GOLDSTONE FERMION DARK MATTER

JHEP | 109:035,20|| [arXiv:1106.2162] & work in progress

Flip Tanedo

In collaboration with B. Bellazzini, M. Cliche, C. Csáki, J. Hubisz, J. Shao

UC Davis Particle Theory Seminar, 22 Oct 2012

The WIMP Miracle

Contains factors of
$$M_{\rm Pl}$$
, s_0 , ...

$$\Omega_{\rm DM} h^2 \approx 0.1 \left(\frac{x_{\rm f}}{20}\right) \left(\frac{g_*}{80}\right)^{-\frac{1}{2}} \left(\frac{\langle \sigma v \rangle_0}{3 \times 10^{-26} \, {\rm cm}^3/{\rm s}}\right)^{-1}$$

$$\sim \left\langle \frac{\alpha^2 v}{(100 \, {\rm GeV})^2} \right\rangle$$

Logarithmic miracle: Within orders of magnitude!

Flip Tanedo pt267@cornell.edu

Goldstone Fermion Dark Matter

Abundance vs direct detection

$$\sigma_{\mathsf{ann.}} \sim 0.1 \; \mathsf{pb}$$

$$\sigma_{
m SI}\sim 7.0 imes 10^{-9}~
m pb$$

50 GeV WIMP

Typical strategy: pick parameters such that $\sigma_{\rm SI}$ is suppressed, then use tricks to enhance $\sigma_{\rm ann.}$.

- Tune the neutralino composition (\widetilde{B} vs. \widetilde{W} , \widetilde{H})
- Coannihilations (accidental slepton degeneracy)
- Resonant annihilation

Abundance vs direct detection

Farina, Kadastik, Raidal, Pappadopulo, Pata, Strumia [1104.3572]

The timid amoeba

^{1104.2549}

MSSM Dark Matter and EWSB Tuning

Flip Tanedo pt267@cornell.edu

Goldstone Fermion Dark Matter

/48

Abundance vs direct detection

$$\sigma_{\mathsf{ann.}}\sim 0.1~\mathsf{pb}$$

$$\left[\sigma_{
m SI}\sim 7.0 imes 10^{-9}~
m pb
ight]$$

50 GeV WIMP

Assumed that these come from the same effective operator:

Can we separate into two different sectors? One way to do this is with a Goldstone supermultiplet.

Abundance vs direct detection

$$\sigma_{\mathsf{ann.}}\sim 0.1~\mathsf{pb}$$

$$\left[\sigma_{
m SI}\sim 7.0 imes 10^{-9}~
m pb
ight]$$

50 GeV WIMP

Assumed that these come from the same effective operator:

Can we separate into two different sectors? (Higgs portal) One way to do this is with a Goldstone supermultiplet.

Motivation: natural WIMP

Typical MSSM WIMP: σ_{SI} too large

Want to naturally suppress direct detection while maintaining 'miracle' of successful abundance.

If LSP is part of a Goldstone multiplet, $(s + ia, \chi)$, additional suppression from derivative coupling.

- Like a weak scale axino, but unrelated to CP
- Like singlino DM, but global symmetry broken in SUSY limit

Goldstone Fermion Dark Matter

Parameterized class of models with a hidden sector and a spontaneously broken U(I)

Motivation: a natural WIMP

Annihilation: *p*-wave decay to Goldstones $\frac{1}{f} \overline{\chi} \gamma^{\mu} \gamma^{5} \chi \partial_{\mu} a \quad \Rightarrow \quad \langle \sigma v \rangle \approx \left(\frac{m_{\chi}^{2}}{f^{4}} \right) \left(\frac{T_{f}}{m_{\chi}} \right) \quad \approx \quad \text{Ipb}$

Direct detection: CP-even Goldstone mixing with Higgs

$$\frac{m_{\chi}v}{f^2} \sim 0.01 \quad \Rightarrow \quad \sigma_{\rm SI} = \left(\frac{m_{\chi}v}{f^2}\right)^2 \ \sigma_{\rm SI}^{\rm MSSM} \approx \mathcal{O}(10^{-45} \ {\rm cm}^2)$$

'Historical' Motivation: Buried Higgs

Idea: Light Higgs buried in QCD background Global symmetry at $f \sim 500$ GeV with coupling $\frac{1}{f^2}h^2(\partial a)^2$

Bellazzini, Csáki, Falkowski, Hubisz, Shao, Weiler: 0906.3026, 1012.1316; Luty, Phalen, Pierce: 1012.1347

Can we bury the Higgs through *a* decays, but dig up dark matter in χ ?

Goldstone Boson Review

Global $U(1) \Rightarrow$ massless pseudoscalar Shift symmetry \Rightarrow derivative coupling

Nonlinear Σ Model (NL Σ M)

e.g. chiral perturbation theory

QCD is a theory of $\begin{cases} \text{quarks, gluons} & (E \gg \Lambda_{\text{QCD}}) \\ \text{pseudoscalar mesons } (\pi s) & (E \ll \Lambda_{\text{QCD}}) \end{cases}$

 $\langle \overline{q}q \rangle : SU(3)_L imes SU(3)_R o SU(3)_V$

Nonlinear realization

 $U(x) = \exp\left(2i\pi^a(x)T^a/f\right)$ \mathcal{L}

 $\left|\mathcal{L}=rac{f^2}{4}\mathrm{Tr}\left|\partial U
ight|^2$

 m_{q_i} s explicitly break flavor symmetry, $m_{\pi} \neq 0$

Flip Tanedo pt267@cornell.edu

Goldstone Fermion Dark Matter

Couple $NL\Sigma M$ to the [low energy] SM

Our construction

The Goldstone Supermultiplet

Carries the low-energy degrees of freedom of the UV fields,

$$\Phi_i = f_i e^{q_i A/f} \qquad f^2 = \sum_i q_i^2 f_i^2$$

SUSY \Rightarrow explicit *s* mass, $m_{\chi} \approx q_i \langle F_i \rangle / f$, *a* massless *a* mass through small supersymmetric explicit U(f) terms

A simple example of a U(1) sector

UV theory $K = \overline{N}^{\dagger}\overline{N} + N^{\dagger}N + S^{\dagger}S \qquad W = S(\overline{N}N - \mu^2)$

$$N \sim f e^{+A/f}$$

 $\overline{N} \sim f e^{-A/f}$

Effective theory $K = \cosh(A + A^{\dagger}) \qquad W = 0$

Flip Tanedo pt267@cornell.edu

Goldstone Fermion Dark Matter

Tamvakis-Wyler Thm. Phys. Lett B 112 (1982) 451; Phys. Rev. D 33 (1986) 1762

Global symmetry: $W[\Phi_i] = W[e^{i\alpha q_i}\Phi_i]$ so that

$$0 = \frac{\partial W[e^{i\alpha q_i} \Phi_i]}{\partial \alpha} = \sum_j W_j q_j \Phi_j,$$

Taking a derivative $\partial/\partial \Phi_i$ gives:

$$0 = \left. \frac{\partial}{\partial \Phi_i} \left(\sum_j W_j q_j \Phi_j \right) \right|_{\langle \Phi \rangle} = \sum_j W_{ij} q_j f_j + W_i q_i$$

 $\chi = \sum_{i} q_i f_i \psi_i / f$ mass depends on the vevs of U(1)-charged *F*-terms in the presence of soft SUSY terms

Assuming no *D*-term mixing with gauginos

Flip Tanedo pt267@cornell.edu

If R symmetry unbroken: $R[\chi] = -1$ & no Majorana mass

- Soft scalar masses preserve R
- A-terms are holomorphic and generally break R symmetry

Assuming A_i , $m_i < f_i$, generic size is $|F_i| \approx A_i f_i$

$$m_{\chi} \sim A_i q_i$$

Often the A-terms are suppressed relative to other soft terms, so it's reasonable to expect χ to be the LSP.

Contribution from Planck 'sloperators'

But one might worry (1104.0692) about Planck-scale operators giving an irreducible contribution to m_{χ} ,

$$\int d^4 heta rac{(A+A^\dagger)^2(X+X^\dagger)}{M_{
m Pl}} \sim m_{3/2}\chi\chi$$

However...

The A-term contribution to m_{χ} is equivalent to F-term mixing between U(1) charged fields and the SUSY spurion, X.

Contribution from Planck 'sloperators'

For concreteness, consider gravity mediation with $m_{\rm soft} \sim F/M_{\rm Pl}$.

$$\mathcal{K} = \sum_{i} Z(X, X^{\dagger}) \Phi_{i}^{\dagger} \Phi_{i}$$

Analytically continue into superspace hep-ph/9706540

$$\Phi \to \Phi' \equiv Z^{1/2} \left(1 + \frac{\partial \ln Z}{\partial X} F \theta^2 \right) \Phi$$

Canonical normalization generates A-terms:

$$\Delta \mathcal{L}_{\text{soft}} = \left. \frac{\partial W}{\partial \Phi} \right|_{\Phi = \phi} Z^{-1/2} \left(-\frac{\partial \ln Z}{\partial \ln X} \frac{F}{M} \right)$$

$$\Delta \mathcal{L}_{\text{soft}} = \left. \frac{\partial W}{\partial \Phi} \right|_{\Phi = \phi} Z^{-1/2} \left(-\frac{\partial \ln Z}{\partial \ln X} \frac{F}{M} \right)$$

Completely incorporates *F*-term mixing of the form $FF_i^{\dagger}\Phi_i$. Assuming A_i , $m_i < f_i$, generic size is $|F_i| \approx A_i f_i$ so that $m_{\chi} \sim A_i q_i$.

Not a problem when U(1) sector sequestered from SUSY So indeed reasonable to consider $m_a \leq m_{\chi} \ll m_s$.

Parameterize couplings to the MSSM

Interactions: Overview

Flip Tanedo pt267@cornell.edu

Interactions: Overview

Flip Tanedo pt267@cornell.edu

Interactions: NL_ΣM Kähler potential

Non-linearly realized global U(1) leads to interactions of the Goldstone fields in through the Kähler terms:

$$rac{\partial^2 K}{\partial A \partial A^\dagger} = 1 + b_1 rac{q}{f} (A + A^\dagger) + \cdots \qquad b_1 = rac{1}{q f^2} \sum_i q_i^3 f_i^2$$

Note the manifest shift-invariance. This leads to:

$$\mathcal{L} = (\text{usual kinetic terms}) \left(1 + b_1 \frac{\sqrt{2}}{f} s + \cdots \right) \\ + \frac{1}{2\sqrt{2}} \left(b_1 \frac{1}{f} + b_2 \frac{\sqrt{2}}{f^2} s + \cdots \right) \underbrace{(\overline{\chi} \gamma^{\mu} \gamma^5 \chi) \partial_{\mu} a}_{b_1 \text{ controls the annihilation cross section.}}$$

Zumino, Phys. Lett. B 87 (1979) 203

Interactions: Overview

Interactions: scalar mixing

MSSM fields are uncharged under the global U(1), but may mix with the Goldstone multiplet through higher-order terms in K:

$$K=rac{1}{f}\left(A+A^{\dagger}
ight)\left(c_{1}H_{u}H_{d}+\cdots
ight)+rac{1}{2f^{2}}\left(A+A^{\dagger}
ight)^{2}\left(c_{2}H_{u}H_{d}+\cdots
ight)$$

The new scalar interactions take the form

$$\mathcal{L} \supset \left[\frac{1}{2}(\partial a)^2 + \frac{1}{2}\overline{\chi}\partial\chi\right] \left(1 + \frac{c_h \frac{v}{f}h}{f} + \cdots\right)$$

 c_h depends on c_i and the Higgs mixing angles.

 c_h controls direct detection

 $c_h
ightarrow (m_h/m_s)^2$ in the large m_s limit. We neglect mixing with the heavy higgses.

Interactions: other mixing

The higher order terms in K also induce kinetic \tilde{H} - χ mixing.

$$\mathcal{L} \supset i\epsilon_{u} \overline{\chi}\gamma^{\mu}\partial_{\mu}\widetilde{H}^{0}_{u} + i\epsilon_{d} \overline{\chi}\gamma^{\mu}\partial_{\mu}\widetilde{H}^{0}_{d} + \text{h.c.}$$

where $\epsilon \sim v/f$. For large μ : χ has a small \tilde{H} component of $\mathcal{O}(vm_{\chi}/f\mu)$.

Mixing with other MSSM fields is suppressed. Assuming MFV,

$$K = rac{1}{f} \left(A + A^{\dagger}
ight) \left(rac{Y_u}{M_u} \overline{Q} H_u U + \cdots
ight)$$

where the scales $M_{u,d,\ell}$ are unrelated to f or v and can be large and dependent on the UV completion

Interactions: Overview

Flip Tanedo pt267@cornell.edu

Goldstone Fermion Dark Matter

Interactions: anomaly

Fermions Ψ charged under global U(1) and Standard Model

$$\mathcal{L}_{an} \supset \frac{c_{an}}{f\sqrt{2}} \left(aG^{a}_{\mu\nu}\tilde{G}^{a}_{\mu\nu} + 2\overline{\chi}G^{a}_{\mu\nu}\sigma^{\mu\nu}\gamma^{5}\lambda^{a} \right)$$

$$c_{an} = \frac{\alpha}{8\pi}q_{\Psi}N_{\Psi}$$

 $U(1) SU(3)_{c}^{2}$ $U(1) U(1)_{QED}^{2}$

Integrating out $\lambda^{\rm a}$ generates χ couplings to gluons, photons

$$\mathcal{L} \supset -\left(\frac{c_{an}^2}{2M_{\lambda}f^2}\right) \underbrace{\overline{\chi}\chi GG}_{f} - i\left(\frac{c_{an}^2}{2M_{\lambda}f^2}\right) \underbrace{\overline{\chi}\gamma^5\chi G\widetilde{G}}_{f}$$
These contribute to collider and astro operators.

Interactions: Overview

Flip Tanedo pt267@cornell.edu

Goldstone Fermion Dark Matter

Interactions: explicit breaking

Include explicit $\mathcal{Y}(1)$ spurion $R_{\alpha} = \lambda_{\alpha} f$ with $\lambda_{\alpha} \ll 1$

$$W_{\text{u(1)}} = f^2 \sum_{\alpha} R_{-\alpha} e^{aA/f}$$

Perserve SUSY \Rightarrow at least two spurions with opposite charge.

This generates $m_a = m_\chi = m_s$ and couplings

$$\mathcal{L} \supset -\underbrace{\frac{m_{a}}{2\sqrt{2}f}(\alpha+\beta)}_{\delta} i \overline{a\chi\gamma^{5}\chi} + \underbrace{\frac{m_{a}}{8f^{2}}(\alpha^{2}+\alpha\beta+\beta^{2})}_{\rho} a^{2}\overline{\chi}\chi$$

By integration by parts this is equivalent to a shift in the b_1 coefficient from the Kähler potential

Parameter space scan

Abundance:
$$\langle \sigma v \rangle \approx \frac{b_1^4}{8\pi} \frac{T_f}{m_{\chi}} \frac{m_{\chi}^2}{f^4} \approx 1 \text{ pb}$$

p-wave: $b_1\gtrsim 1$, all other parameters take natural values

Parameter	Description	Scan Range
f	Global symmetry breaking scale	500 GeV – 1.2 TeV
m_{χ}	Goldstone fermion mass	$50-150~{ m GeV}$
m _a	Goldstone boson mass	8 GeV – <i>f</i> /10
b_1	$\chi\chi a$ coupling	[0, 2]
Can	Anomaly coefficient	0.06
Ch	Higgs coupling	[-1, 1]
δ	Explicit breaking $ia\overline{\chi}\gamma^5\chi$ coupling	3/2

$$\mathcal{L} \supset \left[\frac{1}{2}(\partial a)^{2} + \frac{1}{2}\overline{\chi}\partial \chi\right]c_{h}\frac{v}{f}h + \frac{b_{1}}{2\sqrt{2}f}\left(\overline{\chi}\gamma^{\mu}\gamma^{5}\chi\right)\partial_{\mu}a + \frac{c_{an}}{f\sqrt{2}}aG\widetilde{G} + i\delta a\overline{\chi}\gamma^{5}\chi$$

Main Interactions summary

Annihilation: Contours of fixed Ω

Direct Detection

Relevant couplings from EWSB and anomaly:

Effective coupling to nucleons: $\mathcal{L} = G_{nuc} \overline{N} N \overline{\chi} \chi$,

$$G_{\text{nuc}} = c_h \frac{\lambda_N}{2\sqrt{2}} \left(\frac{m_\chi m_N}{m_h^2 f^2}\right) + \frac{4\pi c_{\text{an}}^2}{9\alpha_s} \frac{m_N}{M_\lambda f} \left(1 - \sum_{i=u,d,s} f_i^{(N)}\right)$$

Direct Detection

Higgs exchange typically dominates by a factor of $\mathcal{O}(10^3)$.

$$\sigma_{\rm SI}^{\rm H} \approx \frac{2 \cdot 10^{-45} \, {\rm cm}^2}{6 \, {\rm cm}^2} \, c_h^2 \left(\frac{125 \, {\rm GeV}}{m_h} \cdot \frac{700 \, {\rm GeV}}{f}\right)^4 \left(\frac{m_\chi}{100 \, {\rm GeV}} \cdot \frac{\mu_\chi}{{\rm GeV}} \cdot \frac{\lambda_N}{0.5}\right)^2$$

Compare this to the MSSM Higgs with $\mathcal{L} = \frac{1}{2} cg \overline{\chi} \chi h$:

$$\sigma_{
m SI}^{
m MSSM} \sim rac{c^2 g^2}{2\pi} rac{\lambda_N^2 \mu^2 m_N^2}{m_h^2 v^2} pprox c^2 imes 10^{-42} \ {
m cm}^2$$

Natural suppression: $(m_{\chi}v/f^2)^2$

Is it enough to avoid current direct detection bounds?

Parameter space scan & direct detection

Indirect detection: \overline{p} flux vs. PAMELA

f = 700 GeV, $Q_{\Psi} = 2$, $\delta = \frac{3}{2}$, $N_{\Psi} = 5$

Using Einasto DM Halo profile in 1012.4515, 1009.0224

/48

Indirect detection: Fermi-LAT

Annihilation is p-wave, but this is suppressed at late times. Indirect detection from anomaly diagrams:

 γ -ray line search: 30 – 200 GeV

- $\chi\chi \rightarrow a \rightarrow \gamma\gamma$ via anomaly
- $\mathcal{O}(10)$ smaller than bound even for extreme parameters

Diffuse γ -ray spectrum: 20 – 100 GeV

- $\chi\chi \rightarrow a \rightarrow gg \rightarrow \pi^0 s$
- $\mathcal{O}(10)$ smaller than bound

http://fermi.gsfc.nasa.gov/science/symposium/2011/program

Goldstone fermions at the LHC

Collider production through gluons.

ISR monojets: sensitive to $\sigma_{SI}^N \sim 10^{-46}$ cm² with 100 fb⁻¹. The dim-7 anomaly operators are too small:

$$\mathcal{L} \supset -\frac{c_{\rm an}^2}{2M_{\lambda}f^2}\overline{\chi}\chi GG - \frac{ic_{\rm an}^2}{2M_{\lambda}f^2}\overline{\chi}\gamma^5\chi G\widetilde{G}$$

 $gg \rightarrow a^* \rightarrow \chi \chi$ may be within 5σ reach with 100 fb⁻¹ 1005.1286, 1005.3797, 1008.1783, 1103.0240, 1108.1196, 1109.4398

Goldstone fermions at the LHC

Flip Tanedo pt267@cornell.edu

Goldstone Fermion Dark Matter

/ 48

38

Experimental progress, model-building directions:

- I. $m_h = 125$ GeV, possible enhancement in $h o \gamma \gamma$?
- 2. FERMI line at 130 GeV, possibly $\chi\chi \to \gamma\gamma$?

Can we realize this in Goldstone Fermion DM? Maybe. Work in progress with B. Bellazzini, M. Cliche

- 1. Goldstone boson decays modify Higgs branching ratios
- 2. Anomaly coupling, SUSY framework to control spectrum for narrow box-shaped γ -ray spectrum.

Non-standard Higgs decays

Hard to completely bury the Higgs. LEP: Br(SM) $\gtrsim 20\% \Rightarrow m_h \gtrsim 110 \text{ GeV}$

Non-standard Higgs decays

For larger f, can suppress $h \rightarrow aa$

48

Non-standard Higgs decays

Partially buried & invisible: Suppressed SM channels, MET, $\Gamma_{tot} < 1$

The 130 GeV Weniger Line

Flip Tanedo pt267@cornell.edu

48

Goldstone Fermion Dark Matter

Model building for the Weniger Line

Problem: photon continuum Cohen, Lisanti, Slatyer, Wacker (1207.0800)

Tuned pseudoscalar processes Fan & Reece (1209.1097)

Sommerfeld enhancement for singular potentials

 $\mathcal{O}(\text{few})$ sufficient to open up parameter space. Larger enhancement may be used for $\gamma\gamma$ signal

Pseudoscalar exchange $\Rightarrow 1/r^3$ potential, need to regulate and renormalize effective non-relativistic theory.

Need to clarify UV sensitivity, viability of matching. 0810.0713, 0902.0688, 0907.0235

Pseudoscalar Yukawa enhancement

48

Other applications: Stealth SUSY limit

Fan, Reece, Ruderman: 1201.4875

48

Conclusions

Executive summary: Goldstone Fermion dark matter
SSB: global U(1) ⇒ Goldstone boson *a* and fermion χ
χ is LSP and DM, *a* can modify Higgs branching ratios

Simple extension of MSSM with natural WIMP dark matter

- Kähler $\chi\chi a$ interaction controls abundance
- Higgs mixing, anomaly controls direct detection

Further directions:

- *p*-wave Sommerfeld enhancement
- Non-abelian generalization
- *h*, $\chi\chi
 ightarrow \gamma\gamma$ hints

Extra Slides

⁴⁸/48

Examples of Linear Models

Simplest example:

$$W = yS\left(\overline{N}N - \mu^{2}\right) + \underbrace{N\overline{\phi}\phi}_{\text{anomaly}} + \underbrace{SH_{u}H_{d}}_{\text{mixing}} + \underbrace{W_{\text{explicit}}}_{\text{explicit}} \underbrace{W_{\text{explicit}}}_{\text{explicit}}\underbrace{W_{\text{explicit}}}_{\text{explicit}}\underbrace{W_{\text{explicit}}}_{\text{explicit}}\underbrace{W_{\text{explicit}}}_{\text{explicit}}\underbrace{W_{\text{explicit}}}_{\text{explicit}} \underbrace{W_{\text{explicit}}}_{\text{explicit}}\underbrace{W_{\text{explicit}}}_{\text{explicit}}\underbrace{W_{\text{explicit}}}_{\text{explicit}}\underbrace{W_{\text{explicit}}}_{\text{explicit}}\underbrace{W_{\text{explicit}}}_{\text{explicit}}\underbrace{W_{\text{explicit}}}_{\text{explicit}}\underbrace{W_{\text{explicit}}}_{\text{explicit}}\underbrace{W_{\text{explicit}}\underbrace{W_{\text{explicit}}}_{\text{explicit}}\underbrace{W_{\text{explicit}}\underbrace{W_{\text{explicit}}}_{\text{explicit}}\underbrace{W_{\text{e$$

Example with $|b_1| \ge 1$:

$$W = \lambda X Y Z - \mu^2 Z + \frac{\widetilde{\lambda}}{2} Y^2 N - \widetilde{\mu} \overline{N} N$$

 $q_Z = 0$, $q_N = -q_{\overline{N}} = -2q_Y = 2q_X$. Goldstone multiplet:

$$A = \sum_{i} \frac{q_i f_i \psi_i}{f} = \frac{q_Y}{f} \left(Y f_Y - X f_X + 2\overline{N} F_{\overline{N}} \right)$$
$$b_1 = \frac{-f_X^2 + f_Y^2 + 8f_{\overline{N}}^2}{f_X^2 + f_Y^2 + 4f_{\overline{N}}^2}$$

Direct Detection

Relevant couplings from EWSB and anomaly:

Effective coupling to nucleons: $\mathcal{L} = G_{nuc} \overline{N} N \overline{\chi} \chi$,

$$G_{\mathsf{nuc}} = c_h \frac{\lambda_N}{2\sqrt{2}} \left(\frac{m_\chi m_N}{m_h^2 f^2} \right) + \frac{4\pi c_{\mathsf{an}}^2}{9\alpha_s} \frac{m_N}{M_\lambda f} \left(1 - \sum_{i=u,d,s} f_i^{(N)} \right)$$

Direct Detection

Some details:

$$G_{\chi N} = c_h \frac{\lambda_N}{2\sqrt{2}} \left(\frac{m_{\chi} m_N}{m_h^2 f^2}\right) + \frac{4\pi c_{an}^2}{9\alpha_s} \frac{m_N}{M_{\lambda} f} \left(1 - \sum_{i=u,d,s} f_i^{(N)}\right)$$

For reduced mass $\mu_{\chi}=(m_{\chi}^{-1}+m_{N}^{-1})^{-1}$,

$$\sigma_{\mathsf{SI}}^{\mathsf{Higgs}} = rac{4\mu_{\chi}^2}{\mathcal{A}^2\pi} \left[\mathcal{G}_{\chi p} Z + \mathcal{G}_{\chi n} (\mathcal{A} - Z)
ight]$$

$$\begin{split} \sigma_{\rm SI}^{\rm H} &\approx 3 \cdot 10^{-45} \ {\rm cm}^2 c_h^2 \left(\frac{115 \ {\rm GeV}}{m_h}\right)^4 \left(\frac{700 \ {\rm GeV}}{f}\right)^4 \left(\frac{m_{\chi}}{100 \ {\rm GeV}}\right)^2 \left(\frac{\mu_{\chi}}{1 \ {\rm GeV}}\right)^2 \left(\frac{\lambda_N}{0.5}\right)^2 \\ \sigma_{\rm SI}^{\rm glue} &\approx 2 \cdot 10^{-48} \ {\rm cm}^2 \left(\frac{700 \ {\rm GeV}}{M_{\lambda}}\right)^2 \left(\frac{700 \ {\rm GeV}}{f}\right)^4 \left(\frac{N_{\Psi}}{5}\right)^4 \left(\frac{q_{\Psi}}{2}\right)^4 \left(\frac{\mu}{1 \ {\rm GeV}}\right)^2 \\ {\rm using} \ c_{\rm an} &= \alpha_s q_{\Psi} N_{\Psi} / 8\pi \end{split}$$

Flip Tanedo pt267@cornell.edu

Goldstone Fermion Dark Matter

Why are the $\chi\chi \rightarrow aa$ annihilations *p*-wave?

If the initial state is a particle-antiparticle pair with zero total angular momentum and the final state is CP even, then the process must vanish when v = 0.

Under CP a particle/antiparticle pair picks up a phase $(-)^{L+1}$. When v = 0 momenta are invariant and thus the initial state gets an overall minus sign. Since final state is CP even, the amplitude must vanish in this limit. For Dirac particles *P* is sufficient, but for Majorana particles *CP* is the well-defined operation.

This is why $\chi\chi \to G\widetilde{G}$ is *s*-wave while $\chi\chi \to aa$ is *p*-wave.

Nuclear matrix element and matching

The nucleon matrix element at vanishing momentum transfer:

$$M_{N} = \langle \Theta^{\mu}_{\mu} \rangle = \langle N | \sum_{i=u,d,s} m_{i} \overline{q}_{i} q_{i} + \frac{\beta(\alpha)}{4\alpha} G^{*}_{\alpha\beta} G^{*}_{\alpha\beta} | N \rangle$$

from: Shifman, Vainshtein, Zakharov. Phys. Lett 78B (1978)

 $\beta = -9\alpha^2/2\pi + \cdots$ contains only the light quark contribution, M_N is the nucleon mass. The *GG* matches onto the nucleon operator $\overline{N}N$.

$$M_N f_{i=u,d,s}^{(N)} = \langle N | m_i \overline{q}_i q_i | N \rangle$$
 $f_g^{(N)} = 1 - \sum_{i=u,d,s} f_i^{(N)}$

Nuclear matrix element and matching

$$\frac{\beta(\alpha)}{4\alpha}G^{a}_{\alpha\beta}G^{a}_{\alpha\beta} \longrightarrow M_{N}\left(1-\sum_{i=u,d,s}f^{(N)}_{i}\right)\overline{N}N$$

Where $f_{u,d}^{(N)} \ll f_s^{(N)} \approx 0.25$. For a detailed discussion, see 0801.3656 and 0803.2360.

Image Credits and Colophon

- 'Zombie arm' illustration from http://plantsvszombies.wikia.com
- Beamer theme Flip, available online http://www.lepp.cornell.edu/~pt267/docs.html
- All other images were made by Flip using TikZ and Illustrator