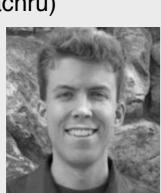
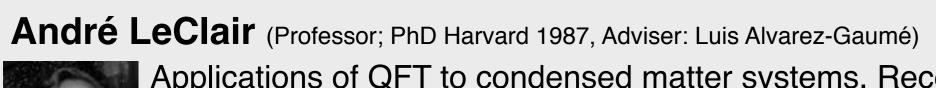

Cornell High Energy Theory Group

Department of Physics, Institute for High Energy Phenomenology Cornell Laboratory for Accelerator-based Sciences and Education


Faculty and Postdocs


Csaba Csáki (Associate Professor; PhD MIT 1997, Adviser: Lisa Randall) Model building beyond the Standard Model. Recent work with gradate students includes the flavor structure Randall-Sundrum models, distinguishing models of new physics at colliders, and metastable supersymmetry breaking. Current students: Johannes Heinonen (2010 Chicago; McCormick Fellow), David Curtin (2011), Flip Tanedo.

Yuval Grossman (Associate Professor; PhD Weizmann 1997, Adviser: Yosef Nir) Model building and flavor physics beyond the Standard Model. Recent work with graduate students includes lepton flavor symmetries, leptogenesis and composite neutrinos, and spin determination at hadron colliders. Current students: Itay Nachshon, Yuhsin Tsai, Josh Berger.

Liam McAllister (Assistant Professor; PhD Stanford 2005, Adviser: Shamit Kachru) String theory and string cosmology. Recent work with graduate students includes axion monodromy inflation and the CMB, geometric transitions, and AdS/CFT applied to condensed matter. Current students: Gang Xu (2011), Sohang Gandhi, David Marsh, Ben Heidenreich

Applications of QFT to condensed matter systems. Recent work with graduate students includes quantum gases, high Tc superconductivity, and symplectic fermion models. Current students: Pye-Ton How, Dean Robinson

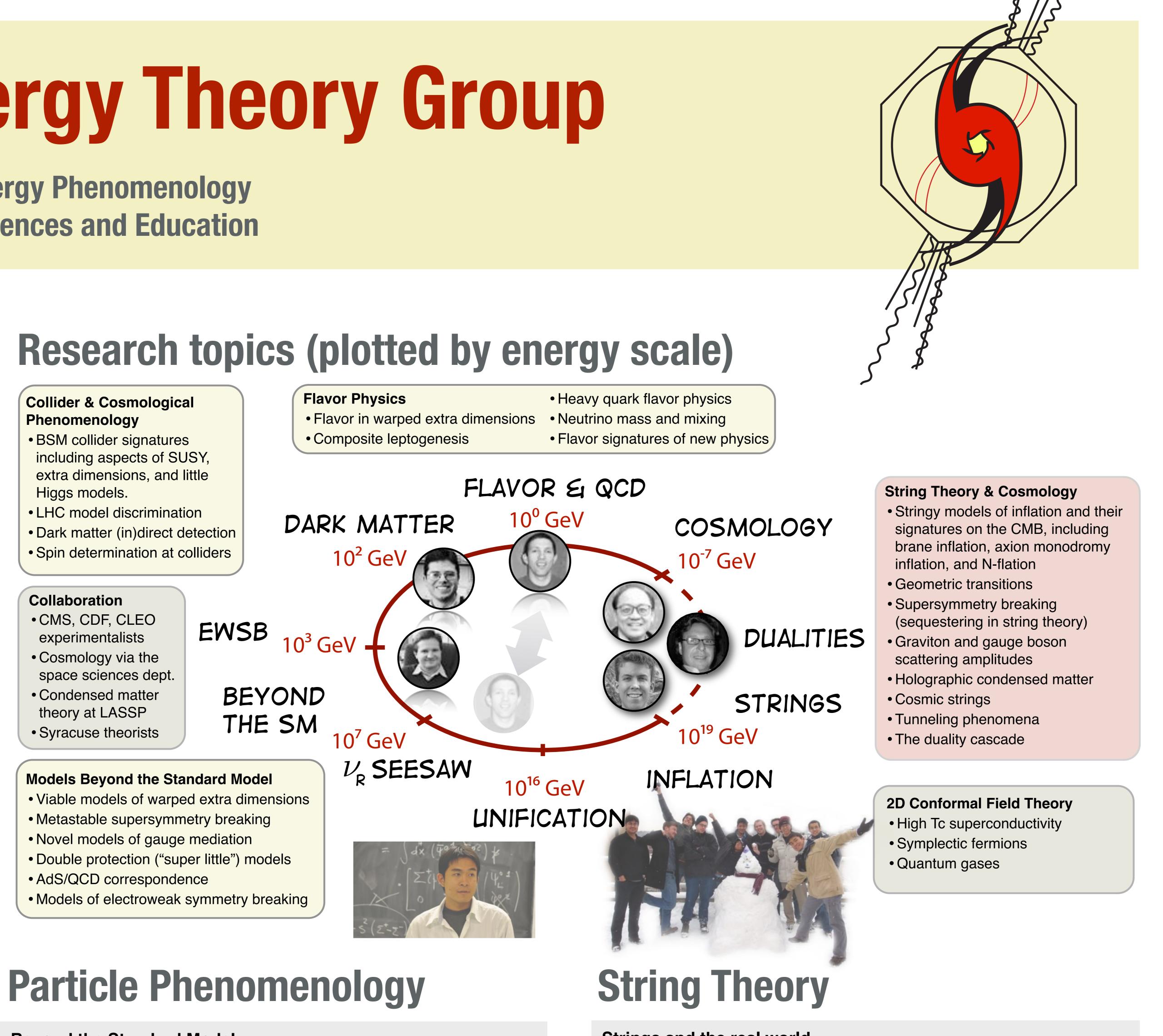
Maxim Perelstein (Associate Professor; PhD Stanford 2000, Adviser: Lance Dixon) Models of electroweak symmetry breaking and their experimental phenomenology, cosmological applications of particle physics. 138 Recent work with graduate students includes gamma ray signals of dark matter, model discrimination at the LHC, little Higgs models, and tests of SUSY sum rules at the LHC. Current student: Bibhushan Shakya

String theory and string cosmology. Recent work with graduate students includes gluon/graviton scattering amplitudes, resonant tunneling in QFT, multi-field inflation, brane inflation. Current students: Jiajun Xu (2010 Wisconsin), Dan Wohns (2011), Yang Zhang

Toichiro Kinoshita (Professor Emeritus; PhD Tokyo 1952; Sakurai Prize 2001) A winner of the Sakurai prize and member of the National Academy of Sciences, Tom Kinoshita is still active in his research involving high-loop QED corrections to the anomalous magnetic moment of the electron.

Peter Lepage (Professor, Dean of College of Arts & Sciences ; PhD Stanford 1978) Currently the Dean of the College of Arts & Sciences, Peter Lepage has made major contributions to lattice QCD.

Kurt Gottfried (Professor Emeritus; PhD MIT 1955) In addition to his work on elementary particle physics, Kurt Gottfried is the founder of the Union of Concerned Scientists.


Tung-Mow Yan (Professor Emeritus; PhD Harvard 1968) Tung-Mow Yan co-authored a well-known quantum mechanics text with Kurt Gottfried and is known for his work in heavy quark physics.

Brando Bellazzini (Postdoc: 2008-2011; PhD INFN Pisa; Adviser: Riccardo Barbieri) 'Double protection' models, buried and charming Higgs models.

Monika Blanke (Postdoc: 2008-2011; PhD TU Munich 2009; Adviser: Andrzej Buras) Flavor physics, Randall-Sundrum models, SUSY sum rules at colliders.

Enrico Pajer (Postdoc: 2009-2012; PhD Munich 2008; Adviser: Dieter Lüst & Michael Haack) Non-Gaussianity in the CMB, brane inflation models.

Timm Wrase (Postdoc 2010-2013; PhD Texas 2008) Flux compactifications, dualities. Arriving Fall 2010.

Beyond the Standard Model

Our group has a broad range of expertise in particle phenomenology from topdown model building to signatures and model discrimination at experiments (including colliders, flavor factories, and cosmology). Our students have a chance to develop a unique background in particle theory that will prepare them to work at the frontier of theoretical and experimental developments in the next decade.

Working closely with experiments

Members of the group work closely with local experimentalists who work on the Tevatron (CDF) and LHC (CMS). In the past this has included theory graduate students developing computer tools to assist the simulation of new physics (BRIDGE), and regular meetings to discuss topics in collider phenomenology of common interest. Past graduate students have been able to take advantage of the availability of particle experimentalists to develop new model building ideas (e.g. General Gauge Mediation).

Collaborators

Particle theory faculty, postdocs, and students from nearby Syracuse University regularly visit and work closely with our group. Our faculty work with a number of theorists from across the country and help students develop their own network of collaborators.

Events

Our faculty have also recently had key roles in organizing several recent conferences and workshops, including the Cornell-Eötvös workshop in 2006, the KITP "Physics of the LHC" workshop in 2008, the Aspen Center for Physics "particle physics" 2009 winter workshop, and the Theoretical Advanced Studies Institute 2009. Students often accompany faculty to these events.

Students also organize a regular journal club to keep abreast of the latest papers and to review key topics in particle physics. Each semester's journal club culminates in a week-long student workshop where members are able to collaborate in an in-depth learning environment.

Strings and the real world

The string theory group, led by Henry Tye and Liam McAllister, focuses on how string theory -- the best candidate for a theory of quantum gravity -- could affect the world we see around us today.

String theory and cosmology

One such avenue is through cosmology. Despite the fact that cosmology typically deals with long distances and low energies, there are epochs in the history of the universe that could provide evidence for string theory. In particular, the period of exponentially accelerated expansion in the early universe, called cosmological inflation, was very sensitive to quantum gravity effects. In turn, these effects left an imprint on the cosmic microwave background (CMB) radiation observable today through experiments like WMAP.

The group deals with all aspects of this problem, from constructing viable string theoretical models of inflation (brane inflation, axion monodromy inflation) to predicting the exact patterns that should be visible in the CMB.

The fact that the extra dimensions in string theory can be compactified in many different ways leads to many different vacuum states in the theory. This has been explored phenomenologically to see if tunneling in the landscape can give inflation and explain the smallness of the present day cosmological constant

Applications of string theory

The group also does research in other areas where the structure of string theory can be applied as a tool in different areas. This includes novel realizations of supersymmetry breaking within string theory (the observable collider spectrum of such models) as well as the use of the AdS/CFT correspondence to understand strongly-correlated condensed matter systems. Another ongoing investigation is the relation of graviton and gauge boson amplitudes using methods borrowed from heterotic string theory.

Grad Culture and Alumni

Training to become an independent researcher. Our group focuses on developing its students to be prepared for an academic career in high energy physics.

- Community. Students play an active role in the theory group, participating in and helping to organize group events.
- Working with faculty. Students typically work closely with their adviser for their first project but are encouraged to take advantage of the breadth of research specialties in the group by working with other faculty and postdocs.
- Mentoring. In addition to faculty and postdocs, senior graduate students provide mentorship and advice on how to navigate one's academic career.
- Environment. We have a lively graduate research environment where students frequently discuss physics over chalkboards and collaborate with one another. Students also typically organize social events within the group.
- Preparation for a postdoc. Our goal is for our students to develop into independent researchers capable of initiating their own projects. The group provides a support structure for students to make this transition over the course of their PhDs.
- Collaboration. The group sets its students up to be part of the larger theoretical physics research community. Students join seminar speakers for lunch and dinner and faculty help students develop their own collaborations.
- Coursework. Beyond the normal QFT and Standard Model courses, a special topics course is offered every 1-2 semesters. Past topics include: string theory, modern applications of string theory, beyond the Standard Model, supersymmetry, effective field theory, flavor physics, cosmology, and quantum field theory in curved spacetime.
- Journal clubs and group dinners. Beyond coursework, students work closely together to learn new topics and keep up with current literature. Examples include student seminar-dinners, a BSM journal club, and student workshops in winter and summer.
- **Teaching**. Theory students generally have RA positions through the summers and one RA-ship from the group. Teaching loads are roughly 20 hours per week during the year. Many students also have support from the university or external sources (e.g. NSF fellowships).
- Travel support. Students have funding from the group and university to travel to conferences or summer schools to present their work.
- New office space. The theory group will be moving to the new Physical Sciences building in spring 2011.

Recent Alumni

- 2002 Richard Hill (Lepage; faculty, University of Chicago)
- 2005 Jay Hubisz (Csaki; faculty, Syracuse)
- 2006 Seung Lee (Neubert; postdoc, Weizmann)
- 2006 Patrick Meade (Csaki; faculty, Stony Brook)
- 2006 Gil Paz (Neubert; postdoc, IAS Princeton) • 2006 Sarah Shandera (Tye; postdoc, Perimeter Institute)
- 2008 Andrew Noble (Perelstein; postdoc in Ecology, University of Maryland)
- 2008 Matt Reece (Csaki; postdoc, Princeton)
- 2009 Christian Spethmann (Perelstein; postdoc, Boston University)
- 2009 Andrew Spray (Perelstein; postdoc, TRIUMF, Vancouver)

