Boxy Spectra Kinematics

by FLIP TANEDO

14 December 2013 Revised 18 Dec (included b mass in smearing)

This is just a quick exercise in relativistic kinematics. Suppose dark matter annihilates through an *s*-channel mediator, φ . We could look for the spectra of photons coming from this decay. Suppose that either φ directly decays into photons or that we know the spectrum dN_{γ}/dE_{γ} of secondary photons in the φ rest frame.

Simple case: φ goes directly to photons

In the φ rest frame, each final state photon has four-momenta $p_i = (|\mathbf{p}_i|, \mathbf{p}_i)$. Now suppose that in the lab frame, φ is boosted. Choose our coordinate system such that the boost is in the x direction. The boost matrix is:

$$\Lambda = \begin{pmatrix} \gamma & -\gamma\beta & \\ -\gamma\beta & \gamma & \\ & & 1 \\ & & & 1 \end{pmatrix}$$

The value of β and $\gamma = (1 - \beta^2)^{-1/2}$ is fixed by the masses of the φ and its parent. Suppose $\chi \chi \to \varphi \varphi$ with the φ on-shell and the χ essentially at rest. Then the φ has four-momentum (m_{χ}, q) with $m_{\varphi}^2 = m_{\chi}^2 - |q|^2$. This gives

$$\begin{split} \gamma &= m_{\chi}/m_{\varphi} \\ \beta &= \sqrt{1-\gamma^{-2}} \\ &= \sqrt{1-\frac{m_{\varphi}^2}{m_{\chi}^2}} \end{split}$$

Boosting the φ decay products gives $p_i \rightarrow p'_i$,

$$p_i' = \begin{pmatrix} \gamma | \boldsymbol{p}_i| - \gamma \beta p_i^x \\ -\gamma \beta | \boldsymbol{p}_i| + \gamma p_i^x \\ p^y \\ p^z \end{pmatrix}.$$

In spherical coordinates with the poles aligned along the x-axis, $p^x = |\mathbf{p}_i| \cos \theta$, so that the energy is

$$E'_i = \gamma |\mathbf{p}_i| (1 - \beta \cos \theta).$$

By isotropy of the annihilations, θ can take any value. There is thus a box-like spectrum. For $\beta = 1$ this is a range of energies from zero to $2\gamma |\mathbf{p}_i|$. For $\beta \ll 1$ this is still a sharp peak at $|\mathbf{p}_i|$.

Don't over-think this: you might think that we need to weight each value of θ by sin θ for polar coordinates since there's more volume for $|\theta| \approx \pi$ than $\theta \approx 0$. This is true relative to a specific axis, but we are implicitly averaging over the boost directions due to the isotropy of $\chi\chi$ collisions, so this difference washes out.

Normalizing integrated functions

Now we get to the business of normalization. Write the photon distribution as

$$\frac{\mathrm{dN}_{\gamma}}{\mathrm{dE}_{\gamma}} = f(E_b, E_{\gamma}) \ \equiv \ g(E_b)h(E_{\gamma})$$

For monochromatic bs, e.g. in $\chi\chi \rightarrow bb$, the b spectrum is

$$g(E_b) = \delta\left(E_b - \frac{m_{\chi}}{2}\right) dE_b.$$

For the case of $\chi\chi \to \varphi\varphi$, with $\varphi \to bb$ on shell, we have a box-like spectrum where there is equal probability for $E_b \in [\gamma E_0(1 - \beta), \gamma E_0(1 + \beta)]$, where $E_0 = m_{\chi}/2$, the rest frame photon energy. Normalizing this gives

$$g(E_b)dE_b = \frac{2}{\gamma E_0 2\beta} dE_b$$

when E_b is in the above specified range, and 0 otherwise. Note the factor of 2 because there are two bs per χ .

Realistic case: $\varphi \rightarrow bb$

I was sloppy above. The actual direct decay products of the φ are on-shell b which in turn shower into photons. The boost is the same, but now instead of boosting a light-like momentum, one has to boost (E_b, \mathbf{p}_b) with $E_b = m_{\varphi}/2$ and $|\mathbf{p}_b|^2 = E_b^2 - m_b^2$ so that the b energy in the φ frame is

$$E_b' = \gamma E_b - \gamma \beta (E_b^2 - m_b^2)^{1/2} \cos \theta$$

So that the spectrum of E'_b ranges from

$$\frac{\gamma m_{\varphi}}{2} \left(1 - \beta \sqrt{1 - \left(\frac{2m_b}{m_{\varphi}}\right)^2} \right) - \frac{\gamma m_{\varphi}}{2} \left(1 + \beta \sqrt{1 - \left(\frac{2m_b}{m_{\varphi}}\right)^2} \right).$$

The normalization is

$$g(E_b')dE_b' = \frac{2}{\gamma E_0 2\beta \sqrt{1 - (2m_b/m_{\varphi})^2}}$$

where the factor of 2 again comes from the 'two bs per χ ' observation. As a reminder,

$$E_0 = \frac{m_{\varphi}}{2}$$

$$\gamma = \frac{m_{\chi}}{m_{\varphi}}$$

$$\beta = \sqrt{1 - \gamma^{-2}}.$$