$B_s ightarrow \mu \mu$ theory perspective

Flip Tanedo Cornell

LEPP JC, 9 September 2011

Grad Student Joint Meetings

PSB 470, 1:30-2pm Monday before the 'grown up' meeting http://www.lepp.cornell.edu/~pt267/journal.html

Next joint hep-ex/ph student meeting **10 Oct**, Nic Eggert, *Status of Higgs Searches* (TBC)

Next week: Bibhushan Shakya, *Deconstructing the* 5th *Dimension* All LEPP students are welcome, hep-ph students are implored to attend

Flip Tanedo pt267@cornell.edu

Implications of $B_s \rightarrow \mu \mu$

- Significance of large $\tan\beta$ in the MSSM
- Beyond MFV in the MSSM
- Relation to ΔM_s

Two Higgs Doublet Models

Type II 2HDM: (e.g. MSSM) avoid tree-level FCNC by having H_u only talk to u_R and H_d only talk to d_R and e_R .

But: violated at loop-level by SUSY terms.

$$\begin{pmatrix} m_s & 0 \\ y_b \epsilon v_u & m_b \end{pmatrix}$$
$$\epsilon \sim y_t V_{ts} / (16\pi)^2$$
$$\sim \frac{y_b \epsilon v_u}{m_b} \sim \epsilon \tan \beta$$

Loop-level $s_L - b_L$ mixing:

Enhancement by $tan^6 \beta$ in SUSY

Other SUSY diagrams are negligible in the large $\tan \beta$ limit.

Flip Tanedo pt267@cornell.edu

MFV bound

Flip Tanedo pt267@cornell.edu

Flip's Beamer Theme

9/17

Beyond MFV in the MSSM

Parameterize new flavor structure with squark mass insertions

Also $LL \rightarrow RR$ see, e.g. 0712.2074

Danger: constraints from $B \to K^* \gamma$ and $B \to \phi K_S$, but those carry additional powers of $(m_{LL})^{-2}$.

Remark: Renormalization generates $\delta_{LL}^{y} \lesssim \mathcal{O}(V_{ts})$

Beyond MFV bound

Flip Tanedo pt267@cornell.edu

Flip's Beamer Theme

³/17

Relation to ΔM_s **MSSM**

Another observable sensitive to δ_{LL}^{23} is ΔM_s in $B_s - B_s$ mixing

$$\Delta M_{s} \approx \left| \left(\Delta M_{s} \right)_{\mathsf{SM}} + \left(\frac{3.5 \text{ TeV}}{\widetilde{m}} \right)^{2} \left(\delta_{LL}^{23} \right)^{2} \right|$$

hep-ph/0112303, hep-ph/0206297

But: $\left|\Delta M_s^{(\text{new})}/\Delta M_s^{(\text{SM})}\right| \lesssim 20\% \Rightarrow \text{large } \tilde{m} \text{ or small } \delta_{LL}^{23}$. Suppresses $B_s \to \mu\mu$ and tightens tan β bound for given $\text{Br}(B_s \to \mu\mu)$.

CP observables? $B_d \to \phi K_S$, $\Delta \Gamma_s$, $B_s \to J/\psi \phi$, ...

Flip Tanedo pt267@cornell.edu

Relation to ΔM_s , MFV

Minimal Flavor Violation: NP (not necessarily SUSY) carries the same flavor structure as the SM: V_{CKM} .

hep-ph/0303060: Ratios can reduce uncertainties from $f_{B_{d,s}}$ See also 1004.3982 for an alternate approach

$$\frac{\text{Br}(B_s \to \mu\mu)}{\text{Br}(B_d \to \mu\mu)} = \frac{(\text{non-perturbative})_s}{(\text{non-perturbative})_d} \frac{\tau(B_s)}{\tau(B_d)} \frac{\Delta M_s}{\Delta M_d}$$

• (non-pert.) is independent of f_B and RG invariant

• UV model-dependence cancels in the ratio

Relation to ΔM_s , simple models

Alternate approach (0903.2830, 1102.0009)

$$\mathcal{H}\sim\sum_i g_iar{b}\gamma^\mu sV_\mu+g_i^\primear{\ell}\gamma^\mu\ell V_\mu+\cdots$$

- ΔM_s operators expressed in terms of $g_i g_j$
- $B \rightarrow \mu \mu$ operators expressed in terms of $g_i g_j$

Relations can reduce (sometimes eliminate) low-energy new physics parameters.

Comment: the ΔM_{B_s} bounds are much more stringent than ΔM_D , in which one could assume ΔM_D came entirely from NP and then predict $D \rightarrow \mu \mu$.

Remarks

- Photon penguin does not contribute (Ward identity)
- *s*-channel scalar does not contribute (0⁻)

Relation to ΔM_s , simple models Ex: Flavor-changing Z' (e.g. RS models)

$$\Delta M_{s}^{(Z')} = \frac{M_{s}f_{B_{s}}^{2}B_{B_{s}}r_{1}(m_{b}, M_{Z'})}{3} \cdot \frac{g_{Z'sb}^{2}}{M_{Z'}^{2}}$$
$$Br(B_{s} \to \mu\mu) = \frac{G_{F}f_{B_{s}}^{2}m_{\mu}^{2}M_{B_{s}}}{16\sqrt{2}\pi\Gamma_{B_{s}}}\sqrt{1 - \frac{4m_{\mu}^{2}}{M_{B_{s}}^{2}}} \cdot \frac{g_{Z'sb}^{2}}{M_{Z'}^{2}} \cdot \frac{M_{Z}^{2}}{M_{Z'}^{2}}$$

NP parameters completely fixed, end up with

$$\mathsf{Br}(B_s o \mu \mu) \leq 0.25 \cdot 10^{-9} \left(rac{1 \; \mathsf{TeV}}{M_{Z'}^2}
ight)^2$$

Similar story for gauged family symmetry, ${\sf Br}(B_s \longrightarrow \mu \mu) \lesssim 10^{-12}$

Flip Tanedo pt267@cornell.edu

Relation to ΔM_s , **simple models** Ex: R-parity violating MSSM

 $W_{\mathcal{R}} = \lambda L L E^{c} + \lambda' L Q D^{c} + \lambda^{''} U^{c} D^{c} D^{c}$

Assume $\lambda'' = 0$ for *B* conservation, $\lambda, \lambda' \in \mathbb{R}$ for CP Tree-level contributions from sneutrino exchange (dominated by $\tilde{\nu}_k$)

$$\Delta M_{s}^{(R)} \sim \sum_{i} \frac{\lambda'_{isd} \lambda'_{ids}}{M_{\tilde{\nu}_{i}}^{2}}$$
$$\mathsf{Br}(B_{s} \to \mu \mu)^{(R)} \sim \left(\frac{\lambda_{k\mu\mu} \lambda'_{kbs}}{M_{\tilde{\nu}_{k}}^{2}}\right)$$

Sets upper bound on $\lambda_{i\mu\mu}\lambda'_{ibs}$ in terms of $M^2_{\tilde{\nu}_i}$. If $\lambda'_{ibs} = \lambda'_{isb}$, then

$$\mathsf{Br}(B_s \to \mu \mu)^{(\mathcal{R})} \sim \chi^{(\mathcal{R})}_{B_s} \frac{\chi^{(\mathcal{R})}}{M^2_{\tilde{\mu}}}$$

Flip Tanedo pt267@cornell.edu

Relation to ΔM_s , simple models

Ex: Fourth generation 1002.0595, 1102.0009

Flip Tanedo pt267@cornell.edu

Flip's Beamer Theme

¹⁵/17

Relation to ΔM_s , simple models

Ex: Fourth generation 1002.0595, 1102.0009

Flip Tanedo pt267@cornell.edu

Flip's Beamer Theme

¹⁶/17

That's all I've got... discuss!

Flip Tanedo pt267@cornell.edu

Flip's Beamer Theme

/17