Logs and spectra

By Flip

23 Dec 2013

So PPPC gives us a function for

$$
\log _{10} \frac{d N}{d \log _{10} x}=\operatorname{dlNdlxIEW}\left[m_{\mathrm{DM}}, x\right]
$$

where $x=\mathrm{KE} / m_{\mathrm{DM}}$. For photons this is just $x=E / m_{\mathrm{DM}}$. Let's sort out what this means in terms of $\mathrm{dN} / \mathrm{dE}$.

$$
d \ln N=\frac{1}{N} d N
$$

Then recall that

$$
\begin{aligned}
\log _{b} x & =\frac{\log _{a} x}{\log _{a} b} \\
\ln x & =\frac{\log _{10} x}{\log _{10} e} \\
d \log _{10} N & =\frac{d \ln N}{\ln 10} \\
& =\frac{1}{\ln 10} \frac{1}{N} d N
\end{aligned}
$$

For the denominator:

$$
\begin{aligned}
d \log _{10} x & =\frac{1}{\ln 10} \frac{1}{x} d x \\
& =\frac{1}{\ln 10} \frac{m}{E_{\gamma}} d \frac{E_{\gamma}}{m} \\
& =\frac{1}{\ln 10} \frac{1}{E_{\gamma}} d E_{\gamma}
\end{aligned}
$$

