THE BIRDS & THE BS in a Warped Extra dimension

The $b \rightarrow s \gamma$ penguin in Randall-Sundrum

Submitted to JHEP [1203.6650]

In collaboration with M. Blanke, B. Shakya, Y. Tsai PHENO 2012 7 May 2012

The Birds & The Bs in RS

The next 13 minutes of your life

Warped flavor at loop level 5D calculation Flavor phenomenology Theory remarks

Warped flavor review

Flavor-changing dipole operators

 $5D \Rightarrow$ non-renormalizable theory, loop-level process:

$$y_{ij}H\cdot \bar{Q}_i\sigma^{\mu\nu}D_j$$

In fact: UV finite at loop-level I. Gauge invariance (Ward identity) 2. Lorentz invariance

Effective theory with flavor-changing dipoles

Also analogous C'_8 terms for gluon penguin. Significant C_7 - C_8 mixing from RG evolution: $M_{\rm KK} \rightarrow m_b$

Structure of the amplitude

Misalignment: $f_i Y_{ij} f_j \propto m_{ij}$ wants to be diagonalized Non-zero contribution from b_{ij} (bulk masses)

Calculation

5D formalism

- position/momentum space
- Sums entire KK tower
- Mass insertion approximation

vs KK reduction

- Avoids ambiguities with 5D Lorentz-invariant loop integral
- Flavor structure manifest

Dominant C_7 diagrams

- H^{\pm} diagram: not in $\mu \rightarrow e\gamma$, no 'accidental' cancellations
- Gluon diagrams: enhanced by $\left(g_s^2 \ln \frac{R'}{R}\right) \approx 36$

Chirality flipped C'_7 given by Hermitian conjugate

Dominant C_8 diagrams

- (glue)³ vertex enhanced over quark vertex by Dynkin factors
- Anarchic diagrams come with independent Yukawa structures, sum with arbitrary phase

Chirality flipped C_8' given by Hermitian conjugate

Large contributions to wrong-chirality dipole

Contributions to $\Delta C_7^{(\prime)}$ in the minimal and custodial models; also the misalignment contribution alone

Note scale! $C'_7 \gg C_7$ in RS. C' corresponds to $b_L \rightarrow s_R$, recall that b_L localized near IR brane. $C_8^{(')}$ plots are similar, $\mathcal{O}(10)$ larger.

Scan over parameters that pass quark spectrum and CKM constraints

Magnetic dipole distribution at μ_b

Contributions to $\Delta C_7^{(\prime)}$ in the minimal and custodial models

Note scale! $C'_7 \gg C_7$ in RS.

Scan over parameters that pass quark spectrum and CKM constraints

Penguin phenomenology in RS

Inclusive $B \to X_s \gamma$ **CP** Asym. in $B \to K^* \gamma$ Semileptonic $B \to X_s \mu \mu$ Semileptonic $B \to K^* \mu \mu$ Forward-backward asymmetry Transverse asymmetry

Scan over custodial model parameters that pass $\Delta F = 2$ tree-level bounds.

CP Asymmetry in $B^0(t) \rightarrow K^{*0}\gamma$

$$\frac{\Gamma(\bar{B} \to \bar{K}^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(\bar{B} \to \bar{K}^* \gamma) + \Gamma(B \to K^* \gamma)} = S \sin(\Delta M t) - C \cos(\Delta M t)$$
$$S_{K^* \gamma} \simeq \frac{2}{|C_7|^2 + |C_7'|^2} \mathrm{Im} \left(e^{-i\phi_d} C_7 C_7' \right)$$

 $S_{K^*\gamma}$ sensitive to new physics in C_7' , where we expect large RS contributions. Current: $S_{K^*\gamma}^{\rm exp}=-16\%\pm22\%$

Transverse Asymmetry in $B \to K^* \mu \mu$

 $A_T^{(2)}$ describes the linear polarization vectors of the K^* and $\mu\mu$ relative to one another: $F=2m_bm_B/q^2$

 $=\frac{2\left[\operatorname{Re}(C_{10A}'C_{10A}^{*})+F^{2}\operatorname{Re}(C_{7}'C_{7}^{*})+F\operatorname{Re}(C_{7}'C_{9V}^{*})\right]}{|C_{10A}|^{2}+|C_{10A}'|^{2}+F^{2}\left(|C_{7}|^{2}+|C_{7}'|^{2}\right)+|C_{9V}|^{2}+2F\operatorname{Re}(C_{7}C_{9V}^{*})}$

Depends only on short-distance physics & $C'_{\rm SM} \approx 0 \Rightarrow A^{(2)}_{T,\rm SM} \approx 0$. Krüger et al. hep-ph/0502060

Transverse Asymmetry in $B \to K^* \mu \mu$

- Big enhancements possible for small q^2
- Weak correlation with $S_{K^*\gamma}$ due to C_7' sensitivity
 - $\circ A_T^{(2)}$ is CP conserving while $S_{K^*\gamma}$ is CP violating
 - Correlation can be washed out depending on the phase

Matching 4D and 5D calculations

$$\mathcal{M} \sim \frac{1}{M_{\rm KK}^2} \left[\left(\frac{n_f M_{\rm KK}}{\Lambda} \right)^2 + \mathcal{O} \left(\frac{v^2}{M_{\rm KK}^2} \right) \right]$$

Leading term vanishes if finite loop cutoff $\Lambda\to\infty$ without including all KK modes. Must match Λ with heaviest KK scale.

Thanks to K. Agashe, G. Perez, L. Randall for ongoing discussions

The Birds & The Bs in RS

Conclusions

- One loop penguin amplitudes are finite and calculable
- Main RS contributions appear in $C'_7: b_L \to s_R \gamma$
- Good agreement with data
 - $\circ \ B \to X_s \gamma, \qquad B \to x_s \mu \mu, \qquad A_{\rm FB}(B \to K^* \mu \mu)$
- Distinctive signature at flavor factories
 - $\circ~$ Time-dependent CP asymmetry in $B \to K^* \gamma$
 - \circ Angular observables in $B \to K^* \mu \mu$
- Theory feature: Matching 4D KK EFT to 5D

Partial References

RS model building

Original: hep-ph/9905221. **Reviews:** hep-ph/0404096, hep-ph/0510275, 1008.2570. **Bulk fields:** hep-ph/9911262, hep-ph/9911294, hep-ph/9912408, hep-ph/0003129. **Custodial**: hep-ph/0308036.

RS Penguins

NDA: hep-ph/0406101, hep-ph/0606021. **Calculation**: 1004.2037, 1203.6650

Penguin Flavor

hep-ph/9806471, 1104.3342, 1111.1257.

RS Flavor

hep-ph/0002279, hep-ph/0408134, 0804.1954, 0807.4937, 0812.3803, 0903.2415, 0905.2318, 0912.1625