor representations Similarly, one finds that the right-handed Weyl spinors χ α̇

are (0, 1
2 ) spinor representations. Alternately, we could have guessed the generators of the Lorentz group acting on Weyl

spinors from the algebra of rotations and boosts in (7.158). One could have made the ansatz that the J and K are represented
on Weyl spinors via(7.217). From this one could exponentiate to derive a finite Lorentz transformation,

exp
( i
2
σ · θ ± 1

2
σ · φ

)
= exp

(
i
1
2
σ · (θ ∓ iφ)

)
, (7.219)

where the upper sign refers to left-handed spinors while the lower sign refers to right-handed spinors. θ and φ are the
parameters of rotations and boosts, respectively. One can then calculate the values of σ0i and σ ij to confirm that they indeed
match the above expression.
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7.A.10 Chirality

Let us return to a point of nomenclature. Why do we call them left- and right-handed spinors? The Dirac equation tells us

pμσμψ = mψ (7.220)
pμσμχ = mχ. (7.221)

Equation (7.221) follows from (7.220) via Hermitian conjugation, as appropriate for the conjugate representation.
In the massless limit, then, p0 → |p| and hence(

σ · p
|p| ψ

)
= ψ

(
σ · p
|p| χ

)
= −χ. (7.222)

We recognize the quantity in parenthesis as the helicity operator, so that ψ has helicity +1 (left-handed) and χ has helicity−1
(right-handed). Non-zero masses complicate things, of course, but even though ψ and χ would no longer be helicity
eigenstates, they are chirality eigenstates:.

γ5

(
ψ
0

)
= −

(
ψ
0

)
γ5

(
0
χ

)
=

(
0
χ

)
, (7.223)

where we’ve put the Weyl spinors into four-component Dirac spinors in the usual way so that we may apply the chirality
operator, γ5.

7.A.11 Connection to Dirac Spinors

We would now explicitly connect the machinery of two-component Weyl spinors to the four-component Dirac spinors.Let us
define

γμ ≡
(

0 σμ

σμ 0

)
. (7.224)

This, one can check, gives us the Clifford algebra

{γμ, γν} = 2ημν · 1. (7.225)

We can further define the fifth γ-matrix, the four-dimensional chirality operator,

γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
. (7.226)

A Dirac spinor is defined, as mentioned above, as the direct sum of left- and right-handed Weyl spinors, ΨD = ψ ⊕ χ, or

ΨD =

(
ψα
χ α̇

)
. (7.227)

The choice of having a lower undotted index and an upper dotted index is convention and comes from how we defined our
spinor contractions. The generator of Lorentz transformations takes the form

Σμν =

(
σμν 0
0 σμν

)
, (7.228)

with spinors transforming as

ΨD → e−
i
2 ωμνΣ

μν
ΨD. (7.229)

145



In our representation the action of the chirality operator is given by γ5,

γ5ΨD =

(
−ψα

χ α̇

)
. (7.230)

We can then define left- and right-handed projection operators,

PL,R =
1
2
(1∓ γ5) . (7.231)

Using the standard notation, we shall define a barred Dirac spinor as ΨD ≡ Ψ†γ0. Note that this bar has nothing to do with
the bar on a Weyl spinor. We can then define a charge conjugation matrix C via C−1γμC = −(γμ)T and the Dirac conjugate
spinor Ψ c

D = CΨ T
D , or explicitly in our representation,

Ψ c
D =

(
χα
ψ α̇

)
. (7.232)

A Majorana spinor is defined to be a Dirac spinor that is its own conjugate, ΨM = Ψc
M. We can thus write a Majorana spinor in

terms of a Weyl spinor,

ΨM =

(
ψα
ψ α̇

)
. (7.233)

Here our notation is that ψ = ψ†, i.e. we treat the bar as an operation acting on the Weyl spinor (a terrible idea, but we’ll do it
just for now). One can choose a basis of the γ matrices such that the Majorana spinors are manifestly real. Thus this is
sometimes called the ‘real representation’ of a Weyl spinor. Note that a Majorana spinor contains exactly the same amount of
information as a Weyl spinor. Some textbooks thus package the Weyl SUSY generators into Majorana Dirac spinors,
eschewing the dotted and undotted indices.

It’s worth emphasizing once more that the dots and bars are just book-keeping tools. Essentially they are a result of not
having enough alphabets available to write different kinds of objects. The bars on Weyl spinors should not be associated with
barred Dirac spinors, Ψ = Ψ†γ0. Do not make this mistake. Weyl and Dirac spinors are different objects. The bar on a Weyl
spinor has nothing to do with the bar on a Dirac spinor. We see this explicitly when we construct Dirac spinors out of Weyl
spinors (namely Ψ = ψ ⊕ χ), but it’s worth repeating because the notation can be misleading.

In principle ψ and ψ are totally different spinors in the same way that α and α̇ are totally different indices. Sometimes—as
we have done above—we may also use the bar as an operation that converts an unbarred Weyl spinor into a barred Weyl
spinor. That is to say that for a left-handed spinor ψ, we may define ψ = ψ†. To avoid ambiguity it is customary—as we have
also done—to write ψ for left-handed Weyl spinors, χ for right-handed Weyl spinors, and ψ to for the right-handed Weyl
spinor formed by taking the Hermitian conjugate of the left-handed spinor ψ.

7.B The Poincaré Group

In this appendix we push forward and describe the representations of the Poincaré group relevant to quantum field theory.

7.B.1 Casimir Operators of the Poincaré Group

We have thus constructed the representations of the Lorentz group. In order to generalize to the Poincaré group, let us remind
ourselves of the representations of the Rotation group.

The algebra is given by

[Ji, Jj] = iεijkJk. (7.234)
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SO(3) has one Casimir operator, an operator built out of the generators that commutes with all of the generators. For SO(3)
this is

J2 =
∑

J2i . (7.235)

Each irreducible representation (irrep) takes a single value of the Casimir operator. For example, the eigenvalues of J2 are
j(j + 1) where j = 1

2 , 1, · · · . Thus each irrep is labelled by j. To label each element of the irrep, we pick eigenvalues of J3 from
the set j3 = −j, · · · , j. Thus each state is labelled as |j; j3⟩, identifying individual states with respect to their transformation
properties under the symmetry.

Let’s do the analogous analysis for the Poincaré group. It is reasonable to expect that there should be a Casimir each for the
Lorentz part of the Poincaré group and the translation part. The former should be some covariant generalization of the J2 of
SO(3) that incorporates boosts, while the latter should have something to do with translations in space-time. Thinking about
conserved quantities, one would expect these to roughly correspond to spin (angular momentum) and mass (energy).

Define the Pauli-Lubanski vector,

Wμ =
1
2
εμνρσPνMρσ . (7.236)

This unusual vector is a Lorentz-covariant generalization of angular momentum. How might we have thought to write down
something like this to represent ‘angular momentum’ in SO(3, 1)? We have three covariant or invariant tensors to use: Mμν , Pμ ,
and εμνρσ . Taking some motivation from J = r× p, it is reasonable to expect a ‘cross product’ of Pμ and Mμν (Up to a choice of
normalization, (7.236) is the natural result.

We can now define two Lorentz- and translation-invariant Casimir operators,

C1 ≡ PμPμC2 ≡ WμWμ. (7.237)

That these are really Casimirs can be checked explicitly. The eigenvalue of C1 is the particle mass as usual. We interpret C2

below, but one can already guess that it has something to do with spin. From these two we will be able to label Poincaré irreps
|m, ω⟩ by their mass, m, and the ‘spin’ eigenvalue of C2, which we call ω.

The connection between C2 and spin will come about when we look at particular representations, so our strategy is to first
show how C1 decomposes the space of Poincaré representations and then to see what happens when we look at C2 on these
subspaces. The entire analysis that follows can be done without explicit knowledge of C2, and in fact one can ‘reverse-engineer’
the expression for C2 after we do some heavy-lifting.

7.B.2 States in a Poincare Irreducible Representation

To label the particular particle states within an irreducible representation of the Poincaré group, we need to pick eigenvalues
for a set of commuting generators. A good place to start is the the momentum operator P̂μ ,

P̂μ|m, ω; pμ⟩ = pμ|m, ω; pμ⟩. (7.238)

We shall adopt the non-standard notation of writing a hat to mean the appropriate representation (operator) of a Poincar’e
group element. A more typical notation is to write the representation of the abstract group element P by d(P) or even dR(P)
for a representation R. This gets ridiculously cumbersome and obfuscates the meaning of equations. Thus we shall write a hat
to denote a representation. The particular representation shall be left implicit unless there is an ambiguity.

Are there more generators that commute with Pμ , i.e. further labels for elements within a Poincar’e irrep? Yes, and as one
might guess they have something to do with the Pauli-Lubanski vector. However, [Wμ, Pν] ̸= 0 in general. We are led to
consider the cases of massive and massless representations separately. This is not so surprising since we know that massless
and massive particles are fundamentally different from the point of view of the Lorentz group: you cannot boost into the rest
frame of a massless particle.

We label a unitary representation of the Poincaré group by its momentum pμ and any other quantum numbers α. For
example, α would include spin and any gauge quantum numbers. We shall write a state under this representation as |p, α⟩ with
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the property that

P̂μ|p, α⟩ = pμ|p, α⟩. (7.239)

To be complete, we really should have written |m, ω; p, α⟩ to label the irrep with the values of the Casimir operators. In the
current analysis, however, we’ll only work within an irrep so we shall suppress these labels. Describe the space of all states of a
given momentum p by

Hk = {|k, α⟩}, (7.240)

this set is labelled by the quantum numbers α. For example, the spaceHk for an on-shell massless SU(N) gauge boson is the
set of states for which the gauge boson has momentum kμ . In that case α is short hand for the (N− 1) gauge quantum states
and the two spin polarizations.

What happens when we perform a finitetranslation on the state |p, α⟩ by acting with Û(1, a)? We can write such a
translation as the exponentiation of the translation generator, the momentum operator,

Û(1, a)|p, α⟩ = eia·P̂|p, α⟩ = eia·p|p, α⟩. (7.241)

To understand how Lorentz-transformed states behave under translations, let us consider the state

|p, α⟩Λ ≡ Û(Λ, 0)|p, α⟩. (7.242)

The operator Û(Λ, 0) generically has some non-trivial α index structure acting on the spin quantum numbers, so one would
rather expect a definition more like

|p, α⟩Λ = Û(Λ, 0)αβ|p, β⟩. (7.243)

We know, however, that we are free to choose a basis of spin states where Û(Λ, 0)αβ is diagonal, hence the definition (7.242) is
sensible. Let us act on the state p, α⟩Λ with Û(1, a):

Û(1, a) |p, α⟩Λ = Û(1, a) Û(Λ, 0) |p, α⟩ (7.244)

= Û(Λ, 0) Û(1, Λ−1a) |p, α⟩ (7.245)

= eiΛ
−1a·p U(Λ, 0) |p, α⟩ (7.246)

= eia·Λp|p, α⟩Λ . (7.247)

In the penultimate line we have just used the fact that eiΛ
−1a·p is a scalar with no group structure and in the final line we’ve

used (Λ μ
ν aν)pμ = aν(Λ μ

ν pμ). Because of (7.241), we know that (7.247) implies that the state |p, α⟩Λ = Û(Λ, 0) |p, α⟩ is part
of the spaceHΛp, i.e. |p, α⟩Λ ∈ HΛp. In other words, if we act on a state of momentum p with a Lorentz transformation Λ,
then the resulting state has momentum Λp. In fact, since we work in a basis where Û(Λ, 0) is diagonal in spin indices, we may
identify

|p, α⟩Λ = |Λp, α⟩. (7.248)

7.B.3 Tracks and the little group

In addition toHk, let us define larger subspacesH{Λk} that include all states with a momentum q that can be related to the
momentum k by a Lorentz transformation,

H{Λk} = {|q, α⟩ | ∃ Λ such that q = Λ} . (7.249)

Heuristically one could writeH{Λk} =
∑

iHΛik. Since we now know with excessive formality that Lorentz transformations
Û(Λ, 0) take states |p, α⟩ to |p, α⟩Λ = |Λp, α⟩ and that translations do not induce any non-trivial transformation of states’
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quantum numbers. (Note that this requirement can be relaxed compact extra dimensions in which the field can ‘twist.’) The
spaceH{Λk} is invariant under the Poincaré group. Each of these spaces can be represented by a track or mass-shell surface, a
hyperboloid in 4-momentum space, as shown in Figure 7.B.1. These tracks are, by definition, invariant under the action of the
Poincaré group and will be the ‘elements’ of the space of Poincaré irreps.

p0

|p|

p2 = 0
p0 > 0p2 = m2

p0 > 0

p2 = −m2

p2 = m2

p0 < 0
p2 = 0
p0 < 0

p̂

Figure 7.B.1: Hyperboloids representing tracks of different characteristic momenta (e.g. p̂), i.e. different irre-
ducible representations of the Poincaré group. The full hyperboloids are given by rotating these cross sections
about the p0 axis.

It is clear that each track can be completely described by one arbitrarily chosen characteristic momentum, p̂. Canonical
choices for characteristic momenta are:

Track Characteristic p̂
p2 = m2 > 0, p0 > 0 (m, 0)
p2 = m2 > 0, p0 < 0 (−m, 0)
p2 = 0, p0 > 0 (1, 0, 0, 1)
p2 = 0, p0 < 0 (−1, 0, 0, 1)
pμ = 0 (0, 0)
p2 = −m2 < 0 (0, 0, 0,m)

.

We separate out the positive and negative energy tracks±p0 > 0 since we know that physical states have non-negative energy.
A fancy way of saying this is that the sign of p0 is a sort of Casimir operator. For any non-characteristic momentum p on a
given track with characteristic momentum p̂, define L̂(p) to be a Lorentz transformation that takes p̂ to p,

L(p)p̂ = p. (7.250)

The power of defining such characteristic momenta is that we may now use (7.242) to write down any state |p, α⟩ in terms of a
state with the characteristic momentum of the track associated with p,

|p, α⟩ ≡ Û
(
L(p)

)
|p̂, α⟩ = |p̂, α⟩L(p). (7.251)

For simplicity we’ve dropped the second argument of Û when it is zero: Û(Λ, 0) ≡ Û(Λ).
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Define the little group of p, Hp to be the subgroup of Lorentz transformations that leave the four-vector p unchanged,

Hp = {Λ | Λp = p}. (7.252)

Sometimes this is called the stability group or invariance group of p. For example, in SO(3) the little group of a vector v is the
SO(2) subgroup of rotations about v. Don’t confuse this withHk orH{Λk}, which are spaces of states rather than
transformations.

We are particularly interested in transformations that leave the characteristic momentum p̂ unchanged, i.e. the little group
Hp̂. These particular transformations are useful because we write out all of our Poincaré states |p, α⟩ as a Lorentz transform
L(p) of a representative state |p̂, α⟩ with the track’s characteristic momentum p̂. Distinct elements of an irreducible
representation will correspond to different states in the representation of the characteristic momentum’s little group. One
obtains nontrivial elements of the little group if there exist more than one Lorentz transformation, e.g. L1(p), L2(p), that takes
p̂ to p:

L−1
1 (p)L2(p) p̂ = p̂, (7.253)

and so L−1
1 (p)L2(p) ∈ Hp̂.

7.B.4 The little group and the Pauli-Lubanski vector

The action of a finite Lorentz transformation can be written as the exponential of a linear combination of the generators of the
Lorentz algebra,

Û(Λ) = e
i
2 ωμνM

μν
. (7.254)

For a Lorentz transformation Λ, may write the action of Û(Λ) on a state |p, α⟩ as

Û(Λ)|p, α⟩ = e
i
2 ωμνM

μν
|p, α⟩ = Ĉαβ|(eω)μνpν, β⟩, (7.255)

where Ĉαβ is some matrix acting on the spin quantum numbers only; it’s particular form is of no interest to us at the moment.
If we restrict to the case where Λ ∈ Hp, then the transformed momentum must equal the original momentum,

(eω)μνp
ν = pμ, (7.256)

and hence ωμ
νpν = 0. This has a general solution given by

ωμν = εμνρσpρqσ , (7.257)

where q is any arbitrary four-vector. Is this starting to look familiar? If we restrict the action to elements of the spaceHp, we
may write down general elements of the little group Λp(b, n) as

Λp(b, q) = exp
(
−ibμPμ +

i
2
εμνρσpμqνMρσ

)
= exp (−ibμPμ + iqμWμ) . (7.258)

We welcome back our friend, the Pauli-Lubanski vector Wμ, which appears to describe the Lorentz action of an element of the
little group Hp on a state inHp. To be absolutely clear: Wμ describes the action of the little group the momentum four-vector
p acting on states with precisely that momentum p.

By definition elements ofHp have the same momentum. The only quantum number affected by the Poincaré group is spin,
and so we indeed expect that the Pauli-Lubanski vector indeed transforms states’ spin polarizations.
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7.B.5 Wigner Decomposition

Next we require the fact that acting on characteristic momentum state |p̂, α⟩ with an element from the little group Λp̂ ∈ Hp̂

only acts on the α quantum numbers and leaves the state’s momentum unchanged. Written out formally, this statement is

Û(Λp, 0) |p̂, α⟩ = D̂αα′(Λp) |p̂, α′⟩, (7.259)

where D̂αα′(Λp̂) is the representation of the element of the little group Λ̃. There is an implied sum over α′ which is shorthand
for ‘matrix’ multiplication on the non-momentum quantum numbers. The point is that D̂αα′ is a scalar with respect to the
Lorentz group.

For a general Lorentz transformation Λ acting on a general state |p, α⟩, we can perform some sleight of hand:

Û(Λ, 0) |p, α⟩ = Û(Λ) Û
(
L(p)

)
|p̂, α⟩ (7.260)

= Û
(
L(Λp)

)
Û
(
L−1(Λp)

)
Û(Λ) Û

(
L(p)

)
|p̂, α⟩ (7.261)

= Û
(
L(Λp)

)
Û
(
L−1(Λp) · Λ · L(p)︸ ︷︷ ︸

≡ Λ̃p ∈Hp̂

)
|p̂, α⟩ (7.262)

= Û
(
L(Λp)

)
D̂αα′(Λ̃p)|p̂, α′⟩ (7.263)

= D̂αα′(Λ̃p) Û
(
L(Λp)

)
|p̂, α′⟩ (7.264)

= D̂αα′(Λ̃p)|p̂, α′⟩Λ . (7.265)

We used the ‘trick’ of inserting 1 = Û
(
L(Λp)

)
Û
(
L−1(Λp)

)
so that we could identify one of the products of operators as a

representation of an element of the little group, L−1(Λp) · Λ · L(p) in (7.262). We then use the definition of the action of the
little group from (7.259) and use the fact that each D̂αα′ is just a scalar (with an implied sum over α′) push Û

(
L(Λp)

)
past it

and act on the state. Finally, in the last line we invoke our (slightly unusual) definition for |p, α⟩Λ in (7.242), with the
reminder that Û is diagonal in α indices.

The action of the little group on any state on a trackH{Λp̂} has the same structure as its action on the state with the track’s
characteristic momentum p̂. Thus, in order to determine the action of a general Lorentz transformation on a representation of
the Poincaré group, one only needs to understand action of the little group on a state with the track’s [arbitrarily chosen]
characteristic momentum. This is an example of an induced representation whereby the representation of a group is given by a
subgroup (in this case, the little group). This was first elucidated in Wigner’s classic 1939 paper [325]; thus we now call D̂ a
Wigner rotation and the expression (7.265) a Wigner decomposition.

Now we arrive at the punchline: an irreducible representation of the Poincaré group corresponds to a characteristic
momentum (i.e. a track) and a representation of the little group for that momentum. Let’s update our list of tracks, then, with
the little group for each characteristic momentum; this is done in Table 7.1.

Physical states correspond to those with non-negative energy and mass-squared, so we can restrict ourselves to such states
when constructing representations of the Poincaré group.

7.B.6 The vacuum state

Let’s start with the simplest track, p̂ = (0, 0). This corresponds to the track of the vacuum. The little group corresponds to the
orthochronous Lorentz group, which we already know is universally covered by SL(2,C). The unitary irreps of this group are
infinite dimensional. This isn’t a problem for the vacuum, however, since it lives in the trivial representation of the Lorentz
group,

Λ → 1. (7.266)
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Track Characteristic p̂ Hp̂ Physical?
p2 = m2 > 0, p0 > 0 (m, 0) SO(3) Yes
p2 = m2 > 0, p0 < 0 (−m, 0) SO(3) No
p2 = 0, p0 > 0 (1, 0, 0, 1) E2 Yes
p2 = 0, p0 < 0 (−1, 0, 0, 1) E2 No
pμ = 0 (0, 0) SL(2,C) Yes
p2 = −m2 < 0 (0, 0, 0,m) SU(1, 1) No

Table 7.1: Irreducible representations of the Poincaré group. E2 refers to the Euclidean group of the 2-plane.
SL(2,C), as previously established, is the universal cover of the Lorentz group. SU(1, 1) is the group that leaves
|z1|2 − |z2|2 invariant.

Thus we have a single vacuum |0⟩ with the property that

Û(a, Λ)|0⟩ = |0⟩. (7.267)

7.B.7 Massive Representations

For the case of massive particles one can always boost into a frame where

pμ = (m, 0, 0, 0). (7.268)

We search for generators that leave pμ = (m, 0, 0, 0) invariant. This is given by the generators of the rotation group, SO(3).
We say that SO(3) is the stability group or the little group. This implies that we may use labels j and j3 as we did before. This
sheds a little light on the nature of Wμ . We notice that W0 = 0 and Wi = mJi. In the massive representation the
Pauli-Lubanski vector does not contain any new information; ω is the same as, for example, j3. We may label elements within
an irrep as |m, j; pμ, j3⟩. This is what we mean by a one-particle state, it is the definition of a elementary particle.

7.B.8 Massless Representations

For massless particles we are unable to boost into a rest frame. The best we can do is boost into a frame where

pμ = (E, 0, 0,−E). (7.269)

Looking at this, we expect that the stability group is SO(2). This is indeed correct, though a proper analysis is a lot trickier.
Writing out each element of the Pauli-Lubanski vector, one finds

W0 = EJ3 W1 = E(−J1 + K2) W2 = E(J2 − K1) W3 = EJ3, (7.270)

from which one can write down the commutation relations

[W1,W2] = 0 [W3,W1] = −iEW2 [W3,W2] = iEW1. (7.271)

This is the algebra for the two dimensional Euclidean group. Evidently the little group is more than just the SO(2) group we
originally expected. This group has infinite-dimensional representations and hence we find a continuum label for each of our
massless states. Since we don’t know of any massless particles with a continuum of states, we restrict to finite dimensional
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representations by imposing

W1 = W2 = 0. (7.272)

See [326–328] for recent explorations on the mathematical consistency of ‘continuum spin representations.’ The W3 generates
O(2), as we wanted. Then

Wμ = λPμ, (7.273)

with λ defining the helicity of the particle. Recalling that the algebra requires e4πiλ|λ⟩ = |λ⟩, we know that λ ∈ ± 1
2 , 1 · · · .In

fact, for a field theory with massless fields in the representation (A,B), the helicity is given by λ = B− A. Massless particle
states can thus be labelled as

|0, j; pμ, λ⟩. (7.274)
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It’s here in the file “stupid Flip’s calculation.”
Brando Bellazzini, misreading a file named “Flip’s stupid

calculation”

8
DarkMatter and DirectDetection

Dark matter is one of the chief motivations for new physics. It is nearly five times more abundant in the universe
than the ordinary matter with which we are familiar. Despite having very weak interactions with ordinary matter, dark matter
plays a key role in the early history of the universe. For example, clumps of dark matter seed the gravitational wells that
became the galaxies. In this chapter we review the calculation of the dark matter abundance and describe how dark matter
interactions with matter are constrained by direct detection experiments.

8.1 wimp Relic Density

We assume that dark matter is a thermal wimp, i.e. a species that was in thermal equilibrium before freezing out and leaving a
relic density [329]. This means that freeze-out occurs when the wimp species are nearly at rest. For an ‘improved analysis’ of
the abundance of a stable particle that does not depend on the low relative velocities, see [330]. See also [331] for notable
counter-examples. Recently others have begun to explore the possibilities for non-thermal relics through the ‘freeze-in’ of
hidden sector species [143–146]; these are beyond the scope of this document.

The material in this section follows the textbooks [332, 333]. For a summary of more recent developments see [331] and
references therein.

8.1.1 The Boltzmann Equation

The Boltzmann equation connects the particle physics of dark matter to the cosmology of dark matter. We present
need-to-know details of the Friedmann-Robertson-Walker cosmology in Appendix 8.A. For a general derivation of the
Boltzmann equation, see Appendix 8.B. The main idea is that in the early universe, particles were in thermal equilibrium. This
means that the production rate of particles from the thermal bath is equivalent to the annihilation rate, Γ. If we adiabatically
lowered the temperature of a static universe below the dm mass, then the DM abundance would freeze out to a value that is
thermally suppressed by exp(−m/T). However, we know that the universe is expanding at a rate given by the Hubble
parameter H. Because of this, freeze-out occurs when the expansion rate overtakes the annihilation rate, H≫ Γ.
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The Boltzmann equation quantifies this picture and can be written as

a−3 d(na3)
dt

= ⟨σv⟩ [(nEQ)2 − n2] , (8.1)

where a is the scale factor, n is the dark matter number density, nEQ is the equilibrium number density,

nEQ,i ≡ gi
∫

d3p
(2π)3

e−Ei/T

{
gi
(miT

2π

)3/2 e−mi/T

gi T
3

π2
, (8.2)

where gi is the number of degrees of freedom for the field. The general Boltzmann equation is derived in Appenxix 8.B; see
also [332, 333]. To simplify this, use the fact that (aT) is independent of t so that one can write na3 = na3T3/T3 and pull a
factor of (aT)3 out of the time derivative. It is convenient to write these quantities in terms of dimensionless quantities

Y ≡ n
T3 ∼

n
s

x =
m
T
. (8.3)

These quantities are useful not only because they’re dimensionless, but because of their scaling properties. For example, the
cubed temperature scales like R−3 so that ṡ + 3Hs = 0. Compare this to the Boltzmann equation, which can be written as
ṅ + 3Hn = ⟨σv⟩ [(nEQ)2 − n2]. Using the variable Y cancels the 3H term.

Let’s now rewrite the Boltzmann equation in a few steps,

dY
dt

= T3⟨σv⟩
(
Y2
EQ − Y2) , (8.4)

where YEQ = nEQ/T3. See (8.113) for the non-relativistic expression of nEQ. We can write the Boltzmann equation in
different ways depending on how we define Y [329]. For example, for Y = n/s, n/sγ , or n/nγ , we have

Ẏ = ⟨σv⟩

 s
sγ
nγ

(Y2 − Y2
EQ
)
. (8.5)

Note that there are some prefactors that come along with whether one chooses Y = n/T3 or Y = n/s, the two most common
conventions. The relevant conversion is

s =
2π2

45
g∗sT3. (8.6)

For a rough derivation see the discussion before (8.128). Be sure to remember this conversion factor when comparing to
other conventions, such as [333].

We now change variables from t to x, for which we need dx/dt = Hx. In particular, since dark matter production typically
occurs in the radiation era where energy density scales like T4, the Hubble parameter is H = H(m)/x2 so that

dY
dx

= − λ
x2
(
Y2 − Y2

EQ
)
, (8.7)

where the parameter λ relates the annihilation rate to the expansion rate of the universe,

λ =
m3⟨σv⟩
H(m)

. (8.8)

For s-wave processes λ is constant, but in principle one can have some temperature dependence in ⟨σv⟩. In general, we should
write ⟨σv⟩(x) and λ(x).
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For reference, recall the cosmological formulae

H(T)2 =
8π
3

Gρ(T) (8.9)

ρR(T) =
π2

30
g∗T4, (radiation dominated) (8.10)

where H = (ȧ/a) and ρR is the energy density of relativistic species; see (8.100) and (8.118). Note that 8πG = 1/M2
Pl.

Before proceeding, let us discuss the qualitative solution to (8.7). While the annihilation rate Γ ∼ ⟨σv⟩T3 is much greater
than the expansion rate H, the ‘number density’ Y remains in thermal equilibrium and tracks YEQ. This is because λ is large and
Y wants to change to match YEQ. However, λ is decreasing. Eventually Γ ≈ H at some ‘time’ xf. From that point on, dY/dx
becomes small and Y doesn’t want to change. We’re left with Y(x) ≈ Y(xf) so that the number of particles per comoving
volume has frozen out. For neutrinos this occurs while the species are still relativistic. For wimps, this occurs when the
particles are already non-relativistic.

8.1.2 Solving the Boltzmann equation: s-wave

Unfortunately, (8.7) is a type of Riccati equation with no analytic solution. Despite not being exactly solvable, we can still see
this through by invoking some physics intuition. We know that most of the action happens at x ∼ 1. In this region, we can see
that the left-hand side of (8.7) isO(Y) while the right-hand side isO(λY2). We will see shortly that λ ≫ 1, so the right-hand
side must have a cancellation in the Y2 − YEQ2 term.

After freeze out, YEQ will continue to decrease according to the thermal suppression exp(−m/T) so that Y≫ YEQ. This
happens at late times x≫ 1 where the Boltzmann equation reduces to

dY
dx
≈ − λ(x)

x2
Y2. (8.11)

This is not yet solvable due to the x-dependence of λ coming from the temperature dependence of ⟨σv⟩.
Since we assume freeze-out occurs when wimps are non-relativistic, we may expand ⟨σv⟩ = a + bv2 + · · · , where a

corresponds to an s-wave piece, b corresponds to a p-wave (and some s-wave) piece, and so forth. For now, let us assume that
the process is s-wave so that we may drop all powers of v2 from the thermally-averaged cross section. In this case λ(x) = λ.

This is now a tractable differential equation which we can solve. The trick will be to match the solution in the asymptotic
future to a good approximation at x ∼ 1; i.e. we go from an intractable ODE (8.7) to a solvable ODE (8.11) at the cost of
determining a boundary condition. The solution of (8.11) is

1
Y∞
− 1

Yf
=

λ
xf
, (8.12)

where Y∞ is the asymptotic dimensionless number density and Yf is the value at the freeze out boundary condition xf.
Typically Yf ≫ Y∞ so that we may approximate this solution as

Y∞ ≈
xf
λ
. (8.13)

A simple order of magnitude estimate for this solution is xf ∼ 10; more precise values are on the order of xf ≈ 20 or 25. At this
level plugging in this value is a kludge. A more honest approximation comes from solving

nEQ(xf)⟨σv⟩ = H(xf). (8.14)

We give an even more explicit expression below. The plot for the dark matter relic density is well-known¹. The qualitative
features are as follows:

¹It is notoriously difficult to plot in Mathematica; see homework 5 from Hitoshi Murayama’s Physics 229C course for sug-
gestions: http://hitoshi.berkeley.edu/229C/index.html.
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• Y tracks its equilibrium value YEQ until x ∼ 10, and then levels off to a frozen-out constant.

• As one increases the annihilation cross section, the freeze out time is later.

• The distinction between Bose and Fermi statistics is negligible by the time the dark matter species freezes out. (The
use of Boltzmann statistics was assumed in when we wrote the Boltzmann equation.)

8.1.3 Solving the Boltzmann equation: general

Let’s consider to a more general solution to the Boltzmann equation that extends our s-wave analysis above. The general
conclusions are the same, so we’ll focus on some technical details. We will follow Scherrer and Turner [329]. Useful note:
that paper uses Y = n/s, which differs from our definition of Y by the overall conversion factor in (8.6).

Suppose that in a velocity expansion, the leading order term in the thermally averaged cross section goes like the p-th
power of v,

⟨σv⟩ ∝ vp. (8.15)

For s-wave p = 0, while for p-wave p = 2, and so forth. From the Boltzmann velocity distribution, we know that ⟨v⟩ ∼
√

T so
that we may write

⟨σv⟩ ∝ x−n, (8.16)

where n = p/2. If we write ⟨σv⟩ = ⟨σv⟩0x−n, then we may define

λ0 =
m3⟨σv⟩0
H(m)

= λxn. (8.17)

In this way λ0 is independent of x. In this way we may pull out the x-dependence from λ in (8.7),

dY
dx

= − λ0
x2+n

(
Y2 − Y2

EQ
)
. (8.18)

We will rewrite this in terms of Δ ≡ Y− YEQ:

dΔ
dx

= −dYEQ

dx
− λ0

x2+n Δ(2YEQ + Δ). (8.19)

Here we’ve just used Y2 − Y2
EQ = (Y + YEQ)(Y− YEQ).

First consider the case where x is small; say 1 < x≪ xf. We’ll give a more precise definition of xf below. In this limit, we
know that Y is very close to YEQ so that Δ≪ YEQ and |Δ′| ≪ −Y′

EQ, where we’ve written a prime to mean d/dx. In this
regime we can algebraically solve (8.19):

Δ = −dYEQ

dx
x2+n

λ0(2YEQ + Δ)
=
(
1− 3

2x

) x2+n

λ0(2 + Δ/YEQ)
≈ x2+n

2λ0
. (8.20)

Here we have used YEQ = nEQ/T3 and (8.113), i.e.

YEQ =
g

(2π)3/2
x3/2e−x ≡ ax3/2e−x. (8.21)

Now consider what happens when x≫ xf. In this regime we know that YEQ is exponentially small compared to
Δ ≈ Y≫ YEQ. We can thus drop YEQ and Y′

EQ in (8.19) to obtain

dΔ
dx

= − λ
x2+n Δ

2. (8.22)

Physically, particle creation has practically halted while annihilations are still somewhat important, leading to a slight
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reduction to Y compared to the value of YEQ at Γ = H (the natural back-of-the-envelope rough estimate the for the relic
abundance). Integrating this approximation from xf—which we nebulously take to be the lower-limit of the valid range for
this approximation—to x =∞ gives

Y∞ =
(n + 1)

λ0
xn+1
f . (8.23)

The importance of this quantity is that Y(today) ≈ Y∞, i.e. this is what we plug into ρχ and Ωχ to check if we’ve obtained the
correct (observed) dark matter relic density. As mentioned in the simplified s-wave case, we’ve obtained this by resorting to an
approximation in the x≫ xf case. The cost is that we’ve introduced a boundary condition at xf, the freeze out ‘time,’ where we
must match our approximation.

Now let’s precisely define xf. We are interested in the regime where Δ ≈ YEQ. We define freeze-out precisely by the
condition

Δ(xf) = cYEQ(xf), (8.24)

where c = O(1) and is determined empirically. We will plug into (8.19). We shall take two limits: first we will assume that
dΔ/dx≪ 1 and further that the particle is non-relativistic at freeze-out, in particular x≫ 3/2. The 3/2 comes from
dYEQ/dx = a(3/2− x)x1/2e−x. Plugging in and solving gives,

exf ≈ aλ0c(2 + c)
xn+1/2
f

(8.25)

xf ≈ ln [aλ0c(2 + c)]− (n + 1/2) ln ln [(2 + c)λ0ac] . (8.26)

Here we’ve further used the limit xf ≫ 3/2, as appropriate for a particle which is non-relativistic at freeze out. In (8.26) we
now have a detailed expression for xf which we may take as a definition.

One must still pick a value for c. It turns out that the best fit to numerical results sets

c(c + 2) = n + 1 (8.27)

which is better than 5% for any xf ≳ 3. Plugging in (8.17), (8.10), (8.9), and M2
Pl = 8πG, we obtain:

aλ0 =
g

(2π)3/2
· m3

H(m)
⟨σv⟩0 =

g
(2π)3/2

· m3 1
m2

1√
8πG

√
90

π2g∗
⟨σv⟩0 =

√
45
4π5︸ ︷︷ ︸

≈0.19

g
√g∗

m√
8πG
⟨σv⟩0. (8.28)

Putting it all together,

xf ≈ ln
[√

45
4π5

g
√g∗

m√
8πG
⟨σv⟩0

]
−
(
n +

1
2

)
ln2 [· · · ] , (8.29)

where the second bracket contains the same junk as the first bracket. Note that the corrections to xf ≈ 20 (for s-wave) are only
logarithmic. Note that we can write m/

√
8πG = mMPl where MPl is the reduced Planck mass, MPl = 2.44× 1018 gev.

8.1.4 Abundance

Once a particle has frozen out, its number density falls off according to the scale factor, a−3. Thus the [mass] density today is
m(a1/a0)3n, where a1 is assumed to be at a sufficiently late time that Y ≈ Y∞. Recall that the number density at this late time
is n = Y∞T3

1 . Thus the mass density today is

ρ = mY∞T3
0

(
a1T1

a0T0

)3

≈ mY∞T3
0

30
. (8.30)

159



This last equality is exercise 11 of Dodelson’s text (the solution is in the back); the point is that aT is not constant due to the
reheating of photons from the annihilation of particles between 1 mev and 100 gev. Note that we’ve gone back to our
normalization Y = n/T3.

The relevant number to match is the fraction of the present-day critical density coming from χ, using (8.8):

Ωχ =
xf
λ

mT3
0

30ρcrit
=

H(m)xfT3
0

30m2⟨σv⟩ρcrit
. (8.31)

Recall that ρcrit = 3H2
0/8πG. Using (8.9) and (8.10), the Hubble rate at T = m, which we assume to be during the radiation

era, is

H(T) = T2

√
4π3Gg∗(T)

45
, (8.32)

where g∗(T) is the effective number of degrees of freedom at temperature T. Plugging H(m) into the expression for Ωχ shows
that the latter quantity does not depend on the dark matter mass m except through the implicit dependence in xf and g∗. This
provides an important lesson: the relic abundance is primarily controlled by the cross section, ⟨σv⟩.

The final expression is

Ωχ =

√
4πGg∗(m)π3

45
xfT3

0

30⟨σv⟩ρcr
= 0.3h−2

( xf
10

)( g∗(m)
100

)1/2 10−39cm2

⟨σv⟩ . (8.33)

Assuming that χ makes up all of the dark matter, the correct density requires Ωχ = 0.3. The 10−39cm2 cross section, which is
right around what one would expect from a weakly interacting 100-ish gev particle, is the “WIMP miracle.”

8.1.5 Polemics: wimp agnosticism

The wimp miracle is often presented as strong evidence for new terascale physics connected to electroweak symmetry
breaking. However, this should be taken with a grain of salt. First the statement of the wimp miracle is valid only at the
“within a few orders of magnitude” level. Note that a typical weak cross section is ⟨σv⟩ ∼ pb = 10−36 cm2, so that some
amount of tuning is required in the wimp coupling.

A more sobering restriction comes from a tension between the correct relic abundance and recent direct detection bounds.
As of the writing of this paragraph, xenon 100 has set an upper limit on the spin-independent elastic wimp-nucleon cross
section on the order of σSI = 7.0× 10−45 cm2 = 7.0× 10−9 pb for a 50 GeV wimp at 90% confidence. A very naive
assumption is that the annihilation cross section should be roughly of the same order as the direct detection cross section, and
so there appears to be significant tuning required to generate a difference on the order of several orders of magnitude between
the two processes.

As a case study, consider the plight of the mssm. The prototypical mssm wimp is a neutralino (the lsp) whose abundance
is protected by R-parity. A standard approach is to consider parameters in which the direct detection bounds are satisfied and
then attempt to boost the relic density using handy tricks (i.e. tuning). For example, for a pure bino lsp one could set up
coannihilations due to an accidental slepton degeneracy or resonant annihilations (e.g. a Higgs resonance). Alternately, one
may note that Higgsinos and winos have annihilation cross sections that are typically too large allows one to tune the lsp to be
a specific combination of bino, Higgsino, and wino to generate the correct abundance. The parameter space for the latter
‘well-tempered neutralino’ scenario, however, is now strongly constrained by xenon 100.

There remain ways to generate honest-to-goodness wimps in models of new physics, but these appear to be rather special
cases in extended models rather than generic phenomena.

For completeness, we offer a counterpoint: even though there appears to be a 10few tuning required, one may argue that
there is still a ‘miracle’ because of the orders of magnitude that have to cancel. People point out the (T0/MPl)

3 factor in the
explicit formulae above. Of course, the point is that the smallness of (T0/MPl)

3 is balanced by the smallness (weak scale cross
section) of ⟨σv⟩. In this sense it’s a coincidence between the Weak scale, the Planck scale, and the cmb scale. And note, very
importantly, that it is independent of the wimp mass up to logarithmic corrections. Is this a miracle?
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8.1.6 Thermally averaged cross section & identical particles

Note that v is the relative velocity, so that each of the initial state χ particles in the annihilation process has velocity v/2. ⟨σv⟩ is
defined by

⟨σv⟩ = 1
n̄1n̄20

(
4∏

i=1

∫
d̄ 3pi
2Ei

)
e−(E1+E2)/T(2π)4δ(4)(p1 + p2 − p3 − p4)|M|2. (8.34)

Compared to the usual definition of σ in Peskin & Schröeder, (??), the thermal average includes an integral over the initial
state momenta weighted by the Maxwell-Boltzmann contribution.

Practically, we don’t need to do the thermal average over and over again for each cross section. Instead, we expand in
powers of v2 and insert the moments of the Maxwell-Bolztman velocity distribution. Typically one only needs the first or
second term to get the relevant behavior. Thus we would like to find

σv = a + bv2 + · · · . (8.35)

The thermal average gives ⟨v2⟩ = 6/xf, for example. Note that the overall prefactor 1/|va − vb| = 1/v in the expression for dσ
cancels in σv.

The annihilation cross section is given by

dσ =
1

2Ea2Eb|va − vb|

∏
f

d3pf
(2π)3

1
2Ef

 (2π)4δ(4)
pμa + pμb −

∑
f

pμf

 |M|2s.a., (8.36)

where |M|2 should be understood to mean the spin averaged squared amplitude. The two-body phase space is,

dPS2(p1, p2) =

∏
f

d3pf
(2π)3

1
2Ef

 (2π)4δ(4)
pμa + pμb −

∑
f

pμf

 =
dΩCM

4π
1
8π

(
2|p1|
ECM

)
. (8.37)

Here 1 and 2 label final state particles.
At this stage there are model-dependent factors of two which become important. Focusing on the case of 2→ 2

annihilations, we are concerned about symmetry factors which pop up for identical initial states (e.g. Majorana fermion dark
matter) and identical final states.

First consider the initial states. Suppose the two initial state dark matter particles are identical. There is no additional factor
of two coming from identical initial states. Here’s a paragraph from Dreiner, Haber, and Martin [24]:

Recall the standard procedure for the calculation of decay rates and cross-sections in field theory—average
over unobserved degrees of freedom of the initial state and sum over the unobserved degrees of freedom of the final
state. This mantra is well-known for dealing with spin and color degrees of freedom, but it is also applicable to
degrees of freedom associated with global internal symmetries. Thus, the cross-section for the annihilation of
a Dirac fermion pair into a neutral scalar boson can be obtained by computing the average of the cross-sections
for ξ1(p1, s1)ξ2(p2, s2)→ φ and ξ2(p1, s1)ξ2(p2, s2)→ φ. [Here ξ is an uncharged, massive, (1/2, 0) fermion.]
Since the annihilation cross-sections for ξ1ξ1 and ξ2ξ2 are equal, we confirm the resulting annihilation
cross-section for the Dirac fermion pair obtained above in the χ–η basis. [Here ΨD = (χ, η†)T].

Thus there are no additional factors in the thermally averaged annihilation cross section ⟨σv⟩ coming from having identical
Majorana dark matter particles. It is trivial that the above argument carries over to the case of where the particles have
arbitrary spin.

Now consider the final state particles. If there are k identical final state particles, then we expect an additional factor of 1/k!,
which can be understood precisely as above: the phase space integral over-counts final state configurations. For 2→ 2
processes this is a factor of 1/2! which we will write out as 1/k! in the remainder of this section as a reminder.
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Putting this all together, we have:

dσ =
1
k!

1
4E2v

∏
f

d3pf
(2π)3

1
2Ef

 (2π)4δ(4)
pμa + pμb −

∑
f

pμf

 1
4

∑
spins

|M|2 (8.38)

=
1
k!

1
4E2v

dΩCM

4π
1
8π

(
2|p1|
ECM

)
1
4

∑
spins

|M|2. (8.39)

We have written 2Ea2Eb|va − vb| = 4E2v. Now note that

2|p1|
ECM

=
|p1|
E

= v1 (8.40)

where v1 is the velocity of one of the final state axions. This is not integrated over (we’ve already done the final state phase space
integrals) and must be converted into the initial state relative velocity v using conservation of E2

i = m2
i + p2i and vi = pi/E,

m2
χ + v2χE

2 = m2
a + v21E

2, (8.41)

Recalling that v = 2vχ , we find

v21 =
v2

4
+

m2
χ − m2

a

E2 . (8.42)

Plugging this back in to dσ,

dσ =
1
k!

1
4E2v

dΩCM

4π
1
8π

√
v2

4
+

m2
χ − m2

a

E2
1
4

∑
spins

|M|2 (8.43)

v dσ =
1
k!

d cos θ
(2E)2

1
16π

1
4

∑
spins

|M|2 (1 + · · · ) , (8.44)

where the expansion of the square root drops terms of orderO(v) andO(ma/mχ) since E ≈ mχ . To be precise, E = γmχ

where γ is the Lorentz factor
(
1− v2χ

)−1/2. The expansion of the square root seems to give a higher order correction
proportional to v. So it looks a term in σv that goes like v3, i.e. the expansion in relative velocity includes odd powers of v.
What is important to note is that this term comes from the factor of v1 in (8.40). In the case when v1 ≈ 1 is not a good
approximation—that is, when the final state mass is appreciable—one has to treat this carefully since this Taylor expansion of
v1 in v (or v2 if you prefer even powers) breaks down and gives artificial divergences. This is an important factor to carry when
considering annihilation modes via thermally-accessed channels that are otherwise kinematically forbidden. See [331].

Simplifying a bit more, we have a leading order contribution of

v dσ =
1
k!

d cos θ
64π

1
s

∑
spins

|M|2. (8.45)

Recall that k! encodes the symmetry of the final states: k = 1 for non-identical final states, and k = 2 for two identical final
state particles. One can perform the d cos θ integral and expand in powers of v to obtain the coefficients in (8.35). From
taking the first moment of the Boltzmann distribution, we can plug in those coefficients to obtain

⟨σann.v⟩ = a + 6
b
xf

+ · · · . (8.46)
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8.1.7 A remark on a factor of 1/2

As a remark, the factor of 1/2 discussed above regarding identical particles should not be confused with the factor of 1/2
which appears when calculating indirect detection rates, which comes from the number densities in the flux,

d2N
dAdT

∼
∫

dℓ n1n2⟨σv⟩. (8.47)

This is explained by Dreiner et al. as follows,

We assume that the number density of Dirac fermions and antifermions and the corresponding number
density of Majorana fermions are all the same (and denoted by n). Above, we showed that σ is the same for
the annihilation of a single species of Majorana and Dirac fermions. For the Dirac case, n1n2 = n2. For the
Majorana case, because the Majorana fermions are identical particles, given N initial state fermions in a
volume V, there are N(N− 1)/2 possible scatterings. In the thermodynamic limit where N,V→∞ at fixed
n ≡ N/V, we conclude that n1n2 = n2/2 for a single species of annihilating Majorana fermions. Hence the
event rate of a Dirac fermion-antifermion pair is double that of a single species of Majorana fermions.

The factor of 1/2 is explained in [334] and is consistent with the interpretation of a Dirac fermion as a pair of mass-degenerate
Majorana fermions. Alternately,

The extra factor of 1/2 can also be understood by noting that in the case of annihilating dark matter particles,
all possible scattering axes occur and are implicitly integrated over. But, integrating over 4π steradians double
counts the annihilation of identical particles, hence one must include a factor of 1/2 by replacing n1n2 = n2 by
n2/2.

This interpretation for the factor of 1/2 in indirect detection (which is not relevant for the relic abundance calculation with
which we are presently concerned) carries over to the degeneracy of the final states in the annihilation cross section.

8.2 Direct detection

After the above long-winded historical introduction, we now discuss general features of direct dark matter detection. Direct
detection first demonstrated by Goodman and Witten (yes, that Witten) at around the time when the author was born [335].
As explained in the introduction, we study the scattering of halo dark matter particles off of highly-shielded targets to
determine information about their interactions (cross sections) and kinematics (mass). Because dark matter is so weakly
interacting with the Standard Model such experiments require large detector volumes, as is the case with neutrino
experiments. Unlike neutrino experiments, however, dark matter is heavy and the detection methods are rather different.
While neutrinos may zip through a liquid detector relativistically and leave easy-to-detect Čerenkov radiation, wimps lumber
along like giant elephants that will absent-mindedly bump into target nuclei. One can intuitively appreciate that the two
scenarios very different kinematics that require separate detection techniques.

The canonical review of the calculation of dark matter direct detection constraints is reviewed exceptionally well by Lewin
and Smith [336]. We shall review these results following the pedagogical discussion in [337]. Additional comments and
applications to the CDMS detector are presented in chapter 2 of [338]. The key result will be to understand the structure of
dark matter exclusion plots. We will also briefly survey and classify the experimental techniques used in the range of direct
detection experiments to help place our specific study of xenon 100 into proper context.

8.2.1 General strategy

A garden-variety neutralino-like wimp interacts with a target material primarily through elastic collisions with the target
nuclei. Experiments can then use complementary detection techniques to detect and distinguish such interactions from
background events to compare to theoretical predictions. These theoretical predictions can be parameterized by the dark
matter mass and a single effective coupling for typical wimps or up to four effective couplings for more general dark matter
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models depending on, e.g., spin coupling. The primary quantity to connect experimental data to theoretical models is the
elastic nuclear recoil spectrum, dR/dER, where R is the recoil event rate and ER is the energy of the recoiling nucleus.

We will start by assembling some pieces required to construct the recoil spectrum: the astrophysical input data about the
wimp velocity distribution and the effective (‘phenomenological’) cross section. Since we will see that most events occur with
low recoil energy, it will be advantageous to further parameterize the cross section in terms of a zero momentum transfer part
and a form factor that encodes the momentum and target dependence. In doing so we will uncover important general features
that feed into the design of direct detection experiments.

8.2.2 Astrophysical input

Our primary astrophysical assumption is that the dark matter in the halo has a ‘sufficiently’ Maxwellian velocity distribution.
The Maxwell-Boltzmann distribution describes the velocities of particles which move freely up to short collisions and is
derived in one’s favorite statistical physics textbook. Here one assumes that the wimps are isothermal and isotropically
distributed in phase space (i.e. gravitationally relaxed). It is important to remark that this is not actually fully accurate and
thus that wimps cannot have an exactly Maxwellian distribution even though such an approximation should be sufficient (i.e.
with uncertainties smaller than those coming from the wimp-nucleus cross section) for garden-variety wimp models. For a
recent discussion of the implications of the expected departures from the Maxwell distribution at the large velocity tail and the
kinds of models that would be affected by this, see [339].

The complete phase space distribution for such a halo for a dark matter species of mass mχ , gravitational potential Φ(x),
and velocity in the galaxy frame vgal is

f(x, v) d3x d3v ∝ exp
(
−

mχ [v2/2 + Φ(x)]
kBT

)
. (8.48)

The Earth is effectively at a fixed point in the gravitational potential so that the position dependence is is also fixed and can be
absorbed into the overall normalization. We may thus write

f(vgal) =
1
k0

ev
2
gal/v

2
0 (8.49)

where k is a factor to normalize the distribution

k0 =
∫

d3vgal ev
2
gal/v

2
0 = (πv20)

3/2 (8.50)

and v0 is the most probable wimp speed and is given by the characteristic kinetic energy:

1
2
mχv20 = kBT v0 ≈ 220 km/s ≈ 0.75 · 10−3 c. (8.51)

Note that in (8.50) we have not defined the region of integration in velocity space, we will discuss this shortly. For now one
can assume that we are integrating over the entire space. It is typically to write the vgal explicitly in terms of the velocity in the
Earth (lab) frame, v, and the velocity of this frame relative to the dark matter halo, vE,

vgal = v + vE. (8.52)

The orbit of the Earth about the sun in the galactic halo frame provides the input for an annual modulation:

vE = 232 + 15 cos
(

2π
t− 152.5 days
365.25 days

)
km s−1. (8.53)

All astrophysical data in this section come from [338]. Further discussion this data can be found in, e.g., [340, 341].
A key observation on the right-hand side of (8.51) is that the dark matter particle is very non-relativistic (we include an

explicitly factor of c = 1). This will have important implications on our wimp-nucleon cross section.
Let us remark once again that for the remainder of this document (except for isolated remarks), we will assume this
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astrophysical input. While we have mentioned in Section ?? that there are many new phenomenological dark matter models
that can deviate from these assumptions, we will not consider them in our primary analysis.

8.2.3 Phenomenological cross section

Given a matrix elementM(q) for the scattering of wimps of lab frame velocity v against target nuclei with characteristic
momentum transfer q, we may use Fermi’s Golden Rule to determine the differential wimp-nucleus cross section,

dσN(q)
dq2

=
1

πv2
|M|2 = σ̂N ·

F2(q)
4m2

rv2
. (8.54)

The (πv2)−1 factor comes from the density of final states and the usual 2π in the Golden Rule formula. In the last equality
we’ve written the cross section in terms of a q-independent factor σ̂N = σN(q = 0) and fit all of the momentum dependence
into the remaining form factor, F(q). We have written mr for the reduced mass of the wimp-nucleus system,

mr =
mχmN

mχ + mN
. (8.55)

For a general interaction Lagrangian between wimps and nucleons, one can show that the q = 0 cross section can be
parameterized by four effective couplings fp,n and ap,n (subscripts refer to proton and neutron couplings) according to

σ̂N =
4m2

r

π
[Zfp + (A− Z)fn]2 +

32G2
Fm2

r

π
(J + 1)

J
[ap⟨Sp⟩+ an⟨Sn⟩] (8.56)

where J is the nuclear spin, Z (A) is the atomic (mass) number, and Sp,n are the spin content of the proton and neutron [342].
There is an implied sum over nucleons, p and n. We have separated the zero momentum transfer cross section into spin
independent (SI) and spin-dependent (SD) pieces. The relevant point is that this is still a general formula for the effective,
zero momentum transfer cross section.

Now one must consider the coherence effect coming from summing over nucleons. Nuclear physicists knew all about
coherence effects in atomic interactions... but they’re all old and wrinkly now. In this day and age, we have to invoke
highfalutin ideas like decoupling: as good effective field theorists, we know that the nuclear scale is ‘macroscopic’ relative to
the dark matter scale. We thus have to ask if it it is appropriate to sum the quantum mechanically over the amplitudes coming
from each target nucleon. This is a question of energy dependence since higher energies probe smaller scales. We already
know from our discussion of the wimp velocity distribution that wimps are very non-relativistic in the lab frame so that they
have a large de Broglie wavelength that indeed probes the entire target nucleus.

We harp upon this because this already provides a dramatic simplification. It is not surprising that an electrically neutral
dark matter particle should couple in (roughly) the same way to the proton and neutron since these are related by isospin.
Thus we may take fp = fn ≡ f and note that the first term in (8.56) takes the form

σ̂N|SI ≈
4m2

r

π
f2A2, (8.57)

i.e. the spin-independent cross section is enhanced by a factor of A2 due to coherence. Further, since spins form anti-parallel
pairs in ground state nuclei, most of the spin-dependent cross section cancels and only leaves a leftover coupling to an odd
number of protons or neutrons in the nucleus. Thus for our garden-variety wimp interacting with a garden-variety (e.g. Ge)
target with low spin, we can completely neglect the spin-dependence,

σ̂N ≈ σ̂N|SI . (8.58)

We remark that this simplification (assumed in standard direct detection exclusion plots) provides a place for the dama
results to hide since dama’s NaI target is much more sensitive to spin-dependent coupling than other direct detection
experiments of comparable volume. In case this is being read by lhc physicists, the detector volume∼ [instantaneous]
luminosity.
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8.2.4 Differential recoil rate, a first pass

Let us now turn to the kinematics of the process. We assume elastic scattering since this dominates for point-like dark matter
interacting with nuclei. This assumption provides another place to hide dama results, c.f. inelastic dark matter [343]. In the
center of mass frame,

θ
χ N

χ

N

The kinematics of this scattering process are worked out thoroughly in first-year mechanics,

ER = Eir
1− cos θ

2
, (8.59)

where r is a kinematic factor built out of the particle masses

r =
4mr

mχmN
=

4mχmN

(mχ + mN)2
. (8.60)

The key feature is that 0 < r ≤ 1 with the upper bound saturated for mχ = mN. In other words, recoil energy is maximized
when the masses of the wimp and target nuclei are matched. The conventional cartoon to understand this is to consider the
scattering of ping pong balls and bowling balls.

Now let us proceed to calculate the differential recoil rate for the case of zero momentum transfer q = 0 where we’ve
already parameterized the relevant cross section. We will later correct for the q-dependence in the form factor. In the center of
mass frame the scattering is isotropic so that ER is uniform in cos θ over the range

0 < ER ≤ Eir = Emax
R . (8.61)

This gives us a relatively boring plot of differential recoil rate for an incident energy

d
dEi

dR
dER

EREir
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Nondescriptness notwithstanding, it is important to understand what is being plotted here. The vertical axis gives the rate of
nuclear recoils for a sliver of recoil energies between ER and ER + dER and a sliver of incident energies between Ei and
Ei + dEi. This is the differential of the recoil energy spectrum for the distribution of input wimp velocities (i.e. Ei). The area
of the shaded box represents the contribution to this differential rate coming from integrating over ER for a given Ei. As
promised this distribution is flat due to isotropy. The length of the box is given by Emax

R (Ei). The height of the box is a function
of our zero momentum transfer cross section σ̂N and Ei through the dependence of the rate on the wimp velocity distribution.
Thus we may write

d
dEi

dR
dER

=
area

length
=

dR
Eir

. (8.62)

We would have a boring rectangular plot like this for each incident velocity (i.e. each Ei). The length of each rectangle is Eir
and the height will be a more complicated function (given below) of the velocity distribution. In order to get the recoil
spectrum, dR/dER, we can imagine stacking all of these boring rectangular plots on top of each other:

d
dEi

dR
dER

ER

Now we can imagine summing together the contribution from each box to get the recoil spectrum, i.e. we can integrate (8.62)

dR
dER

=

∫ Emax
i

Emin
i

dR(Ei)

Eir
−→

∫
v

dR(v + vE)
Eir

, (8.63)

where on the right we convert to an integral over wimp velocity, i.e. Ei = Ei(v + vE). As we noted above when normalizing
the Maxwellian velocity distribution, we have been glib about the limits of integration. To simplify our first pass, will take
Emax
i →∞ and Emin

i = ER/r from the second inequality in (8.61). We will later address the effect of a finite Emax
i coming from

the characteristic escape velocity vesc of wimps in the dark matter halo.

To perform this integral we need an explicit form of the differential rate dR(Ei) of scattering from an incident energy Ei to a
recoil energy ER. (We have only explicitly written the argument that is integrated over.) dR(Ei) tells us how many such recoil
events occur per kilogram-day of a target material of atomic mass A. Heuristically this is written as

dR =
# nuclei

kg
· rate
nucleus

, (8.64)

i.e. the number of nuclei per unit mass multiplied by the rate per nuclei. To determine this latter quantity we can imagine each
target nucleus traveling through space at velocity vgal = v + vE in the wimp rest frame with a cross section σ̂N.
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v dt

σ̂N

The nucleus effectively carves out an interaction volume σ̂Nv dt across a space with wimp number density n0f(v + vE) d3v.
Thus the number of events is

rate
nucleus

dt = σ̂Nvgal n0f(v + vE) d3v dt, (8.65)

and the rate per nucleus is given by dropping the dt.
Plugging everything into (8.64), including the Maxwellian velocity distribution (8.49),

dR =
N0

A
· σ̂Nvgal n0

1
k
e(v+vE)2/v20 d3v, (8.66)

where N0 is Avogadro’s number. Let us now perform the integral (8.63) in a very simplified ‘toy’ case which we will gradually
make more sophisticated. In addition to setting vesc →∞, let us turn off the annual modulation from the Earth’s motion in
the galaxy, vE = 0 (this also sets vgal = v). The resulting integral is then

dR
dER

=

∫ ∞

vmin

1
( 1
2mχv2)r

R0

2πv40
v e−v2/v20 4πv2 dv. (8.67)

The first term is just (Eir)−1, the second term defines R0 to absorb constants in a way that will be convenient later, and the
remainder contains the v dependence of dR. The minimum velocity is given by

Emin
i =

ER

r
=

1
2
mχv2min. (8.68)

Proceeding to simplify and perform the integral,

dR
dER

=
R0

r
( 1
2mχv20

) ∫ ∞

vmin

2
v20

e−v2/v20 v dv =
R0

E0r
e−ER/E0r, (8.69)

where we have defined E0 =
1
2mχv20 to be the most probable incident wimp energy and R0 can now be simply interpreted as

the total rate for isotropic nuclear recoil from a non-relativistic point-like particle moving through the galaxy. Explicitly
writing in all of the factors that went into this constant, we find

R0 =
2√
π

N0

A
n0σ̂N v0 ≈

500 gev
Amχ

· σ̂N
1 pb
·

ρDM
0.4 gev/cm3 ·

events
kg day

. (8.70)

Sometimes people define silly units like tru (‘total rate unit’) = event kg−1 day−1 for this rate or the dru (‘differential rate unit’)
for event kg−1 day−1 keV−1 [336]. However, the last thing particle physics needs is more units so we will not use these.

It is useful to pause for a moment to admire this toy result since it already gives a very rough estimate for what one might
expect in the real world. Given a 100 kg detector made up of Xe (A ≈ 100) and a 100 gev wimp with typical weak-scale
nuclear cross section σ̂N ∼ 1 pb, one ends up with about 5 events per day. This scales linearly with cross section, wimp density
(astrophysics), and inversely with the wimp mass. Now suppose the target nucleus happens to have the same mass,
mN = mχ = 100 gev (this is the right ballpark for Xe) so that r = 1, then we can calculate the mean recoil energy,

⟨ER⟩ = E0r =
1
2
mχv20 =

1
2
50 gev(.75 · 10−3) ≈ 30 kev. (8.71)
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This number is remarkably small, even though we’re in the ‘best case’ scenario where the wimp and target masses are matched.
To compare to experiments that collider physicists (especially those at Fermilab) might appreciate a bit better, neutrino beam
experiments typically detect events of mev-scale energies. Dark matter experiments have to be significantly better than this.

8.2.5 Comparing apples to apples

Before moving on to make our toy model more realistic, let us pause to make an important point about meaningful ways to
convey the information from a direct detection experiment. Assuming we have run such an experiment for some time and
have detected no signal, we can make an exclusion plot to convey what our experiment has learned. We present such a plot in
Figure 8.2.1. The plot assumes that there are no events detected within the energy threshold; effectively one assumes that
there was a maximal number of events of energy less than the threshold that would still be consistent with no observed events
above threshold. Integrating (8.69) gives such a value for R for which one can plot R0/r ∼ σ̂N over mχ . One can qualitatively
understand the features of this graph: at the minimum the kinetic factor r is maximized for mχ ≈ mN. Below this value there’s
not enough kinetic energy transferred (ping pong balls don’t transfer much energy to bowling balls) and above this value the
density of dark matter decreases (n ∼ ρ/mχ) so that the bounds away from mχ ≈ mN become weaker.

R0

r

mχ

Figure 8.2.1: Model log-log exclusion plots from (8.69) in arbitrary units. Each line excludes points above it.
Solid lines indicate increasing energy threshold (worse sensitivity) following the solid arrow while the dashed
lines indicate increasing target atomic mass A.

Such a plot can be generated for each direct detection experiment with null results. The key question is how one ought to
combine the results of different experiments. Since we know that different experiments use different target material (and this
is good since this provides sensitivity for a broad range of wimp masses), we are particularly concerned about the dependence
of the exclusion plot on the target. This can be summarized by fact that we are setting bounds on the [zero momentum
transfer] wimp-nucleus cross section σ̂N for various wimp masses. This clearly is not a useful quantity when comparing
experiments with different target nuclei. Fortunately, there is a trivial fix: rescale everything so that we provide bounds on the
wimp-nucleon cross section σ̂n which is thus independent of the particular nucleus. Note that we use the convention that
lowercase n refers to nucleon (or ‘neutron’) while capital N refers to the entire nucleus. The conversion is straightforward,

σ̂N =
m2

r

m2
rn

A2σ̂n, (8.72)

where mrn is the reduced mass for the wimp-nucleon system. Note that we pick up an additional factor of A2 which, combined
with (8.57), gives us a total coherence enhancement of A4 in the wimp-nucleon rate (the rate which is sensible to compare
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between experiments). Let us remind ourselves that we are restricting ourselves to the case of dominant spin-independent
interactions, the case where spin-dependent scattering is appreciable requires more caution.

Plugging this back into our very rough (back of a very small envelope) estimate (8.70) and using m2
r/m2

rn ∼ A2, we find
that for our 100 kg Xe detector and 100 gev wimp, we get five events per day for a zero momentum transfer wimp-nucleon
cross section of σ̂n ∼ 10−8 pb.

8.2.6 More realistic velocities

The differential recoil rate in Section 8.2.4 is a handy estimate for what one would expect for an experiment, but it is a dramatic
simplification. Let us make our toy expression slightly more sophisticated by taking into account the effect of a finite escape
velocity and replace the effect of the Earth’s annually modulated velocity relative to the dark matter halo. To make it clear
which spectrum we are referring to, let us write

dR
dER
−→ dR(vE, vesc)

dER
, (8.73)

where we explicitly write the dependence on the Earth’s velocity and the escape velocity. The toy-model spectrum we derived
above then dR(0,∞)/dER.

Because the dark matter halo is gravitationally bound, there is a characteristic escape velocity at which the Maxwell
distribution necessarily breaks down since any particles with such energies would escape the halo. Thus our integration over
wimp velocity (or, equivalently, incident energy) should have some upper limit. Technically, the gravitational potential
modifies the Maxwell distribution at its tail, but it is typically sufficient to impose a hard cutoff. Typically vesc ≈ 600 km s−1

should be used as the upper limit for the integration in (8.69). Note that this also requires a modification of the overall
normalization of the Maxwell distribution. We define the finite vesc normalization by

kesc = k0
[
erf
(

vesc
v0

)
− 2√

π
vesc
v0

e−v2esc/v
2
0

]
, (8.74)

where the error function is a convenient shorthand for the integral over the finite velocity domain. The modified recoil
spectrum can be written in terms of the vesc →∞ spectrum as

dR(0, vesc)
dER

=
k0
kesc

[
dR(0,∞)

dER
− R0

E0r
e−v2esc/v

2
0

]
, (8.75)

where we see the effect of the rescaled normalization and an additional term which vanishes in the vesc →∞ limit. Let us
remark that typically these large velocity effects are negligible relative to our toy model since our garden-variety wimps tend to
be rather heavy and don’t carry much kinetic energy. This allowed us, for example, to simply truncate the distribution above
the escape velocity. However, light wimp candidates can populate more of the tail of the velocity distribution and proper
treatment of this region is important [339].

Now let us account for the modulated velocity of the Earth relative to the dark matter halo, which we wrote above as:

vE = 232 + 15 cos
(

2π
t− 152.5 days
365.25 days

)
km s−1. (8.76)

Due to the unfortunate placement of our solar system in the MilkyWay galaxy, the average velocity (232 km/s) is not very well
known, though the amplitude of the modulation (15 km/s) is well measured. We should further remark that there are small
errors since the modulation isn’t exactly sinusoidal. This modulation clearly does not affect the finite vesc term in (8.75) since
the large vesc dominates over vE. However, this does affect the dR(0,∞)/dER term. Going through the same analysis as
Section 8.2.4 with v2 → (v + vE)2, we find

dR(vE,∞)

dER
=

R0

E0r

√
π

4
v0
vE

[
erf
(

vmin + vE
v0

)
− erf

(
vmin − vE

v0

)]
. (8.77)
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Combining this with (8.75) finally gives us

dR(vE, vesc)
dER

=
k0
kesc

[
dR(vE,∞)

dER
− R0

E0r
e−v2esc/v

2
0

]
. (8.78)

This certainly brings us closer to a realistic expression (though we still have not included q-dependence), but (8.77) and
(8.78) leaves much to be desired in terms of having something tractable to interpret. Fortunately, it turns out that (8.77) can
be approximated very well by a simpler form,

dR(vE,∞)

dER
= c1

R0

E0r
e−c2ER/E0r, (8.79)

for some fitting ‘constants’ c1 and c2 which vary slightly with the time of year

.73 ≤ c1 ≤ .77 .53 ≤ c2 ≤ .59. (8.80)

A detailed time-dependence can be found in Appendix C of [336], but for most cases it is sufficient to set them to their
average values ⟨c1⟩ = 0.75 and ⟨c2⟩ = 0.56. Note that these are not independent, since integration of the above equation
forces c1/c2 = R(vE,∞)/R0. In this simplified form we can see that the that the effects of the Earth’s motion can increase rate
and make the spectrum slightly harder (from c2).

Finally, let’s remark that integrating the spectrum (8.77) to get a total rate and differentiating with respect to the Earth’s
velocity gives

d
dvE

(
R
R0

)
=

1
vE

[
R
R0
−
√

πv0
2vE

erf
(

vE
v0

)]
≈ 1

2vE
R
R0

, (8.81)

where our final approximation assumes vE ≈ v0. From this we can see that the 6% modulation in vE causes a 3% modulation in
the rate.

8.2.7 Form factor suppression: coherence lost

Perhaps the most obvious omission in our toy model thus far has been the approximation of zero momentum transfer, q = 0.
This came from our ansatz all the way back in (8.54) that we could reliably treat the q-dependence as a correction to the q = 0
cross section which we parameterized as a form factor, F(q). Now we should justify this parameterization and determine the
form of F(q). See [344] for a discussion.

Momentum transfer from the wimp-nucleus collision is

q =
√

2mNER. (8.82)

For large enough values of q we expect coherence to break down as the de Broglie wavelength becomes smaller than the scale
of the nucleus. A simple way to develop an intuition for the form factor is to work in the first Born approximation (i.e. plane
wave approximation):

M(q) = fnA
∫

d3x ρ(x)eiq·x, (8.83)

where ρ is the density distribution of scattering sites. The form factor is precisely the this Fourier transform over the scattering
lattice,

F(q) =
∫

d3x ρ(x)eiq·x =
4π
q

∫ ∞

0
r sin(qr) ρ(r) dr. (8.84)

For spin independent interactions, a simple model of the nucleus as a solid sphere turns out to be a very good approximation.
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In this case the form factor takes the form

F(qrN) =
j1(qrN)
qrN

= 3
sin(qrN)− qrN cos(qrN)

(qrN)3
, (8.85)

where we’ve written the momentum dependence in terms of a dimensionless quantity qrN where rN ∼ A1/3 is a characteristic
nuclear radius. Recall that q ∼

√
AER where the A-dependence comes from mN ∼ A. Thus the leading A and ER dependence

of qrN goes like

qrN ∼ A5/2E1/2
R . (8.86)

A more accurate parameterization from [336] is

qrN = 6.92 · 10−3A1/2
(

ER

keV

)1/2 (
aNA1/3 + bN

)
, (8.87)

where aN and bN are ‘fudge factors’ to give the correct nuclear radius rN from its A dependence. We will simply take aN = 1
and bN = 0 (to this precision 6.92→ 7) so that a reasonable-to-detect 100 keV recoil of a Xe (A ≈ 100) nucleus gives
qrN ≈ 3.2. From our argument about length scales one might worry that this is the regime where coherence breaks down.
Indeed, plugging into our solid sphere nuclear model, we get an F2(qrN) suppression.

For light target nuclei, the form factor doesn’t make much difference. For heavy nuclei, on the other hand, we can resolve
the structure of the Bessel function (the Fourier transform of our solid sphere nuclear model) and we find ourselves hitting the
zeroes of j1 and brushing up against its exponential suppression.

This is a very important plot to take into account when designing a direct detection experiment. We saw in (8.57) that the
spin-independent nuclear cross section scales as A2. This is enhanced to A4 when considering the more useful nucleon cross
section. While we know that having too large an A (so that mN ≫ mχ) leads to penalty in the kinetic factor r, we know from
(8.60) that this is only A−1. Thus it would still seem advantageous to build detectors with the heaviest target materials
available to maximize the interaction cross section. As we’ve now seen (and could have expected), this breaks down when the
wimp is no longer able to scatter coherently off the entire nucleus. One must then balance the coherence from having heavy
nuclei with the form factor suppressing coming from decoherence.

As we consider larger nuclei (large A), the region around q = 0 where F2(qrN) is not prohibitive becomes smaller. The
trade off when designing an experiment then depends crucially on how low one can push the energy threshold: what is the
smallest nuclear recoil that one can measure? If you can efficiently detect arbitrarily low threshold recoils, then you can go
ahead and use the heaviest nuclei you can find for your detector. However, real experiments only have a finite energy threshold
(partially a function of the target material). For this minimum recoil energy, one must consider to what extent the form factor
suppression from one’s target material will suppress one’s signal.

Thus in Figure ??, the A ∼ 20 detector takes a big hit in the interaction cross section because of its low A value. However,
we see that one is free to use a detector technology with a less prohibitive energy threshold since F2 doesn’t decrease very
quickly. The A ∼ 120 detector, on the other hand, gives a nice enhancement from coherence, but only for sufficiently low
energy recoils so that one must be very sensitive to low energy signals. As a rule of thumb, targets lighter than Ge start start to
lose a lot from A2 suppression; i.e. current detector technology does not require A any lower than this to ensure reasonable
efficiency.

This is an important lesson to put the cdms and xenon experiments in context. While Xe is appreciably heavier than Ge,
form factor suppression (decoherence) in Xe leads to the two being roughly the same in their ability to detect wimps. For a
discussion of spin-dependent scattering, see [344–347].

8.2.8 Further refinement

In addition to proper inclusion of spin-dependence and refinements of the models used above (e.g. the halo, Born
approximation with a hard sphere), further refinements of this model are discussed pedagogically in [336] and [338]. These
are typically of the following form:
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• Detection efficiency. Nuclear recoils and electron recoils are very different interactions. Given an electron and a
nuclear interaction with the same recoil energy, a given detector technology will measure different values for such
events due to the nature of the detection technique. This means that instead of the spectrum with respect to the recoil
energy dR/dER, one should calculate the spectrum with respect to the visible energy dR/dEv where Ev = fnER so that

dR
dER
≈ fn

(
1 +

ER

fn
dfn
dER

)
dR
dEv

. (8.88)

A related issue that is important to discuss is quenching, see [348] for a nice discussion. Because detectors respond
differently to nuclear recoils than to electron recoils, we need useful units to measure our visible energy. The
difference between the visible energy coming from electron and nuclear events of the same recoil energy is
parameterized by a quenching factor, Q. This leads to some silly notation: kev ee for the “electron equivalent” energy
(i.e. observed energy had the event come from an electron) and kev r for the energy signature from a “nuclear recoil.”

Ee(kevee) = Q× Er(kevr) (8.89)

• Energy resolution. The next effect to consider is the finite resolution for any real detector. This means that if there
were exactly N signal recoils each of a single energy Ev = E′

v, then our real detector would observe a spread of energies
smeared out in an approximately Gaussian manner with some energy-dependent width ΔE,

dN
dEv

=
N√
2πΔE

e(Ev−E′v)
2
2ΔE2. (8.90)

Thus the actual spectrum that we measure should be transformed to

dR
dEv

=
1√
2π

∫
dE′

v
1

ΔE
dR
dE′

v
e(Ev−Ev)2/2ΔE2 , (8.91)

where ΔE(E′
v) ∼

√
E′
v. Real experimentalists should also ‘fold in’ the other terms in ΔE relevant to a given detector

technology. For low energy events one should also worry that the Gaussian statistics above might lead to erroneous
loss of counts due to negative energies. This can be solved by using a Poisson distribution, but leads to issues regarding
the energy threshold.

• Energy threshold. As discussed above, the most favorable rates come from low energy events where the de Broglie
wavelength of the wimp is large enough to permit coherent scattering against an entire target nucleus. However,
detectors (e.g. photomultiplier tubes) can only resolve events above a given threshold energy. Noise reduction also
sets a threshold dependent on nearby radioactive sources (e.g. impurities in the target material) and shielding. These
cutoffs must be taken into account for each experiment when constructing exclusion plots.

• Target mass fractions. Let us comment in passing that in detectors with compound targets (e.g. NaI for DAMA) one
must calculate the rate limit separately for each target. To summarize, let use write out the recoil spectrum with
respect to measured energy as a handy mnemonic:

dR
dEv

= R0

∑
A

fASAF2
AIA, (8.92)

where R0 is the total rate, A runs over the relevant atomic mass numbers, fA gives the detection efficiency for nuclear
recoil, SA is the spectral function, F2 is the form factor suppression, and IA is a reminder about which sort of
interaction (spin-independent or spin-dependent) we are considering. SA is essentially the spectrum in (8.69)
modified by all of the above velocity and detector effects.
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8.A Cosmology basics

Here quickly review relevant background topics in cosmology at a very low level. These are based primarily on [85]
and [332, 333]. For further details, see the brief review in the PDG [349] or any more advanced cosmology review.

8.A.1 Friedmann equation

For a spatially homogeneous and isotropic (Friedmann-Robertson-Walker or frw) universe, the non-trivial part of the metric
reduces to an overall scale factor a(t) such that

ds2 = dt2 − a2(t)dx2. (8.93)

One may now turn the crank of general relativity to derive the Friedmann equation. For our purposes, a Newtonian example is
more physically intuitive and almost gives the exact correct answer, see e.g. [85]. Consider a comoving sphere of radius R(t)
containing the total mass of the universe, M. In such a comoving volume the number density of ‘static’ objects do not change
with the expansion of the universe. A test mass m on the surface of the sphere experiences a Newtonian gravitational force

F = −GMm
R(t)2

. (8.94)

This means that the gravitational acceleration on the test mass is

R̈(t) = − GM
R(t)2

. (8.95)

We can convert this into familiar energies by multiplying by Ṙ and integrating to give

1
2
Ṙ2 =

GM
R

+ U, (8.96)

for a constant of integration U. We identify the left-hand side as the kinetic energy per unit mass and the right-hand side as
(minus) a potential energy per unit mass. We see that kinetic plus potential energy is constant.

Now let’s massage things into more common quantities. The radius of the sphere can be written in terms of a reference
radius times the scale factor,

R(t) = a(t)r. (8.97)

Next, we can write the total mass within the sphere in terms of the density, M = (4π/3)ρ(t)R(t)3, from which (8.96) takes
the form

1
2
r2ȧ2 =

4π
3

Gr2ρ(t)a(t)2 + U. (8.98)

Finally, we can divide by r2a2/2 to obtain the Newtonian Friedmann equation,(
ȧ
a

)2

=
8πG
3

ρ(t) +
2U
r2

1
a2
. (8.99)

One can see that if you assume an expanding universe, ȧ > 0, the fate of the universe is controlled by the value of U. While
the above argument gives a correct heuristic picture of what’s going on, one must honestly solve Einstein’s equations to obtain
the relativistic Friedmann equation, (

ȧ
a

)2

=
8πG
3

ρ(t)− κ
R2
0

1
a2
. (8.100)

This is derived from the 0-0 component of the Einstein equation. We implicitly promoted the Newtonian mass density ρ to
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the relativistic energy density. Further, we have associated the potential U to the curvature κ via

2U
r2

= − κ
R2
0
, (8.101)

where R0 is related to the radius of curvature of the universe, R(t) = a(t)R0. The different fates of the universe thus
correspond to different values of the curvature. Note that it is typical to write the Friedmann equation in terms of the Hubble
parameter, H(t) ≡ ȧ/a.

8.A.2 Density of the universe

Define the critical density, ρc(t), to be the energy density for which the universe is flat, κ = 0:

ρc(t) ≡
3

8πG
H(t)2. (8.102)

This gives a natural way to define dimensionless density parameters,

Ω ≡ ρ
ρc
, (8.103)

so that the Friedmann equation may be written

1− Ω(t) =
−κ

R2H2 . (8.104)

The right-hand side does not change sign so that the universe cannot change the sign of its curvature. For Ω > 1 we have
κ = +1 and a closed universe. Conversely, for Ω < 1 we have κ = −1 and an open universe. The intermediate case Ω = 1 and
κ = 0 yields a flat universe.

8.A.3 The fluid and acceleration equations

The Friedmann equation is essentially a statement about comoving conservation of energy. This has another manifestation in
physics, the First Law of Thermodynamics,

dQ = dE + PdV. (8.105)

For a perfectly homogeneous universe there is no bulk heat flow so that the expansion of the universe is adiabatic, dQ = 0.
Writing V = 4πR3/3 and E = Vρ and then plugging into the First Law we find the fluid equation,

ρ̇ + 3
ȧ
a
(ρ + P) = 0. (8.106)

We mentioned above that the Friedmann equation corresponds to the 0-0 component of the Einstein equation given the
frw ansatz. We could also solve for the i-i components, but it turns out that this is related to the Friedmann and fluid
equations through the Bianchi identity. Indeed, combining the two equations gives the acceleration equation,

ä
a
= −4πG

3
(ρ + 3P). (8.107)

Ordinary stuff has a positive pressure, whereas dark energy has negative pressure P = −ρ.

8.A.4 Equations of state

An equation of state relates pressure and energy density, P = wρ for some constant w. The assumption that the equation of
state is linear and time-independent is good for dilute gases. Requiring that the speed of sound waves cs = dP/dρ is
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non-tachyonic, cs < 1, imposes w ≤ 1. One way of recasting the First Law of Thermodynamics is

d [R3(ρ + P)] = R3dP, (8.108)

from which we note that the evolution of a given species of energy densities goes like

ρ ∝ R−3(1+w). (8.109)

The most important examples are

• w = 0 for non-relativistic matter. (Non-relativistic matter has zero pressure.)

• w = 1/3 for a relativistic gas (e.g. of photons).

• w = −1 for vacuum energy.

8.A.5 Equilibrium and out of equlibrium thermodynamics

For dark matter, we are primarily interested in thermodynamics out of equilibrium since this is the regime in which thermal
freeze out occurs. As background, however, let us review salient aspects of equilibrium thermodynamics. First: ‘temperature’
is something which is species dependent. When we refer to ‘the temperature’ T, we mean the photon temperature, T = Tγ .
Next recall the Fermi-Dirac (+) and Bose-Einstein (−) phase space distributions,

f(p) =
1

exp((E− μ)/T)± 1
, (8.110)

where the chemical potential (the free energy cost of adding an additional particle, e.g. due to a conserved charge) may be
related to the chemical potentials of other species which are in chemical equilibrium with the particle. From this we can write
the number density, energy density, and pressure of a dilute, weakly interacting as

n = g
∫

d̄ 3pf(p) ρ = g
∫

d̄ 3pE(p)f(p) P = g
∫

d̄ 3p
|p|2

3E
f(p), (8.111)

where g is the number of internal degrees of freedom, e.g. spin. The last expression is explained in chapter 7.13 of [350].
The integrals for n, ρ, and P may be computed to yield analytic results. In the relativistic limit T≫ m with T≫ μ,

n =

{
ζ(3)
π2 gT3 (Bose)
3
4
ζ(3)
π2 gT3 (Fermi)

ρ =

{
π2
30 gT

4 (Bose)
7
8
π2
30 gT

3 (Fermi)
P =

ρ
3
. (8.112)

Note the famous factor of 7/8 in the relativistic Fermi-Dirac energy density. In the non-relativistic limit m≫ T,

n = g
(

mT
2π

)3/2

e−(m−μ)/T ρ = mn P = nT≪ ρ. (8.113)

A useful quantity for cp violation is the number excess of a fermion species over its antiparticle. Assuming that reactions
like f + f̄↔ γ + γ occur rapidly, then μ = −μ̄ and the net fermion number density is

n− n̄ =
g

2π2

∫ ∞

m
dE E
√

E2 − m2

(
1

1 + exp[(E− μ)/T]
− 1

1 + exp[(E + μ)/T]

)
(8.114)

=

{
gT3

6π2
[
π2 ( μ

T

)
+
( μ
T

)3]
(T≫ m)

2g
(mT

2π

)3/2 sinh(μ/T) exp(−m/T) (T≪ m)
. (8.115)

In the early universe, interactions between different species kept them in equilibrium with a common temperature. As the
universe cooled, species decoupled from thermal equilibrium. It turns out to be handy to measure the total energy density and
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pressure of all species in equilibrium in terms of the photon temperature T:

ρR = T4
∑
i

(
Ti

T

)4 gi
2π2

∫ ∞

xi

√
u2 − x2i u

2du
exp(u− yi)± 1

(8.116)

PR = T4
∑
i

(
Ti

T

)4 gi
6π2

∫ ∞

xi

(u2 − x2i )3/2 u2du
exp(u− yi)± 1

, (8.117)

where i runs over all species and we have defined the dimensionless variables xi ≡ mi/T and yi ≡ μi/T. Further, since the
energy density and pressure of non-relativistic species (m≫ T) are exponentially suppressed, we may restrict the sum to only
relativistic species so that the above expressions simplify,

ρR =
π2

30
g∗T4 PR =

π2

90
g∗T4, (8.118)

where g∗ counts the number of effectively massless degrees of freedom,

g∗ =
∑

i=bosons

gi
(

Ti

T

)4

+
7
8

∑
i=fermions

gi
(

Ti

T

)4

. (8.119)

The famous factor of 7/8 accounts for the difference in Bose and Fermi statistics in the equilibrium distribution function. The
value of g∗ is monotonically decreasing.

8.A.6 Entropy

In the early universe, the interaction rate of particles in the thermal bath was much greater than the expansion rate so that local
thermal equilibrium is maintained. In this case, the entropy per comoving volume is preserved and this becomes a useful
fiducial quantity. Further, for most of the early universe, the chemical potential is much smaller than the temperature and the
distribution functions depend only on E/T. This means that

∂P
∂T

= g
∫

d̄ 3p
∂f(p)
∂T
|p|2

3E
= g

∫
d̄ 3p

(
−E
T

)
∂f(p)
∂E
|p|2

3E
. (8.120)

Integrating this by parts (dropping the surface term) yields

∂P
∂T

=
ρ + P

T
. (8.121)

This can also be derived from integrability, ∂2S/∂T∂V = ∂2S/∂V∂T. The right-hand side is identified with entropy density.
To remember this, recall that the Second Law tells us that

TdS = d(ρV) + PdV = d [(ρ + P) + V]− VdP. (8.122)

Making use of (8.121), we may write

dS =
d [(ρ + P)V]

T
− (ρ + P)VdT

T2 = d
[
(ρ + P)V

T
+ const.

]
. (8.123)

Ignoring the overall constant, the entropy per comoving volume is

S = R3 ρ + P
T

, (8.124)
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so that we may identify (8.121) with the entropy density,

s ≡ S
V

=
ρ + P

T
. (8.125)

Now invoke the First Law (8.105) with dQ = 0 and E = ρV, which we may write as

d [(ρ + P)V] = VdP. (8.126)

combining this with (8.121) gives

s = d
[
(ρ + P)V

T

]
= 0, (8.127)

so that entropy is indeed conserved.
Entropy is dominated by the contribution of relativistic particles, (8.118), so that

s =
2π2

45
g∗sT3, (8.128)

where

g∗s =
∑

i=bosons

gi
(

Ti

T

)3

+
7
8

∑
i=fermions

gi
(

Ti

T

)3

, (8.129)

which differs from (8.119) only in the exponent of the (Ti/T) factors. However, since most particles had the same
temperature in the early (equilibrium) universe, g∗s = g∗. This is depicted in Figure ??. Note that by virtue of its dependence
on T, s is proportional to the number density of relativistic particles, (8.112). We also remark that (8.128) is a useful equation
when converting between the definitions Y = n/T3 versus Y = n/s.

It is convenient to normalize s relative to the photon density,

s = 1.80 g∗snγ . (8.130)

Since s ∼ a−3, the total number of particles in a comoving volume, N = R3n, is equal to the number density divided by the
entropy, N = n/s.

Why are there two g∗ values? Even though g∗ = g∗s when all relativistic particles share the same temperature, these
quantities differ when one species decouples and has a lower temperature. Such a species would contribute less to the effective
number of relativistic degrees of freedom by a factor that depends on whether we’re looking at g∗ or g∗s. The reason why we
need two counts of the number of degrees of freedom is that g∗ relates the temperature to energy density via (8.118), while g∗s
relates the temperature to the scale factor via T ∼ g−1/3

∗s a−1, c.f. (8.130).

8.B Kinetic Theory and the Boltzmann Equation

We present a thorough derivation of the Boltzmann equation. For details, see one’s favorites statistical mechanics or chapter 4
of [332].

8.B.1 Kinetic theory

Define the unconditional s-particle probability in an N-particle system,

ρs(p1, q1, · · · , ps, qs; t) =
∫ N∏

i=s+1

dμi ρ(p,q, t). (8.131)
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Here ρ(p,q, t) is the one-particle probability in phase space. The product on the right-hand side runs over the (N− s)
particles which are not specified by the arguments of the left-hand side. From this we can define particle densities. We begin
with the single particle density which is the expectation for finding any of the N particles in the state (p, q),

f1(p, q; t) =

⟨
N∑
j=1

δ(3)(p− pj)δ(3)(q− qj)

⟩
= N

∫ N∏
j=2

dμ ρ(p1 = p, q1 = q, p2, q2, · · · , pN, qN; t). (8.132)

For simplicity, define this to be N ρ1(p, q; t).We’ve written the phase space measure as dμ. From here we can generalize to an
s-particle density,

fs(p, · · · , qs; t) = N(N− 1) · · · (N− S + 1)ρs(p1, · · · , qs; t) =
N!

(N− S)!
ρs(p1, · · · , qs; t). (8.133)

We can ask how these densities evolve with time. Fortunately, we only have to look at ρ1:

∂ρ1
∂t

=

∫ N∏
i=2

dμi
∂ρ
∂t

= −
∫ N∏

i=2

dμi {ρ,H} , (8.134)

where ρ is the full phase space density (6N variables) and we’ve use Liouville’s theorem. Let us organize the Hamiltonian into
three pieces, H = H1 + HN−1 + H′, where,

H1 =
p2
1

2m
+ U(q1) (8.135)

HN−1 =

N∑
i=2

[
p2
1

2m
+ U(q1)

]
+

1
2

N∑
i,j=2

V(qi − qj) (8.136)

H′ =

N∑
i=2

V(q− qi). (8.137)

Here U(q) is an external potential, while V(qi − qj) is an interaction potential between different particles. We can thus write

∂ρ1
∂t

= −
∫ N∏

i=2

dμi
{
ρ, (H1 + HN−1 + H′)

}
. (8.138)

Let us consider each term one at a time.∫ N∏
i=2

dμi {ρ,H1} =
∫ N∏

i=2

dμi {ρ,H1} =
{
ρ1,H1

}
. (8.139)

Here we’ve used the fact that H1 is independent of μi for i ̸= 1.∫ N∏
i=2

{ρ,HN−1} =
∫ N∏

i=2

dμi
N∑
j=1

(
∂ρ
∂pj

∂HN−1

∂qj
− ∂ρ

∂qj

∂HN−1

∂pj

)
(8.140)

=

∫ N∏
i=2

dμi
N∑
j=1

[
∂ρ
∂pj

(
∂U
∂qj

+
1
2

N∑
k=2

∂V(qj − qk)

∂qj

)
− ∂ρ

∂qj

pj

m

]
= 0. (8.141)

Here we’ve noted that the term in the parentheses is independent of pj while the remaining term is independent of qj; thus the
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entire line vanishes upon the appropriate integration by parts.

∫ N∏
i=2

dμi
N∑
j=1

[
∂ρ
∂pj

∂H′

∂qj
−
�
�

��∂ρ
∂qj

∂H′

∂pj

]
=

∫ N∏
i=2

dμi
N∑
j=1

 ∂ρ
∂p1

N∑
j=2

∂V(qi − qj)

∂q1
+

N∑
j=2

�������∂ρ
∂pj

∂V(qi − qj)

∂qj


= (N− 1)

∫ N∏
i=2

dμi
∂ρ
∂p1
· ∂V(qi − qj)

∂q1
(8.142)

= (N− 1)
∫

dμ2
∂V(qi − qj)

∂q1
· ∂

∂p1

(
N∏
i=3

dμi ρ

)
(8.143)

= (N− 1)
∫

dμ2
∂V(qi − qj)

∂q1
·
∂ρ2
∂p1

. (8.144)

On the first line we used the independence of H′ on p and, on the right-hand side, integration by parts. What a mess.
Fortunately we can clearn this all up and then generalize. Plugging this into (8.138) yields

∂ρ1
∂t
−
{
H1, ρ1

}
= (N− 1)

∫
dμ2

∂V(q1 − q2)

∂q1
·
∂ρ2
∂p1

. (8.145)

Multiplying by N allows us to convert this into an expression for the time evolution of f1,

∂f1
∂t
− {H1, f1} =

∫
dμ2

∂V(q1 − q2)

∂q1
· ∂f2
∂p1

. (8.146)

The right-hand side of this equation is a collision integral that tells us about the pair-wise interactions of particles in this
system. It is now straightforward to see how this generalizes for the time evolution of a general multi-particle density,

∂fs
∂t
− {Hs, fs} =

s∑
n=1

∫
dμ2

∂V(qn − qs+1)

∂qn
· ∂fs+1

∂pn
. (8.147)

The general point that one should glean from this is that the expression for ∂fs/∂t requires knowledge of fs+1. In order to find
out f1, one needs to know f2, but to know f2 one needs f3, an so forth. This is sometimes referred to as the bggky hierarchy.

8.B.2 The Boltzmann equation

The physical approximation that allows us to bypass the bggky hierarchy is the Boltzmann equation. The key assumption is
that interactions are short range. Even with this assumption, one should take pause: mechanics was already boring and tedious
for two-particle scattering. Now we will be going to N ∼ 1023-particle scattering! We will give a loose, ‘plausible’ presentation.
You may fill in the details as you feel necessary.

Let us explicitly write out the first two equations of the hierarchy:[
∂

∂t
− ∂U

∂q1

∂

∂p1
+

p1

m
∂

∂q1

]
f1 =

∫
dμ2

∂V(q1 − q2)

∂q1

∂f2
∂p1

(8.148)

[
∂

∂t
− ∂U

∂q1

∂

∂p1
− ∂U

∂q2

∂

∂p2
+

p1

m
∂

∂q1
+

p2

m
∂

∂q2
− ∂V(q1q2)

∂q1

(
∂

∂p1
− ∂

∂p2

)]
f2

=

∫
dμ3

[
∂V(q1 − q3)

∂q1

∂

∂p1

∂V(q2 − q3)

∂q2

∂

∂p2

]
f3 (8.149)
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Time scales

Now we get to do some physics. Let us identify the (inverse) time scales that appear in the expressions above (this is just
dimensional analysis). In fact, before we identify any of the terms, you should already have some intuition for the relevant
scales in the problem.

• The length scale of the external potential

• The length scale of particle-particle interactions

• The length scale for free particle propagation.

These can be converted into time scales though the average particle velocity of the system. First we have the time scale of the
external potential,

1
τU

=
∂U
∂q

∂

∂p
∼ v

L
. (8.150)

Recall that ∂U/∂q is a force and that momentum divided by force indeed gives the time scale for momentum change. We’ve
written v for the average velocity of the particles and L to be the characteristic length scale for changes in U. Similarly, note
that (p/m)∂/∂q is a velocity times gradient, or v · ∇f.

Next there is a time scale associated with the mean free time between particle interactions. Consider the right-hand side of
(8.148), which we may write heuristically as [∫

dμ2
∂V
∂q1

∂f2
∂p1

1
f1

]
f1. (8.151)

We’ve written it this way to obtain a quantity that may sensibly be compared to the left-hand side of the same equation.
Indeed, this allows us to define the mean free time more generally as

1
τX
∼
∫

dμ
∂V
∂q

∂

∂p
fs+1

fs
∼ v

d
· nd3, (8.152)

where d is a length scale characterizing the range of the interaction. τX is the timescale between particle interactions: given an
interaction, when is the next interaction? The factor f2/f1 in the s = 2 case is the conditional probability of finding a second
particle given the first. This should be associated with the factor of nd3 on the right-hand side, where n is the number density
(so that this is just the probability of finding another particle per unit volume). The right-hand sides of both (8.148) and
(8.149) are thus terms which represent free particle propagation within the system.

Finally, we can consider the collision duration, which appears as term containing a gradient of V on the left-hand side of
(8.149).

1
τc
∼ ∂V

∂q
∂

∂p
∼ v

d
. (8.153)

We see that (8.148) is an equation that compares τU with τX, while (8.149) also introduces τc. Our goal is to try to
truncate the bggky hierarchy by taking the correct (physically motivated) limits. First we take the dilute limit, where

nd3 ≪ 1 ⇐⇒ 1
τc
≫ 1

τX
. (8.154)

Next, we can augment this with the assumption that the external potential is not vary much on short time scales,

1
τU
≪ 1

τX
≪ 1

τc
. (8.155)

In fact, typically the last relation is τ−1
X ≪ τ−1

c . Lastly, we will need to assume molecular chaos, which is the statement that
the two-particle density is well approximated by the product of one-particle densities. We will quantify this shortly.
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Deriving the Boltzmann equation

First not that the limits that we have chosen do not allow us to truncate (8.148). In the regime τ−1
U ≪ τ−1

X , we cannot drop
the right-hand side of the one-particle kinetic equation and we’re stuck with the full expression. We can do more with (8.149).
Here the dilute limit allows us to note that

τc
τX
≈ nd3 ≪ 1. (8.156)

In other words, as long as we have a τ−1
c floating around (and only when we have such a term), we are free to drop terms that

go like τ−1
X . Needless to say we can also drop the τU term on the left-hand side. Further, as we are interested in long time scales,

i.e. ‘steady state’ situations. We can thus drop the ∂/∂t on the left-hand side. Typically τ−1
U ≪ 1/t≪ τ−1

c . Thus means that
we can simplify (8.149) quite a bit:[

p1

m
· ∂

∂q1
+

p2

m
· ∂

∂q2
− ∂V(q1 − q2)

∂q1
·
(

∂

∂p
− ∂

∂p2

)]
f2 = 0. (8.157)

Our assumption regarding the slow variation of the external potential motivates us to use relative spacetime coordinates,

Q ≡ 1
2
(q1 + q2) q ≡ q2 − q1, (8.158)

where the factor of 1/2 is intentionally only on Q. We note that in these coordinates,

∂f2
∂q1
≈ −∂f2

∂q
≈ − ∂f2

∂q2
. (8.159)

Using (8.157), we may thus write

∂V(q1 − q2)

∂q1
·
(

∂

∂p
− ∂

∂p2

)
f2 =

(p1 − p2

m

)
· ∂f2
∂q

. (8.160)

We can now use this to rewrite the right-hand side of (8.148). We start by adding a term proportional to 0 = ∂f2/∂p2 (this
vanishes upon integration by parts),∫

dμ2
∂V(q1 − q2)

∂q1

∂f2
∂p1

=

∫
dμ2

∂V(q1 − q2)

∂q1

(
∂

∂p1
− ∂

∂p2

)
f2 =

∫
dμ2

(p1 − p2

m

)
· ∂f2
∂q

.

Now we express the collision integral in terms of the collision kinematics. We need to recall some of our favorite quantities
from two-particle scattering. In particular, we introduce the impact vector, b, which lives in the plane perpendicular to the
scattering axis and quantifies how off-axis the initial particle trajectories are. We choose angular coordinates so that θ measures
the particle deflection from scattering axis and φ is the azimuthal angle. We may thus write∫

d3p2d3q2

(p2 − p1

m

) ∂

∂q
f2(p1, q1, p2, q2; t)

=

∫
d3p2d2b |v1 − v2| [f2(p1, q1, p2, b,+; t)− f2(p1, q1, p2, b,−; t)] , (8.161)

where we’ve introduced different arguments in f2: ± denotes the state before (−) or after (+) the collision. We would like to
work exclusively in terms of the ‘before collision’ variables (we are taking the limit of an instantaneous collision). We thus write

f2(p1, q1, p2, b,+; t) = f2(p′
1, q

′
1, p

′
2, b,−; t), (8.162)

where we’ve defined the primed phase space coordinates to denote the momenta which trace into the unprimed coordinates
upon collision. In some sense this is just a slick use of time reversal; but really it’s just a definition of the primed coordinates.

Finally, the most drastic approximation we shall make is that of molecular chaos. Here we assume that particles 1 and 2 are
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independent before collision so that the two-particle phase space density is well-approximated by the product of
single-particle densities,

f2(· · · , b,−; t) = f1(p1, q1; t)f1(p2, q2; t). (8.163)

Taking all of this into account in (8.148), we finally obtain

df1
dt

∣∣∣∣
coll

=

∫
d3p2d2b |v1 − v2|

[
f1(p1, q1; t)f1(p2, q2; t)− f1(p′

1, q1; t)f1(p′
2, q2; t)

]
. (8.164)
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Flip gets in at 7:00am every day and works until 9:30. Then he gets
tired and takes a nap andwakes up again at 11. That’s why we only
see him in the afternoon.

Csaba Csáki, giving the benefit of the doubt

9
Goldstone Fermion DarkMatter

Even before quarks were discovered, scientists were able to write down theories for the hadrons which they bind into.
The reason for this is largely due to the idea that even though quarks are strongly coupled to one another, the bound states that
they form needn’t be. Further, the lightest states in the spectrum are typically particles called Goldstone bosons which prefer
to be massless due to the symmetry structure of the theory. In this chapter we supersymmetrize this story and show that the
supersymmetric partner to certain Goldstone bosons may be natural dark matter candidates.

9.1 Overview

We propose that the fermionic superpartner of a weak-scale Goldstone boson can be a natural WIMP candidate. The p-wave
annihilation of this ‘Goldstone fermion’ into pairs of Goldstone bosons automatically generates the correct relic abundance,
whereas the XENON100 direct detection bounds are evaded due to suppressed couplings to the Standard Model. Further, it
is able to avoid indirect detection constraints because the relevant s-wave annihilations are small. The interactions of the
Goldstone supermultiplet can induce non-standard Higgs decays and novel collider phenomenology.

9.2 Introduction

Cosmological observations now provide overwhelming evidence that about 20% of the energy density of the universe is some
unknown form of cold dark matter [351]. The most popular candidates are weakly interacting massive particles (WIMPs)
which can produce the correct relic abundance after freeze out,

ΩDMh2 ≈ 0.1
pb
⟨σv⟩ . (9.1)

A natural candidate for WIMP dark matter arises in extensions of the Standard Model with low-scale supersymmetry (SUSY)
and R-parity. In such models the lightest supersymmetric particle (LSP) is automatically stable and generically has mass on
the order of the weak scale [142].
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The ‘WIMP miracle’ is the statement that a particle with a mass and annihilation cross section typical of the weak scale will
automatically yield a relic abundance that is within a few orders of magnitude of the observed value. This paradigm has been
challenged by recent direct detection searches for WIMPs. In particular, XENON100 recently set the most stringent upper
limit on the spin-independent elastic WIMP–nucleon scattering cross section, σSI = 7.0× 10−45 cm2 = 7.0× 10−9 pb, for a
50 GeV WIMP at 90% confidence [352]. This large discrepancy between the necessary annihilation cross section and the
direct detection bound is increasingly difficult to explain in the usual WIMP dark matter scenarios.

For example, within the minimal supersymmetric Standard Model (MSSM), one must typically tune parameters in order
to explain this difference [353]. A standard approach is to consider parameters in which σSI is suppressed below direct
detection constraints. At generic points in the parameter space this will also imply a suppressed annihilation cross section and
thus a relic abundance that is too large. In order to overcome this problem one needs to assume special relations among a
priori unrelated parameters in order to boost the annihilation rate. For example, a pure bino LSP would require coannihilation
(due to an accidental slepton degeneracy) or resonant annihilation to obtain the correct annihilation cross section [331].
Alternately, the observation that Higgsinos and winos have annihilation cross sections that are typically too large allows one to
tune the LSP to be a specific combination of bino, Higgsino, and wino to generate the correct abundance [354]. This
‘well-tempered neutralino’ scenario, however, is now strongly disfavored by XENON100 [353].

In light of this tension, it is natural to consider non-minimal SUSY models in which

• the WIMP is a weak scale LSP,
• the direct detection cross section is suppressed while maintaining the correct relic abundance without any fine tuning,

and
• the experimental prospects in near future include novel collider signatures.

We therefore extend the MSSM by a new sector with an approximate global symmetry which is spontaneously broken in the
supersymmetric limit. A natural WIMP candidate that satisfies the above criteria is the fermionic partner of the Goldstone
boson which we refer to as the Goldstone fermion, χ. This particle can naturally sit at the bottom of the spectrum because it
lives in the same chiral supermultiplet as the Goldstone boson a and is thus protected by Goldstone’s theorem and SUSY. Even
when SUSY is broken the Goldstone fermion can remain light with mass at or below MSUSY [355–357]. This scenario is a weak
scale version of axino dark matter [358]. Similar realizations also appear in dark matter models where the LSP has a large
“singlino” component [359]; such models can reproduce the mass spectrum of Goldstone fermion dark matter but do not
have a limit where the global symmetry is broken while SUSY is exact. In particular the singlino dark matter effective
interactions do not come from an effective low-energy Kähler potential as discussed in Section 9.3.1. Further, due to
singlino–Higgsino mixing, such models typically require tuning to avoid direct detection bounds.

The SUSY non-linear sigma model is a generic low-energy theory of the Goldstone supermultiplet based only on the
symmetry breaking pattern [360]. It can be organized as an expansion in inverse powers of the symmetry breaking scale, f. In
particular the leading order contribution to dark matter annihilation is controlled by a trilinear derivative coupling
χ̄γμγ5χ∂μa/f. If the global symmetry is anomalous with respect the SM gauge group, the Goldstone bosons will, in turn, decay
to stable SM particles, a→ gg , γγ. All the interactions can be perturbative and compatible with gauge coupling unification if
the mediators of the anomaly come in complete GUT multiplets. If the Goldstone fermion mass mχ is around the weak scale
and the symmetry breaking scale f is around the TeV scale, then the resulting annihilation cross section is automatically in the
thermal WIMP range

⟨σv⟩ ≈ (m2
χ/f

4)(Tf/mχ) ≈ 1 pb. (9.2)

The freeze-out temperature Tf/mχ ≃ 1/20 is insensitive to details of the model and appears because χχ → aa is a p-wave
process.

After electroweak symmetry breaking at vEW = 175 GeV, the CP-even scalar component of the Goldstone chiral multiplet
mixes with the Higgs boson and generates an effective hχχ coupling which is suppressed by mχvEW/f2 ∼ 0.01. While standard
Higgsino-like dark matter in the MSSM gives a large direct detection cross section, Goldstone fermion scattering off nuclei lies
just below the XENON100 bound,

σSI ≈
(

mχvEW
f2

)2

σMSSM
SI ≈ 10−45 cm2 . (9.3)

Note that this suppression factor in σSI is roughly of the same order as the suppression needed in the annihilation cross section
for a standard weak-scale WIMP, ⟨σv⟩WIMP ∼ πα2weak/(100 GeV)2 ∼ 150 pb, to obtain the correct abundance (9.1).
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Finally, Goldstone fermion dark matter has novel consequences on Higgs phenomenology at the LHC. The global
symmetry requires a derivative coupling between the Goldstone boson and the Higgs boson∼ vEW/f2(∂a)2h. If kinematically
allowed, the Higgs boson decays into four light unflavored jets, h→ 2a→ 4j, with a sizeable branching ratio. This decay
mode is ‘buried’ under the QCD background. Such non-standard Higgs decays have recently been investigated in SUSY
models motivated by the little hierarchy problem [361, 362]. For Goldstone fermion dark matter, the Higgs might only be
‘partially buried’ with a branching ratio of 30% to the Standard Model. Alternately, one can hope to discover the Goldstone
boson itself by looking for the a→ 2g decay. Together with the direct detection of its fermionic superpartner, such a
discovery would be strong evidence that the dark matter particle emerges because of the Goldstone mechanism and SUSY.

The chapter is organized as follows. We introduce the effective low-energy theory of a Goldstone supermultiplet in Section
9.3 and extend this by including SUSY and explicit global symmetry breaking in Sections 9.4 and 9.5. Readers who are
primarily interested in dark matter phenomenology can proceed directly to Sections 9.6 and 9.7, where we review (in)direct
detection prospects and calculate the relic abundance. We discuss the LHC phenomenology in Section 9.8. In Appendix 9.A
we present simple models that realize this scenario. Details of the annihilation cross section calculation are given in
Appendix 9.B. Remarks on a possible Sommerfeld enhancement are presented in Appendix 9.C.

9.3 The Goldstone Supermultiplet

We consider a supersymmetric gauge theory with a global U(1) symmetry that is broken by fields Ψi which obtain vacuum
expectation values (vevs) fi. In the limit of unbroken supersymmetry, the theory has a massless Goldstone chiral superfield,

A =
1√
2
(s + ia) +

√
2θχ + θ2F . (9.4)

which is the low-energy degree of freedom of the high-energy fields,

Ψi = fieqiA/f , (9.5)

where the effective symmetry breaking scale is
f2 =

∑
i

q2i f
2
i , (9.6)

and qi is the U(1) charge of ψ i. We refer to the component fields as the Goldstone boson a, the sGoldstone s, and the Goldstone
fermion χ. In models where the U(1) is a Peccei-Quinn symmetry, these are typically called the axion, saxion, and axino,
respectively. The mass of the CP-odd scalar a is directly protected by the Goldstone theorem while the s and ã masses are, in
turn, protected by supersymmetry.

The Goldstone boson shift symmetry acts on the chiral superfield as A→ A + icf. It is thus often convenient to consider a
non-linear realization of the Goldstone chiral superfield, G = eA/f, which naturally transforms under the U(1) shift symmetry,
G→ eicG. In the absence of explicit global symmetry breaking, this shift symmetry forbids any superpotential term involving
A.

9.3.1 Effective Kähler potential

The shift symmetry restricts the dependence of the Kähler potential on the Goldstone superfield to take the form

K = K(A + A†,ΦL). (9.7)

We have written ΦL to denote light fields which are uncharged under the global symmetry. Note this general form includes the
canonical term AA† which is (A + A†)2 up to a Kähler transformation.

We may examine the Goldstone self-interactions by expanding the canonically normalized Kähler metric in inverse powers
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of the scale f:

K(2) =
∂2K

∂A∂A† =1 + b1
q
f
(A + A†) + b2

q2

2!f2
(A + A†)2 + . . . , (9.8)

where q is an reference U(1) charge of the theory. The choice of q is arbitrary and irrelevant since the combination f/q is
invariant under charge rescaling. For simplicity we set q = 1 henceforth. After integrating out the auxiliary fields, the general
form of the Lagrangian is

L = K(2)(s)
( 1
2
∂μs∂μs +

1
2
∂μa∂μa +

i
2
χ†σ̄μ∂μχ −

i
2
∂μχ†σ̄μχ

)
− 1√

2
K(3)(s)

(
χ†σ̄μχ∂μa

)
+

1
4

(
K(4)(s)−

K2
(3)(s)

K(2)(s)

)
(χχ)(χ†χ†) , (9.9)

where K(n) = ∂nK/∂An. Passing to four-component Dirac spinors and expanding the Lagrangian in inverse powers of 1/f
yields,

L =

(
1 + b1

√
2
f

s + b2
1
f2
s2 + · · ·

)( 1
2
∂μs∂μs +

1
2
∂μa∂μa +

i
2
χ̄γμ∂μχ

)
(9.10)

+
1

2
√

2

(
b1

1
f
+ b2
√

2
f2

s + · · ·
)
(χ̄γμγ5χ) ∂μa +

1
16f2

(b2 − b21 + · · · ) [(χ̄ χ)2 − (χ̄γ5χ)2] .

The coefficients b1,2,··· completely characterize the self-interactions of the Goldstone multiplet in the symmetric limit. The b1
coefficient is particularly important for the dark matter abundance since it controls the size of the χχa vertex. The tree-level
contribution to b1 can be determined by comparing (9.8) to the canonical Kähler potential of the high-energy fields ψ i,

K =
∑
i

Ψ†
i Ψi =

∑
i

f2i e
qi(A+A†)/f. (9.11)

Note that in the absence of explicit U(1)-breaking terms, A does not get a vev and K is canonically normalized with respect to
the Goldstone superfield. All Goldstone self-interactions are calculable from the physical Kähler metric,

K A†
A =

1
f2
∑
i

f2i q
2
i e

qi(A+A†)/f = 1 +
(A + A†)

f3

(∑
i

q3i f
2
i

)
+ . . . . (9.12)

In particular, the tree-level contribution to the b1 coefficient is given by

b1 =
1
f2
∑
i

q3i f
2
i . (9.13)

Note that b1 is invariant under overall charge scaling. In simple models with just two fields Ψ± of opposite charge, b1 is
bounded,−1 ≤ b1 ≤ 1. In general, however, there is no such restriction on b1 in theories with more fields or with dynamical
U(1) breaking.

9.3.2 Interactions and mixing with light fields

Even though the MSSM fields are uncharged under the global symmetry, they may couple to the spontaneously broken sector
through higher-order terms in the Kähler potential. We will particularly be interested in the coupling of the Goldstone
multiplet with the Higgs doublets Hu,d. Explicit symmetry breaking terms can generate superpotential couplings between the
MSSM and the Goldstone sector; these are discussed in Section 9.5.

The Kähler potential interactions between the Higgses and the Goldstone superfield can be parameterized by expanding in
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1/f,

K =
1
f
(A + A†)(c1HuHd + . . .+ h.c.) +

1
2f2

(A + A†)2(c2HuHd + . . .+ h.c.) +O(1/f3) . (9.14)

Note that the first term vanishes if there is a Z2 discrete symmetry A→ −A. The presence of such symmetry depends on the
choice of UV completion. A mixing between the Higgs and the sGoldstone arises, for example, from the Kähler metric term

K A†
Hu = ∂2K/(∂Hu∂A†) =

1
f
c1Hd + . . .→ vEW

f
c1 cos β + . . . . (9.15)

The c2 terms can also give rise to mixing if the sGoldstone also gets a VEV of order ⟨s⟩ ∼ f. After rotating the Higgs and
sGoldtone fields, the coupling between h and the Goldstone multiplet appears in the effective Lagrangian as

Leff =
[ 1
2
(∂a∂a) +

i
2
χ̄γμ∂μχ

](
1 + b1

√
2
f

s + ch
vEW
f2

h + . . .

)
+ . . . , (9.16)

where ch is a function of the coefficients c1,2, d1,2 and the Higgs sector mixing angles. This coupling is suppressed in the large
ms limit, ch → (mh/ms)

2. At this order in q2vEW/f2 there are additional Higgs doublet couplings of the form

− i
4f2

c2 χ̄γμγ5χ (Hu∂μHd + ∂μHuHd − h.c.) (9.17)

which give rise to additional interactions of the heavy Higgses with the Goldstone fermion, but do not involve the light higgs h.
We neglect these couplings and the mixing of the heavy Higgses with the sGoldstone.

Besides the scalar mixing, there is kinetic mixing between the Higgsino and Goldstone fermion of the form

LKM =
i
2f

[(
χ†σ̄μ∂μH̃u − ∂μχ†σ̄μH̃u

)
(c1Hd + . . .) + h.c. + (Hu ↔ Hd)

]
→ iεuχ†σ̄μ∂μH̃0

u + iεdχ†σ̄μ∂μH̃0
d + h.c. (9.18)

where εu,d ∼ vEW/f. In the case where μ≫ mχ , the Goldstone Fermion has a small Higgsino component roughly given by
εu,d mχ/μ ∼ vEW mχ/fμ.

The Kähler terms involving the other MSSM matter fields are typically more suppressed. Assuming minimal flavor
violation to control flavor-changing neutral currents, these terms take the form

K =
1
f
(A + A†)

(
Yu

Mu
Q̄Huu +

Yd

Md
Q̄Hdd +

Yl

ML
L̄Hde + h.c.

)
. (9.19)

The suppression scales Mu,d,l are not necessarily related to the global symmetry breaking scale f, and can be much larger
depending on the UV completion of the theory.

9.4 SUSY breaking

We assume that soft SUSY breaking terms which simultaneously break the U(1) global symmetry are negligible. The
remaining soft terms generate an explicit sGoldstone mass, but leave the Goldstone boson massless. The Goldstone fermion
may only get a mass from the superpotential or from D-terms via mixing with gauginos. For simplicity we ignore the latter
possibility so that the fermion mass matrix is the second derivative matrix of the superpotential,

(mfermion)ij = Wij. (9.20)

While the superpotential terms are U(1) invariant and supersymmetric, a Goldstone fermion mass can still be induced if the
vacuum is shifted from its supersymmetric value due to the presence of soft breaking terms. The U(1) invariance of the
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superpotential implies ∑
j

1
f
Wijqjfj = −

1
f
qiWi = −

1
f
qiFi , (9.21)

so that the Goldstone fermion χ =
∑

i qifiψ i/f is indeed a zero mode of the fermion mass matrix when none of the
U(1)-charged F-terms obtain a vev [355]. The mass of the Goldstone fermion then depends on whether the U(1)-charged
fields pick up F-terms in the presence of soft breaking terms [355, 356]:

mχ ≈ qi⟨Fi⟩/f. (9.22)

If the superpotential has an unbroken R-symmetry which is left unbroken by the soft terms, then χ necessarily carries R-charge
−1 and a Majorana mass is prohibited¹. In particular, soft scalar masses always preserve R-symmetry and hence cannot
generate a Goldstone fermion mass in the R-symmetric case. On the other hand, A-terms are holomorphic and generically
break R-symmetries. Thus A-terms are expected to always contribute to the Goldstone fermion mass, while soft scalar masses
may or may not contribute.

The effect of A-terms is equivalent to the mixing between the F-terms between U(1)-charged fields and the SUSY breaking
spurion ⟨X⟩ = Fθ2 + · · · . For concreteness, we consider gravity mediation with F/MPl ∼ msoft. It was recently emphasized
in [363] that FF†

i type mixing terms are always expected and will contribute a mass of order m3/2 to the Goldstone fermion.
Indeed, such mixing terms arise from higher dimensional Kähler terms of the form

K =
∑
i

Z(X,X†)Φ†
i Φi. (9.23)

Using the technique of analytic continuation into superspace [364], one may absorb Z into a redefinition of the chiral
superfields

Φ→ Φ′ ≡ Z1/2
(

1 +
∂ lnZ
∂X

Fθ2
)

Φ. (9.24)

This canonically normalizes K and generates soft terms that include the A-terms

ΔLsoft =
∂W
∂Φ

∣∣∣∣
Φ=φ

Z−1/2
(
−∂ lnZ
∂ lnX

F
M

)
. (9.25)

These terms completely incorporate the mixing between F-terms of the form FF†
i Φi. The Goldstone fermion mass is

determined by the induced Fis obtained by minimizing the scalar potential,

V =

∣∣∣∣∂W
∂φi

∣∣∣∣2 + Ai
∂W
∂φi

φi + h.c.+ m2
i |φi|

2. (9.26)

To summarize this section, we find that A-terms will always contribute to the Goldstone fermion mass. Assuming that
Ai,mi < fi for all i, the generic size of the induced F-terms is |Fi| ≈ Aifi and, consequently, the induced Goldstone fermion
mass is∼ Aiqi. In many situations the A-terms can be suppressed relative to other soft breaking terms and it is thus reasonable
to expect that the Goldstone fermion remains lighter than the other superpartners. Soft scalar masses may also contribute. If
they do, their contribution to the Fi is expected to be of order Fi ∼ m2

i so that the contribution to the Goldstone fermion mass
is of order∼ m2

i /fi, which again can easily be suppressed.

9.5 Superpotential terms from explicit breaking

The shift symmetry forbids any superpotential for the Goldstone chiral multiplet A. In order to generate a small Goldstone
boson mass one must include terms which break the global symmetry. These can come from an anomaly in the global

¹We thank Y. Nomura for pointing out the role of R-symmetry.
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symmetry or through explicit breaking terms.

9.5.1 Anomaly

If the global symmetry is anomalous then the triangle diagram generates a aGG̃ term which fits into a superpotential term

Wanomaly = −
can
f

AWaWa (9.27)

where Wa = λa − iσμνθGa
μν + . . . is the field strength chiral superfield for the gauge group G which has a U(1)G2 anomaly. In

practice we will take G to be SU(3)color or U(1)QED since we will be interested in the coupling to massless gauge fields.
Wanomaly generates non-derivative couplings in the effective Lagrangian:

Lanomaly ⊃
can
f
√

2

(
aGa

μνG̃
a
μν +

i
2
χ̄Ga

μν[γ
μ, γν]γ5λa

)
(9.28)

where G̃a
μν =

1
2 εμνρσG

a
ρσ .

For the remainder of this document we assume that the global U(1) is anomalous. For example, the anomalous coupling
can is generated when the Goldstone boson a couples to Nψ fermions Ψi that transform in the fundamental of the gauged
SU(N) and carry a global charge qΨ ,

can =
α
8π
√

2
NΨ∑
i

(
yif
mΨi

)
Ly = ia

NΨ∑
i=1

yiΨ̄iγ5Ψi . (9.29)

The result for a U(1) gauge group is similar and is obtained by including the different qi charges,

c(1)an =
αU(1)
8π
√

2Nc
∑
i

2q2i

(
yif
mΨi

)
, (9.30)

where Nc = 3 and the factor of 2 comes from the normalization of the generators in SU(N), Tr[TaTb] = δab/2. The simplest
and most common case is when all masses are degenerate, mΨi = mΨ , and the yi are equal, yi = mΨqΨ/(f

√
2), so that

can =
α
8π

qΨNΨ . (9.31)

Note that gauge coupling unification is preserved if the mediator fields Ψi are embedded in complete GUT multiplets. For
example, one may consider NΨ × (5⊕ 5̄) representations of SU(5) which decompose into² (3, 1)1/3 and (1, 2)−1/2 under
SUc(3)× SUL(2)× UY(1). In this case the mediators Ψi are both colored and electrically charged; they thus allow the
dominant decay to be a→ gg with subdominant contributions from a→ γγ with branching ratio∼ 10−3.

9.5.2 Explicit breaking spurions

Sources of explicit global symmetry breaking terms can be parametrized by spurion chiral superfields Rα which carry charge α
under the global symmetry and obtain a vev ⟨Rα⟩ = λαf, where λα ≪ 1. This permits a superpotential term
ΔW = f2

∑
α R−αGα where Gα = exp(αA/f). Unbroken supersymmetry requires that there are two sources of global

symmetry breaking, R−α and R−β, with opposite charges, αβ < 0. This produces a sGoldstone boson vev and an effective
superpotential with a common supersymmetry preserving masses mχ = ma = ms. Explicit breaking terms may also generate
new interactions which are completely determined by the Goldstone boson mass,

L ⊃ −m2
a

2
(a2 + s2)− ma

2
χ̄ χ +

ma

2
√

2f
(α + β) (iaχ̄γ5χ − sχ̄ χ − masa2) +

ma

8f2
(α2 + αβ + β2) a2 χ̄ χ + . . . (9.32)

²The hypercharge normalization is fixed if there are no exotic electric charges.
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The only model-dependent inputs are the charges α and β of the explicit breaking operators. After SUSY breaking, the
sGoldstone boson and the Goldstone fermion masses are lifted while the Goldstone boson remains light, ms ≫ mχ > ma. Up
to integration by parts, the the on-shell trilinear axial coupling aχ̄γ5χ is equivalent to an effective b1 coupling in (9.10). Finally,
the explicit breaking can also generate additional terms in the superpotential of the form

W = ciR−αGα
(

HuHd +
Yu

Mu
Q̄Huu +

Yd

Md
Q̄Hdd +

Yl

ML
L̄Hde + h.c.

)
. (9.33)

These lead to mixing with the Higgs and decays to SM fermions.

9.6 Relic Abundance

The Goldstone fermion χ is a natural dark matter candidate if it is the LSP and produces the observed abundance [349, 351],

ΩDMh2 = 0.112± 0.0056, (9.34)

where h is the Hubble constant. A key observation is that the effective interactions between the Goldstone fermion χ and
Goldstone boson a lead to an annihilation cross section χχ → aa of the correct magnitude for a thermal relic withO(1)
couplings and mass at the SUSY breaking scale MSUSY,

⟨σv⟩ ≈ b41
8π

Tf

mχ

m2
χ

f4
≃ 1 pb (9.35)

ΩDMh2 ≈ 0.1 pb
⟨σv⟩ . (9.36)

Note that an explicit factor of the temperature appears in (9.35) because parity forbids the s-wave channel. Thus the
Goldstone fermion is an almost ideal WIMP candidate. Due to the slight thermal suppression, the coupling b1 has to be
slightly larger than 1. Otherwise, with the natural choices of parameters, the correct annihilation cross section is obtained.

9.6.1 Summary of model parameters

Below we provide a summary of the Goldstone fermion model parameters and the values used in our parameter space scan:

Parameter Description Scan Range
f Global symmetry breaking scale 500 GeV− 1.2 TeV

mχ Goldstone fermion mass 50− 150 GeV
ma Goldstone boson mass 8 GeV – f/10
b1 χχa coupling, (9.13) [0, 2]
can Anomaly coefficient, (9.28) 0.06
ch Higgs coupling, (9.16) [−1, 1]

δ = (β− α)/2 Explicit breaking iaχ̄γ5χ coupling, (9.32) 3/2
ρ = (α2 + αβ + β2)/8 Explicit breaking a2 χ̄ χ coupling, (9.32) 13/8

These values represent a natural cross section of the full parameter space.

9.6.2 Summary of annihilation channels

In addition to

(a) χχ → aa in the t-channel and u-channel via the self-interactions (9.10),

a detailed analysis shows that there may be appreciable contributions from
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(b) χχ → aa from explicit breaking terms (9.32);

(c) χχ → gg with a in the s-channel via the anomaly (9.28).

In fact, these can overcome the p-wave suppression in the annihilation into 2a. Note that χχ → gg also gives an s-wave
contribution which may contribute up to∼ 1/3 of the total annihilation cross section. Less significant are the decays into
Higgs bosons,

(d) χχ → ah with a in the s-channel via the Higgs coupling (9.16) when mh + ma < 2mχ ;

(e) χχ → hh via the coupling to two Higgs bosons (9.15) when mh < mχ .

Note that in some cases the Higgs boson may be lighter than the 115 GeV because of non-standard Higgs decays (see Section
9.8 for the relevant collider phenomenology). Other annihilations involving a virtual gluino, the sGoldstone, or the Higgs
boson are typically suppressed by large masses or small Yukawa couplings. A detailed calculation of each contribution is
presented in Appendix 9.B. The model generates the correct abundance for Goldstone fermion masses between 50− 150 GeV
and Goldstone boson masses between 10%− 100% of mχ for couplings b1 ∼ O(1). Figure 9.6.1 shows the contours for
different values of ma/mχ subject to the correct relic abundance in the (mχ , b1) plane. It may further be possible to open up a
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Figure 9.6.1: Contours for different values of the Goldstone boson mass: ma/mχ = 0.1 (black dotted),
0.5 (blue dashed), and 0.7 (red solid) for fixed relic density Ωh2 = 0.11 in the (mχ , b1) plane. Gray lines include
the subleading contributions from annihilations into Higgs bosons, χχ → ah and χχ → hh. The kink at 60 GeV
comes from threshold effects. We set f = 700 GeV, α = −4, β = 1, mh = 116 GeV, can = 0.06.

different region of parameter space with lighter Goldstone boson and fermion scales through a Sommerfeld enhancement due
to an attractive force between the exchange of multiple low-energy Goldstone bosons [365]. We briefly discuss this possibility
in Appendix 9.C
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9.7 Direct and Indirect Detection of GFDM

We have seen above that this model can easily produce the correct dark matter abundance. Next we estimate the generic size of
direct and indirect detection bounds.

9.7.1 Dark Matter Effective Operators for Direct detection

In order to evaluate the cross section of Goldstone fermion scattering off nuclei in direct detection experiments, one must
evaluate the nucleon matrix elements. Usually one parametrizes the light quark mass content f(N)i of the nucleons,

mi⟨N|q̄iqi|N⟩ ≡ f(N)i mN i = u, d, s , N = p, n. (9.37)

where mN is the nucleon mass. The largest contribution comes from the strange quark [366], but with sizeable
uncertainties [367]. We assume the default value in the micrOMEGAs code, f(N)u,d ≪ f(p)s = f(n)s = 0.26 [368]. For heavy
quarks, the contribution f(N)h is induced via gluon exchange and can be calculated by means of the conformal anomaly [369],

mh⟨N|q̄hqh|N⟩ ≡ f(N)h mN =
2
27

mN

(
1−

∑
i=u,d,s

f(N)i

)
, h = c, b, t . (9.38)

Coupling to quarks via Higgs exchange

In Section 9.3.2 we showed that after electroweak symmetry breaking, it is natural to expect a non-vanishing coupling between
χ and the lightest neutral Higgs boson h,

Lh = ch
vEW
2f2

(χ̄iγμ∂μχ)h , (9.39)

where the size of the coupling ch depends on the specific realization. The Higgs coupling to nucleons is set by the Yukawa
couplings and—in the presence of more Higgses—the mixing angles, cqmq/(

√
2vEW)hq̄q. Integrating out the Higgs generates

an effective four-Fermi interaction,

Leff
χN = GχNN̄Nχ̄χ GχN = ch

λN
2
√

2

(
mχmN

m2
hf2

)
, (9.40)

where we used the equations of motion for χ and the quark content of the nucleons (9.38) to write

λN =
∑

q=u,d,s

cqf(N)q +
2
27

1−
∑

q=u,d,s

f(N)q

 ∑
q′=c,b,t

cq′

 . (9.41)

The resulting scattering cross section per nucleon at zero momentum transfer is³

σHiggs
SI =

4μ2χ
A2π

[Gχ pZ + Gχ n(A− Z)]2 , (9.42)

where μχ = (m−1
χ + m−1

N )−1 is the reduced mass. The typical value for σHiggs
SI is just below the XENON100 direct detection

bound [352],

σHiggs
SI ≈ 3c2h × 10−45 cm2

(
115 GeV

mh

)4 ( 700 GeV
f

)4 ( mχ

100 GeV

)2 ( μχ

1 GeV

)2 ( λN
0.5

)2

. (9.43)

³ Since most direct detection events occur at low recoil energy, it is standard to parameterize the cross section in terms of a
zeromomentum transfer part and a form factor which encodes themomentum and target dependence. See, for example, [344].
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Note the (mχv/f2)2 suppression present in this cross section (due to the Goldstone nature of χ) relative to that of a generic
Higgs exchange. For example, Higgs-mediated neutralino decay in the MSSM with couplingL ≈ cg/2χ̄ χh needs a very small
coupling c to avoid the XENON100 bounds:

σMSSM
SI ∼ c2g2

2π
λ2Nμ2m2

N

m4
hv2EW

≈ c2 × 10−42 cm2 . (9.44)

Thus, Goldstone fermion dark matter offers a natural suppression of the direct detection cross section while retaining the
correct WIMP annihilation cross section and abundance. Figure 9.7.1 plots typical values of the direct detection cross section
for parameters with correct relic abundance.
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Figure 9.7.1: Black line: XENON100 bound; Left: scan over parameter space with 500 < f < 700 GeV (red),
700 < f < 800 GeV (Orange), 800 < f < 900 GeV (Yellow), 900 < f < 1000 GeV (Green), 1000 < f <
1100 GeV (Purple). We scan 0 < b1 < 2,−1 < ch,hh < 1, 8 GeV < ma <

f
10 , 50 GeV < mχ < 200 GeV. Right:

Blue points have 0.5 < ma/mχ whereas red points have ma/mχ < 0.5.

Coupling to gluons

Integrating out the massive gaugino in (9.28) generates two dimension-7 operators that couple χ to gauge bosons,

L(1)
eff = −

(
c2an

2Mλ f2

)
[χ̄ χ]Ga

αβG
a
αβ L(2)

eff = −i
(

c2an
2Mλ f2

)
[χ̄γ5χ]Ga

αβG̃
a
αβ , (9.45)

where Mλ is the gaugino mass. In the limit of zero momentum transfer, onlyL(1)
eff contributes to direct detection since GG̃ is a

total derivative. We therefore neglectL(2)
eff hereafter. The ⟨N|GG|N⟩ nucleon matrix element can be extracted from the

conformal anomaly (9.38) so thatL(1)
eff can be mapped to a standard four-Fermi operator

L(1)
eff −→ L

(1)
eff,N = GN χ̄ χN̄N , GN =

4πc2an
9αs

mN

Mλ f2

(
1−

∑
i=u,d,s

f(N)i

)
. (9.46)

The corresponding cross section per nucleon at zero momentum transfer is

σggSI ≈ 2× 10−48 cm2
(

700 GeV
Mλ

)2 ( 700 GeV
f

)4(NΨ

5

)4 (qΨ
2

)4 ( μ
1 GeV

)2
(9.47)
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where can = αsqΨNΨ/(8π) has been used. This value is much smaller than both the recent upper bound by the XENON100
collaboration [352] and the expected reach at the LHC, σSIgg = few× 10−46 cm2 [370].

9.7.2 Indirect detection

Many experiments are searching for indirect signals of annihilation of dark matter in dense environments such as the galactic
center or the solar core. The rate of such events is set by the present-day thermally averaged annihilation cross section. Note,
however, that the dominant annihilation channels at freeze-out are p-wave and hence are strongly velocity suppressed in the
current era. Thus, the relevant annihilation channels for indirect detection are s-wave and were sub-dominant at freeze-out.
These cross sections are relatively small and astrophysical observations do not impose severe constraints.

Fermi-LAT: lines and the isotropic diffuse γ-ray spectrum

Dark annihilation in the galactic halo may produce photons either directly (e.g. χχ → γγ) or through secondaries
(bremsstrahlung off charged products or decays of neutral pions). The Fermi experiment has searched for excesses in the
gamma ray spectrum both in the form of lines arising from prompt annihilation to photons and in contributions to the diffuse
spectrum from secondary products of annihilation.

Fermi currently searches for γ-ray lines from 30 – 200 GeV [371], with upcoming bounds that are an order of magnitude
stronger in the 7 – 30 GeV region [372]. The lack of a bump in the Fermi data implies an upper bound on ⟨σv⟩γγ between
(0.2− 2.5) · 10−27cm3/s when using the Einasto dark matter halo profile which predicts the largest photon flux among those
examined in the Fermi analysis.

In the Goldstone fermion model, prompt annihilation to photons occurs through an anomaly vertex similar to the one
which mediates a→ gg. This rate depends on the U(1)× U(1)2EM anomaly coefficient which is determined by the choice of
electric charges for fields carrying global charge. The cross section for annihilation into gluons is given in (9.54). The
analagous expression for annihilations into photons is given by replacing α2sNc → α2EM

(
2
∑

i(q
i
EM)

2)2. For the case where the
Ψ are taken to be in the (anti-)fundamental of an SU(5) unified group, we find ⟨σv⟩γγ ∼ 2 · 10−3⟨σv⟩gg. Even with the most
extreme choices of the model’s free parameters, this rate remains more than an order of magnitude smaller than the Fermi
bounds.

Fermi has also measured the isotropic diffuse γ-ray spectrum in the range 20− 100 GeV [373]. This bounds the
annihilation of dark matter into charged particles and neutral pions. For example, for a 400 GeV dark matter particle which
annihilates into a bb̄ pair, Fermi sets a bound on ⟨σv⟩bb̄ which is roughly an order of magnitude above the cross section
required to reproduce the right relic abundance. The Goldstone fermion model generates diffuse photons primarily through
annihilation to gluons produced in the s-wave annihilation channel χχ → gg. However, this cross section is at least an order of
magnitude smaller than the Fermi bound and hence the Fermi diffuse γ-ray data do not constrain this model.

Preliminary results from a Fermi analysis of 10 dark-matter-rich dwarf spheroidal galaxies also place limits on
photo-production from dark matter annihilation [374]. For low-mass (≲ 60 GeV) dark matter annihilating into bb̄ pairs,
constraints on the annihilation rate extend slightly below the thermal relic rate of 3 · 10−26 cm3/s, with the strongest constraint
of∼ 1 · 10−26 cm3/s at mχ = 10 GeV. In this mass window and for reasonable parameter choices, the Goldstone fermion
annihilation cross section is always at least a factor of 3 lower than these limits.

Other constraints, such as those that come from γ-rays originating in clusters of galaxies, typically set weaker
bounds [375].

PAMELA: the antiproton flux

PAMELA has recently published data on the absolute cosmic ray antiproton flux from 60 MeV – 180 GeV [377]. This places
constraints on dark matter models with a substantial annihilation rate to hadrons. For a 100 GeVWIMP, the annihilation cross
section to Zs, Ws, and b quarks has an upper bound comparable to the rate required for the observed relic abundance,
⟨σv⟩relic ∼ 3 · 10−26cm2/s [378]. For Goldstone fermion dark matter, the dominant annihilation channel in the galactic halo,

196



0.1 0.5 1.0 5.0 10.0 50.0 100.0
10-6

10-5

10-4

0.001

0.01

Kinetic energy@GeVD

dΦ
�d

K
@G

eV
m

2
s

sr
D-

1
Antiproton flux

ma

mΧ

=0.5

0.1 0.5 1.0 5.0 10.0 50.0 100.0
10-6

10-5

10-4

0.001

0.01

Kinetic energy@GeVD

dΦ
�d

K
@G

eV
m

2
s

sr
D-

1

Antiproton flux

ma

mΧ

=0.8

Figure 9.7.2: Antiproton flux at the Earth for f = 700 GeV, QΨ = 2, δ = 3/2, NΨ = 5 at fixed density
Ωh2 ≃ 0.1. Red (blue) lines represent the propagation parameters MAX (MIN) used in [376] with the Einasto
DM halo profile. The dots represent the PAMELA data [377]. Left: ma/mχ = 0.5 at mχ = 50 GeV and b1 = 3
(solid); mχ = 100 GeV and b1 = 1.5 (dashed); mχ = 150 GeV and b1 = 1(dotted). Right: ma/mχ = 0.8 at
mχ = 50 GeV and b1 = 2.5 (solid); mχ = 100 GeV and b1 = 1.2 (dashed); mχ = 150 GeV and b1 = 0.5(dotted).

χχ → gg, is s-wave. This has a typical cross section of ⟨σv⟩ ∼ 10−27 cm3/s and can be pushed up as high as 10−26 cm3/s.
Using recent numerical recipes [376], one may estimate the anti-proton flux as a function of the thermally averaged
annihilation cross section and the Goldstone fermion mass. This is depicted in Figure 9.7.2 for different model parameters
that yield the correct relic abundance. The anti-proton flux varies considerably as a function of the galactic propagation
parameters and the halo profile. The solid, dashed, and dotted curves each correspond to different underlying Goldstone
fermion model parameters. Choosing different halo profiles and propagation parameters leads to a spread in the predicted p̄
flux such that for each choice of Goldstone fermion model parameters, the actual flux from dark matter annihilation is
expected to lie between the two solid, dashed, or dotted curves respectively.

For each choice of model parameters, there is a sizeable region where the predicted flux from dark matter annihilation lies
well below the measured anti-proton flux. Thus the PAMELA data do not place significant constraints on the Goldstone
fermion dark matter model.

9.8 Collider Phenomenology

In addition to (in)direct detection, Goldstone fermion models lend themselves to novel collider signatures coming from the
Goldstone supermultiplet. As discussed in Section 9.4, the sGoldstone s is typically heavy with small couplings to the SM
sector so we may neglect its collider signatures.

9.8.1 Collider signals of dark matter

The most direct way of testing the dark matter annihilation mechanism is through dark matter pair production coming, for
example, from the χ̄ χGG operator in (9.45). One signature of this process at colliders is a monojet coming from hard initial
state QCD radiation. For a range of masses up to the TeV scale, the LHC will set the most stringent bound on this operator
with a sensitivity of σNSI ∼ 10−46 − 10−45cm2 for a 5σ discovery with 100 fb−1 [370]. The effective scale that suppresses the
dimension-7 operator (9.45) is roughly an order of magnitude larger than the LHC reach. However, the process
gg→ a∗ → χχ via an off-shell Goldstone boson gives a larger contribution and results in a naive effective scale
M∗ ∼ (mχ f2/can)1/3 ∼ 1 TeV. This is in the ballpark of the LHC 5σ reach given in [370].
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Goldstone fermion dark matter can also be produced from the cascade decay of heavier R-parity odd particles, such as
gluinos or squarks. Due to the small coupling between the MSSM and the Goldstone sectors, the cascade decays will all go
through the lightest ordinary supersymmetric particle (LOSP). The decay of LOSP to the Goldstone fermion is determined
by the operators connecting the two sectors. In the current setup, there are two types of interactions:

• the anomaly induced coupling χ̄Gλ, as in (9.28), and
• the kinetic mixing discussed in Section 9.3.2 .

The details of the decay modes depends on the nature of the LSP. For example, a bino-like LOSP will decay to the LSP via the
anomaly, B̃→ χ + γ/Z. A Higgsino-like LOSP would decay instead to the LSP because of the kinetic mixing, h̃→ χ + h,
and h̃→ χ + a→ χ + 2j. In the latter decay mode, the reconstruction of the Goldstone boson resonance in the jet final state
is difficult if a is below 100 GeV, but it may be possible instead in the diphoton decays of a with sufficient luminosity. These
channels yield prompt decays even though they may be suppressed by loops or small mixing angles. For example, the natural
width for a pure bino LOSP is around 10−5 GeV.

Finally, the presence of exotic heavy fermions Ψi also has interesting implications at colliders. These fermions may be
considered to be “fourth generation” quarks which, if they are sufficiently light, can be probed at the early stages of the LHC
(see the discussion in [362] for an example).

9.8.2 Non-standard Higgs boson decays
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Figure 9.8.1: Plots of Higgs boson branching ratios for various parameters.
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The largest natural coupling of the Goldstone boson and fermion to the SM is through Higgs boson via the kinetic terms,
(9.16). This coupling allows the Higgs to decay into 2a or 2χ if kinematically allowed. Typical branching ratios are plotted in
Figure 9.8.1.

The Higgs boson decay h→ 2a gives rise to four light, unflavored jets coming from a→ 2g. This decay mode is therefore
easily ‘buried’ under the QCD background. Such non-standard Higgs boson decays have recently been investigated in SUSY
models where the Higgs boson itself is also a pseudo-Goldstone boson emerging from the spontaneous breaking of a global
symmetry⁴. In particular, the spontaneous breaking of SU(3)→ SU(2) gives rise both to a light Goldstone multiplet A and a
light Higgs multiplet [361]. The resulting coupling ch ≈

√
2 is set by the kinetic mixing between the two multiplets which, in

turn, is fixed by the scale f of the global symmetry breaking. A more recent example of a ‘buried Higgs’ in SUSY has been
discussed in the context of a spontaneously broken U(1) symmetry where ch depends on couplings in the superpotential
because the Higgs is no longer a pseudo-Goldstone boson [362].

Even though these non-standard Goldstone fermion decay modes can dominate, the branching ratio to SM particles is still
larger than∼ 20% at low Higgs masses and therefore the LEP bound on the Higgs mass cannot be lowered below∼ 110 GeV.
Furthermore, while the discovery of a completely buried Higgs is challenging at the LHC [381], this ‘partially buried’ Higgs
would be discovered in SM channels with a missing piece in the total width. The invisible Higgs boson decays (χs leave the
detectors) can be probed at the LHC through the missing energy signal [382]. Both the buried and invisible decay modes may
have sizeable branching ratios, and the observation of both channels would give strong evidence for this scenario.

9.9 Conclusions

Acceptable dark matter scenarios within the MSSM must become increasingly contrived as the sensitivity of direct detection
experiments increases. In order to remain consistent with recent XENON100 results, neutralino WIMP models must
typically invoke accidental mass relations to boost the annihilation cross-section through co-annihilations or strategically
placed resonances.

Inspired by this tension, we have explored a general supersymmetric framework compatible with GUT unification in
which the LSP is the fermionic component χ of a Goldstone supermultiplet associated with a U(1) global symmetry that is
spontaneously broken at the TeV scale. Because the Goldstone fermion’s couplings to the Standard Model are suppressed by
∼ vEWmχ/f2 (and additional loop factors in some cases), these models are able to avoid direct detection constraints from
XENON100 and indirect detection constraints from Fermi and PAMELA.

The annihilation cross section of a weak-scale Goldstone fermion at freeze out is on the order of 1 pb, with dominant
contributions coming from p-wave annihilation into Goldstone bosons. Typically subdominant s-wave annihilations into
gluons arise through anomalies of the new global symmetry. The observed dark matter relic density is obtained with natural
values for the model parameters.

This class of models also offers novel and distinctive signatures at colliders. Goldstone fermions can be produced at the
LHC in pairs through the anomalous coupling to gluons, leading to monojet signals when there is additional hard QCD
radiation from the initial state. Additionally, SUSY cascades are modified by decays of the NLSP to the Goldstone fermion.
Examples include the bino decay to a photon and the Goldstone fermion, and the higgsino decay to the Goldstone fermion
and the Goldstone boson. The Goldstone multiplet also modifies the phenomenology of the Higgs sector. Interactions with
the Goldstone boson allow cascade decays of the Higgs to four jets, h→ 2a→ 4j, analogous to models where the Higgs
decays are ‘buried’ under the QCD background. If kinematically allowed, the Higgs may also have a sizeable fraction of
‘invisible’ decays, h→ χχ.

9.A Explicit models

We present explicit models to demonstrate how one may generate different values of the coupling b1, defined in (9.13). In
their simplest form, both examples have an unbroken R-symmetry which implies that only the A-terms generate a mass for the

⁴For early attempts of this idea in SUSY see [379]. More recently, SUSY and little Higgs models motivated by the little
hierarchy problem have been proposed [380].
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Goldstone fermion. It is straightforward to modify these examples to explicitly break the R-symmetry without modifying the
structure of these theories.

9.A.1 The simplest example

We consider a simple variation of the model considered in [362] with the superpotential W = yS(N̄N− μ2). This gives

K = f2Ne(A+A†)/f + f2N̄e−(A+A†)/f f2 = f2N + f2N̄ , (9.48)

so that the tree-level range for b1 is

− 1 ≤ b1 =
f2N − f2N̄
f2N − f2N̄

≤ 1 . (9.49)

9.A.2 An example with |b1| ≥ 1

A perturbative model that may give |b1| ≥ 1 is the following:

W = λXYZ− μ2Z +
λ̃
2
Y2N− μ̃N̄N , (9.50)

where the charges are qZ = 0, qN = −qN̄ = −2qY = 2qX and all couplings and masses are non-zero. The resulting
supersymmetric minimum

fXfY = μ2/λ , fZ = fN = 0 , fN̄ = λ̃
fY2

2μ̃
(9.51)

gives vanishing F-terms while the Goldstone chiral multiplet is

A =
∑
i

qifiψ i

f
=

qY
f
(YfY − XfX + 2N̄fN̄) f2 = q2Y (f

2
Y + f2X + 4f2N̄) . (9.52)

The corresponding b1 at tree-level is given by

b1 =
1
f2

(∑
i

q3i f
2
i

)
=
−f2X + f2Y + 8f2N̄
f2X + f2Y + 4f2N̄

(9.53)

which goes to b1 → 2 when fN̄ ≫ fX,Y.

9.B Annihilation cross section

Diagrams for the dominant annihilation channels are presented in Figure 9.B.1.

9.B.1 χχ → gg

The annihilation cross section to gluons (see Figure 9.B.1a) is controlled by the anomalous coupling (9.28) where
can = αsqΨNΨ/(8π) and the vertex b1/(2

√
2f)χ̄γμγ5χ∂μa. Away from resonance one finds

σv =
2α2s
(8π)3

NcN2
Ψ(b1mχ + δma)

2 s2q2Ψ
(s− m2

a)2f4
s = (p1 + p2)2 = 4E2

χ (9.54)
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gives vanishing F -terms while the Goldstone chiral multiplet is

A =
∑

i

qifiψi

f
=

qY

f

(
Y fY −XfX + 2N̄fN̄

)
f 2 = q2

Y

(
f 2

Y + f 2
X + 4f 2

N̄

)
. (A.5)

The corresponding b1 at tree-level is given by

b1 =
1

qf 2

(
∑

i

q3
i f

2
i

)
=
−f 2

X + f 2
Y + 8f 2

N̄

f 2
X + f 2

Y + 4f 2
N̄

(A.6)

which goes to b1 → 2 when fN̄ # fX,Y .

B Annihilation cross-section

B.1 χχ→ gg

g

g

χ

χ

This cross section is controlled by the anomalous coupling (4.2) where can = αsqΨNΨ/(8π),
and the vertex b1/(2

√
2f)χ̄γµγ5χ∂µa. Away from the resonance one finds

σv =
2α2

s

(8π)3
NcN

2
Ψ(b1mχ + δma)

2 s2q2q2
Ψ

(s−m2
a)

2f 4
s = (p1 + p2)

2 = 4E2
χ (B.1)

where v is the relative velocity in the center of mass frame, Nc = 8 is the number of colors in the
final state, and δ = −(α + β)/2q is the contribution from the explicit breaking vertex (4.6). Note
that this process gives a non-vanishing s−wave annihilation component.
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which goes to b1 → 2 when fN̄ # fX,Y .
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where v is the relative velocity in the center of mass frame, Nc = 8 is the number of colors in the
final state, and δ = −(α + β)/2q is the contribution from the explicit breaking vertex (4.6). Note
that this process gives a non-vanishing s−wave annihilation component.
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2f)χ̄γµγ5χ∂µa. Away from the resonance one finds

σv =
2α2

s

(8π)3
NcN

2
Ψ(b1mχ + δma)

2 s2q2q2
Ψ

(s−m2
a)

2f 4
s = (p1 + p2)

2 = 4E2
χ (B.1)

where v is the relative velocity in the center of mass frame, Nc = 8 is the number of colors in the
final state, and δ = −(α + β)/2q is the contribution from the explicit breaking vertex (4.6). Note
that this process gives a non-vanishing s−wave annihilation component.

B.2 χχ→ aa

B.2.1 t- and u-channel

a

a

χ

χ

a

a

χ

χ
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(c) χχ → aa

In our case, we have only the p-wave contribution to the cross section, σv = a + bv2 + . . .,

a =0 z = ma/mχ (B.2)

b =
m2

χ

96πf 4(z2 − 2)4
[b3

1(b1 + 4zδ)(3z8 − 16z6 + 48z4 − 64z2 + 32) (B.3)

+ z2δ2(3z8 − 14z6 + 46z4 − 64z2 + 32) + 16b1δ
3(z2 − 1)(b1z

3 + δ(z2 − 1))]

where δ = −(α + β)/2q is the contribution from the explicit breaking vertex (4.6).

B.2.2 Explicit breaking vertex

a

a

χ

χ

The contribution of the quartic to the annihilation cross-section is only p-wave and can be
easily calculated

σv =
1

128π
ρ2 m2

a

f 4/q4
va

(
s− 4m2

χ

s

)
va =

√
1− 4m2

a

s
(B.4)

where ρ is given in terms of the charges of the explicit breaking operators (4.6), ρ = α2 +αβ +β2.

B.2.3 Interference

The contact interaction process interferes with the t- and u-channel. So summing the amplitudes
before squaring we get

b =
m2

χb2
1

96πf 4
(2b2

1 +8b1zδ+zρ)+
m2

χz2

1536πf 4

(
3ρ2 + 32b1δρ + 128b2

1δ
2 − 16b4

1

)
+o(z3) , a = 0 (B.5)

where vσ = a + bv2 + . . . and z = ma/mχ.

B.3 Subleading processes

B.3.1 χχ→ a∗ → ah

χ

χ

a∗

a

h
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(d) χχ → aa

In our case, we have only the p-wave contribution to the cross section, σv = a + bv2 + . . .,

a =0 z = ma/mχ (B.2)

b =
m2

χ

96πf 4(z2 − 2)4
[b3

1(b1 + 4zδ)(3z8 − 16z6 + 48z4 − 64z2 + 32) (B.3)

+ z2δ2(3z8 − 14z6 + 46z4 − 64z2 + 32) + 16b1δ
3(z2 − 1)(b1z

3 + δ(z2 − 1))]

where δ = −(α + β)/2q is the contribution from the explicit breaking vertex (4.6).

B.2.2 Explicit breaking vertex

a

a

χ

χ

The contribution of the quartic to the annihilation cross-section is only p-wave and can be
easily calculated

σv =
1

128π
ρ2 m2

a

f 4/q4
va

(
s− 4m2

χ

s

)
va =

√
1− 4m2

a

s
(B.4)

where ρ is given in terms of the charges of the explicit breaking operators (4.6), ρ = α2 +αβ +β2.

B.2.3 Interference

The contact interaction process interferes with the t- and u-channel. So summing the amplitudes
before squaring we get

b =
m2

χb2
1

96πf 4
(2b2

1 +8b1zδ+zρ)+
m2

χz2

1536πf 4

(
3ρ2 + 32b1δρ + 128b2

1δ
2 − 16b4

1

)
+o(z3) , a = 0 (B.5)

where vσ = a + bv2 + . . . and z = ma/mχ.

B.3 Subleading processes

B.3.1 χχ→ a∗ → ah

χ

χ

a∗

a

h

22

(e) χχ → ha

This channel opens when 2mχ > ma + mh. Naively, it should be less important because
the cross-section has an extra suppression by (vEW/f)2. On the other hand, it has a s-wave
contribution and therefore the effect is not completely negligible compared to the χχ → aa b-
wave process. The cross-section is given by

σv =
va

32π

(b1mχ + δma)2c2
hv

2
EW

f 6/q6

(
m2

a −m2
h + s

s−m2
a

)2

(B.6)

This has a non-vanishing s-wave contribution.

B.3.2 χχ→ hh

h

h

χ

χ

This channel is allowed (up to thermal contributions) only when mχ > mh. Considering that
the Higgs can be buried under QCD, mh ∼ 90 GeV is possible. This process comes from a contact
interaction term chh(χ̄iγµ∂µχ)h2q2/(2f 2) which follows from the coefficients c2, d2 in the Kähler
potential.

σv =
va

8π

m2
χc2

hh

f 4/q4

(
s− 4m2

χ

s

)
(B.7)

Once again, it is a p-wave process.
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(f) χχ → hh

Figure 9.B.1: Goldstone fermion annihilation channels.

where v is the relative velocity in the center of mass frame, Nc = 8 is the number of colors in the final state, and
δ = −(α + β)/2 is the contribution from the explicit breaking vertex (9.32). Note that this process gives a non-vanishing
s−wave annihilation component.

9.B.2 χχ → aa

Annihilation into Goldstone bosons proceeds through t- and u- channel diagrams (see Figs. 9.B.1b–9.B.1c) as well as a contact
interaction coming from explicit breaking (see Figure 9.B.1d).

t- and u-channel

These diagrams give a p-wave contribution to the cross section, σv = a + bv2 + . . .,

a =0 z = ma/mχ (9.55)

b =
m2

χ

96πf4(z2 − 2)4
[b31(b1 + 4zδ)(3z8 − 16z6 + 48z4 − 64z2 + 32) (9.56)

+ z2δ2(3z8 − 14z6 + 46z4 − 64z2 + 32) + 16b1δ3(z2 − 1)(b1z3 + δ(z2 − 1))] ,

where δ = −(α + β)/2 is the contribution from the explicit breaking vertex (9.32).
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Explicit breaking vertex

The quartic contribution to the annihilation cross section is also p-wave is

σv =
1

128π
ρ2

m2
a

f4
va
(

s− 4m2
χ

s

)
va =

√
1− 4m2

a

s
, (9.57)

where ρ is given in terms of the charges of the explicit breaking operators (9.32), ρ = α2 + αβ + β2.

Interference

The contact interaction interferes with the t- and u-channel diagrams. Summing the amplitudes and then squaring gives,

b =
m2

χb21
96πf4

(2b21 + 8b1zδ + zρ) +
m2

χz2

1536πf4
(3ρ2 + 32b1δρ + 128b21δ

2 − 16b41 ) +O(z3) , a = 0 (9.58)

where σv = a + bv2 + . . . and z = ma/mχ . Note that for all plots in this document we use the full expression for b that is
valid for all z ≤ 1.

9.B.3 Subleading processes

The annihilations to a single Higgs (Figure 9.B.1e) and to two Higgses (Figure 9.B.1f) are subdominant.

χχ → a∗ → ah

This channel is available when 2mχ > ma + mh. Naively, it should be less important because the cross section has an extra
suppression by (vEW/f)2. On the other hand, this is an s-wave contribution and therefore the effect is not completely
negligible compared to the χχ → aa p-wave process. The cross section is given by

σv =
va
32π

(b1mχ + δma)
2c2hv2EW

f6

(
m2

a − m2
h + s

s− m2
a

)2

. (9.59)

χχ → hh

This channel is allowed when mχ > mh, up to thermal contributions. Because Higgs can be buried under QCD, it is possible
to have mh ∼ 90 GeV. This process is generated from the contact interaction term chh(χ̄iγμ∂μχ)h2/(2f2), which follows from
the c2, d2 coefficients in the Kähler potential.

σv =
va
8π

m2
χ c2hh
f4

(
s− 4m2

χ

s

)
(9.60)

This is a p-wave process.

9.C Sommerfeld enhancement fromGoldstone boson exchange

Thus far we have calculated the relic density assuming no enhancement due to long-range forces. Here we briefly present the
non-relativistic potential between the Goldstone fermions and argue that there could be regions of parameter space with a
sizeable Sommerfeld enhancement in the annihilation cross section due to an attractive force between the Goldstone fermions
due to the exchange of multiple low-energy Goldstone bosons [365], as depicted in Figure 9.C.1. It is thereby possible to
lower the Goldstone boson and fermion mass scales. We emphasize that this enhancement is not necessary to obtain the
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correct abundance and sufficiently low direct detection cross sections, but it may open up a different region of the parameter
space where the Goldstone fermion mass in the 10− 50 GeV range.

Goldstone boson and fermion mass scales. We emphasize that this enhancement is not necessary
to obtain the correct abundance and sufficiently low direct detection cross sections, but it may
open up a different region of the parameter space where the Goldstone fermion mass in the 10-50
GeV range.

Figure 2: Exchange of multiple soft Goldstone bosons can lead to an attractive force enhancing
the annihilation cross section for the Goldstone fermions.

In the non-relativistic limit, the χ1χ2 → χ1′χ2′ scattering amplitude gives rise to a spin-spin
interaction. The low-energy potential can be written in terms of a traceless tensor and a central
piece:

V (r) = VT(r)
(
3 "S1 · r̂ "S2 · r̂ − "S1 · "S2

)
+ VC(r)"S1 · "S2 , (5.4)

where the coefficients are

VT(r) =
b2
1

8πf 2/q2

(
1

r3
+

ma

r2
+

1

3

m2
a

r

)
e−mar VC(r) =

b2
1

8πf 2/q2

1

3

m2
a

r
e−mar. (5.5)

Note that the leading term for distances r < m−1
a is contained in the tensor potential. For total

spin S = 0, the tensor potential averages out to zero, whereas the central part gives an attractive
interaction which is independent of the orbital angular momentum

〈S = 0 , $|V (r)|S = 0 , $〉 = −3

4
VC(r) . (5.6)

This contribution vanishes in the limit ma → 0 in agreement with [20]. For S = 1, $ = 1 the central
potental is repulsive whereas the tensor is attractive. The net effect is an attractive potential3

〈S = 1 , $ = 1|V (r)|S = 1 , $ = 1〉 =

(
1

20
− 1

4

)
VT(r) +

1

4
VC(r) . (5.7)

The magnitude of this Sommerfeld enhancement was calculated in detail in [19] for s-wave
annihilation processes. It was found that for some regions of parameters it can be as large as
1000, but could also be a suppression. In our case we would only need a factor of few to lower the
Goldstone boson and fermion masses to the 10 GeV range. Since most of the leading annihilation
channels relevant to this class of models are p-wave, the results of [19] are not directly applicable.
A dedicated calculation is left for future work.

3The potential actually becomes repulsive for rma ! 13. However, this contribution is cutoff by the exponential
decay of the Yukawa interaction so that the energy barrier is extremely small ≈ 10−11 ×m3

a/f2.
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Figure 9.C.1: Exchange of multiple soft Goldstone bosons can lead to an attractive force enhancing the annihila-
tion cross section for the Goldstone fermions.

In the non-relativistic limit, the χ1χ2 → χ1′ χ2′ scattering amplitude gives rise to a spin-spin interaction. The low-energy
potential can be written in terms of a traceless tensor and a central piece:

V(r) = VT(r) (3 S1 · r̂ S2 · r̂− S1 · S2) + VC(r)S1 · S2 , (9.61)

where the coefficients are

VT(r) =
b21

8πf2

(
1
r3

+
ma

r2
+

1
3
m2

a

r

)
e−mar VC(r) =

b21
8πf2

1
3
m2

a

r
e−mar. (9.62)

Note that the leading term for distances r < m−1
a is contained in the tensor potential. For total spin S = 0, the tensor

potential averages out to zero, whereas the central part gives an attractive interaction which is independent of the orbital
angular momentum

⟨S = 0 , ℓ|V(r)|S = 0 , ℓ⟩ = − 3
4
VC(r) . (9.63)

This contribution vanishes in the limit ma → 0 in agreement with [383]. For S = 1, ℓ = 1 the central potental is repulsive
whereas the tensor is attractive. The net effect is an attractive potential⁵

⟨S = 1 , ℓ = 1|V(r)|S = 1 , ℓ = 1⟩ =
(

1
20
− 1

4

)
VT(r) +

1
4
VC(r) . (9.64)

The magnitude of this Sommerfeld enhancement was calculated in detail for s-wave annihilation processes in [?], where it was
found to take values as large as 1000 and as small as 0.1. For the current model one would only need a factor of few to lower
the Goldstone boson and fermion masses to the 10 GeV range. Since most of the leading annihilation channels relevant to this
class of models are p-wave, the results of [?] are not directly applicable. A dedicated calculation is left for future work.

⁵Thepotential becomes repulsive for rma ≳ 13. However, this contribution is cut off by the exponential decay of the Yukawa
interaction so that the energy barrier is extremely small≈ 10−11 × m3

a/f2.
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Brando: So I did the Fourier transform.
Flip: The exact one?
Brando: No, better.
Flip: Better than exact?!

May 2012

10
TheEffective Non-relativisticTheory of Self-Interacting

DarkMatter

While we know that dark matter does not interact with ordinary matter appreciably, it is possible that dark
matter interacts very non-trivially amongst itself. One result of such a scenario would be a modification on the rate at which
certain interactions between dark matter and the Standard Model occur. In this chapter we explore the properties of these self
interacting effects.

10.1 Overview

We present an effective non-relativistic theory of self-interacting dark matter. We classify the long range interactions and
discuss how they can be generated from quantum field theories. Generic dark sectors can generate singular potentials. We
show how to consistently renormalize such potentials and apply this to the calculation of the Sommerfeld enhancement of
dark matter interactions. We explore further applications of this enhancement to astrophysical probes of dark matter including
the core vs. cusp problem.

10.2 Introduction

Less than a quarter of the matter density of the universe is composed of ordinary baryons. The remaining component is called
dark matter (dm) and has only been probed through its gravitational interactions at cosmological and astrophysical scales.
One appealing class of dm candidates are weakly-interacting massive particles (wimps). These are

• stable or long-lived compared to the age of universe
• non-relativistic upon freeze out from thermal equilibrium in the early universe
• electrically neutral and weakly interacting, i.e. with annihilation cross sections in the pb range, so that

ΩDMh2 ≈ 0.1 pb/⟨σv⟩.
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These features hint at a possible link between the cosmological properties of dm and the mechanism for electroweak
symmetry breaking.

In principle, wimp annihilations should still occur today in dense regions of our galaxy. The potential for this type of
indirect detection has gained attention recently due to possible anomalies in the positron fluxes measured by pamela [98],
Fermi [99] and ams-02 [100], and the gamma ray spectrum measured by Fermi [101–105]. Such signals, however, require
total wimp annihilation cross sections well in excess of the thermal value. Nevertheless, there are mechanisms to boost the
annihilation rate to the level of experimental sensitivity without spoiling the relic abundance. One possibility is that dm has
long range self-interactions mediated by a light force carrier. If this exchange of particles produces an attractive self-interaction,
it can effectively increase the annihilation cross section because of Sommerfeld enhancement or resonance
scattering [383–389]. The annihilation cross section is thus enhanced by a boost factor, Sσ0, with S ≥ 1, where σ0 is the
short-range annihilation cross section.

More recently, self-interacting [390, 391] dm has also recently been proposed as a viable solution to possible discrepancies
between observations of small scale structures and the predictions from N-body simulations based on collisionless cold dm.
In particular, dwarf galaxies show flat dm density profiles in halo cores [392, 393], whereas collisionless cold dm predicts
cusp-like profiles. In addition to this “core vs. cusp problem”, there is the “missing satellites problem” and the “too big to fail
problem,” see e.g. [116] and references therein. While it is possible that these problems could be addressed by including
baryonic physics to collisionless dm simulations [394], self-interacting dm offers a viable and motivated alternative scenario
that is rich of interesting observational consequences [392, 393].

The standard approach to self-interactions and Sommerfeld enhancement is to assume an ultra-light elementary scalar or
vector φ in the dark sector which mediates a force between the dm particles [115, 116, 395]. In this paper we take a more
agnostic approach; we construct an effective theory that only assumes rotationally invariant self-interactions in the dark sector.
One can classify the possible potentials in terms of the dm mass mχ , spin s, transferred momentum q, and relative velocity v.
We work at the leading order in the exchanged momentum and velocity which is an excellent approximation for cold dm. For
example, we show in Section 10.3.2 that the most general long-range P- and T- symmetric potential between two dm particles
of arbitrary spin, is

VP,T
eff =

1
4πr

[
g̃1(r) + g̃2(r)(s1 · s2) +

g̃3(r)
Λ2r2

(3s1 · r̂ s2 · r̂− s1 · s2) +
g̃7,8(r)
Λr

(s1 ± s2)(̂r× v)
]

(10.1)

where g̃i(r) are arbitrary functions that depend only on the the dm separation, and Λ is the characteristic interaction scale of
the dark sector that we take much larger than the mediator mass. At scales where the mediator mass can be neglected and the
theory is weakly coupled, the couplings g̃i freeze to constants, g̃i(r)→ gi.

Strongly interacting mediators in the dark sector can generate singular potentials through non-standard propagators, see
e.g. [396, 397]. Notice, however, that even weakly coupled models can generate potentials that are more singular than the 1/r2

centrifugal barrier at short distances. For example, dark matter interactions mediated by a light pseudo-scalar produce a g3
term in the potential (10.1) which goes like 1/r3. This can be generated, for example, by Goldstone bosons [4]. Another
example is dm with dipole interactions generated by charged states. These produce a g3 term in the potential. Models based on
these magnetic dipole interactions were recently proposed [398] as a way to resolve discrepancies between tentative signals in
direct detection experiments. More exotic potentials can be generated by the loop-level exchange of composite operators
made of light fields [399–402]. Table 10.1 shows examples of weakly coupled models, preserving P and T, that generate the
various gi in (10.1).

Such singular potentials must be regularized at short distances and then renormalized by requiring that low-energy
observables are cutoff independent. We carry out this renormalization programmaking possible to extract physical predictions
from singular potentials generated by dm self-interactions. In particular, we calculate the Sommerfeld enhancement from a
1/r3 potential, extending the analysis in [365] by including wavefunction renormalization¹. We plot the elastic scattering cross
section as a function of the velocity and the mass near the resonance region where the boost factor is large. Astrophysical
systems at various scales, from clusters to dwarf galaxies with velocity ranging from v ∼ 10−3 and v ∼ 10−5, provide

¹ We note that wavefunction renormalization is essential the cutoff independence of Sommerfeld enhancement. The nu-
merical results in Section 10.5 match [365] within an order of magnitude for a specific choice of renormalization conditions.
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Interaction g1 g2 g3 g7 g8
χ̄ χϕ ✓ X X ✓ X

χ̄γ5χϕ X X ✓ X X
iχ̄γμγ5χ∂μϕ X X ✓ X X

χ̄γμχAμ ✓ X X ✓ X
iχ̄γ5γμχAμ X X ✓ X X
iχ̄σμνχFμν X X ✓ X X

Table 10.1: Leading order P- and T-preserving long-range static potentials in (10.1) from massless real scalar ϕ,
vector gauge boson Aμ, or field strength Fμν = ∂[μ A ν] mediators. Observe that g2 is not generated in the massless
limit. g8 is not generated because of the spin conservation in CP-symmetric theories of spin- 12 dm. See Table 10.1
and 10.2 for more details.

constraints on the dm self-interactions and hence the Sommerfeld enhancement [115, 116, 395]. While we leave an
investigation of how these bounds may be adapted to singular potentials for future work, we point out that the formalism
presented here may be useful to avoid these constraints because of the velocity dependence of the elastic cross section.

Even though Sommerfeld enhancement is typically relevant only for s-wave annihilations due to the centrifugal barrier, the
self-interacting dm potential (10.1) does not generically conserve orbital angular momentum L2. Interaction channels with
different orbital angular momenta, ℓ, can be coupled. This explains why the g3 term in (10.1), which would be averaged to zero
because of isotropy of ℓ = 0 states, can still be relevant for Sommerfeld enhancement in Δℓ = 2 transitions [365]. Moreover,
spin-spin interactions with g3 ̸= 0 in (10.1) may generate macroscopic long range interactions when the dm spins are
polarized (in average) [402], a condition that on galaxy scales may be plausible for these L-violating interactions.

This chapter is organized as follows. In Section 2 we derive an effective long-range, non-relativistic potential for
self-interacting dark matter at leading order in wimp velocity. In Section 3 we present a procedure to renormalize singular
potentials and apply this to the calculation of the physical, cutoff-independent Sommerfeld enhancement. In Sections 4 and 5
we present numerical results for a 1/r3 potential and discuss the types of astrophysical bounds that such an analysis may be
applied to. We conclude in Section 6 and include appendices reviewing the standard procedure for calculating Sommerfeld
enhancement for non-singular potentials and a convenient square well approximation for singular potentials.

10.3 Effective long-range potential

The elastic scattering amplitudeM from rotationally invariant dm self-interactions is a scalar function of the spins si,
exchanged momentum q, and relative velocity v. It is often convenient to use the Hermitian operators iq and the velocity
transverse to the momentum transfer,

v⊥ = v− q(q · v)
q2 = v + q/mχ (10.2)

where the last equality follows from the four-momentum conservation.
In the center of mass frame, the elastic scattering amplitude is

M =
−1

q2 + m2
φ

∑
i

gi(q2/Λ2, v2⊥)Oi(sj · iq/Λ, sj · v⊥, s1 · s2) (10.3)

where Λ is the heavy scale of the dark sector, e.g. the dm mass mχ , andOi are the spin matrix elements. We explicitly pull out a
factor associated with the propagator for the light force carrier with mass m2

φ ≪ q2 ≪ Λ2 which acts as an infrared (ir)
regulator at large distances. Further, we only consider the leading term in the exchanged momentum q/Λ and dm velocities,
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which we assume to be small v , v⊥ ≪ 1. This is a good approximation for cold dm in the phenomenologically interesting
regime from dwarf galaxy scales v ∼ 10−5 to freeze out v ∼ 0.3. This type of non-relativistic effective theory was recently
applied to the direct detection of dark matter in [403,404]. In order to conserve dm energy (and the total angular momentum)
we assume that mediator bremsstrahlung is kinematically suppressed, mχv2 ≪ mφ. In other words, we work in the regime

v4 ≪
m2

φ

m2
χ
≪ q2

m2
χ
∼ v2 . (10.4)

We assume mediators with spin less than 2 since the longitudinal components of massive particles with higher spins spoil the
derivative expansion at scales comparable with their mass, q ∼ mφ.

10.3.1 Rotationally invariant non-relativistic operators

Under parity and time reversal velocities, spins and momentum, transform as

P : iq→ −iq , s→ +s , v⊥ → −v⊥ , (10.5)
T : iq→ +iq , s→ −s , v⊥ → −v⊥ . (10.6)

In turn, one can build the following invariant parity-even operators

O1 = 1 (10.7)
O2 = s1 · s2 (10.8)

O3 =− 1
Λ2 (s1 · q)(s2 · q) (10.9)

O4 = (s1 · v⊥)(s2 · v⊥) (10.10)

O5,6 =−
i
Λ
[(s1 · q)(s2 · v⊥)± (s1 · v⊥)(s2 · q)] (10.11)

O7,8 =−
i
Λ
[(s1 ± s2) · (q× v)] , (10.12)

where spin wavefunctions are suppressed for simplicity. OperatorsO5,6 respect parity but break time reversal. In the following
we discardO4 because it is only generated by spin-2 mediators [404]. Relaxing parity invariance introduces eight additional
operators [402]: four of those respect time reversal or, equivalently, CP

O9 = − 1
Λ
(s1 × s2) · iq , (10.13)

O10,11 = (s1 ± s2) · v⊥ , (10.14)

O12 = − i
Λ
[s1 · (q× v)](s2 · v⊥) +

i
Λ
[s2 · (q× v)](s1 · v⊥) , (10.15)

while other four break both P and CP

O13,14 = −
1
Λ
(s1 ± s2) · iq , (10.16)

O15 = (s1 × s2) · v⊥ , (10.17)

O16 = − 1
Λ2 (s2 · q)[s1 · (q× v)] +

1
Λ2 (s1 · q)[s2 · (q× v)] . (10.18)

Observe that self-conjugate dm is symmetric under the exchange 1↔ 2. This is equivalent to invariance under
(q, v, s1)↔ (−q,−v, s2), which forbidsO6,8,10,12,13,16.
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10.3.2 The general effective potential

A more general approach is to replace the free propagator with a general two point function in (10.3). This may include
arbitrary negative powers of q2 from non-local interactions mediated by light states that have been integrated out. In an
integral representation, the amplitude is

M = −
∫ ∞

0
dμ2

ρ(μ2)
q2 + μ2

∑
i

gi(q2/Λ2, v2⊥)Oi(vj · iq/Λ, si · v⊥, s1 · s2) (10.19)

where ρ(μ2) is the spectral density of the theory which provides a common language to describe weakly and strongly coupled
models. The standard propagator is recovered when ρ(μ2) = δ(μ2 − m2

φ).
Since the couplings always appear with the mediator’s propagator, we can make the replacement

gi(q2/Λ2, v2⊥) = gi(−μ2/Λ2, v2⊥) after neglecting short-range interactions such as δ-functions. Moreover, for light mediators,
the spectral density only has support for μ2 ≪ m2

χ , Λ2 so that we may further write gi(q2/Λ2, v2⊥) ≃ gi(0, 0) ≡ gi unless this
order vanishes. In such a case one should go to the first non-vanishing order, gi → (−μ2/Λ2)ng(n)i /n!. We have also dropped
the velocity dependence because it does not provide the leading contribution unless one fine tunes the coefficients of the uv
operators to cancel the velocity-independent contributions [403, 404].

Taking the Fourier transform of the scattering amplitude with respect to q , one obtains the long-range effective potential
as a function of the relative distance r and velocity v. For example, P- and T-symmetric interactions result in an effective
long-range potential

VP,T
eff =

1
4πr

{
g̃1(r) + g̃2(r)(s1 · s2) +

g̃3(r)
Λ2r2

[3s1 · r̂ s2 · r̂− s1 · s2] +
g̃7,8(r)
Λr

(s1 ± s2)(̂r× v)
}

(10.20)

where g̃i(r) are integrals of the Yukawa factor over the spectral density

g̃1(r) =
∫ ∞

0
dμ2ρ(μ2)e−μr

(
g1 − g(1)1

μ2

Λ2

)
(10.21)

g̃2(r) =
∫ ∞

0
dμ2ρ(μ2)e−μr

[
g2 +

(
g3
3
− g(1)2

)
μ2

Λ2

]
(10.22)

g̃3(r) = g3
∫ ∞

0
dμ2ρ(μ2)e−μr

[
1 + μr +

1
3
(μr)2

]
(10.23)

g̃7,8(r) = g7,8
∫ ∞

0
dμ2ρ(μ2)e−μr (1 + μr) (10.24)

It is understood that working at the leading non-vanishing order, g3,7,8 and g(1)1,2 should always be dropped unless theO(q0)
terms like g1,2 are vanishing or suppressed. For weakly coupled dark sectors, g̃1,2 are the usual exponential factors while g̃3,7,8
carry additional polynomial corrections in the mediator mass. In general these functions have an arbitrary r dependence, as
expected when the mediator is a composite operator. A simple example is a four-fermi operator between spin- 12 dm particles χ
and a massless neutrino-like species ν, that isL =

√
α[ν̄γμ(1− γ5)ν][χ̄γμ(a− bγ5)χ]. The mediator is a composite operator

made of two light fermions. It generates a singular potential at the loop level [400], g̃i=1,2 ∝ 1/r4 and g̃3 ∝ Λ2/r2. Note that
the spin structure of the potential is fixed by the quantum numbers of the light mediator.

Note that for spin- 12 dm the particle–antiparticle potential must have g8 = 0 since CPcorresponds to a factor (−)S+1 and
thus implies the conservation of total spin S2 = (s1 + s2)2 which can only take values 0 and 1. In this case, it is convenient to
express the potential in the following form

V(si=1/2) =
1

4πr

{(
g̃1(r)−

3
4
g̃2(r)

)
+

1
2
g̃2(r)S 2 +

g̃3(r)
2Λ2r2

[3(S · r̂)2 − S 2] +
2g̃7(r)
mχΛ r2

S · L
}
, (10.25)

where L = r× p is the orbital angular momentum and p = mχv/2 is the conjugate momentum, [ri, pj] = iδij.
At large distances, but smaller than the mediator Compton wavelength, Λ−1 ≪ r≪ μ−1, the functions g̃i(r) become
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interaction
1
r

1
r
(s1 · s2)

1
r3
[3 (s1 · r̂) (s2 · r̂)− s1 · s2]

λs χ̄ χϕ −λ2s 0 0

iλp χ̄γ5χϕ 0
λ2pm2

ϕ

3m2
χ

λ2p
m2

χ
h(mϕ, r)

1
f
χ̄γμγ5χ∂μϕ 0

4m2
ϕ

3f2
4
f2
h(mϕ, r)

λv χ̄γμχAμ ±λ2v

(
1 +

m2
A

4m2
χ

)
±2λ2vm2

A
3m2

χ
∓ λ2v

m2
χ
h(mA, r)

λa χ̄γ5γμχAμ 0 −8λ2a
3

(
1 − m2

A
8m2

χ

)
λ2a

(
1

m2
χ
+

4
m2
A

)
h(mA, r)

i
2Λ

χ̄σμνχFμν 0 ∓2m2
A

3Λ2 ± 1
Λ2 h(mA, r)

Table 10.1: Parity-preserving particle–(anti-)particle (upper/lower sign) long-range, static potentials from scalar
ϕ, gauge boson Aμ, and field strength Fμν = ∂[μ A ν] mediators. Here σμν = i

4 [γ
μ, γν] and h is defined in (10.28).

Each term implicitly carries a Yukawa factor e−mφr/4π. Observe that the long-range s1 · s2 is always suppressed by
the mediator mass since λa = mA/f.

constants and the potential simplifies even further:

VP,T
eff =

1
4πr

[
g1 + g2(s1 · s2) +

g3
Λ2r2

(3s1 · r̂ s2 · r̂− s1 · s2) +
g7,8
Λr

(s1 ± s2)(̂r× v)
]
. (10.26)

This is the regime where Sommerfeld enhancement may be effective because the interaction is still long-range compared to
the short distance annihilation processes that take place at r ∼ Λ−1.

The expressions for the potentials that break P but respect T are presented in Appendix 10.A.

10.3.3 Weakly coupled examples

As an example, consider a dark sector with a weakly coupled, light scalar or vector mediator φ with interactions λOQFT in
Table 10.1. These generate a static potential∑

i

λiOQFT
i −→ VP

s =
[
g1 + g2(s1 · s2) +

g3
Λ2r2

h(mφ, r) [3 (s1 · r̂) (s2 · r̂)− s1 · s2]
] e−mφr

4πr
, (10.27)

where h encodes the dependence on the mediator mass,

h(mφ, r) =
(

1 + mφr +
m2

φr2

3

)
. (10.28)

Table 10.1 gives the contributions to each of the coefficients on the right-hand side of (10.27) coming from the corresponding
types of qft interactions.
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mediator interaction
1

4πr
[v2 + r̂(̂r · v)v] 1

4πr2
(̂r × v) · (s1 + s2)

scalar λs χ̄ χϕ − λ2s
8

λ2s
4mχ

vector λv χ̄γμχAμ ± λ2v
8

∓ 3λ2s
4mχ

Table 10.2: Parity-preserving particle–(anti-)particle (upper/lower sign) long-range, non-static potentials from
massless scalars ϕ and gauge bosons Aμ. Long-range contributions from pseudo-scalars, axial vectors and field
strength vanish for massless mediators.

Note that the Dirac dm mass mχ breaks axial symmetry so that the limit of a massless axial gauge boson mediator is
consistent at finite mχ only when chiral symmetry is broken spontaneously at a scale f so that mA = λaf. In this case the
transverse components decouple, λa = mA/f→ 0, and only the longitudinal modes contribute to the amplitude with
coupling 1/f, matching the result from Goldstone boson exchange.

Table 10.2 gives the long-range, non-static potential contributions from massless scalars and gauge bosons. The v2⊥
contribution generates a∼ 1/r(v2 + r̂(̂r · v)v) in position space which can be neglected because it is always subleading.
Pseudo-scalar, axial-vector and field strength mediators, give vanishing non-static, long-range potentials at this order. Note
that these potentials generically need to be complemented by the relativistic corrections to the kinetic energies,
p2/m2

χ
(
1− p2/(4m2

χ) + . . .
)
. In the following sections we neglect these corrections to the kinetic energy since we checked

that their contribution is very small.

10.4 Renormalization of singular potentials and Sommerfeld enhancement

The potential VP,T
eff in (10.20) represents the most general long-range interactions between dm particles that preserve parity

and time reversal. A standard method for calculating the Sommerfeld enhancement for the non-singular Coulomb and
Yukawa potentials is presented in [384] and reviewed in Appendix 10.B. In practice, one determines the boost factor by
solving a Schrödinger-like equation with the proper boundary conditions. However, since the terms in VP,T

eff are typically very
singular, the usual calculations for the boost factor will generically fail. In this section we show how to overcome these
problems by renormalizing the Schrödinger equation. Since a full numerical solution can be computationally intensive for
singular potentials, we also provide an algebraic algorithm to estimate the Sommerfeld enhancement for general potentials in
Appendix 10.C.

10.4.1 Wilsonian treatment of divergences

Potentials that go to infinity faster than 1/r2 at the origin are called singular [405] and generically arise in dark sectors with
spinning dm and/or with some strong dynamics. The occurrence of unphysical behavior originating from the infinitely large
energies of such potentials are analogous to the infinities of quantum field theory (qft). These inconsistencies arise when one
extrapolates a long-range potential to arbitrarily short distances where ultraviolet physics should be taken into account. In fact,
the Schrödinger equation can be renormalized by adopting the Wilsonian renormalization group (rg) methods of qft [406]:
the singular potential is regulated at a short distance a and augmented with a series of local operators that parametrize the
unknown uv physics,

V(r) −→ V(r)θ(r− a) + c0(a)δ3(r) + c2(a)a2∇2δ3(r) + . . . (10.29)
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The short-distance part of this effective potential is a derivative expansion that can be truncated to the desired order as long as
the typical momenta q are much smaller than the cutoff scale Λ = a−1. This given order in q determines the finite set of
coupling constants ci(a) which can be determined by low-energy data.

10.4.2 Renormalized potential

Singular potentials diverge at the origin so that further care is required to impose boundary conditions. The Schrödinger
equation for an ℓ-wave state is conveniently expressed using the dimensionless coordinate x = pr, the product of the dark
matter relative momentum and separation:

−Φ′′
p,ℓ(x) +

(
V(x) + ℓ(ℓ+ 1)

x2
− 1
)

Φp,ℓ(x) = 0, (10.30)

where the dimensionless potential is rescaled by the momentum p and reduced mass M = mχ/2,

V(x) = 2M
p2

V
(

x
p

)
. (10.31)

We regulate the potential at xcut = ap with a square well of height V0 encoding the uv data of the relativistic completion,

Vreg(x) = V(x) θ(x− xcut) +
1

x2cut
V0 θ(xcut − x). (10.32)

In practice, we simulate the local counter-terms with a short-distance square well potential which makes the calculations much
easier [407]. We stress, however, that any other choice or deformation of the counter-terms is allowed and physically
equivalent as long as it changes only the UV behavior of the interactions [406].

Observe that the centrifugal barrier is left uncut since it is non-singular and unrelated to the uv physics. Once V0 is known,
one may integrate the Schrödinger equation subject to the usual boundary condition at zero

lim
x→0

Φp,ℓ(x) = xℓ+1, (10.33)

and then extract the Sommerfeld enhancement from the asymptotic solution. In the regulated region x < xcut, the
Schrödinger equation can be solved explicitly in the approximation xcut ≪ 1,

Φp,ℓ(x < xcut) = Γ
(
ℓ+

3
2

)( 2xcut
V 1/2
0

)ℓ+1/2

x1/2 Jℓ+1/2

(
V 1/2
0

x
xcut

)
. (10.34)

The value V0 that appears in the Schrödinger equation is determined by requiring that a low energy observable is
independent of the particular choice of the cutoff, xcut. It is thus meaningful to define V0(xcut) with respect to the value of a
physical observable, which can be conveniently chosen to be the scattering phase δℓ of the elastic dark matter scattering
process that generates this enhancement.

For the region x > xcut, recall that the general solution to the Schrödinger equation is a linear combination of two
independent solutions,

Φp,ℓ(x > xcut) = Af(x) + Bg(x). (10.35)

Asymptotically far from the origin, these independent solutions are combinations of sines and cosines. The scattering phase is
related to the shift in the argument when the asymptotic solution is written as a pure sine. Thus the δℓ has a one-to-one
relation to the ratio A/B.

In order to determine V0(xcut) subject to a fixed scattering phase, we may match the logarithmic derivatives of the two
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piecewise solutions at xcut. Comparing (10.34) with (10.35),

− ℓ

xcut
+
V 1/2
0 (xcut)
xcut

Jℓ−1/2

(
V 1/2
0 (xcut)

)
Jℓ+1/2

(
V 1/2
0 (xcut)

) =
A
B f′(xcut) + g′(xcut)
A
B f(xcut) + g(xcut)

. (10.36)

Observe that matching the logarithmic derivative gives an expression that depends on A/B which is cutoff independent and
directly related to our low-energy observable [407]. Once V0(xcut) is determined, (10.32) is the correct non-singular
low-energy potential for the problem with the given cutoff.

Due to the oscillatory nature of the Bessel function, there can be multiple solutions to the transcendental equation (10.36).
All of these solutions are physically equivalent. To simplify our calculations we choose the first quadrant so that V0(xcut) can
take values in the range (−∞,Vmax) where Vmax is given by the first positive solution of

Jℓ+1/2

(
V 1/2
max

)
= 0 (10.37)

For ℓ = 0, Vmax = π2.

10.4.3 Wavefunction renormalization

SinceVreg in (10.32) is manifestly non-singular, one may proceed to solve the Schrödinger equation (10.30) subject to (10.33)
following the procedure outlined in Appendix 10.B. The resulting Sommerfeld enhancement, S(0), appears to depend on the
choice of xcut. This residual cutoff dependence is not physical and is removed by including wavefunction renormalization, Zℓ:

Sℓ = ZℓS(0)ℓ (10.38)

Zℓ is fixed by using the observation that at relativistic speeds the Sommerfeld enhancement factor should go to one,

Zℓ =
1

S(0)ℓ (v→ 1)
. (10.39)

10.4.4 Comparison to Coulomb potential

We now verify that the above procedure matches the usual result for the non-singular Coulomb potential, V(r) = −α/r. The
wavefunction in the region x > xcut is

Φp,ℓ(x > xcut) = Ax1/2J2ℓ+1

(
2
√

xα
v

)
+ Bx1/2Y2ℓ+1

(
2
√

xα
v

)
. (10.40)

One can check that the Sommerfeld enhancement is indeed independent of the choice xcut. For different choices of A/B, one
can obtain different Sommerfeld enhancements, as seen by the different lines on the left plot of Figure 10.4.1. Of these, one
line (black) corresponds to the analytical formulae found in the literature [384]; this corresponds to picking a scattering phase
that is consistent with a relativistic completion that includes a massless boson. In other words, this is the choice that is
consistent with a theory where the non-relativistic Coulomb potential is completed by a relativistic field theory resembling
qed. Other choices correspond to theories whose non-relativistic limit is Coulomb but whose local interactions differ from
pure qed.

10.5 Numerical results

The general dm potential considered here does not generally conserve orbital angular momentum L2 so that a coupled
channel analysis between different ℓ-wave annihilation modes is required. This implies that the g3 contribution in (10.1) can
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Figure 10.4.1: Cutoff-dependence of s-wave Sommerfeld enhancement using the procedure described in the
text. Low energy data is encoded by the ratio A/B of solutions to the homogeneous Schrödinger equation in
(10.35). We take relative velocity v = 10−3. left: Coulomb potential with α/v = e2/4πv = 10. The unique
phase (A/B = 0) given by a qed-like uv completion is indicated by the black line. right: r−3 potential with
α̃ = 2M2vα/f2 = 10−3, for α defined in (10.46).

J S P ℓ

0 0 − 0
0 1 + 1
1 0 + 1
1 1 + 1
1 1 − 0, 2

Table 10.1: Low total angular momentum, J, dm scattering states labelled by spin, S, parity, P, and orbital angular
momentum ℓ. J, S, and P are conserved by the Hamiltonian and are used to label states.

still be relevant for Sommerfeld enhancement via Δℓ = 2 transitions even though it averages to zero for ℓ = 0 states [365].
This is contrary to the common belief that Sommerfeld enhancement is relevant only for s-wave annihilations due to the
centrifugal barrier. For some states L2 is a well-defined quantum number once the total angular momentum J, the total spin S
and parity P = ± are specified. In these cases the calculation of the boost factor reduces to a standard single-channel
Schrödinger problem as discussed above. Table 10.1 shows the quantum numbers for fermionic dm for low total angular
momenta. Among the ℓ = 0 states, (J = 0, S = 0, P = −) gives a single channel problem with arbitrary potential V0(r),
whereas (J = 1, S = 1, P = −) requires a coupled channel analysis between ℓ = 0 and ℓ = 2.

Assuming parity conservation, the effective potential Veff = ⟨out|V(r)|in⟩+ ℓ(ℓ+ 1)/(2Mr2) for each channel is obtained
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Figure 10.5.1: Sommerfeld enhancement for a singular r−3 potential and orbital angular momentum ℓ = 0
(left) and ℓ = 1 (right) for relative velocity v = 10−3 and various values of α̃ = 2M2vα/f2, with α defined in
(10.46).

by sandwiching (10.25) with the centrifugal term between the appropriate | J S P ⟩ states,

| 0 0 −⟩ → Veff =

(
g̃1(r)−

3
4
g̃2(r)

)
1

4πr
(10.41)

| 0 1 +⟩ → Veff =
1

Mr2
+

(
g̃1(r) +

1
4
g̃2(r)−

g̃3(r)
2Λ2r2

− 2g̃7(r)
MΛr2

)
1

4πr
(10.42)

| 1 0 +⟩ → Veff =
1

Mr2
+

(
g̃1(r)−

3
4
g̃2(r)

)
1

4πr
(10.43)

| 1 1 +⟩ → Veff =
1

Mr2
+

(
g̃1(r) +

1
4
g̃2(r) +

g̃3(r)
4Λ2r2

− g̃7(r)
MΛr2

)
1

4πr
(10.44)

| 1 1 −⟩ → Veff =
1

Mr2

(
0 0
0 3

)
+

(
g̃1(r) + g̃2(r)

4
g̃3(r)

2
√

2Λ2r2
g̃3(r)

2
√

2Λ2r2 g̃1(r) + g̃2(r)
4 −

g̃3(r)
4Λ2r2 −

3̃g7(r)
MΛr2

)
1

4πr
(10.45)

where the ℓ = 0 and ℓ = 2 channels are coupled in (10.45). If the g̃i are constant, then at leading order these channels are
effectively non-singular and Coulomb-like. However, if g̃1 + g̃2/4 = 0, such as for pseudo-scalar exchange, then some of these
channels are dominated by the singular V ∼ 1/r3 term. Moreover, one can also consider scenarios—for example, the exchange
of multiple light particles [399–402]—in which g̃1,2 ∼ 1/r3 so that even the g̃1 and g̃2 terms are singular with ℓ = 0. Thus one
may in principle generate a singular potential for any partial wave. For simplicity, we shall consider a simple 1/r3 potential for
both ℓ = 0 and ℓ = 1. The coupled channel in (10.45), however, requires a more careful analysis that we leave for future work.

In Figure 10.5.1 we plot the Sommerfeld enhancement for a potential

V(r) = − α
f2r3

(10.46)

as a function of the ir observable cot δ for ℓ = 0, 1. When comparing these, note that the ℓ = 1 cross section has an additional
factor of v2 relative to ℓ = 0. The resonance is located at cot δ = 0 because this is where the cross section is maximal. These
plots can be used to give an upper bound on Sommerfeld enhancement for various couplings. Note that while it is true that
the resonance is larger for smaller couplings, it requires more tuning from the uv to reach the resonance for a smaller coupling.
Moreover, while cot δ contains data about uv physics, it also depends on the ir coupling in such a way that reducing the
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Figure 10.5.2: Resonances in Sommerfeld enhancement for a singular r−3 potential and orbital angular momen-
tum ℓ = 0 (left) and ℓ = 1 (right) for a range of relative velocities and α/f2 = TeV−2 with α defined in
(10.46). The large enhancements can be understood from the box approximation, see the Appendix 10.C. For
simplicity the height of the regulated potential is fixed by continuity with the long range piece.

coupling would not increase the Sommerfeld unless one simultaneously increases the height of the square well potential V0.
Figure 10.5.2 presents an exploration of these resonances as a function of the dark matter reduced mass. As described in

the procedure above, the physical Sommerfeld enhancement for a singular potential requires information from an ir
observable such as the scattering phase δ. As a reasonable estimate for natural uv models, we regulate the theory at a length
scale r0 where the non-relativistic description breaks down, V(r0) = M. We then fix the height of the cutoff by continuity
with the singular long-range part, V0 = V(r0) = M. Notice that for a V(r) = −α/(f2r3) potential with f = 1 TeV, the dark
matter mass necessary to reach a significant enhancement is about 1 TeV. If the dark matter mass is sufficiently large one may
also need to consider the ℓ = 1 contribution.

10.6 Phenomenology

While the collisionless cold dm paradigm successfully accounts for the large scale structure of the universe, it faces tension at
smaller scales where N-body simulations present some discrepancies with observations. In particular, dwarf galaxies show flat
core dm densities profiles in the central part of the halos, whereas collisionless cold dm predicts cusp-like profiles [106–109].
While this discrepancy may be due to unaccounted baryonic physics [408–410], it may alternately be taken as a motivation for
dark matter self-interactions [392, 393, 411]. A related astrophysical motivation for self interactions is the “too big to fail
problem,” in which the brightest observed dwarf spheroidal satellites in the Milky Way appear to be incompatible with the
central densities of subhalos predicted by collisionless dm [110–112]. A third suggestion for self interactions is the “missing
satellites problem”; collisionless dm predictions for the number the satellite galaxies expected in the Milky Way appears to
disagree with observations [113, 114]. See, e.g. [115, 116] and references therein for critical discussions.

To solve the core vs. cusp problem, the dark matter self interaction must have a sufficiently large cross section,
σ/mχ ∼ 0.1− 10 cm2/g, for velocities typical of dwarf galaxies, v ∼ 10−5, while having a smaller cross section for galaxy
cluster velocities, v ∼ 10−3, where collisionless dm results are in good agreement. There are additional upper bounds on the
cross section coming from astrophysical observations sensitive to the velocities characteristic of galaxy clusters [115, 395].
One of the most stringent bounds, for example, comes from the ellipticity of galaxy clusters [395, 412, 413]. The most recent
simulations have softened this bound to σ/mχ = 0.1 cm2/g [392, 393]. Further, the cosmic microwave background (cmb)
sets an upper bound on Sommerfeld enhancement from the effect of dm annihilation after recombination [414–416]. Though
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Figure 10.6.1: Core vs. cusp problem. left: Sommerfeld enhancement (upper) and scattering cross section
(lower) as a function of relative velocity for a range of low energy parameters A/B as discussed below (10.35)
and 2αM2/f2 = 1. right: Total dark matter cross section as a function of velocity. Red: velocity dependent
with 2αM2/f2 = 1, M = 5.85 TeV, A/B = −10−3, and an additional short distance interaction, M2σshort = 500.
Blue: velocity independent cross section with no new short range interaction and M = TeV, 2αM2/f2 = 0.1,
A/B = −6 × 10−4.

a constant cross section σ/mχ ≲ 0.5 cm2/g may account for these effects, this velocity dependence is also suggestive of a
Sommerfeld enhanced cross section [417]. We leave a more thorough investigation of the astrophysical and cosmological
bounds on the enhancement of singular potentials for future work.

As an example for how to apply Sommerfeld enhancement to address the dwarf galaxy scale astrophysical puzzles while
simultaneously avoiding the bounds from galaxy cluster scale observations, we consider dark matter self interactions mediated
by a light force carrier that generates a singular potential,

V(r) =
−α
f2

1
r3
. (10.47)

The left side of Figure 10.6.1 shows the Sommerfeld enhancement (upper) and the total cross section (lower) from such a
model with a choice of parameters near the resonance. Observe that even for very small A/B, that is small cot δ or large
scattering phase, the cross section is saturated between the characteristic galaxy cluster velocities v ∼ 10−5 and dwarf galaxy
velocities v ∼ 10−3. For A/B ∼ 10−5, as indicated by the red line in the lower figure, this saturates to σ/mχ ∼ 10−2 cm2/g for
mχ ∼ TeV. This saturation occurs over the range of velocities where we would like a stronger velocity-dependence to avoid
cluster scale bounds. In order to do this, we assume the existence of a short range interaction that contributes to the elastic
scattering process with cross section σ(0)short. The long range mediators Sommerfeld enhance this cross section by the factor
shown in the upper plot; observe that this enhancement decreases exponentially as one increases from dwarf galaxy velocities
to galaxy cluster velocities. The total cross section is roughly (ignoring cross terms for simplicity),

σtot(v) ∼ σelast(v) + S(v)σ(0)short. (10.48)

Since the enhancement factors can be fairly large, the additional short range interaction can be weakly coupled, e.g.
σ(0)shortM

2 ∼ 104 so that σ0 ∼ 106 pb for a TeV scale dark matter particle. The right side of Figure 10.6.1 compares the
velocity-dependence of this type of solution to another solution without enhanced short range physics.

Finally, we remark on the use of Sommerfeld enhancement for generating indirect signals of dark matter through positrons
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and gamma rays [383, 387]. The excess of cosmic positrons observed by pamela [98] and later confirmed by Fermi [99] and
ams-02 [100] is a potential signal for dark matter annihilation. Since the cross section required to produce these signals is
much larger than the required cross section for thermal relics, dm models that realize the positron excess typically require
large Sommerfeld enhancements [418]. A study for non-singular dark sectors with Yukawa interactions was performed
in [395, 419]; an investigation of how these bounds change for singular potentials is left for future work.

A recent speculative signal of indirect dm detection is the 135 GeV line in the Fermi gamma ray spectrum [101–105].
Indeed, gamma ray signatures were the original motivation for investigating Sommerfeld enhancement in dark matter [387].
The cross section required for the line is about 10−27 cm3/s which generically points toward a large boost factor, S ≈ 104. It is
possible to get such a large enhancement with a singular potential V(r) = −α/(fr3), but since the dark matter mass must be
135 GeV this requires a low scale f ≈ 100 GeV to avoid tuning in the uv. Dark matter models can generate such a feature,
though these typically generate an unobserved continuum contribution to the spectrum [420]. Ways around difficulty were
explored in [421–425].

10.7 Conclusion

We have presented the effective non-relativistic theory of self-interacting dark matter parameterized to leading order in the
relative velocity, v, and the exchanged momentum, q/Λ. The resulting potentials generically include singular terms which
must be regulated and renormalized so that the resulting predictions are cutoff independent. We have shown how this
effective theory can be applied to calculate the Sommerfeld enhancement generated by singular potentials.

Using a simple toy model with a 1/r3 potential, we have found that on resonance one can generate enhancements as large
as S ∼ 106 at velocities on the order of v ∼ 10−3. This opens up promising directions for the astrophysical phenomenology of
general self-interacting dark matter models. For example, extant astrophysical puzzles such as the core vs. cusp problem can be
addressed with this velocity-dependent enhancement. A more thorough investigation and implications for specific uv models
of these bounds is left for future work.

10.A CP-preserving potential

In Section 10.3, we presented a list of P- and T-preserving operators in the non-relativistic potential for dm self-interactions.
In this appendix we present the additional terms in the effective potential that are generated when parity invariance is relaxed.
In addition toO1,2,3,4,7,8, the four operatorsO9,10,11,12 in (10.13)–(10.15) preserve CP but break parity. For simplicity we
consider only the case of self-conjugate dm so thatO10,12 are forbidden.

TheO9 term contains no v⊥ factors and the corresponding potential is

V9 =
g̃9(r)
4πr3Λ

(s1 × s2)r (10.49)

where g̃9(r) is defined analogously to (10.24).
In order to determine V11 we need the Fourier transform of the propagator along the direction tranverse to the exchanged

momentum∫
d3q
(2π)3

eiq·r
[
δij − qiqj

q2

]
1

(q2 + μ2)
=

e−μr

4πr

[
2
3
δij +

1
μ2r2

(
3̂ri r̂j − δij

)(
eμr − 1− μr− μ2r2

3

)]
.

Contracting this expression with (s1 − s2)i and vj gives V11. Since the final result is quite involved, we focus on two interesting
limits. At distances smaller than the mediator Compton wavelength, Λ−1 ≪ r≪ μ−1, the expression greatly simplifies
because

lim
μ→0

∫
d3q
(2π)3

eiq·r
[
δij − qiqj

q2

]
1

(q2 + μ2)
=

1
8πr

(
δij + r̂i r̂j

)
, (10.50)

and hence
V11 =

1
8πr

[(s1 − s2) · v + (s1 − s2) · r̂(̂r · v)] . (10.51)
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On the other hand, at scales where the mediator mass is important, r≫ μ−1, we have

V11 =
1

4πr3m2 [3(s1 − s2) · r̂ (̂r · v)− (s1 − s2) · v] . (10.52)

where m2 =
∫

dμ2ρ(μ2)/μ2.

We stress that the ordering of the various operators in the non-static part of the potential is generically important since
p = mχv/2 is the conjugate coordinate associated with the relative distance, [ri, pj] = iδij.

10.B Sommerfeld enhancement for non-singular potentials

Let us first briefly review the general method to obtain the Sommerfled enhancement [384, 385]. Consider two particles of
mass mχ and center-of-mass momentum p. The ℓ-wave amplitude Aℓ(p) for the annihilation of these two particles under an
attractive central potential V(r) can be expressed as a function of a bare amplitude A0,ℓ(q) = a0,ℓqℓ and a wavefunction φp(r),

Aℓ(p) =
∫

dr φ∗
p(r)

∫
dq eiq·rA0,l(q). (10.53)

The wavefunction φp(r) satisfies the Schrödinger equation,

(
− 1

2M
∂2 + V(r)− p2

2M

)
φp(r) = 0, (10.54)

where M = mχ/2 is the reduced mass and p = Mv is the non-relativistic momentum. In general, the potential V(r) can be
matrix valued in the space of partial waves, in which case the Schrödinger equation is then a system of coupled differential
equations. To solve this equation we decompose the wavefunction φp(r) in partial waves

φp(r) =
(2π)3/2

4πp

∑
ℓ

(2ℓ+ 1)eiδℓRp,ℓ(r)Pℓ(p̂ · r̂) (10.55)

such that the radial part, Rp,ℓ(r), satisfies

−1
2M

(
d2Rp,ℓ

dr2
+

2
r
dRp,ℓ

dr
− ℓ(ℓ+ 1)

r2
Rp,ℓ

)
−
(

p2

2M
− V(r)

)
Rp,ℓ = 0 (10.56)

with the completeness relation ∫ ∞

0
dpRp,ℓ(r)Rp,ℓ(r′) =

δ(r− r′)
r2

. (10.57)

Plugging the partial wave decomposition (10.55) into (10.53) along with φ0
p(r) = eip·r gives

Al(p) =
1
p

∫ ∞

0
r2drRp,ℓ(r)

∫ ∞

0
qdqR0

q,ℓ(r)A0,ℓ(q). (10.58)

From the free solution R0
p,ℓ we know that

dℓ

drℓ
R0
q,ℓ(r = 0) =

√
2
π

ℓ!qℓ+1

(2ℓ+ 1)!!
. (10.59)
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Applying the completeness relation (10.58) gives

Aℓ(p, p′) =
√

π
2
(2ℓ+ 1)!!

ℓ!

1
p

dℓ

drℓ
Rp,ℓ(r = 0)a0,ℓ (10.60)

such that the Sommerfeld enhancement for a the ℓth partial wave is

Sl =
∣∣∣∣√ π

2
(2ℓ+ 1)!!

ℓ!

1
pℓ+1

dℓ

drℓ
Rp,ℓ(r = 0)

∣∣∣∣2 (10.61)

We thus see that the Sommerfeld enhancement is given by the solution of the Schrödinger equation at the origin.

10.B.1 Numerical algorithm

Refs. [384, 385] provide a method to numerically evaluate the enhancement factor S. The completeness relation (10.57) is
valid at long distances,

Rp,ℓ(r)|r→∞ →
√

2
π

sin(pr− ℓπ/2 + δℓ)
r

. (10.62)

For simplicity, let us work with the dimensionless variable x = pr and the rescaled wavefunction Φp,ℓ(x) =
xRp,ℓ(x)

Np where N
is an arbitrary normalization. Using these variables, the Schrödinger equation takes the form

−Φp,ℓ(x)′′ +
(
V(x) + ℓ(ℓ+ 1)

x2
− 1
)

Φp,ℓ(x) = 0 (10.63)

where V(x) = 2M
p2 V(x/p) and we impose the initial conditions

lim
x→0

Φp,ℓ(x) = xℓ+1. (10.64)

From (10.63) and the fact that limx→∞ V(x) = 0, it is clear that in the asymptotically far away region,

Φℓ(x)|x→∞ → C sin(x− ℓπ/2 + δℓ) (10.65)

Moreover, to satisfy the asymptotic normalization of Rp,ℓ(r), we need to fix the normalization N =
√ 2

π
1
C . We can then use

Rp,ℓ = NpΦl/x in (10.61) along with the initial condition to obtain

Aℓ(p) =
(2ℓ+ 1)!!

C
pℓa0,ℓ =

(2ℓ+ 1)!!
C

A0,ℓ(p) (10.66)

so that the Sommerfeld factor is

S =

(
(2ℓ+ 1)!!

C

)2

(10.67)

We thus reduce the calculation of the Sommerfeld enhancement S to the determination of C. This is obtained by numerically
solving (10.63) with the initial condition (10.64) and

C2 = (Φl(x)2 + Φl(x− π/2)2) |x→∞ . (10.68)
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Figure 10.B.1: Numerical evaluation of the Sommerfeld enhancement factor as a function of the dark matter
reduced mass M for a range of relative velocities. The mediator mass is fixed to 90 GeV and α = 1/30.

10.B.2 Coulomb and Yukawa example

For the Coulomb potential V(r) = −α/r, one can obtain an analytic expression for the Sommerfeld enhancement [384, 385],

Sℓ =
eπα/vπα

v sinh (πα/v) ℓ!2

ℓ∏
s=1

(
s2 +

α2

v2

)
≈ 2π

ℓ!2

( α
v

)2ℓ+1
(10.69)

where the approximation holds for large α/v. There exists no simple analytical expression for the enhancement from a Yukawa
potential V(r) = −αe−μr/r, but one can easily evaluate it numerically using the method presented, see Figure (10.B.1). The
presence of resonances can be explained by bound states [388].

10.C Box approximation

We have shown that bound state resonances can generate large Sommerfeld enhancements. In this appendix we adapt the
procedure used in [388] to quantitatively understand these resonances. In [388], it was shown that the a reasonable
approximation for the Yukawa potential is a flat potential well whose width is determined by the characteristic length scale of
the interaction, r0 = 1/mϕ,

Vbox(r) = −U0Θ(r0 − r). (10.70)

The depth of the rectangular well U0 is fixed by requiring that the box approximation matches the Yukawa potential at r = r0,

Vbox(r) = −
αm
e

Θ
( 1

m
− r
)
. (10.71)
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This approximate is constructed to capture only the qualitative behavior of the full potential and is not a detailed matching to
an effective theory. Observe that this analysis agrees with the fact that the Coulomb limit (mϕ → 0) does not have resonances:
this potential has no natural length scale for constructing the rectangular well.

10.C.1 Application to V ∼ r−3

We adapt this procedure to the singular 1/r3 potential,

V(r) =
−α
f2

1
r3
. (10.72)

The natural length scale of the problem is the dimensionful scale of the coupling, r0 =
√

α/f. In principle there is also a scale
set from the exponential term e−mϕr, but for uv models with mϕ ≪ f this contribution is negligible. This reflects the fact that
the resonant behavior of singular potentials in this limit do not depend strongly on the specific value of the mediator mass mϕ.

This simple box potential approximation provides an estimate for the upper bound of Sommerfeld enhancement coming
from resonances in a singular potential. The solution to the ℓ = 0 Schrödinger equation inside the box (r < r0) is

φ(pr < pr0)|p =
sin (κpr)

κ
, (10.73)

where κp =
√

p2 + 2U0M. Outside the box, r > r0, there is effective no potential so that

φ(pr > pr0)p = C sin(pr + δ). (10.74)

C is determined by requiring continuity at r0 so that the enhancement is

S =

[
cos2 (κpr0) +

sin2 (κpr0)
κ2

]−1

≈
[
cos2

(
r0
√

2U0M
)
+

p2

2MU0
sin2 (r0√2U0M

)]−1

, (10.75)

where we use the non-relativistic approximation p2 ≪ U0M. Observe that the prefactor of the sine term is small so that S
becomes large when the cosine vanishes. In other words, this expression maximized when r0

√
2U0M = (2n + 1)π/2 with

Smax ≈
2MU0

p2
=

(2n + 1)2π2

4r20p2
. (10.76)

This peak is exactly the resonance when the pair of dark matter particles forms a bound state. Note that this approximation is
independent of the depth of the rectangular well, U0.

It is straightforward to generalize these expressions for an arbitrary orbital angular momenta, ℓ, by including the angular
barrier to the box potential and applying the appropriate boundary conditions. One obtains

Sℓ =

(
π [(2ℓ′)!!]2 κ̃2ℓ

′

22ℓ′+1Γ(ℓ′ + 1)2

)
[Yℓ′(pr0)− cot(δ)Jℓ′(pr0)]

2

[1 + cot2(δ)] J2ℓ′(κ̃pr0)
(10.77)

where ℓ′ = ℓ+ 1
2 and κ̃2 = 2MU0/p2. The qualitative scaling behavior of the resonance can be seen by setting cot(δ) = 0,

and assuming that pr0 ≪ 1 so that

Smax ∼ 1
(p2r20)

2ℓ+1 ∼
1

v4ℓ+2 . (10.78)
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10.C.2 Dimensional analysis

To estimate the Sommerfeld enhancement off resonance one must estimate U0. We use the assumption that the uv physics
encoded in U0 does not significantly change the ir potential so that the height of the square well U0 is well approximated by
the value of the singular potential at the cutoff scale,

U0 ∼
f

α1/2
∼ 1

r0
, (10.79)

so that for ℓ = 0, the Sommerfeld enhancement is approximately

S ≈

[
cos2

(√
2Mα1/2

f

)
+

p2α1/2

2Mf
sin2

(√
2Mα1/2

f

)]−1

. (10.80)

An estimate for the parameters required to hit a resonance without tuning is thus

Mres ∼
1
r0
∼ f

α1/2
, (10.81)

which, for most cases, lies at the boundary of the range of the theory’s validity.
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Flip: Did you see new crackpot version of the arXiv?
Maxim: I thought they already had that, it’s called hep-th.

Lunch conversation

11
RPV gluinos

R-parity violating models of supersymmetry are able to avoid stringent experimental constraints on the
supersymmetry mass scale by relaxing the requirement that the lightest superpartner must be stable against decay. In this
chapter we present a search for this scenario which is otherwise rather difficult to probe.

11.1 Overview

The lack of observation of superpartners at the Large Hadron Collider so far has led to a renewed interest in supersymmetric
models with R-parity violation (RPV). In particular, imposing the Minimal Flavor Violation (MFV) hypothesis on a general
RPV model leads to a realistic and predictive framework. Naturalness suggests that stops and gluinos should appear at or
below the TeV mass scale. We consider a simplified model with these two particles and MFV couplings. The model predicts a
significant rate of events with same-sign dileptons and b-jets. We re-analyze a recent CMS search in this channel and show that
the current lower bound on the gluino mass is about 800 GeV at 95% confidence level, with only a weak dependence on the
stop mass as long as the gluino can decay to an on-shell top-stop pair. We also discuss how this search can be further optimized
for the RPV/MFV scenario, using the fact that MFV stop decays often result in jets with large invariant mass. With the
proposed improvements, we estimate that gluino masses of up to about 1.4 TeV can be probed at the 14 TeV LHC with a 100
fb−1 data set.

11.2 Introduction

Supersymmetry (SUSY) remains one of the most compelling ideas for extending the Standard Model (SM). While SUSY is
clearly broken in nature, naturalness of electroweak symmetry breaking strongly suggests that it should be restored at an
energy scale≲ 1 TeV. This would require the SUSY partners of the SM particles to appear at that scale. However, experiments
conducted in 2010–2012 at the Large Hadron Collider (LHC) have seen no evidence for such superpartners, placing lower
bounds on the masses of some of them, squarks and gluinos, well in excess of 1 TeV. This apparent contradiction led many
theorists to question the assumptions underlying the LHC searches. One of the most important assumptions is R-parity
conservation, which implies that the lightest superpartner (LSP) is stable. A stable LSP in turn implies that each event with
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superpartner production contains either missing transverse energy (MET) or exotic charged tracks, either of which provides a
good handle to distinguish such events from the SM backgrounds. Most LHC searches make extensive use of such handles. If
there is no conserved R-parity, these searches would not be applicable and the LHC bounds would be weakened significantly,
removing conflict with naturalness.

From the theoretical point of view, R-parity is not required by SUSY: it is an additional discrete symmetry. The motivation
for introducing this extra symmetry is purely phenomenological: it forbids baryon (B) and lepton (L) number violating
operators that would otherwise induce rapid proton decay. However, proton decay and other tightly constrained B- and
L-violating processes may be forbidden or suppressed to acceptable levels without introducing R-parity. An interesting
proposal along these lines has been made recently by Csaki, Grossman and Heidenreich [128] (see also [426]). The authors
start with a minimal SUSY model without R-parity. They then impose the Minimal Flavor Violation (MFV) hypothesis,
which is strongly motivated by flavor physics constraints on SUSY, on the full superpotential, including B- and L-violating
operators. The MFV hypothesis in effect imposes an accidental approximate R-parity on the first two generations and greatly
suppresses dangerous operators such as those that induce proton decay. At the same time, there are non-trivial R-parity
violating (RPV) couplings involving the third generation which are sufficient to render the LSP unstable on collider time
scales and weaken the LHC bounds. This is the framework that we focus on in this paper.¹

As for any SUSY model, the collider phenomenology of MFV SUSY depends sensitively on the superpartner spectrum.
This, in turn, is determined by the details of the SUSY breaking sector and mediation, for which many possible models have
been proposed. In this paper, we focus on a simple scenario motivated by bottom-up naturalness considerations. It is well
known that the only superpartners required to be light (≲ 1 TeV) by naturalness are the stops t̃1,2, the Higgsino H̃, and the
gluino g̃: see, for example, Ref. [430] for a clear and careful explanation of this point. Of these, H̃ has a suppressed production
rate due to its weak coupling. Thus, it will not have a considerable impact on phenomenology as long as it is not the LSP. We
will therefore consider a simplified model [431] with just two states: a gluino g̃ and a stop t̃. All other SUSY particles are
assumed to be either too heavy or too weakly coupled to be relevant at the LHC. ² We assume that the stop is the LSP, as
motivated by naturalness considerations, and that mg̃ > mt̃ +mt. We focus on gluino pair-production, pp→ g̃g̃, followed by a
cascade decay:

g̃→ t̃̄t, t̃→ b̄̄s or g̃→ t̃∗t, t̃∗ → bs . (11.1)

The branching ratio for each of these channels is 50%, assuming a purely Majorana gluino. With probability of 50%, the gluino
pair will produce a same-sign top pair (tt or t̄̄t). If each top decays leptonically, the final state will contain two same-sign
leptons: e±e±, μ±μ±, or e±μ±. Such “same-sign dilepton” (SSDL) events are very rare in the SM, and the SSDL signature
already plays a prominent role in the LHC SUSY searches. Typically, these searches demand substantial MET in addition to
SSDL, reducing their sensitivity to the RPV cascades (11.1) where the only sources of MET are neutrinos from leptonic top
decays. However, the SSDL signature by itself is so striking that searches may be conducted even with no (or very low) MET
cut, making them sensitive to RPV SUSY [432–435].³ The first goal of this paper is to estimate the current bounds on our
simplified model using the latest publicly available CMS search for the SSDL signature [444]. This search uses 10.5 fb−1 of
data collected at

√
s = 8 TeV in the 2012 LHC run.

While the current SSDL searches already place interesting bounds on RPV SUSY, they are not optimized for this class of
models. The second goal of this paper is to suggest ideas for optimizing this search that may be implemented by the
experiments in the future. SSDL events in RPV SUSY have at least 6 parton-level jets. This high jet multiplicity can, by itself,
provide an additional handle to suppress backgrounds. Moreover, two pairs of these jets come from stop decays. Depending
on the gluino and stop masses, two regimes are possible. If mg̃ − mt̃ ∼ mt, the stops are typically non-relativistic in the lab
frame and the two jets are well separated. In this regime, one simply needs to look for a resonance in the dijet invariant mass.

¹For recent work on complete SUSY models realizing this framework, see Refs. [427–429].
²We do not include a left-handed sbottom b̃L in our simplifiedmodel even though its presence at the samemass scale as the

stop is well motivated. In MFV SUSY, the dominant sbottom decays typically involve the top quark, b̃ → tc or b̃ → tχ̃−, so
that gluino cascades via sbottoms can still produce the same-sign dilepton signature. Thus we expect that the bounds derived
here would qualitatively apply to most MFV SUSY models with mg̃ > mb̃ as well.

³Other signatures of RPV SUSYwith light stops and gluinos have been discussed in Refs. [436–442]. SSDL signature from
resonant slepton production has been discussed in [443].
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SR0 SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8
No. of jets ≥ 2 ≥ 2 ≥ 2 ≥ 4 ≥ 4 ≥ 4 ≥ 4 ≥ 3 ≥ 4
No. of b-tags ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 3 ≥ 2
ℓ charges ++ /−− ++ /−− ++ ++ /−− ++ /−− ++ /−− ++ /−− ++ /−− ++ /−−
Emiss
T >0gev >30gev >30gev >120gev >50gev >50gev >120gev >50gev >0gev

HT >80gev >80gev >80gev >200gev >200gev >320gev >320gev >200gev >320gev

Table 11.1: Event characteristics required in the 9 signal regions (SRs) used in the CMS SSDL+MET+b analy-
sis [444]. Note that the number of jets on the first line of the table includes both b-tagged and non-b-tagged jets.
For the predicted background rates and the observed rates in each region, see Table 2 of Ref. [444].

The case mg̃ ≫ mt̃ is more interesting. In this case, the stops are predominantly relativistic, and their decay products are
boosted in the direction of their motion. The two parton showers would typically be merged in a single jet, and the signatures
of their “stoppy” origin are hidden in the substructure of the jet. Recently, much work has been done on exploring observables
sensitive to jet substructure (for a review, see [445]). We will show how some of these techniques can be used to further
enhance the sensitivity of the SSDL search for RPV SUSY.

The rest of the paper is organized as follows. The current bounds on RPV SUSY derived from the recently published CMS
search in the SSDL channel are presented in Section 11.3. Additional cuts that can be used to improve the sensitivity of this
search specifically in the RPV SUSY case are discussed in Section 11.4. Section 11.5 contains brief conclusions and outlook,
while some of the details of the procedure used to recast the CMS search are presented in Appendix 11.A.

11.3 Current Bounds: Recasting the CMS SSDL Search

Both CMS and ATLAS perform searches for the SSDL signature, accompanied by MET and jets (with or without b-tag
requirement), as part of their standard search strategy to look for R-parity conserving (RPC) SUSY with light gluinos and
stops. These analyses have non-trivial sensitivity to the RPV SUSY cascade (11.1) since leptonic top decays contain neutrinos
which provide genuine MET, typically in the few tens of GeV range. While most RPC SUSY searches must impose a MET cut
of at least 100 GeV to suppress SM backgrounds, the SSDL signature by itself is very rare in the SM so that such a strong MET
cut is not required. The CMS collaboration recently published bounds based on a number of signal regions (SRs) with either
no MET cut or sufficiently low MET cuts (30–50 GeV) that are easily exceeded by the top-induced MET [444]. While the
CMS paper interprets the results in terms of RPC SUSY, it is straightforward to “recast” their published data to provide limits
on the RPV case.⁴

The cuts imposed by the CMS analysis are summarized in Table 11.1. The acceptance cuts are pT > 40 GeV, |η| < 2.4 for
jets (both b-tagged and non-b-tagged), and pT > 20 GeV, |η| < 2.4 for electrons and muons. Events with a third lepton are
vetoed if they contain an opposite-sign lepton pair with invariant mass below 12 GeV, or between 76 and 106 GeV, to avoid
contamination from Z decays. For more details on the CMS analysis, see Ref. [444].

In all nine signal regions, the data is consistent with the SM expectation, so an upper bound on the number of signal events
can be set. We simulated the process pp→ g̃g̃, followed by the decays (11.1) and the leptonic top decay on both sides, using
Pythia 8.162 [446], for a large set of (mg̃,mt̃) points. The leading order (LO) cross section provided by Pythia is
multiplied by the NLO K-factor computed with Prospino 2.1 [447] for normalization. To compute the efficiency of the
CMS cuts on the signal, we essentially follow the procedure described in the CMS report [444] and its
predecessors [444, 448]. For details, see Appendix 11.A. The only non-trivial deviation from the CMS prescriptions concerns
the treatment of lepton selection efficiencies. These have two factors: identification (ID) efficiency and the efficiency of the
lepton isolation cut. CMS only published the combined lepton selection efficiency for a benchmark RPC SUSY point

⁴Previous recasts of the LHCSSDL searches in terms of RPV SUSY have appeared in [432,435]. These searches use smaller
data sets than the one considered here.
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Figure 11.3.1: 95% CL exclusion of the RPV SUSY simplified model parameter space, based on the 4 most sen-
sitive search regions (SRs) from the CMS SSDL+MET+b search [444] with 10.5 fb−1 of data collected at the 8
TeV LHC.

LM9 [449]. However, the RPV SUSY signal is expected to have a significantly different lepton isolation efficiency: there is
more hadronic activity, and, in some parts of the parameter space, the tops are boosted, resulting in a b-jet in close proximity
to the lepton. To take this into account, we estimate the lepton isolation cut efficiency from our signal MC, at each (mg̃,mt̃)
point, and multiply by the lepton ID efficiency estimated by a separate simulation of the LM9 RPC SUSY signal. The cross
section, acceptance and efficiency are then used to compute the number of expected signal events at each (mg̃,mt̃) point.
Comparing this number with the background prediction and data provided by CMS and using the CLs method [450] yields
the expected 95% confidence level (CL) exclusion.

The results of this analysis are summarized by Figure 11.3.1, which shows the 95% CL exclusion contours from the four
most sensitive signal regions. We conclude that the current bound on the gluino mass is about 800 GeV. The bound is
approximately independent of the stop mass as long as an on-shell decay g̃→ t̃t is kinematically allowed. Note that this bound
is somewhat stronger than the bound recently obtained in Ref. [435] by recasting the ATLAS SSDL+MET+j search [451].
The difference is especially pronounced in the region of relatively small gluino/stop mass splitting, where the ATLAS analysis
loses sensitivity due to the large MET required (≥ 150 GeV). The remaining differences are accounted for by the slightly
higher integrated luminosity of the CMS search, as well as the additional requirement of b-tagged jets imposed by CMS.

228



0 1 2 3 4 5
0

500

1000

1500

2000
Distribution of DR

200

400
600

800

Figure 11.4.1: Lab-frame angular separation between the two quarks from a stop decay. The stops are produced
in the gluino cascade (11.1), following gluino pair-production at a 14 TeV LHC. We assume mg̃ = 1.2 TeV, and
vary the stop mass: mt̃ = 200, 400, 600 and 800 GeV distributions are shown in red, orange, green and blue,
respectively. The distributions were calculated using MadGraph 5 [452].

11.4 Future Searches: Optimizing for the RPV

While the current SSDL+MET+b searches already provide meaningful bounds on RPV SUSY, they are clearly not optimized
for this model. In this section, we suggest ways to enhance their sensitivity to the RPV model, and demonstrate the
improvements with a Monte Carlo analysis.

The key observation is that in a large section of the available parameter space, the stops produced in the gluino decays are
relativistic. The stop boost in the gluino rest frame is given by

γ =
1√

1− β2
=

m2
g̃ + m2

t̃ − m2
t

2mg̃mt̃
. (11.2)

so that stops are relativistic when mg̃ ≫ mt̃. For example, mg̃ = 1.2 TeV and mt̃ = 200 GeV yields β ≈ 0.9. Since gluinos
themselves are mostly produced with non-relativistic speeds in the lab frame, such stops are typically also relativistic in the lab
frame. In this regime, the two quarks produced in the stop decay are boosted in the same direction and have a small angular
separation as can be seen in Figure 11.4.1. The showers produced by the neighboring quarks tend to be merged into a single
jet. Such “stoppy” jets can be distinguished from regular QCD jets, as we will discuss in detail below, giving an extra handle
that can be used to suppress the background and improve the search reach.

To assess the potential improvement, we performed a Monte Carlo study for the 14 TeV LHC. For this study, we simulated
the signal, pp→ g̃g̃, using Pythia 8.162 [446], for a large set of (mg̃,mt̃) points. The leading order (LO) cross section
provided by Pythia is multiplied by the NLO K-factor for normalization. Gluino, top and W decays are also treated in
Pythia, as are QCD initial radiation, showering and hadronization. Jet reconstruction is modeled with FastJet [453] using
the anti-kT clustering algorithm. The dominant irreducible backgrounds, t̄tW and t̄tZ, were simulated using the same tools.
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Figure 11.4.2: Estimated 95% CL expected exclusion (left panel) and 5σ expected discovery (right panel) reach
in the RPV SUSY simplified model parameter space at the 14 TeV LHC with 100 fb−1. Red/green lines: reach of
the analysis identical to the one in Ref. [444], for signal regions SR6/SR8. Black/gray: reach of the analysis with
the SR8 cuts and an additional requirement of one/two jets with Mj > 175 GeV. In the gray shaded region, the
decay g̃ → t̃t is kinematically forbidden.

The cross sections for these processes are also normalized with NLO K-factors [454, 455].
To set a benchmark point against which improvements can be judged, we estimated the reach of the searches currently

performed by CMS [444] at the 14 TeV LHC with Lint = 100 fb−1. For this estimate, we implemented the cuts corresponding
to the CMS signal regions listed in Table 11.1 (with the exception of SR7, which would require a separate analysis due to an
additional b-tagged jet requirement) on both signal and background samples. We modeled b-tagging by applying a
pT-dependent tagging efficiency for the CSVM tagger [456] to all the jets that can be traced back to a b-hadron. The cut
efficiencies for the signal and the background are listed in Table 11.1. We then estimated the instrumental background. The
two dominant sources are “fake leptons” from sources such as heavy-flavor decays and misidentified hadrons, and “charge
flips”, events with opposite-sign leptons where one of the charges is mismeasured. The ratio of the instrumental background to
the irreducible component reported in Ref. [444] is roughly between 1:1 and 2:1, depending on the signal region. This
indicates that instrumental backgrounds will play an important role at 14 TeV as well. Unfortunately, detailed modeling of
these backgrounds requires either detector simulation or data-based techniques. However, a rough estimate may be obtained
as follows. Since the physical process primarily responsible for the instrumental backgrounds is top pair-production⁵, it is
reasonable to expect that the rates scale approximately with the total t̄t cross section when the collision energy is increased
from 8 to 14 TeV. Using this scaling and the instrumental background rates in various signal regions quoted in Ref. [444], we
obtained corresponding estimates at 14 TeV. We found that the irreducible and instrumental background components scale by
similar factors when going to 14 TeV: for example, our estimate of the instrumental/irreducible ratio at 14 TeV for the signal
region SR6 is 0.86, while for SR8 it is 1.62, quite close to the ratios at 8 TeV.

Combining the irreducible and instrumental backgrounds, we computed the exclusion levels expected under the

⁵We are grateful to Frank Wuerthwein for clarifying this point.
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process σ(total) Eff(SR8) σ(SR8) Eff(1HMJ) σ (SR8+1HMJ) Eff(2HMJ) σ (SR8+2HMJ)
signal (1200, 200) 113 0.41 0.46 86 0.40 40 0.18

(1200, 500) 114 0.44 0.50 64 0.32 24 0.12
(1200, 800) 114 0.45 0.52 70 0.36 31 0.16
(1300, 200) 63 0.36 0.23 89 0.20 40 0.09
(1300, 500) 63 0.48 0.30 71 0.22 22 0.07
(1300, 800) 63 0.45 0.28 75 0.21 31 0.09
(1300, 1100) 62 0.30 0.19 81 0.15 43 0.08
(1400, 200) 35 0.39 0.14 95 0.13 48 0.07
(1400, 500) 35 0.44 0.15 73 0.11 27 0.04
(1400, 800) 35 0.43 0.15 78 0.12 34 0.05
(1400, 1000) 35 0.45 0.16 81 0.13 43 0.07
(1400, 1200) 35 0.29 0.1 80 0.08 40 0.04

background t̄tW 590 0.07 0.38 4.7 0.02 0.3 0.001
t̄tZ 910 0.03 0.30 7.9 0.02 0.6 0.002

Table 11.1: Cross sections (in fb) and efficiencies (in %) of signal and background processes, at the 14 TeV LHC.
The signal points are labeled by (mg̃,mt̃), both in GeV. The selection cuts are labeled as follows: SR8 refers to the
cuts imposed by the CMS analysis [444] in signal region 8 (see Table 11.1); 1HMJ means requiring at least one
“high-mass” jet (Mj > 175 GeV); similarly, 2HMJ requires at least 2 jets with Mj > 175 GeV. The 1HMJ and
2HMJ cuts are applied to the events that pass all SR8 cuts.

assumption that the data exactly matches the background prediction, as well as the discovery reach defined by requiring at
least a 5σ difference between the signal+background and background-only predictions. The estimated exclusion and discovery
reach contours are shown in Figure 11.4.2 for the two most sensitive signal regions: SR6 (red contour) and SR8 (green
contour).

To identify the merged jets from stop decays, we first reclustered the samples, setting the jet opening angle to ΔR = 1.0, as
opposed to ΔR = 0.5 used by the CMS analysis. Such “fat” jets are already being used by experimental analyses involving jet
substructure (see, for example, Refs. [457, 457]). We then computed the invariant mass Mj of each jet. The distributions of
the largest Mj in each event, for both the signal and the (irreducible) background samples, are shown in Figure 11.4.3. It is
obvious that Mmax

j is an excellent signal/background discriminator. For the case mg̃ ≫ mt̃, illustrated in the left panel of the
figure, the reason is obvious: the high-mass jets in the signal are due to boosted stop decays, and their masses peak around mt̃.
However, somewhat more surprisingly, this discriminator continues to work well in the regime mg̃ ∼ mt̃, as illustrated by the
right panel of the figure. The reason for this is simply the large jet multiplicity in the signal, which at parton level has 6 quarks
in the final state. In this situation, two independent parton showers (from different stops, or from a stop and a top) often get
accidentally merged into a single jet which is more likely to have a large invariant mass than a single-parton QCD jet. (This
phenomenon was previously noticed in [458].) As a result, requiring massive jet(s) improves the reach of the search
throughout the parameter space, and not just for large mg̃/mt̃.

The improvement of the reach with the jet mass cut is shown by the black and gray lines in Figure 11.4.2. This analysis
imposes all of the SR8 cuts with the additional requirement of at least one or two high-mass jets with Mj > 175 GeV. The
efficiencies of these cuts, and cross sections after all cuts, are listed in Table 11.1. For the reach estimate, we assumed that the
efficiency of the jet invariant mass cuts on the instrumental and irreducible backgrounds are the same (which seems
reasonable since both contain QCD jets of similar energies). We found that gluinos up to 1.4− 1.45 TeV can be excluded at the
95%CL, while gluinos up to 1.3− 1.35 TeV can be discovered at the 5σ level at the 14 TeV LHCwith 100fb−1. The dependence
of the reach on the stop mass is quite weak, especially when the analyses with≥ 1 and≥ 2 high-mass jets are combined.

An even stronger separation of signal and background can be achieved by noticing that the high-mass jets in the
background are primarily due to boosted, fully hadronic tops. Such jets have three hard partons. In contrast, the signal jets
typically have two hard partons from a two-body stop decay. To exploit this, we used the N-subjettiness technique proposed
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Figure 11.4.3: Distributions of the largest jet invariant mass Mmax
j , in the signal (blue) and irreducible back-

ground (red) events passing SR8 cuts at the 14 TeV LHC. The signal is simulated for (mg̃,mt̃) = (1200, 200)GeV
(left panel) and (1200, 800)GeV (right panel). The background includes the SM t̄tW and t̄tZ processes.

by Thaler and Van Tilburg [459]. In this approach, observables τN are defined with N = 1, 2, . . .. A low value of the ratio
τN/τN−1 indicates that the jet likely has an N-pronged substructure. For example, the distributions of jets with Mj > 175 GeV
in τ2/τ1 and τ3/τ2 observables are shown in Figure 11.4.4, where in the signal simulation we assumed (mg̃,mt̃) = (1400, 200)
GeV, and used the onepass_kt_axes minimization scheme and β = 1.1. As expected, low values of τ2/τ1 are favored in the
signal, while low values of τ3/τ2 are favored in the background. It should be noted that with the 100 fb−1 data set, the reach of
the jet-mass based searches shown in Figure 11.4.2 is already statistics-limited, so no further improvement can be achieved by
cutting on the N-subjettiness observables. However, they can be useful for larger data sets, or as a part of more globally
optimized set of cuts.

Since no detector simulation could be performed for this study, our instrumental background estimate is clearly very crude
and has a large uncertainty. To illustrate how this uncertainty affects the reach of the proposed search, we define

ζ =
Total BG Rate

Irreducible BG Rate
, (11.3)

where both rates include all the cuts imposed in a particular analysis. Figure 11.4.5 shows the variation of the reach for values
of ζ between 1 and 10, for the same analysis as in Figure 11.4.2 (SR8 plus≥ 1 or≥ 2 jets with Mj > 175 GeV). The reach
estimates are relatively robust with respect to the uncertainty in the instrumental background estimate, due to a strong
dependence of the signal rates on mg̃.

11.5 Discussion and Conclusions

The main results of this paper can be summarized as follows:

• The current CMS searches for anomalous events with SSDL and b-jets place a lower bound of about 800 GeV on the
gluino mass in the gluino-stop simplified model of RPV/MFV SUSY. The bound is only weakly sensitive to the stop
mass, as long as an on-shell decay g̃→ t̃t is kinematically allowed.

• A search identical to the current CMS search, implemented at the 14 TeV LHC with 100 fb−1 of data, is estimated to
have the sensitivity to exclude gluino masses up to about 1.3 TeV at the 95% CL, and a 5σ discovery reach of about 1.2
TeV. Again, these are largely insensitive to the stop mass.
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• An addition of a cut on the jet invariant mass improves the 95% CL exclusion reach and the 5σ discovery reach to
approximately 1.45 TeV and 1.35 TeV, respectively. While the improvement in terms of the gluino mass is only about
10% in both cases, it is still very significant since the gluino cross section drops very rapidly with mass.

While the motivation for our analysis comes primarily from the MFV SUSY model [128], the results apply quite generally
to RPV models with a stop LSP, decaying via a UDD-type operator. (See, for example, Ref. [460] for a recent discussion of
such models.) A non-MFV flavor structure of the stop decay operator may result in fewer b-jets, but since top quarks still
provide two genuine b-jets per event, even in this case the efficiencies of the cuts should not be strongly degraded.

For our signature to work, it is crucial that the gluino be a Majorana particle. If the gluino is Dirac, no SSDL signature is
possible, and other handles must be used to suppress the SM background. However, high-mass jets from stop decays are still
present in this situation, and can provide a useful discriminant [435]. It would be interesting to see if, in addition to stop jets,
massive jets formed by the boosted SM tops produced from the same gluino decays can be useful in this context. (The utility
of boosted top-jets in searching for the gluino-stop cascade decays in R-parity conserving SUSY has been pointed out
in [433].) We leave this possibility for future study.

11.A Details of the Recasting Procedure

To recast the CMS SSDL+MET+b analysis in terms of the RPV SUSY model, we follow closely the instructions provided by
CMS in [444] and its predecessors [444, 448]. The only significant difference is in the treatment of leptons. The instructions
recommend analyzing leptons at parton level, by taking the leptons that pass the kinematic cuts and applying the selection
efficiencies given in Section 7 of [444]. These selection efficiencies, which account for lepton identification efficiencies,
isolation cuts, and detector effects, had been computed from Monte Carlo studies of simplified model A1 (pp→ g̃g̃,
g̃→ ttχ̃0) at the RPC SUSY benchmark point LM9. However, because the leptons in the RPV SUSY signal process may come
from boosted tops, there is extra hadronic activity near the leptons, and the LM9 selection efficiencies do not properly model
the isolation cuts for the RPV signal. Therefore, we extract the isolation cut efficiencies for RPV from our signal MC. To do so,
we impose a lepton isolation cut on the hadronized signal MC events. Following [448], Iso(ℓ̂) is defined as a scalar sum of the
lepton pT’s and photon and hadron ET’s within a cone of size ΔR ≡

√
(Δη)2 + (Δφ)2 < 0.3 about the lepton, not including
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Figure 11.4.5: Estimated discovery reach in the RPV SUSY simplified model parameter space, at the 14 TeV
LHC with 100 fb−1 of data, for a range of assumptions concerning the instrumental background. The selection
cuts are SR8, plus≥ 1 (left) or≥ 2 (right) jets with Mj > 175 GeV. The value ζ = 2.62 is the estimate obtained
by rescaling from 8 TeV and used in Figure 11.4.2. In the gray shaded region, the decay g̃ → t̃t is kinematically
forbidden.

the pT of the lepton itself:

Iso(ℓ̂) ≡
∑

ΔR<0.3 pT(ℓ ̸= ℓ̂) +
∑

ΔR<0.3 ET(γ) +
∑

ΔR<0.3 ET(h)

pT(ℓ̂)
. (11.4)

To pass the isolation cut, the lepton must have have Iso(ℓ̂) < 0.1. On top of the isolation cut, we impose the identification
efficiency, which we assume to be independent of pT, η, and the physical process: 73% for electrons and 84% for muons. The
identification efficiency for each lepton species is extracted by simulating the A1 LM9 benchmark model at hadron level,
computing the lepton isolation cut efficiency Eff(Iso) for this sample using (11.4), and dividing the total selection efficiency
reported by CMS by Eff(Iso).

The rest of the lepton analysis emulates [444] as closely as possible. From the set of selected leptons, we choose the “SSDL
pair”: the same-sign pair with the highest pT and a pair invariant mass of at least 8 GeV. We then apply the dilepton trigger
efficiency: 96% for ee, 93% for eμ, and 88% for μμ. We veto events where a third lepton (with pT > 10 GeV, the normal |η| cuts,
and Iso(3) < 0.2) forms an opposite-sign same-flavor pair with one of the SSDL pair leptons, with a pair invariant mass
between 76 and 106 GeV. We also veto events where a third lepton (with pT > 5 GeV, the normal |η| cuts, and Iso(3) < 0.2)
forms an opposite-sign same-flavor pair with one of the SSDL pair leptons, with a pair invariant mass below 12 GeV.

The remaining physics objects are handled at parton level, following the instructions. The number of jets is a count of
colored partons passing the kinematic cuts: pT > 40 GeV and |η| < 2.4. To count b-tagged jets, we apply a pT-dependent
tagging efficiency, parameterized in Section 7 of [444], to all the b quarks that pass the jet kinematic cuts. To implement the
cuts on HT and /ET, we compute “generator-level” quantities gen-HT and gen-/ET, and use the turn-on efficiency curves
parameterized in Section 7 of [448] to get efficiencies for the cuts. gen-HT is the scalar sum of pT’s of the jets that pass the
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kinematic cuts, and gen-/ET is the magnitude of the vector sum of the pT’s of non-interacting final-state particles.
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Unlike everybody else, for us, one plus one isn’t one. For us one plus
one is more like four.

Yuval Grossman, December 2011

A
Conventions

One of the subtle difficulties in particle physics is keeping up with the plethora of notational and mathematical
conventions that one must pick.

A.1 Units and signs

As civilized particle physicists, we use natural units where

c = ℏ = 1. (A.1)

Typically dimensionful quantities will be expressed in GeV or TeV. Cross sections are expressed in pico- and femtobarns
which have the property:

pb = 103 fb = 10−36 cm2 = 2.57× 10−9 GeV−2. (A.2)

We use the ‘mostly-minus’ (“West coast” or particle physicist’s) metric,

ημν =


1
−1

−1
−1

 , (A.3)

where the Minkowski norm of a physical four-momentum is positive semidefinite.

In 4D, we note that the γ5 matrix is defined γ5
4D = iγ0γ1γ2γ3 so that the chiral projection operators are (1± γ5)/2 In 5D,

the natural choice of γ5 obeys {γ5, γ5} = η55 = −1 so that γ5 = −iγ5
4D.
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A.2 Indices and character ornaments

We will tend to adhere to the following conventions for indices and ornamentation, though occasionally we may sacrifice
these conventions in favor of simplicity.

• Matrices with a hat, m̂, are diagonal in that basis.

• Lower case indices from the second quarter of the Roman alphabet (e.g. i, j, k, ℓ,m) refer to flavor indices.

• Lower case indices from the middle of the Greek alphabet (e.g. μ, ν, ρ, σ) refer to vectorial Minkowski space indices

• Lower case indices from the beginning of the Greek alphabet (e.g. α, β) typically refer to spinor indices. Dotted
indices are used to distinguish 4D spinor representations.

• Capital Roman letters from the middle of the Roman alphabet, M,N, P,Q

• Bold face quantities are spatial three-vectors (v) or matrices (M). Their identity should be clear from context.

Analogous to the usual slash notation for four-component objects, /p = pμγμ , we define slashes for two-component
spinors: /v = vμσμ , /v = vμσμ .

A.3 Bars, daggers, dots, and all that

See Appendix 7.B–7.B for a pedagogical review of the Poincaré algebra that highlights our conventions for bars, daggers, dots,
and all that.
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Illustrator. Plots were prepared using the computer
algebra systems Mathematica and Matlab.
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