THE BIRDS \& THE Bs in a Warped Extra dimension

The $b \rightarrow s \gamma$ penguin in Randall-Sundrum

Submitted to JHEP [1203.6650]

In collaboration with M. Blanke, B. Shakya, Y. Tsai PHENO 20127 May 2012

The next 13 minutes of your life

Warped flavor at loop level
5D calculation
Flavor phenomenology
Theory remarks

Warped flavor review

$$
y_{i j}=f_{i} Y_{i j} f_{j}
$$

Flavor-changing dipole operators

5D \Rightarrow non-renormalizable theory, loop-level process:

$$
y_{i j} H \cdot \bar{Q}_{i} \sigma^{\mu \nu} D_{j}
$$

In fact: UV finite at loop-level

I. Gauge invariance (Ward identity)
2. Lorentz invariance

Effective theory with flavor-changing dipoles

Also analogous C_{8}^{\prime} terms for gluon penguin.
Significant $C_{7}-C_{8}$ mixing from RG evolution: $M_{\text {KK }} \rightarrow m_{b}$

Structure of the amplitude

Misalignment: $f_{i} Y_{i j} f_{j} \propto m_{i j}$ wants to be diagonalized Non-zero contribution from $b_{i j}$ (bulk masses)

Calculation

5D formalism

- position/momentum space
- Sums entire KK tower
- Mass insertion approximation

vs KK reduction

- Avoids ambiguities with 5D Lorentz-invariant loop integral
- Flavor structure manifest

Arrows denote zero-mode chirality

Dominant C_{7} diagrams

- $H^{ \pm}$diagram: not in $\mu \rightarrow e \gamma$, no 'accidental' cancellations
- Gluon diagrams: enhanced by $\left(g_{s}^{2} \ln \frac{R^{\prime}}{R}\right) \approx 36$

Chirality flipped C_{7}^{\prime} given by Hermitian conjugate

Dominant C_{8} diagrams

- (glue) ${ }^{3}$ vertex enhanced over quark vertex by Dynkin factors
- Anarchic diagrams come with independent Yukawa structures, sum with arbitrary phase

Chirality flipped C_{8}^{\prime} given by Hermitian conjugate

Large contributions to wrong-chirality dipole

Contributions to $\Delta C_{7}^{\left({ }^{(}\right)}$in the minimal and custodial models; also the misalignment contribution alone

Note scale! $C_{7}^{\prime} \gg C_{7}$ in RS. C^{\prime} corresponds to $b_{L} \rightarrow s_{R}$, recall that b_{L} localized near IR brane. $C_{8}^{\left({ }^{(\prime}\right)}$ plots are similar, $\mathcal{O}(10)$ larger.

Scan over parameters that pass quark spectrum and CKM constraints

Magnetic dipole distribution at μ_{b}

Contributions to $\Delta C_{7}^{\left({ }^{\prime}\right)}$ in the minimal and custodial models

Note scale! $C_{7}^{\prime} \gg C_{7}$ in RS.
Scan over parameters that pass quark spectrum and CKM constraints

Penguin phenomenology in RS

Inclusive $B \rightarrow X_{s} \gamma$

CP Asym. in $B \rightarrow K^{*} \gamma$
Semileptonic $B \rightarrow X_{s} \mu \mu$

Semileptonic $B \rightarrow K^{*} \mu \mu$
Forward-backward asymmetry
Transverse asymmetry

Scan over custodial model parameters that pass $\Delta F=2$ tree-level bounds.

CP Asymmetry in $B^{0}(t) \rightarrow K^{* 0} \gamma$

$$
\begin{gathered}
\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{*} \gamma\right)-\Gamma\left(B \rightarrow K^{*} \gamma\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{*} \gamma\right)+}=\Gamma\left(B \rightarrow K^{*} \gamma\right) \\
S_{\nwarrow} \sin (\Delta M t)-C \cos (\Delta M t) \\
S_{K^{*} \gamma} \simeq \frac{2}{\left|C_{7}\right|^{2}+\left|C_{7}^{\prime}\right|^{2}} \operatorname{lm}\left(e^{-i \phi_{d}} C_{7} C_{7}^{\prime}\right)
\end{gathered}
$$

$S_{K^{*} \gamma}$ sensitive to new physics in C_{7}^{\prime}, where we expect large RS contributions. Current: $S_{K^{*} \gamma}^{\text {exp }}=-16 \% \pm 22 \%$

Transverse Asymmetry in $B \rightarrow K^{*} \mu \mu$

$A_{T}^{(2)}$ describes the linear polarization vectors of the K^{*} and $\mu \mu$ relative to one another: $F=2 m_{b} m_{B} / q^{2}$
$=\frac{2\left[\operatorname{Re}\left(C_{10 A}^{\prime} C_{10 A}^{*}\right)+F^{2} \operatorname{Re}\left(C_{7}^{\prime} C_{7}^{*}\right)+F \operatorname{Re}\left(C_{7}^{\prime} C_{9 V}^{*}\right)\right]}{\left|C_{10 A}\right|^{2}+\left|C_{10 A}^{\prime}\right|^{2}+F^{2}\left(\left|C_{7}\right|^{2}+\left|C_{7}^{\prime}\right|^{2}\right)+\left|C_{9 V}\right|^{2}+2 F \operatorname{Re}\left(C_{7} C_{9 V}^{*}\right)}$
Depends only on short-distance physics \& $C_{S M}^{\prime} \approx 0 \Rightarrow A_{T, S M}^{(2)} \approx 0$. Krüger et al. hep-ph/0502060

Transverse Asymmetry in $B \rightarrow K^{*} \mu \mu$

- Big enhancements possible for small q^{2}
- Weak correlation with $S_{K^{*} \gamma}$ due to C_{7}^{\prime} sensitivity
- $A_{T}^{(2)}$ is CP conserving while $S_{K^{*} \gamma}$ is CP violating
- Correlation can be washed out depending on the phase

Matching 4D and 5D calculations

$$
\mathcal{M} \sim \frac{1}{M_{\mathrm{KK}}^{2}}\left[\left(\frac{n_{f} M_{\mathrm{KK}}}{\Lambda}\right)^{2}+\mathcal{O}\left(\frac{v^{2}}{M_{\mathrm{KK}}^{2}}\right)\right]
$$

Leading term vanishes if finite loop cutoff $\Lambda \rightarrow \infty$ without including all KK modes. Must match Λ with heaviest KK scale.

Thanks to K. Agashe, G. Perez, L. Randall for ongoing discussions

Conclusions

- One loop penguin amplitudes are finite and calculable
- Main RS contributions appear in $C_{7}^{\prime}: b_{L} \rightarrow s_{R} \gamma$
- Good agreement with data
- $B \rightarrow X_{s} \gamma, \quad B \rightarrow x_{s} \mu \mu, \quad A_{\mathrm{FB}}\left(B \rightarrow K^{*} \mu \mu\right)$
- Distinctive signature at flavor factories
- Time-dependent CP asymmetry in $B \rightarrow K^{*} \gamma$
- Angular observables in $B \rightarrow K^{*} \mu \mu$
- Theory feature: Matching 4D KK EFT to 5D

Partial References

RS model building

Original: hep-ph/990522 I. Reviews: hep-ph/0404096, hep-ph/05I0275, I008.2570. Bulk fields: hep-ph/99|l262, hep-ph/99|1294, hep-ph/99|2408, hep-ph/0003I29. Custodial: hep-ph/0308036.

RS Flavor

hep-ph/0002279, hep-ph/0408134, 0804.I954, 0807.4937, 08।2.3803, $0903.2415,0905.2318,0912.1625$

RS Penguins

NDA: hep-ph/040610I, hep-ph/060602I. Calculation: I004.2037, I203.6650

Penguin Flavor

hep-ph/980647I, I I04.3342, IIII.I257.

