28 1 The Clinical Setting

Fig. 1.28 Ultrasonic imaging is used extensively in obstetric examinations. Here we see
the fetal backbone and ribs and the placenta paralleling the abdominal wall. (Courtesy of Kai
Haber.)

bony skull, but this is not a commercial option yet. Before the skull calcifies at
the age of two or three years, however, excellent brain images can be obtained.
Thus, at the present time, ultrasound finds its major applications in abdom-
inal, obstetrical, and cardiac imaging. Figures. 1.26-1.28 show further typical
ultrasound images.
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Theory of Linear Systems

2.1 INTRODUCTION

Mathematical modeling is the art of judicious oversimplification. A
model realistic enough to quantitatively describe all facets of a physical
system is often too complicated to analyze. Even when this is not the case,
when an involved model eventually yields to sophisticated mathematics and
powerful computers, the result is often a disappointing paucity of physical
insights. A simple model is usually the most fertile.

Probably the most important simplification we can introduce in de-
scribing any physical system is to treat it as a linear system. Logic would
demand that we define the term “system” before attempting to define a
“linear system,” but we shall be content with the statement that a system is
anything we care to analyze. For example, it could be a mass on a spring, a
thermometer, an electrical filter, or a complex telecommunications network.
This book deals primarily with radiological imaging systems such as chest
X-ray units, scintillation cameras for nuclear medicine, and computed tomog-
raphy machines.

All these systems may be represented schematically, as shown in Fig. 2.1,
by a black box that receives an input stimulus w,,(u), where u is an appro-
priate independent variable such as time or spatial position. (Note that u
can be a vector or a set of parameters.) The system then produces an output
response w,,(u); the relationship of the response w,,(u) to the stimulus
Wi,(u) is the subject of our theory.
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30 2 Theory of Linear Systems

input linear output Fig. 2.1 "Black box™ representation of a
Winlu) system Woyt(U) linear system.

For a mass on a spring, the stimulus is the total time-varying force
acting on the mass, and the response might be the displacement or the velocity
of the mass. In a mercury thermometer the stimulus is the temperature and
the response is the height of the column of mercury. In a simple electrical
filter or a complex telecommunications network, both the input and the
output can be specified as voltages. In all these examples the independent
variable is the time.

For a radiological system, the specification of the input and output is a
little less obvious. In a chest x-ray system we could call the x-ray absorption
coefficient at some point in the patient’s chest the input and the optical
density of the developed film the output. Alternatively, the total attenuation
of an x-ray beam in traversing a particular path through the chest could be
considered the input, and the x-ray photon flux at a particular location on the
film could be the output. In a nuclear scintillation camera a natural choice
of the stimulus w;,(u) is the concentration of radioactive nuclei within the
patient’s body. The output could be a brightness distribution on a cathode
ray tube display, the density of a developed film, or a matrix of numbers. In
these two examples the independent variable is a spatial position.

These examples illustrate the freedom we have in specifying the system
to be analyzed, but they also raise a nontrivial question about the independent
variable u. This variable may be one-dimensional (time), two-dimensional
(position within a specified plane), or three-dimensional (position within a
volume). A difficulty arises when the same dimensionality is not appropriate
for the description of both the input and the output. For example, the nuclear
medicine system had a three-dimensional distribution as the input and a two-
dimensional distribution as the output. Methods of dealing with this dis-
crepancy will be developed as the need arises in subsequent chapters: for
the remainder of this chapter it is assumed that the same u is appropriate
for both the input and output.

It is now straightforward to define the concept of linearity. Suppose that
an input wi}(u) produces the output w{l)(u) and that a different input w{?\(1))
produces the output w{?)(u). The system is said to be linear if, when both
inputs are applied together so that w,(u) = w{}'(u) + wiZ\(u), the output is
given by w, (1) = wiil(w) + w2 (w). A simple corollary of this is that the
input aw; (u) will produce the output aw,,(u) if w, (1) produces w,,, (). Here
o is any real number.

It is important to keep in mind that linearity is an idealization. No real
physical system is strictly linear. The force produced by a spring is not exactly
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proportiona] to the displacement. The blackening of a film is not Proporlional
to the incident photon flux. The count rate of a nu‘clea‘r detector ts‘nol exactly
proportional to the number of radioactive nuclei in its field of view. Never-
theless, linear systems theory, as we shall see, is an extremely powe}'f_ul tool
in many circumstances. The effects of the omnipresent nonlinearities can
often be considered separately and grafted onto the linear theory almost as
an afterthought.

2.2 IMPULSE RESPONSE

2.2.1 Nonlocal Behavior of Linear Systems

It should be evident from the examples given above that the output of a
system for some value of the independent variable u cannot in general be
determined from the input at that one value of u. If u is the time ¢, then
Wou(t) depends not only on w;, evaluated at the current time, but g]so on
w,, at previous times. No real system responds instantaneously to a stimulus;
there is always a time delay.

A similar situation occurs if u represents a spatial position. Consider a
simple camera in which a planar object is imaged at unit magniﬁcation onto
a planar film. The variable u is then a two-dimensional vector in elthCT the
object plane or the image plane. However, the irradiance at some point u
in the image is not determined solely by the light emitted from the corre-
sponding point on the object plane. Instead, the lens inevitably produces a
more or less blurred image of the object point. We can then think of e.ach
object point contributing to the response at many image points, or equiva-
lently of each image point receiving a stimulus from many object points.

This kind of nonlocal behavior can be described quite generally for linear
systems by writing w,(u) as a linear superposition of the values of w;, for
all values of u. Since u is usually a continuous variable, the most general
linear superposition is an integral of the form

Woultt) = [ plas ' pwfu') @)

The significance of the integration kernel p(u;u) is discussed below. For
notational simplicity, we have written the integral as a one-dimensional one
over an infinite domain. If u is a two- or three-dimensional variable, the
integration must, of course, be extended over the other dimensions as well.
Furthermore, if it is known a priori that w;,(u') is nonzero only over some
specific domain of u', then the integration limits can be appropriately
modified.
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To interpret the quantity p(u;u’) of (2.1), it is useful to introduce the
Dirac delta function or unit impulse. The reader unfamiliar with this mathe-
matical device should consult Appendix A, but the important points are
reviewed here. The function d(u) is defined to be zero unless u = 0, at which

point &(u) is infinite. The integral of §(u) is, however, finite and defined to be
unity, iLe.,

[ dtau=1, (22)

where ¢ is any nonzero positive number. [In two or more dimensions, 8(u)
is to be interpreted as a product such as 8(x)d(y). Cartesian coordinates
must be employed to achieve this factorization. Furthermore, a form like
o(u — u') becomes d(x — x')8(y — y’).] This then leads to the “sifting”
property of the delta function,

Iy 108 — o) du = fiug)

where f(u) is any function that is continuous at the point uy. If u is a two-
dimensional variable, the area of integration must include the point u, for
(2.3) to hold.

Returning to the interpretation of (2.1), let us suppose that the input
stimulus w;,(u) is the delta function §(u — u,). We shall call the output in
this case w3, (u), where the superscript serves as a reminder that the result is
not general, but applies only with the delta-function input. We then have

if a<ug<b, (2.3)

wha() = [ plus )8 — u)du (24)

which, by use of (2.3), becomes

wha(1) = p(u;ug). (2.5)

The function p(u;u,) is thus the response of the system measured at point u
when the stimulus is the unit impulse applied at point u,. For this reason,
p(u; u,) is called the impulse response of the system. If the system is an imaging
system, it is common to refer to the impulse response as the point spread
Junction (PSF). In this case u is the two-dimensional position vector r.

2,.2.2 Shift Invariance and Convolution

In our camera example, p(r;r,) is the light distribution at point r in the
image plane when the scene is a point source of light at point r,, in the object
plane. Of course, the concept of a point source is as much of an abstraction
as a delta function, but it can often be satisfactorily approximated in practice
by a very small, very bright source. If this source is small compared to the
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scale of the function p(r; r,), then the measured response w,,(r) is an adequate
apprommanon to p(r;rg).

If we set out to measure the PSF of our camera in this way, with a point
source in the object plane, we would, in general, have to make a large number
of measurements. For each source position r,, we would have to measure a
two-dimensional distribution p(r;r,); then the procedure would have to be
repeated for a large number of source positions. In other words, p(r;ry) is a
function of two independent two-dimensional variables. Its complete speci-
fication therefore requires a four-dimensional space.

Fortunately this degree of complexity is often unnecessary. In many
linear systems the impulse response is a function of the difference of its two
arguments, not each argument separately. Thus we can represent p(u; u,) as
plu — ug). [Note that p(u — up), being a function of only one argument,
cannot be the same mathematical function as p(u; u,), which depends on two
arguments. It does, however, represent the same physical dis-tribunon_.]
Systems satisfying this condition are said to be shift-invariant or isoplanatic.
In the camera example, this representation is valid if the shape of the blurred
image of a point is independent of the location of the point. The only.eﬂect
of a shift in location of the point source is to shift the location of the image
without changing its functional form.

Some additional insight into the meaning of shift invariance can be
obtained by considering an electrical filter where u is the time ¢. If the param-
eters of the filter (its inductances, capacitances, and resistances) are inde-
pendent of time, then it does not matter when a particular voltage waveform
is applied to the input—the same output waveform follows inexorably. To
be more precise, if the voltage input v, (t) produces the output uoni(t}, then a
delayed input v,,(t — t,) produces a delayed output v,,(t — to). This state-
ment holds for any input, and in particular it holds when the input is the
unit impulse (¢ — t,).

To this point we have been rather glibly jumping back and forth between
spatial and temporal variables to emphasize the universality of the theory
being developed. There is, however, one major distinction between the wyo
situations, a distinction that arises because a response cannot precede its
stimulus. The temporal impulse response p(t — t,) must therefore be zero
if t <1, since  is the time at which the response is measured and t, is the
time when the stimulus occurs. The system is said to be causal. This asym-
metry, which is of crucial importance in the analysis of electrical filters, has
no counterpart in imaging systems. Indeed, it is quite common in imaging
systems to find a completely symmetric PSF, i.e.. p(r) = p(r), where r = |r|.

Having surfaced this difference between systems involving temporal and
Spatial variables, we now resubmerge it and return to the general notation,
where » can be whatever independent variable is appropriate. Then the
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general input—output relation for a linear shift-invariant system may be
written

Woul) = [ plaa — ' wiolud) di. (26)

This type of integral is called a convolution or folding integral. The latter
designation derives from the operations carried out in performing the
integral. As illustrated in Fig. 2.2, if we start with the function p(u'), we form

plu’)

win(u’)

plu-u‘)

n —

plu-u)w, (u")

1)
"

Fig. 2.2 [llustration of the convolution operations. The function w,,(u') is a representa-
tive input to a linear system with impulse response p(u’). The function p(u — u’), drawn here for
u negative, is a shifted and reversed version of p(u'), and the shaded area under the product
plu — ' )wi (u') 1s plu) = wifu).

i
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plu—u) by shifting the function by an amount u and then reversing its
orientation (folding it) along the u’ axis. This sequence of operations follows
from the algebraic truism p(u — u') = p[ — (4’ — u)]. Since the reversal step
often causes some confusion, it is perhaps worth pointing out that no reversal
is involved if we plot p(u — ') versus u rather than u'. If p(u) is the response
at u due to a unit impulse at ' = 0, then p(u — '), which is simply shifted
along the u axis and not reversed, is the response at u due to an impulse at an
arbitrary u'. The reversal is necessary only when we plot p(u — u') vs ¥’ in
order to visualize the overlap with w;,(¢') in the integrand of (2.6).

The arguments leading to (2.6) can be summarized by the following
syllogism (see also Table 2.1):

1. If the input to a linear shift-invariant system is the unit impulse
d(u — u'), the output is the impulse response p(u — u’).

2. However, an arbitrary input w;,(«) can be expressed as a superposition
of impulses, i.e.,

Wil = [ winlu) 8 — w)duc @7

3. Therefore, the response to an arbitrary input is the same superposition
of impulse responses, i.e.,

Woult) = [

-]

o WinlW)p(u — ') du’. (2.8)

It is important for this argument to note that w,(«') in the integrand is
simply a constant coefficient as far as the u dependence is concerned. The

TABLE 2.1

Logical Sequence of Possible Inputs to a Linear Shift-
Invariant System and the Corresponding Outputs

Input Output
d(u) plu)
Ou—u') plu—u')
ad(u —u') aplu — u')
ad(u—u,) + fo(u— uy) aplu — u,) + Pplu — uy)
Zajétufu}-) Y oplu — uy)
) i

J‘i, win{“’]&[u —u)du' = win(”} J‘:"m win("”P[” = u’)d"' - wmu(“}

= wiy(u) * plu)
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system, being linear, converts d(u —u') to p(u — ') and ad(u — u') to
op(u — u’). It makes no difference that the constant o is equal to w, (') or
that an integral over u’ is carried out.

2.2.3 A Shorthand Notation

Convolutions occur so frequently in the analysis of linear systems that
it is worthwhile to adopt a shorthand notation for them. We shall use
asterisks to denote the convolution integral, with the number of asterisks

corresponding to the dimensionality of u. For example, if u = t, we may
write

Woult) = p(O) # winld) = [* plt — (' yw(t') dr' (29)
By a simple change of variables, we also have
P(t) * wi(t) = wis(2) * p(t)

- ffm wialt — )p(t)dt'. (2.10)

Often, where no confusion can arise, we shall omit the output variable
altogether and rewrite (2.9)

Wom = P * Wi, (211)

In two dimensions the convolution integral is only slightly more com-
plicated. If u is the two-dimensional position vector r, we have

Woul®) = [ plr = £ wi () d?r

= p(r) # w;,(r). (2.12)

The subscript co on the integral sign indicates that the integration runs over
the entire domain of the variable of integration—in this case the infinite r’
plane. In Cartesian coordinates the area element d*r' becomes dx’dy’ and
the integral becomes

Woul(xs y] = j‘j’m dx' J‘fw dyf p(x — X', = y')win(xf: _V')

= plx, y) »* wia(x, y), (2.13)

where x and y are the Cartesian components of r, and p(x, y) is the same PSF
as p(r) but expressed in Cartesian coordinates. The shift-invariant PSF
p(x, y) should not be confused with the shift-variant function p(u;u,) used
earlier.
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2.3 THE FREQUENCY DOMAIN

2.3.1 Response to a Complex Exponential Input

In Section 2.2.2 we analyzed linear shift-invariant systems by resolving the
input into a superposition of delta functions and by considering the response
of the system to each delta function separately. This decomposition of the
input is not unique. A wide variety of different sets of orthogonal functions
can be used to represent the input. In this section we consider an alternative
decomposition, viz.: resolving the input into a superposition of complex
exponential functions of the form exp(2niku), where i = J?l and x is a
real number, the significance of which will become clear shortly. (If u rep-
resents a two- or three-dimensional vector, k must be a vector of the same
dimensionality and xu must be interpreted as the scalar product.) The use of
complex functions to represent a real input may seem odd at first, but it
shouldn’t strain the credulity any more than the use of such a pathological
function as é(u).

Before attempting to synthesize an arbitrary input by superposing com-
plex exponentials, let us consider the response of the system to a single such
function. If we simply set

wiy(u) = exp(2miku) (2.14)

and substitute into (2.6), we obtain
Wiy (W) = J‘_: plu — u')exp(2mixu’) du'. (2.15)

The superscript ¢ indicates that these equations hold only for the specified
exponential input. Now change variables by letting u” = u — u'. This leads to

w (1) = exp(2mircu) Iio p(u"”)exp(—2mixu")du’”. (2.16)

The integrand is independent of u, so the entire integral is simply a complex
constant. We now have

Wi (1) = const - wi(u). (2.17)

In other words, the effect of passing a complex exponential of the specified
form through a linear shift-invariant system is just to multiply it by a com-
plex constant. The exponential functions are said to be the eigenfunctions of
the system and the constant [the integral in (2.16)] is called the transfer
Junction of the system. (The term “function” is not a misnomer here because
the integral depends functionally on «; it is a constant as far as its u depen-
dence is concerned.)
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2.3.2 Fourier Transforms

The reader who is either conversant with Fourier analysis or has perused
Appendix B will recognize the integral in (2.16) as a Fourier transform
(Bracewell, 1965; Papoulis, 1962; Gaskill, 1978). The general definition of the
Fourier transform of a function f(t) in one dimension is

FO) = #{f0) = [ exp(=2mivo)f(0) . (2.18)

We shall use these two alternative notations for the Fourier transform
as convenient: the transform of a function denoted by a particular lowercase
letter is denoted by the corresponding capital letter or by application of the
operator %, .

In two dimensions the Fourier transform of a function f(r) is

Flp) = #,{ f®)} = [ exp(~2nip - n)fr)dr, (2.19)

where p is a two-dimensional vector with Cartesian components ¢ and 7. The
operator % without a subscript will apply to functions of unspecified
dimensionality.

The temporal function exp(—2mrivt) is periodic in time with period v~
The number v is therefore the frequency and is measured in cycles per second
or Hertz. The variables v and ¢ are said to be Fourier conjugate variables.

Similarly, the spatial function exp(—2mip - r), or exp[ —2zi(éx + ny)] in
Cartesian coordinates, is periodic in space with period &' along the x axis
and ! along the y axis. The vector p is therefore a two-dimensional spatial
Jfrequency and is measured in cycles per unit length. Once again, p and r are
called conjugate variables. The function F(p) is said to exist in the spatial-
frequency domain, while f(r) is in the space domain.

The extension of these ideas to three or more dimensions is straight-
forward.

The real utility of the Fourier transform is that it has a simple inverse.
The inverse of the one-dimensional transform, (2.18), is

0 = FHFW) = [ expl(+2miv)F() dv, (2.20)
and for the two-dimensional transform, (2.19), we have
fr) = F3 ' {F(p)} = [ exp(+2mip - )F(p)d*p. (221)

A proof of these results is given in Appendix B.
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2.3.3 The System Transfer Function

Having dispensed with these mathematical details, let us now return to
the analysis of linear systems. Once again we subsume all questions of di-
mensionality and use the general variable u which can be one-, two-, or
three-dimensional as required. In any case,  is the frequency variable con-
jugate to u.

We define a Fourier transform of w;,(u) by

W, (x) = J‘_: exp(— 2miru)w;,(u) du, (2.22)
and similarly for w,(u). The inverse Fourier transform is
wialt) = [ expl+2mixu) Wi (x) drc. (2.23)

We have now resolved an arbitrary input into a linear superposition of
complex exponential functions. We have already determined the action of
the linear system on one such function, with the result expressed in (2.16).
Now all we have to do is to recognize that each exponential term in the super-
position of (2.23) will pass through the system independently; this, in fact, is
the definition of linearity. Thus the system output for the arbitrary input
specified by (2.23) is just a superposition of terms like (2.16), with weighting
factors W,,(k). [ Wa(k) is, of course, independent of u and may be regarded as a
constant coefficient (see Table 2.2).] The general output is then given formally
by

Woul) = [ Wi, (k)P() exp(2rinu) dx, (2.24)

TABLE 2.2

Frequency-domain Counterpart of Table 2.1
lllustrating a Sequence of Inputs to a Linear
Shift-lnvariant System®

Input Output
exp(2mixu) Plx) exp(2miku)
aexp(2minu) aP(x)exp(2nixu)

Y a;exp(2min;u) ¥ o P(x ) exp(2nix u)
i

J
J.j‘,. W, (k) exp(2miru) dx J‘_mm W, (k)P(x) exp(2niku) du

“ Note: P(x) = 7, exp(— 2mixu)p(u)du.
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where P(k) is just the integral in (2.16), i.e.,

Pic) = f_“'w exp(— 2nmixu \p(u”) du’". (2.25)

The same result can be expressed more succinctly by noting that the right-
hand side of (2.24) is the inverse Fourier transform of the product W,,(x)P(x).
Performing a Fourier transform on both sides of the equation then yields

Woulk) = Wa(K)P(x). (2.26)

This equation, which is precisely equivalent to (2.6), is of fundamental im-
portance in linear systems analysis. It may be derived directly from (2.6) by
use of the theorem given in Appendix B that says that the Fourier transform
of a convolution is the product of the Fourier transforms of the two functions
being convolved, i.e.,

Wial)P(x) = F {wiq(u) * p(u)}. (2.27)

As previously noted, P(x), the Fourier transform of the impulse response,
is called the transfer function of the linear system. The reason for this designa-
tion should now be evident. A particular Fourier component, one term in the
superposition of (2.23), is transferred through the system unchanged in
functional form but simply multiplied by the factor P(x).

However, since P(x) is a complex number, the physical significance of this
multiplication may not be immediately clear. To remedy this deficiency, let
us construct a slightly more complicated input function of the form

Win() = 3(1 + cos 2micu) = 4 + Lexp(2miru) + Sexp(—2miku). (2.28)

This function is obviously real, a decided asset, but moreover it is everywhere
nonnegative. It can therefore be used to represent physical quantities, such
asirradiance or concentration of radioactive nuclei, that cannot have negative
values. This input function, however, is not a single Fourier component.
Rather it contains three discrete frequencies: 0, k, — . It is therefore not an
eigenfunction of the system and the output is not expected to have exactly
the same functional form as the input.

Since we know the Fourier decomposition of the input, (2.28), we can
write down the output by inspection:

Wou(u) = $P(0) + 1P(x) exp(2mixu) + 1P(— k) exp(—2mixu). (2.29)

An additional simplification is possible since p(u) is a real quantity. This
implies, as shown in Appendix B [see Eq. (B.7)], that

P(x) = [P(—x)]*, (2.30)

where the asterisk denotes the complex conjugate. Note that there is no
physical requirement that P(k) be real except at x = 0. In fact, we shall write
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P(x) in modulus-phase form to emphasize its generally complex nature:

P(k) = |P(Jc)|exp(i¢,,), (2.31)
and, from (2.30),
P(—x) = |P(x)| exp(—igp). (2.32)
With these results we can now rewrite (2.29)
Wou(¥) = $P(0) + 5|P(x)| cos(2nxu + ¢p). (2.33)

The output is still a real quantity, as it must be since it comes from a real

physical system. The effect of the system is to alter the amplitude of the

cosine modulation term relative to the constant (zero-frequency) term and to

shift its phase (see Fig. 2.3).

It is useful to define the modulation or contrast of the input signal by
W “)!nin
M, =—=—=c, (2.34)

Win + Wi

winlu)

3

Wout (U)

u

Fig. 2.3 Top: A cosinusoidal function of 100%, contrast that is a possible input to a linear
system. Bottom: The output of the linear system for the input shown above. Note that, in gen-
eral, the contrast is reduced and the phase is shifted but the frequency is unchanged. Both w;,(u)
and w,,,(u) should be regarded as extending to + 0.
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and similarly for the output. Here w* is the maximum value of w;,(u) and
w™" is its minimum. The input modulation M, is unity for our case since
max __
mn

w™* = | and w™" = 0. For the output, however, we find

_ [PO) + [P@)[] - [PO) — |PC)]] _ |PGo)]

Mo = [p0) + [P()[]+ [PO) - [P()]]  PO)

(2.35)

The quantity |P(x)|/P(0), which is the ratio of the output modulation to
the input modulation, is called the modulation transfer function (MTF)
of the linear system. It is an important and easily measurable characterization
of the performance of the system. It is not, however, a complete characteri-
zation. To specify the system completely, we need to know both the MTF at
all x and the phase of the transfer function ¢ at all k.

An important special case occurs when the PSF is symmetrical, ie.,
p(u) = p(—u). Then, from (B.9) in Appendix B, P(x) must be real and ¢, can
take on only the values 0 and n. Even then a plot of MTF versus « is not,
strictly speaking, a complete description of the system, but the values of ¥
at which ¢, switches from 0 to = are usually fairly evident from the plot.

2.4 LINEAR FILTERS

Most linear systems in general and most imaging systems in particular
degrade the input signal in some manner. For example, the MTF of most
systems is less than unity at all frequencies (other than zero) and falls rapidly
at the higher frequencies. This means that the high-frequency components,
often the most important features of the input signal, have a reduced contrast
in the output.

A second important source of degradation is noise. In a way, our treat-
ment of linear systems to this point has been fraudulent because it implies
that there is a unique correspondence between the output and the input. In
fact, in any real system, a given input applied repeatedly will produce some
random distribution of outputs. The input—output relation, (2.6) or (2.26),
must be regarded as applying to the mean values of the signals. The source
of this noise and methods of describing it mathematically are treated in
detail in Chapters 3 and 10. For the present purposes, it is sufficient to be
aware of its existence.

Because of these MTF and noise limitations, a linear system may not
fulfill its goal. If it is a radiological imaging system, the output image may
not show the detail necessary for an accurate diagnosis. In this case, im-
proved performance can often be obtained by feeding the output of the
system into a second linear system called a filter. The function of the filter i$
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to undo some of the degradation introduced by the primary system. Of
course, the distinction between the primary system and the subsequent

filter is merely a semantic one. We could equally well call the primary system,
or any linear system, a filter.

2.4.1 Cascaded Linear Systems

In order to analyze the effects of the filter, it is first necessary to devise a
description of two linear systems in cascade as shown in Fig. 2.4. Let p,(u)
and p,(u) be the impulse responses of systems 1 and 2 respectively, and let
P,(x) and P,(x) be the corresponding transfer functions. The output from
system 1, which is simply w; (u) * p,(u), is also the input to system 2. The
output from system 2 is then given by

wout(u) - [win(") * pl(u)] * Pz(“)- (236)

It is instructive to write these convolution integrals out in detail. Writing

- out the term in brackets yields

W) = (f_“; palu— u')wi.,(u')du*) * pa) (237)

. In order to write out the second convolution integral, it is necessary to
introduce a second dummy variable, which we shall call ¥”. We then have

Woult) = [ du’ [ du'py(uw’ — wiw()pu—w). (238)

This equation can be cast into a more useful form by a change of variables.
Defining u"' = u” — u', we find

Woult) = [ du win(u')( [7, du” putar ol — w) — w” ) 239)

The term in the large parentheses is the convolution of p, and p, evaluated
at a “shift” of u — u'. Thus we can write

Woua) = [ dud wio(u)plu — ) = wiofu) % pla, (2.40)
where
p(u) = p,(u) * p,(u). (2.41)
Win (u) Wou (u)
—e] D|(u’ 92[‘1, i

Fig. 2.4 [lllustration of two linear systems in cascade.
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In other words, the cascade of two linear systems is itself a linear system, and

the overall impulse response is the convolution of the two constituent impulse
responses.

We have also shown by this procedure that convolution is associative, for

Woult) = [Wia() * py(W)] * pa(u) = wi(u) * [py(u) * pr(w)].  (242)

The brackets are therefore superfluous.
The rather unwieldy derivation just presented becomes almost trivial if
carried out in the frequency domain. If w;, (k) is the Fourier transform of the
input signal, then the output from the first system is, by (2.26), simply

W, (x)P,(x). This product is also the input to the second system, and the
final output is

Wiu(K) = W (k)P (K)P3(K) = Wiy(K)P(K), (243)
where
P(x) = F{pw)} = F{p,(u) * p2(w)}. (244)
Equations (2.40) and (2.43) are thus completely equivalent.

2.4.2 Inverse Filters

We are now in a position to illustrate the use of a filter that has con-
siderable conceptual importance, the so-called inverse filter. Suppose the
goal of our filtering operation is to exactly compensate for the loss of modu-
lation contrast introduced by the primary system. In other words, we require
that w, (1) = w;,(u). This would occur if the overall impulse response of the
cascaded system were a Dirac delta function

p(u) = p,y(u) * py(u) = d(u), (2.45)
since then we would have

Wou(1t) = Wig(u) * 0(u) = wi(u). (2.46)

It is presumed that p,(u) is known and that we must devise a filter [i.e., find
a p,(u)] so that (2.45) is satisfied. Equation (2.45) is thus a rather formidable
integral equation for the unknown p,(u). Fortunately, the solution is quite
simple in the frequency domain. A Fourier transform operation on (2.45)

yields
3 . P(k) = P,(k)P,(x) = 1. (2.47)

\FQ:. the Fourier transform of é(u) is unity follows immediately from the
sifting property of the delta function, (2.3), and the definition of the Fourier
transform.

B e
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Equation (2.47) says that if we choose the transfer function of the filter
P,(k) to be the reciprocal (inverse) of the transfer function of the primary
system P,(k), then the overall transfer function will have the ideal form,
unity at all frequencies. The impulse response of the filter is then given by

palu)=F ! {P l(x)} - Jt: (P l(x)) exp(2miru) dx. (2.48)

An immediate difficulty with this seemingly innocuous solution is that
there will always be some value of k for which P,(x) = 0. At the very least,
P,(x) will approach zero as the frequency k — o0, and in many cases of
practical interest, P,(x) will vanish at a number of finite frequencies as well.
These zeros in the denominator will cause the integral in (2.48) to diverge,
so the inverse filter is not physically realizable. This outcome should not be
surprising since we imposed an impossible demand on the filter at the be-
ginning, viz., (2.45). No physical system, cascaded or otherwise, can really
have a delta-function impulse response since that would require an infinite
bandwidth (uniform response for all frequencies). In a temporal system,
infinite bandwidth means that no matter how rapidly the input varies,
the output will exactly follow it. In an imaging system, infinite bandwidth
means that arbitrarily small detail, even on the subatomic scale, could be
faithfully reproduced.

However, some minor modifications of the integral in (2.48) can prevent
the divergence and lead to a realizable filter that closely approximates the
ideal inverse filter. We shall illustrate these modifications by two examples
that will also be used to introduce some useful tricks in the manipulation of
Fourier transforms.

2.4.3 An Example—Correction of Gaussian Blur

Suppose first that our primary system has a Gaussian impulse response
of the form

p1(u) = exp(—mu? /ug), (2.49)

where u, is a measure of the width of p,(u). [ The full width of p,(u) at half
its maximum value is given by 0.93%4,.] The reason for the capricious
insertion of a 7 in the definition of p,(u) is that it introduces a satisfying
symmetry between p, and P,. More explicitly, as shown in Section B.3 of
Appendix B, the Fourier transform of a Gaussian is also a Gaussian and,
with the n, has the identical functional form, i.e.,

?{exp{—nuz}} = exp(—nx?). (2.50)
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This transform relation is not precisely the one needed in the present problem,

but it can be finagled into the right form by use of the following result from
Appendix B:

FulS(u/a)} = |a™F(ax), (2.51)
where
Ful S W)} = F(x) (2.52)
P, (k)
(a)
Palx) )
(b)
P, (k)P (x) )
(c)

K
Fig. 2.5 (a) A Gaussian transfer function. (b) Inverse filter that exactly corrects for the

Gaussian blur up to some cutoff frequency. (c) The final net transfer function, the product of
) and (b).
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and M is the dimensionality of u and k. For simplicity, we shall now take
M to be one. Then the transfer function of the primary system is found to be

P,(K) = ug exp(—nugx?). (2.53)

Since we cannot hope to realize an exact inverse filter, let us somewhat
arbitrarily decide to let the filter be exact up to some cutoff frequency K,
and zero beyond that. Then our final filter transfer function (Fig. 2.5) is

 fugtexp(+mugr?)  if k| < Kpax
Pale) = {0 if || > Kppax- 3%
The overall transfer function is
1 il i < Kmex
Plx)= {0 if |K] > Kmax- (2.53)

Functions of this form are so common that a special notation has been
devised for them. We define

1 if x| <3
= : 2.56
rect(x) {0 if |x]>4. @
The one-dimensional Fourier transform of rect(x) is easily calculated:
7 o DRI (257)
{rect(x)} = e exp(—2miéx)dx = . .

Again, functions of this form are sufficiently common to justify a special
notation. We define

sinc € = sin(né)/né. (2.58)
This function is plotted in Fig. 2.6.

Fig. 2.6 Plot of the function sinc(x)=
sin(mx)/mx.
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A simple convention permits the extension of these results to two or more
dimensions. We define a two-dimensional rect function as a product of one-
dimensional rect functions in Cartesian coordinates:

rect(r/L) = rect(x/L) - rect(y/L), (2.59)

and similarly for the sinc function
sinc(ar) = sinc(ax) - sinc(ay). (2.60)

This vector notation will be avoided when it can cause confusion, as when
the width of the function is different along the x and y axes, or when non-
Cartesian coordinates are required. With these caveats, however, functions
like sinc(au) can be very convenient.

The general transform relations for rect and sinc functions may now be
stated with the help of (2.51) as

Firect(u/a)} = |a™ sinc(ax), (2.61a)
and
Fp{sinc(u/b)} = [b|™ rect(bx). (2.61b)
Symmetrical results hold for the inverse transforms:
Fu H{rect(k/a)} = |a|™ sinc(au), (2.61¢)
F {sinc(x/b)} = |b|™ rect(bu). (2.61d)

Here a and b are arbitrary real constants and M is the dimensionality of u
and x.

In terms of these special functions, our overall transfer function, (2.55),
may be rewritten

P(x) = rect(x/2x,,,,) (2.62)
and, by use of (2.61), the overall impulse response is

PU) = |20 ™ SinC(2K, 0 0). (2.63)

We have now solved the problem of determining the inverse filter to be
applied to a system with a Gaussian transfer function except for two aspects.
We have not yet found a solution for the impulse response of the filter p,(u),
and we have not fixed the parameter x,,,,. Although an explicit solution for
p»(u) can be found, the problem has no redeeming social value and will not
be pursued here.

The choice of k,,, is of somewhat broader interest. At first blush it would
appear that we should take «,,, very large. This would make the sinc func-

R T .. R
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tion in (2.63) very narrow so that p(u) would be a good approximation to a
delta function. The difficulty with this approach is that we have ignored
noise so far. The filter transfer function (2.54) increases very rapidly with
increasing frequency (see Fig. 2.5). This is precisely what is desired as far as
the signal is concerned because it just compensates for the rapid decrease in
P,(x). However, the signal inevitably coexists with noise, and most commonly
the noise does not exhibit a similar decrease at high frequencies. Rather, it
has a very substantial high-frequency content that is greatly amplified by
the action of the filter. Thus k,,, must be limited in order to prevent the
noise from overwhelming the signal at high frequencies. The mathematical
tools needed for a more precise treatment of this question are developed in
Chapter 3.

2.44 A Second Example

Now let us consider a slightly different inverse-filter problem. Suppose
the primary system has an impulse response given by

p1(u) = rect(u/2uy), (2.64)

where u, is now the full width at half-maximum (FWHM) of p,(u).
The primary system transfer function is

P(x) = |2uo sinc(2u,k), (2.65)

and a strict inverse filter transfer function would be the reciprocal of this
expression. The difficulty is evident—there is an infinite set of frequencies
for which the denominator of P,(k) vanishes.

One solution is to simply not let the denominator vanish, i.e. to let

1/P,(x) if |Pyx)|>e
(1/e)sgn[Py(x)]  if |Py(x)] <&,

where ¢, like k., before it, is a parameter to be determined by noise con-
siderations and sgn(X) = X/|X|. There is little point in further analytical
massaging of this problem, especially since we are not yet equipped to deal
with the noise, but some representative results are plotted in Fig. 2.7.

One qualitative point to be noted from Fig. 2.7 is that the inverse filter
has a bipolar (positive and negative valued) impulse response. The same
observation holds true for all high-pass or sharpening filters. Low-pass or

smoothing filters, on the other hand, can be (but do not have to be) positive
definite.

Py(k) = { (2.66)
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p,lu)

P,u) v
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Fig. 2.7 Top: The rect function Pi(u) to be corrected by inverse filtering. Center: The

space-domain inverse filter p,(u) constructed according to (2.66). (sce Honda and Tsujiuchi,

1975.) Bottom: A heuristic filter suggested by Swindell (1970) to approximate the inverse filter
for a rect-function blur.

2.5 SAMPLING

In Section 2.4 we showed how to analyze linear filters and to calculate
the overall system performance when a filter was included in the system.
We have not yet said anything about the physical nature of the filter—it is
still a “black box.” Part of the reason for this is that filters come in a wide
variety of forms. An electrical filter may consist of inductors and capacitors
a tapped de]a)f line, or a digital shift register. A spatial filter for images car;
be a camera W_’l[h an appropriate pupil function, a laser system on an optical
bench, or a digital computer with image scanning and display peripherals.

One o_f the authors finds it very easy to implement a smoothing filter by
removing his glasses.
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Of these many possible incarnations of a linear filter, the digital versions
are the ones with the greatest flexibility. Once a signal is in digital form,
there is virtually no limit to the types of operations that can be performed
on it. The impulse response or the transfer function can be specified at will.
We are not even confined to linear operations; superior performance is often
obtainable with nonlinear filters.

For these reasons digital filters are of great current interest in radiological
imaging. Much of this book will be devoted to a discussion of filtering opera-
tions that are best performed digitally. But digital filters differ from their
analog counterparts in one important respect: computers deal with discrete
arrays of numbers, not continuous functions. In this section we develop the
tools for dealing with this feature.

2.5.1 Statement of the Problem

Suppose we are dealing with an image recorded on a photographic trans-
parency. A microdensitometer is used to measure the transmission of the
film at an array of points with coordinates (x,, y,,) given by

X, = nA, Vi = MA, (2.67)

where n and m are the positive integers in the range 0-N.

The microdensitometer has a finite measuring aperture which we assume
to be a square of side &. It responds not just to the transmission at the point
(xn, V) but to the average over an area &? about the point. It thus produces
a number a,,, given by

Xn+E m HE
Gy = -:—2 [ ax [0 dy- fx, ), (2.68)
where the function f(x,y) represents the “true” transmission of the film,
i.e, the value that would be measured with an infinitesimal aperture. Notice
that a,,, — f(x,, ym) if € = 0.

The array of numbers a,,,, along with a knowledge of the sampling inter-
val A, can be used to construct another function f;(x, y) (Fig. 2.8) defined by

fix =Y Z—"z"'rcct (x ; x,,) rect (Xa—y"') (2.69)

nm

The major concern of this section is how well the “sampled” function f;(x, y)
represents the original function f(x, y). There are two parts to this question:
(1) What is the effect of the finite spacing between sample points? and (2) What
is the effect of the finite sampling area &*? Surprisingly, we shall find that
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flx,y)

W/\/

folx,y)

L1l L1

Fig. 2.8 A two-dimensional function S(x, y) and its sampled version f(x, y) along the x

axis. The distance A is the distance between samples, while ¢ is the width of the measuring aper-
ture.

——]

there are some conditions under which fi(x, y) exactly represents f(x, y) in

the sense that we can find an exact prescription for reconstructing the latter
from the former.

2.5.2 The Comb Function

Asa mathcmatical preliminary, we introduce the comb function, defined
as (Gaskill, 1978)

comb(x)= Y §(x — n). (2.70)

n= =0

As_il!ustratcd in Fig. 2.9, the comb function consists of an infinite array of
unit impulses (delta functions) situated at integer values of the argument of

_lhe function. It is shown in Appendix B that the Fourier transform of a comb
1s also a comb, i.e.,

F {comb(u)} = comb(x). (2.71)
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comb (x)

X
-3 -2 -l 0 | 2 3

Fig. 2.9 Illustration of the function comb(x). The arrows represent delta functions.

Note that this result holds in any number of dimensions. For example, if
u is the two-dimensional variable r with Cartesian components x and y, then
comb(u) is interpreted as a product in the same way as the sinc and rect
functions, i.e.,

comb(u) = comb(x) comb( y)
=3 d(x —n)d(y —m), (2.72)

and the two-dimensional Fourier transform has the same form,
Z,{comb(x) comb(y)} = comb(£) comb(y) = comb(p), (2.73)

where £ and n are the Cartesian components of the two-dimensional fre-
quency vector p.

The array of rect functions in (2.69) is a good approximation to a comb
function if £ is small. In fact, we can use the representation of a delta function
as the limit of a rect (see Appendix A),

lim (1/e2) rect(x/e) rect( y/e) = 6(x) d(y), (2.74)

&~0

along with (A.14) and (A.17) to write (2.69) in the limit as
lim f(x,y) = Y S(Xns Ym) 8(x = X,) 8(y — V)

= f(x,y) ¥ 8(x — nA)&(y — mA)

= f(x, y)A~ 2 comb(x/A) comb( y/A). (2.75)

That the indices n and m run over an infinite range in the comb function
and a finite range in f,(x, y) is of no concern if we agree that f(x, y) vanishes
outside the range defined by 0 < x < NAand 0 < y < NA.
To avoid carrying along the limit, we define
feolx, ¥) = lim f(x, y). (2.76)

e—0
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2.5.3 The Whittaker—Shannon Sampling Theorem

To answer the first of the two questions posed above, the effect of the
finite A, we must find a formula for determining f(x, y) from f,,(x, y), a func-
tion that can be experimentally determined if £ can be made small enough
(Goodman, 1968; Jerri, 1977). We begin by performing a Fourier transform
on (2.75), with the result

Fo&n) = #3{ fsolx, y)} = F(&,n) #x [comb(¢A)comb(nA)].  (2.77)

This appears to be a step backward since a simple product is usually easier
to deal with than a convolution. In this case, however, the convolution is
very easy to handle since one of the functions is a sum of delta functions.
The general result that is useful here is

F(&,m) #* [8( — o) 8(n — mo)] = F( — &o,1 — Mo), (2.78)

which follows immediately from the definition of a convolution and the
sifting property of delta functions.
Applying this general result to (2.77), we find

L =]

Fom=A"2 % i F(¢ —nA~ ' n—mA™"). (2.79)

A=—o m=—m

The factor A~? in this equation arises because

comb(£A) = Y 8(EA —n) = Y S[A(E — nA~1)] = A1 Y 6(E — nA™Y),

and similarly for comb(yA).

The Fourier transform of the sampled function is thus a superposition
of shifted replicas of the Fourier transform of the original function as illus-
trated in Fig. 2.10. This result is particularly useful when F(£,#) is compact,
so that the various replicas of F(&,#) in (2.79) do not overlap appreciably.
In fact, there is considerable theoretical interest in so-called band-limited
functions whose Fourier transform vanishes identically outside a finite
frequency region. The function f(x, y) is said to be band-limited if

F&m=0  when [{> &nax OF |1 > fimax- (2.80)

The rectangular region of area 2&,,., - 2n..x In the {-n plane is called the
region of support.

The interest in band-limited functions is, strictly speaking, only theoret-
ical because no function that describes a real physical system can truly be
band-limited. It can be shown that a band-limited function cannot be space-
limited also; if (2.80) is rigorously true, then f(x, y) must extend to infinity in
the x-y plane. Nevertheless, it is often a good approximation to treat phys-
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FLE,m)

Fig. 210 Top: The Fourier transform of a band-limited function. Bottom: The Fourier
transform of the sampled version of the function at top. Note that sampling in the space domain
leads to replication in the frequency domain.

ical functions as band-limited if their transforms differ from zero by only an
insignificant (whatever that means) amount outside a finite region of support.
This gives rise to the designation essentially band-limited. We shall therefore
assume that appropriate values of ¢, and #,,,, can be chosen so that (2.80),
while not rigorously true, is a valid approximation. Furthermore, for sim-
plicity, we shall take

Emax = Nmax = B/2. (2.81)

The parameter B is called the one-dimensional bandwidth of the function.

Returning now to the discussion of (2.79), we see that the replicas of
F(¢,1) do not overlap at all if f(x, y) is a band-limited function and the
sampling interval A satisfies

A~'>B. (2.82)

If the equality holds in this relation, the sampling is said to be at the Nyquist
rate. An equivalent statement to (2.82) is that the sampling rate must be at
least twice the maximum frequency (&,.,) of the function being sampled.
(Note that 1/A is the sampling rate or frequency, and is measured in samples
per unit length. B is a spatial frequency interval measured in cycles per unit
length. Of course, both “samples” and “cycles” are pure numbers without
dimensions.)

If this condition is satisfied, we can isolate a single replica of F(¢,n) from
the infinite set of them by a low-pass filtering operation. More precisely, we
then have

F (&, m)rect(EA) rect(nA) = A~ F(&,n). (2.83)

3
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Applying (2.77) to the left-hand side of this equation, we find
{F(E,n) #* [comb(EA) comb(nA)]} rect(EA) rect(nA) = A" *F(E,n). (2.84)

We now transform this equation back to the space (x-y) domain, remember-
ing that the transform converts convolutions to multiplications and vice
versa. We obtain

[/(x, y) comb(x/A) comb(y/A)] #+ [sinc(x/A)sinc(y/8)] = A¥(x, ). (285)

To interpret this result, first note that

f(x, y) comb(x/A)comb(y/A) = A? 3" f(x,, Ym) 6(x — x,)0(y — ), (2.86)

where x, and y,, are given by (2.67), and f(x, y) can be replaced by f(x,, y,)
since it is multiplied by é(x — x,)é(y — y,,). Since we are currently working
in the limit € — 0, f(x,, y,) is identical to a,, [cf. (2.68)]. The A% on the
right-hand side of (2.86) follows from algebra similar to that indicated in the
discussion below (2.79). The convolution indicated in (2.85) is then easily
performed with the help of the space-domain equivalent of (2.78). The final
result is

2 f (%, ym)sine[(x — x,)/A] sinc[(y — yn)/A] = f(x,y).  (287)

This equation is called the Whittaker—Shannon sampling theorem in two
dimensions. It is illustrated graphically in Fig. 2.11.

This theorem is so important that it is perhaps worthwhile to rewrite the
entire derivation, sans commentary, in terms of our arbitrarily dimensional

fix , O)sinc [(x—lnlfA]

fs(x,0) flx, 0)

b— A

Fig. 2.11 Illustration of the sinc-function interpolation required by the Whittaker-
Shannon theorem. This graph shows the components of (2.87) along the y = 0 axis. Although
only three are shown here, a sinc function must be associated with each sample point. At a
particular sample point, only one of the sinc functions has a nonzero value, but beiween sample
points the whole infinite set of sinc functions 1s needed to rigorously interpolate the value of the
function. In practice, however, a small number of sinc functions at each intermediate point is
often sufficient.
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variables u and k. The key way stations on the road to the sampling theorem
are

folw) = A™Mf(w) comb(u/A), (2.88)

F (k) = F(k) * comb(kA), (2.89)

F oK) rect(xA) = A~ MF(x), (2.90)

[F(x) * comb(xA)] - rect(xA) = A~ ¥ F(k), (291)
[ /() - comb(u/A)] * sinc(u/A) = AMf(u), 2.92)
T fwsine ((“ ;“") - f (299)

sample points

As before, M is the dimensionality of u and .

Several comments are in order concerning the sampling theorem we have
just derived. First, it is an interpolation formula; it provides an exact way
of reconstructing any band-limited function from its values at a discrete set
of sample points. The self-consistency of this interpolation scheme can be
checked by letting x and y be the coordinates of one of the sampling points,
say x =n'A and y =m'A. Then sinc[(x — x,)/A] in (2.87) becomes sinc(n’ — n),
which vanishes unless n’ = n. Similarly the sinc function in y vanishes unless
m' = m. Finally, since sinc(0) = 1, (2.87) reads f(x,, y) = f(Xus Vi)-

The second important comment about the theorem we derived is that it is
by no means unique (Jerri, 1977). Many possible modifications occur at the
step of (2.83) where we chose to isolate one of the replicas of F(£,n) by a
particular low-pass filter, the product of two rect functions that define a
square of side A™! in the é-n plane. We could have chosen a larger square
or a rectangular region, provided that the region encompassed one and only
one of the replicas. By the same token we could have chosen a circle, oval,
or any other shape to isolate the term of interest. Each of these choices would
lead to a different sampling theorem, all of which would be exact interpolation
formulae for band-limited functions.

254 Aliasing

What happens if the Nyquist condition (2.82) is not satisfied? Then the
replicas of F(&,n) overlap each other and an exact reconstruction of f(x, y)
is not possible. Artificial structure, called aliasing, appears in the reconstruc-
tion of an image from an inadequate number of samples. We have all seen
examples of aliasing on TV and in the newspapers. A television image is a
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raster scan made up of a discrete set of scanning lines. The image is therefore
sampled in one dimension. When a high-frequency object such as stripes on a
performer’s suit is displayed, a moiré pattern—aliasing—appears. Similarly,
halftone reproductions of periodic patterns can evidence severe aliasing.

Since it is so important to have an adequate number of samples, it is
worthwhile to state a simple rule explicitly. Consider an image contained in a
square of side L in the x—y plane. If the sampling interval is A, a total of
(L/A)? samples will cover the whole image. But A must satisfy (2.82), the
Nyquist condition. Therefore the number of sample points must be at least
(LB)*. This quantity, the product of the area of the object in the x—y plane and
the area of its transform in the {-# plane, is called the two-dimensional space-
bandwidth product. The extension of this idea to an arbitrary number of
dimensions is straightforward.

2.5.5 Effect of the Measuring Aperture

The discussion of sampling to this point has considered only the ¢ — 0
limit in which the measured numbers a,, are identical with the sampled
function f(x,, y,,)- In the microdensitometer example, we could ensure that
this approximation was valid by choosing a very small measuring aperture.
In practice, however, this approach would be a very poor one because of
noise. A very small aperture might view only a single photographic grain at
a time so that the measured transmission would show wild point-to-point
fluctuations even in a film that to the eye appeared uniformly exposed.

Fortunately, it is not difficult to modify the preceding theory to allow for
nonzero values of &. We simply define still another new function, f(x, y), by

f(x, ¥) = f(x, y) =+ [e~ 2 rect(x/e) rect(y/e)]. (2.94)

It follows at once from the definition of a convolution that the measured
transmission values, a,,, from (2.68), are related to this new function by

O = [ (Xpy Yrm)- (295)

Thus we know the values of f at a discrete set of sample points. The
Whittaker-Shannon theorem still applies since f must be band-limited if
[ is, a result that follows from the frequency-domain counterpart of (2.94).
Therefore we have sufficient information to reconstruct f(x, y) exactly, using
(2.87) to interpolate between sample values.

The remaining problem is to go from f(x, y) to f(x, y). We have already
discussed this step in Section 2.4 since (2.94) describes a linear filtering
operation. We merely have to find the inverse filter. Transforming (2.94) and
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solving for F(&,n), we find

F(&,n)

e = A wnc)’

(2.96)
Everything on the right-hand side is known, so an inverse transform, if
it exists, will suffice to find f(x, y). A problem very similar to this one was
discussed in Section 2.4. In that case, we concluded that an exact solution was
hopeless because of the zeros of the sinc functions. In the present case, how-
ever, we have some additional information. We know that F(&,n), and there-
fore also F(£,n), vanishes if |¢| or |n| exceeds B/2. Furthermore, we shall
usually have £ < A (the equality holds when the samples are just contiguous).
Therefore, if the sampling satisfies the Nyquist condition, we have

|&¢| < Be/2 < BA/2 < 3. (297)

In other words, the argument of the sinc function is less than 4 for all fre-
quencies of interest. Thus, there are no zeros in the denominator and the
inverse transform of (2.96) can be calculated with impunity. Indeed, sinc(3) =
0.637, so there is not even any appreciable noise amplification involved.

We have now solved the problem of determining the values of a band-
limited function at all points from a discrete set of samples measured with a
finite sampling aperture. To summarize the steps involved, we must first
ensure that the sampling satisfies the Nyquist condition, then use the
Whittaker—Shannon theorem to interpolate between samples, and finally
apply a gentle inverse filter to correct for the aperture size.

26 OTHER MEASURES OF SHARPNESS

2.6.1 The Line Spread Function

So far we have discussed the spatial response of an imaging system in
terms of its response to a point source, or point spread function (PSF). It is
sometimes more convenient to use the response to a line source, or line
spread function (LSF). One advantage of the LSF is that it is often easier to
measure. When a radiation source is made so small that it approximates a
point source, there may be very little radiation left. On the other hand, a
source can be masked down with a thin slit to approximate a line source
without such a severe loss in flux.

Mathematically, a line source oriented along the y axis may be described
as a linear delta function:

wine(x, y) = &(x). (298)
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We should think of wi;"(x, y) as a two-dimensional function that just happens
to be independent of y. The line source may also be regarded as the integral
of a point source, 1.e.,

wire(x, ) = [ dywh(x ) = [ 5(98(3)dy. (299)

This equation enables us to determine the response to the line source at once.

We know that the response to wi(x, y) is just p(x, y). Since the system is
linear the response wh¢(x, y) must be

) = wise(e, ) = [7 dywdu(x, ) = [ dypx,p). (2100
The line spread function I(x) is thus the line integral of the point spread

function p(x, y) (Marchand, 1964).

There is also a simple relationship between the LSF and the MTF. The
one-dimensional Fourier transfer of I(x) is

F{10} = [ 1(x) exp(— 2miéx) dx
= [ dx [ dyp(x, y)exp(—2nitx)dx

- ( [ ax [ dyp(x, yyexp[ - 2m‘(€x+ny)])

=P(£,0). (2.101)

n=0

The Fourier transform of the LSF is thus the two-dimensional transfer
function P(¢,7) evaluated on the line # = 0. A series of measurements of /(x)
at different orientations of the line will suffice to determine P(¢,7) along a
series of radial lines through the origin in the -y plane. Furthermore, if it
is known a priori that P(£,n) has circular symmetry so that it is the same

on all radial lines, then a single measurement of the LSF fully characterizes
the system.

2.6.2 The Edge Spread Function

An edge source is one that is bright on one side of a line and dark on
the other. The response to an edge source, or edge spread function (ESF), is
important because our eyes respond preferentially to edges in a scene.

Mathematically, an edge along the y axis is described by

1 x>0

0%
0 x<0, (2102

Win®(x, y) = {
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which can also be written
widte(x,y) = [T o()ax = [T whe(x, ). (2.103)
Again, since the system is linear, the output must be
o) = welte(x, ) = 7wl pdx = [*Ixyax. (2104)

Hence the edge spread function is the indefinite integral of the line spread
function. Conversely,

(2.105)
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is possible only in noncausal systems, we have

a0

v p(0) = [*_ y(@)p(e - 0)dr

= " y)(e = =y * 500 (3.246)

Matched filtering is thus equivalent to correlating the data with the signal
we are trying to detect.

Applications of matched filtering are discussed in Chapters 8 and 10.

Wiener-Helstrom Filter

An important variation on the Wiener filter was devised by Helstrom
(1967). He considered the problem of estimating a signal that has been
corrupted in two ways—by being convolved with a known filter function
(usually a blurring or low-pass filter) and by the addition of signal-
independent noise. The data to be filtered are of the form

y(t) = [s(6) * h(1)] + n(o), (3.247)

where h(t) and the autocorrelation functions of s(z) and n(t) are presumed
known. An estimate §(t) of the signal is to be formed by filtering y(t) with a
filter of impulse response p(t). Again we choose the minimum mean-squared
error as the optimality condition.

Helstrom showed that the optimum filter for this problem has a transfer
function given by

H*(v)
[HO)|* + [Siv)/S,]

Several limits are of interest. First, note that if h(t) = (t), H(v) = 1, and
the original Wiener filter is recovered. Second, if the signal-to-noise ratio
is very good at all frequencies, such that [S,(v)/S,(v)]* « |H(v)|, then P(v)
reduces to an inverse filter, P(v) = [H(v)] ~'. Finally, if the SNR is very poor
and both signal and noise are white, then S,(v)/S(v) is large and constant
and the Wiener—Helstrom filter becomes a matched filter P(v) oc [H(v)]*.

P(v) =

(3.248)

4

Application
of Linear Systems Theory
to Radiographic Imaging

41 A GENERAL MODEL

It is our goal in this section to devise a simple model that can be used
to describe transmission radiography, nuclear scanners, cameras with colli-
mators, and cameras with pinholes. Such a model may seem an unlikely
prospect since these systems are quite different in concept, intent, and
performance. Nevertheless, as we shall see, the important features of all of
them can be discussed within a common framework.

Consider first a simple nuclear pinhole imaging system with the geometry
shown in Fig. 4.1. For now the object is assumed to be a planar gamma-ray
emitter: the extension to three-dimensional objects can be made later.
Additional simplifications concern the pinhole aperture and the detector,
both of which are also assumed to be planar. In practice these are reasonable
assumptions for very low-energy gamma rays that are absorbed in a small
thickness of aperture or detector material. In general, a planar description
of the aperture is not valid, since we need to know not only where the photon
strikes the aperture plate, but also its angle of incidence to calculate the
probability of its being transmitted through to the detector. However, if the
absorption coefficient of the aperture material is so high that the aperture
plate thickness can be made small compared to the pinhole diameter, then
the angle of incidence becomes unimportant and a planar description of the
aperture transmission suffices. Similarly, if the detector is either physically

117
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rodiooctive pinhole image
source

Fig. 4.1 Basic geometry for pinhole imaging of a planar emissive object.

x-ray object image
source

Fig. 4.2 Basic geomeltry for transmission radiography of a planar object.

thin, or so absorbing that all detection takes place in a thin surface layer,
then again a planar description is adequate.

A simple transmission radiography system is shown in Fig. 4.2. The
similarity to the pinhole system should be obvious. X rays are generated by
electron bombardment of a planar anode, pass through a planar object and
impinge on a planar detector. All three planes are assumed to be parallel,
although in practice the x-ray anode is usually tipped at an angle to reduce

5,752 //

S

-

vl

ALY

/'x‘ /':w
source aperiure detector
plane plone plane

Fig. 4.3 The geometry of a general model for radiographic imaging
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the apparent focal spot size. There are some suspicious features of this model,
particularly the planar object. Nevertheless we shall begin our analysis here
and let the model gradually become more realistic (and hence more
intractable).

The common features of the transmission radiography system and the
pinhole camera, as we have modeled them, are thus a source plane, a trans-
mitting or aperture plane, and a detector plane (see Fig, 4.3).

4.1.1 The Source

We describe the source by an emission function f(r), where r is a two-
dimensional vector in the source plane. More precisely, f(r)d’r is the mean
number of photons per unit time emitted into all space from an elemental
area d*r located at the point r. It is important to note that f(r) should really
be a statistical quantity. If we observed the system for a finite time T, we
would not expect to find exactly Tf(r) d*r photons emitted from the element
d?*r during the observation. Indeed, the very notion of an infinitesimal
number of photons, obtained by multiplying the infinitesimal area d’r by
any finite number, is a contradiction in terms. However, if we repeated the
observation many times, or considered an ensemble of many identical x-ray
systems, then Tf(r)d’r would represent the average value of all our ob-
servations. Deviations from this mean behavior are the subject of Chapter 10;
in this chapter all results are to be interpreted as statistical averages.

Of course, Tf(r)d*r represents the mean number of photons emitted
from d*r during the interval T only if f(r) is independent of time. Otherwise
a time integral is required. Time-varying sources are occasionally desirable,
as with pulsed x-ray tubes, or unavoidable, as with rapidly decaying isotopes.
But a time integral would be a distinct nuisance here, so we simply assume
it away and take f(r) to be constant in time.

One final comment on f(r) concerns the directional character of the
photon emission. If the source is a radionuclide distribution there is no
reason to assume any directionality at all. Photons are emitted with equal
probability in all directions. The situation is very different with x-ray sources.
The bremsstrahlung has a definite preferred orientation which depends on
electron energy, angle of electron incidence, and target material. Clearly such
complexity is incompatible with a simple model, so once again we ignore it
(for now) and consider only isotropic emitters.

41.2 The Detector

Having described an elemental source, let us now consider an elemental
detector of area d*r”, where r” is the two-dimensional position vector in the
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detector plane. This elemental detector subtends a solid angle dC from the
source, given by

d*r" - cos )
Referring to Fig. 4.4, we see that R is the distance from source element to
detector element and @ is the angle between the normal to the detector surface
and the line of sight from source to detector. From simple geometry, we find

R = (s, + s,)/cos b, (4.2)
so that
cos® 0
dQ = =l 2
G, TP d=r". (4.3)

If there were no absorbing material in the space between the source plane
and the detector plane, the detector would intercept a fraction dQ/4n of the
radiation emitted from any source element since a full sphere subtends 4n
steradians. The mean number of photons per unit time emitted by the area
element d*r in the source plane and intercepted by the area element dr" in
the detector plane would then be given by

cos3 0

2 20
s F s L (4.4)

a8~y

T
Of course, not all of the photons intercepted by the detector are detected.
And even when a photon is detected, its location r” cannot be measured with
absolute accuracy. The detector should, in principle, be considered as an
integral part of the imaging system. For now, however, we are concentrating

on other portions of the system and may assume an ideal detector. This
restriction will be lifted shortly.

5+5;
//@J'/'-"
R
2
d“r r
S1*5,
plane plone

Fig. 4.4 Diagram for solid-angle calculation (aperture plane not shown).
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4.1.3 The Transmitting Plane

Our description of the system is nearly complete. We have only to
account for the transmitting plane situated between the source and detector.
This is easily accomplished since we shall deal only with rays that travel in
straight lines; scattered radiation is the subject of another chapter. Thus a
ray emanating from the point r and striking the detector at r” must have
passed through the central plane at a specific point r’ (see Fig. 4.3). We shall
denote by g(r') the transmittance of the central plane at the point r’. In other
words, g(r') is the fraction of the incident photons that is transmitted through
the central plane.

We can now write down an expression for the density of detected photons
h(r"), defined so that h(r")d?r" is the mean number of photons intercepted
by the detector area d*r” in a time T. This definition says nothing about
where the photon came from, so an integration over the source plane is
required:

Td%"
h(r")dzr" a r

" dn(s, + 5,)? L d*rcos* 0 f()g(r'). 45)

Dimensionally, h(r”) is a fluence as defined in Appendix D. However, the
term fluence is more appropriate to a beam of moving particles than to a
static pattern of recorded photons. Thus, we shall call h(r") a photon density
rather than a fluence.

The vector r’ can be eliminated in terms of r and r”. Inspection of the
geometry of Fig. 4.3 reveals that

3

r—r rrJ-rr

8 = Sy o)
or
’=Sls_:szr + Slisz r' = ar” + br, 4.7)
where
a=58,/(s; +5,) (4.8)
and
b=s,/(s; +s)=1—a. (4.9)

Some care must be taken in interpreting (4.6) or (4.7) since r, ', and r”
are all two-dimensional vectors defined in different planes. If r has Cartesian
components (x, y) and r' has components (x’, y'), then by r' — r we mean a
two-dimensional vector with components (x' — x, )" — y). The z dimension
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does not influence this vector difference. The three-dimensional distance R
is not simply [r — r”|, but is given by
R=[|r — "> + (s; + 5,)*]*"?
=[x —x" P +(y—y)P + (s, +5)]"% (4.10)

In spite of this complication, the notation is still intended to be suggestive.
Note that if all figures are drawn so that the radiation goes from left to right,
then the letters representing the important functions (f, g, and h) progress
from left to right, the number of primes on the coordinates (r,r’,r"’) increases
from left to right, and the designations for both absolute spacings (s, and s,)
and relative spacings (a and b) increase from left to right.

Equation (4.5) now becomes

h(r")d?*r" = Cd*r" J;wm d*rcos® 0 f(r)g(ar” + br), (4.11)
where
C = T[4n(s; + s,)*]7". (4.12)

This equation is still rather complicated since 6 is a function of r and r"".
However, we shall often be interested in systems, where s; + s, is large
compared to Lr[ or [r”|. In those cases it is a good approximation to take
0 =~ 0 and cos” 6 =~ 1. We are then left with

h{r')~ C J.mm d*r f(r)g(ar” + br), (4.13)

where the factor d*r”, originally inserted for didactic purposes, has been
dropped from both sides of the equation.

4.1.4 Reduction to a Convolution

Equation (4.13) now resembles a convolution integral. To exploit this
resemblance, let us define a new variable ry, given by

ry = —br/a (4.14)
and scaled versions of f and g by
(5) = f(r) = f(—arg/b) (4.15)
and
g(rg) = glarg). (4.16)

We then have

glar” + br) = g(ar” — ary) = g(r'" — ry). (4.17)
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Fig. 4.5 [Illustration of the significance of ry in (4.14). . "

The significance of the variable ry is illustrated in Fig. 4.5. Multiplication
of the vector r, which is measured in the source plane, by — b/a (or, equiva-
lently, —s,/s,) is the same as projecting it through a point in the aperture
plane to the image plane. Similar geometric interpretations may be attached
to the scaled functions f and §. As Fig. 4.6 shows, g(ar") is wider than g(r")
since the scale factor a is less than one. The scaled function §(r") may be
thought of as the original aperture function g(r’) projected from a point in
the source plane to the image plane. By the same token, f(r”) is the original
source function projected through a point in the aperture plane to the image
plane. The tilde will always imply projection to the image plane.
After these manipulations (4.13) may be written

2 -~
he) = (g) c [, arfapae -
= (a/bCf(r") »+ G(r"). (4.18)

flx)

/T~

f(x/2)

Fig. 4.6 Illustration of scaled functions. \_/_\
Note that f(ax) is wider than f(x)ifa < 1 and

narrower than f(x) if a > 1. Note also that
af{ax) and f(x) yield the same value when
integrated over x.

f(2x)
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(The domain of the rj integration may be taken as the entire two-dimensional
space, indicated by the subscript oo on the integral sign, since [, and hence
ﬁ vanishes outside a finite area.) In other words, the detected photon density
may be thought of as the output of a two-dimensional linear system with
input /" and impulse response proportional to g. As in any linear system, a
frequency-domain description is very useful. A straightforward two-dimen-
sional Fourier transform of (4.18) yields

F{h(r")} = H(p") = (a/b)*CF(p")G(p"), (4.19)

where p” is the spatial frequency vector conjugate to r” in the image plane.
The transform on the right of this equation may be evaluated in terms of the
original source and transmission functions f and g by use of the scaling
relation (B.94):

F(p") = F,{f(—ar"[b)} = (b*/a®)F(—bp"a) (4.20)
and
G(p") = F,{glar")} = (1/a*)G(p"/a). (4.21)
Our final result is then
H(p") = (C/a*)F(—bp"/a)G(p"/a). (4.22)

Application of the basic equations (4.18) and (4.22) to various imaging
systems is the subject of the remainder of this chapter.

4.2 PINHOLE IMAGING

A pinhole camera is the simplest possible imaging system. Its major
features can be determined from elementary geometry without resort to the
elaborate mathematics unveiled in the Section 4.1. Our goal in this section
is therefore not to use the mathematics to understand the pinhole camera, but
rather the reverse—to use the pinhole camera to demystify the mathematics.

4.21 Geometrical Treatment

Consider an ideal pinhole aperture that is perfectly transmitting over a
small circular region of diameter d,,,, and perfectly opaque elsewhere, so that

1 if 2¢d, < 1
0 if 2/d > 1,

where r' = |r'|. The prime on d},, indicates that it is measured in the r' plane.

gr')= circ(2r'/d;,,,) = { (4.23)
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P
P — o=
/

source pinhole detector
aperfture

Fig. 4.7 Diagram illustrating the calculation of the point spread function for pinhole
imaging.

Suppose that the source is a single emissive point. Then, since the rays
must travel in straight lines, the image consists of a collection of detected
photons confined to a circular region of diameter d;, (see Fig. 4.7). By
comparing similar triangles, we see that

S1+ 8 dpy

i = dpn = £ (4.24)

Note that the value of dyy, is completely independent of the position of the
source. No matter what the projection angle @ is, the circular pinhole always
projects to an undistorted circular image provided the aperture plane is
parallel to the detector plane. In brief, the system is shift-invariant.

If we consider two point sources a distance L apart, inspection of Fig. 4.7
shows that the centers of their images in the r” plane are separated by a
distance L given by

L' = L(s,/s,) = L(b/a). (4.25)

Furthermore, the image is inverted; we say that the pinhole camera has
a magnification of —b/a (= —s,/s,).

4.2.2 Analytical Treatment

The results of the geometrical analysis also follow easily from (4.18). We
describe a point source at the location r, as a delta function, i.e.,

,)(.a(r} = K 6(“ . rs)\ ‘426)
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where the superscript é reminds us we are dealing with a point source, and
K is the total number of photons per unit time emitted by the source. Note
that this definition is consistent with the interpretation of f(r) as the number

of emitted photons per unit time per unit area since, by the definition of the
delta function,

J;ource fd(l')dzf =& .[mur:: 5([ - rs)dzr = K. (427)
The scaled functions f{(r) and (r) that appear in (4.18) may be written

) = Ké[(—ar"/b) — r,] = K(b?/a®)S[r" + (br,/a)] (4.28)
and

g(r"’) = circ(2ar"/d,y,), (4.29)

where use has been made of the scaling property of delta functions, (A.37),
to obtain the right-hand form of (4.28). Equation (4.18) itself is now

W) = KC [ dzr;,’é(r’c; + {}) circ(za———ﬁlr = r"l)

*
dyy

— KCirc (M) (430)

ph
We next seek to persuade the reader that the circ function in this equation
describes the same magnified pinhole image that we deduced on geometrical
grounds. First, note that the center of the circ function is located at the value
of r” that makes the argument of the function zero. This occurs when r” =

—bry/a, in agreement with the geometrical picture. Let r; be defined as the
coordinate of the center of the circ function, i.e.,

r, = —br,/a. (4.31)
The circ function of (4.30) vanishes unless its argument is less than 1, or
d. di,s,+5s
rH - ru < ___]_)-}_l = _ph 1 2.
| 1 2a 2 5 (A.32)

This inequality will hold provided r” lies within a circle of diameter d};/a
(=d};,) centered at ry. Thus, once again the geometrical result is confirmed.

Equation (4.30) not only gives the right functional form for h(r”), but also
the right magnitude. To see this, note that the disk of diameter dy,,/a in the

detector plane subtends a solid angle Q (as seen from the source plane)
given by

- id;,h/a]z
T 4.33)
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The total number of detected photons in time T is thus the total number
emitted KT times the fractional solid angle Q/4n. But h(r”) is the detected
photon density. Within the disk region, h(r”) is the total number collected
divided by the area of the disk, i.e.,
Jau KTQ/4n KT
== 3
n(dph/a) /4 4n(sy + 55)

which, with the definition of C from (4.12), is in perfect accord with (4.30).

[ = | <dyu/2a], (4.34)

4.2.3 Resolution

Either the geometrical or the mathematical approach can be used to
determine the resolution distance of the system, i.e., the minimum resolvable
spacing of two point sources. The only real problem is specifying what we
mean by “minimum resolvable.” One possibility would be to adopt the full
width at half-maximum (FWHM) of the PSF as our resolution criterion.
In the present case, the PSF as measured in the image plane is a uniform
disk of diameter d},; the FWHM of this function is therefore also 47,. This
criterion would thus not count two points as resolved unless their separation
was such that there was no overlap at all between the two disk images. This
may seem to be an overly stringent condition. Surely an observer would
have no difficulty in asserting that two points were present if the centers of
their images were separated by, say 4d},. Indeed, many writers adopt this
condition in discussing the resolution of a pinhole camera. Nevertheless,
we believe that the FWHM criterion is defensible in most practical circum-
stances. Unfortunately, the defense rests largely on noise considerations and
must therefore be postponed to Chapter 10. For now, we simply adopt the
FWHM criterion without real justification. The reader who objects to this
choice can sprinkle around factors of order unity to taste.

Our criterion thus says that the centers of the images of the two points
must be separated by dj, for the points to be resolved. Of more interest,
however, is how far apart the points themselves must be. In other words, we
are more concerned with the PSF scaled to the actual size of the object than
with the PSF as it appears in the image plane. This is an easy scaling since
we have already determined that the magnification of the pinhole camera
is —b/a (or —s,/s,). For two points to be barely resolved (by the FWHM
criterion), they must be separated in the object plane by a distance o, given
b

. Opn = dipalb = di /b = diy(s, + 5,)/s,. (4.35)

To be more formal about it, the PSF of the pinhole camera is the mea-

sured point-source image h’r”) rescaled to account for the magnification,
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and normalized to unit source strength, i.e.,

PSth = pph(r = rs) =K l(b/a)zhé(runr”: = brja

= c(f)zcirc(gblr—'t[), (4.36)
a dy,

which has a FWHM of d;/b, in agreement with (4.35). The scaling must
involve the amplitude as well as the lateral dimensions of the function. The
leading factor of b?/a in (4.36) is required so that the total number of photons
will be conserved, i.e., the integral of p,,(r) over the r plane will be identical
to the integral of h’(r”) over the r” plane. The reader may verify that the
constants in (4.36) are reasonable by showing that the integral of Ppn(r) is sim-
ply QT/4n. Notice that py,(r) has units of time per length squared, so that
Pon(r) ** f(r) represents the mean number of collected photons per unit area
in the rescaled image.

4.2.4 Modulation Transfer Function

The MTF of the pinhole camera may be found, as usual, by Fourier
transforming the PSF. The details of the transform are given in Appendix B;

W

Fig. 4.8 Isometric plot of the function 2J ,(zp)/ap
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by (B.114), the result is

_ Polp)| _ [27,(ndiyp/b)|

MTF,, Pou(0) wdoppb (4.37)
where, as in Chapter 2, p is the magnitude of the two-dimensional spatial-
frequency vector, and J () is the first-order Bessel function of the first kind.
The function 2J,(ap)/ap is the two-dimensional, circularly symmetric coun-
terpart of the sinc function defined in (2.58). It is sometimes referred to as
a “Besinc” function or, in the southwest, as a “sombrero” function (see Fig.
4.8). However, since the usage is not yet standardized, we shall refrain from
giving this function a name.

4.2.5 The Image Detector

Since the PSF (or the transfer function) is a complete specification of a
linear, shift-invariant system, it would seem that we have completed the
analysis of the pinhole camera. However, we have not yet included the effects
of the image detector. The problem is closely akin to the cascaded linear
systems discussed in Chapter 2. The first system is the image-forming pinhole
aperture. Its input is the two-dimensional source density f(r), and its output
is the photon density incident on the detector h(r”). If the detector were
ideal, its output would be just proportional to h(r"). Real detectors, however,
further degrade the image and must be treated as linear systems in their own
right.

Cascaded linear systems are most easily analyzed in the frequency do-
main. The input signal to the detector system is thus given by H(p"), the
Fourier transform of h(r”). The transfer function of the detector will be de-
noted by D(p"), so the detector output is simply D(p")H(p"). With the aid
of (4.22), this becomes

D(p")H(p") = (C/a®)D(p")F(—bp"/a)G(p"/a). (4.38)

This equation may appear strange at first since the three functions on the
right all have different scale factors. But bear in mind that we are really in-
terested in how a particular spatial-frequency component in the object is
affected by the cascaded system. It is quite irrelevant to us whether the final
image is displayed at a large scale or a small one. What we must do, therefore,
is to rewrite this equation so that the object transform F{(p) appears without
any scale factors. The coefficient of F(p) will then be the overall transfer
function of the cascaded system, referred back to the original object scale.

To accomplish this, we merely let p = —bp”/a in (4.38). The result is

D(—ap/b)H(— ap[b) = (C/a*)D(—ap/b)F(p)G(— p/b). (4.39)
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Reading off the coefficient of F(p), we obtain the transfer function of the total
system, pinhole plus detector,

TFIOI = le(ﬂ} = (C/az}D(—aP/b)G( "P/b)‘ (4.40)

Note that no modification of the leading constant is necessary when rescaling
functions in the frequency domain. The central ordinate theorem (B.96)
guarantees that the left-hand side of (4.40), when transformed back to the
space domain, will have the same spatial integral as before scaling. The factor
of b?/a* introduced into (4.36) is automatically taken into account in (4.40).

An inverse transform now gets us back to the space domain and to an
expression for the PSF of the total system:

PSFy = pia(r) = (C/a®)# ;' {D(— ap/b)G(— p/b)}. (4.41)

This function can be broken down into its component parts by use of the
convolution theorem (B.52). We then obtain

ptol(r) . Pph("} ** pd:l(r)'s (442)
where p_,(r) is the PSF due to the pinhole alone [cf. (4.36)] as given by
ppulr) = (C/a*)F 5 *{G(—p/b)} = (Cb*/a*)g(—b). (4.43)

Similarly, py.(r) is the contribution of the detector to the overall PSF and
is given by

Pac®) = F 3 '{D(—ap/b)} = (b/a)*d(—br/a). (4.44)

Note that p,., has dimensions of (area) ! even though p,, has dimensions of
time per area. Note also that an ideal detector, for which D(p”) =1 at all
frequencies, leads to pye(r) = 8(r) = (b*/a*) 6(— br/a).

It is also important to keep in mind that we are referring all PSFs to a
common scale-—the scale of the original object in the r plane. The notation
Pae(r) does not mean the PSF of the detector; it means the contribution
of the detector to the overall PSF as measured in the object plane. The PSF
of the detector, as measured in the detector plane, is just d(r"). The scale
factors in (4.44) serve to project this function through a point in the aperture
plane to the object or source plane. On the other hand, we had to originally
have h(r") expressed in the r” plane in order to regard it as the input to the
detector. Only after the cascading expressed in (4.38) was it correct to rescale
the results to the r plane.

4.2.6 Design Considerations
We next inquire how these results might be used to design a pinhole

camera. The parameters at our disposal are the spacings s, and s, and the
diameter of the pinhole. It is assumed that the size and MTF of the detector

4.2 Pinhole Imaging 131

are fixed, and that we must image an object of a specified size. Within these
constraints, we must optimize the resolution and the gamma-ray collection
efficiency of the pinhole camera.

The first constraint to apply is the required size of the object field (field of
view, or FOV for short). If the detector is circular with diameter dg., and
the object lies within a circular region of diameter d,, which is large com-
pared to d,,, then the entire object can be imaged if

Qo> Ldy =2 dy. (445)
5 a
In other words, the magnified object must fit on the detector.

Equation (4.45) is not the only constraint on s, /s, ; the resolution distance
0, also depends on that parameter. Inspection of (4.35) shows that §,, takes
on its minimum of d;,;, when s,/s; — 0.

Of course, (4.35) was derived on the assumption of an ideal detector, but
the same conclusion follows when a realistic detector is considered—the
best resolution is obtained with the smallest s,/s,. Qualitatively, the deg-
radation due to the detector is least serious when the image is greatly
magnified since then the width of the detector PSF is a small fraction of the
image size. More quantitatively, our goal is to make the detector’s contri-
bution to the transfer function, D(—ap/b) in (4.40), as large as possible. Since
D will generally decrease as the spatial frequency is increased, we must make
the magnitude of the argument of D, ie., the quantity |—ap/b|, as small as
possible at all frequencies. This can occur only if a/b is small. To restate the
argument in the space domain, the function d(— br/a) in (4.44) falls to one-half
its peak value when the argument of the function equals some specified value,
call it ry;;. The FWHM of p,,,(r) is then given by 2(a/b)r,,,. The parameter
rys2 is a characteristic of the detector and presumably beyond our control.
The only way to minimize the FWHM of p,.,(r) is thus to minimize a/b.

Of course, a/b cannot be made arbitrarily small, since then (4.45) would
be violated and the FOV would be inadequate. The smallest allowed a/b is
the value for which (4.45) becomes an equality rather than an inequality,
Le,a/b=d,,/dy,,.

To this point, we have fixed a/b, or s, /s,, but not s; and s, separately;
the total source-detector distance s, + s, is still a free parameter. It is clear
from (4.3) that s, + s, should be small in order to efficiently collect photons
[note that the factor (s, + 5,) ? appears either explicitly or implicitly though
the constant C in all of our imaging equations]. There is, however, a penalty
to be paid if 5, + s, 1s made too small. The problem lies in the obliquity
factor cos® 0 that last appeared in(4.11). The subsequent treatment was based
on the approximation cos® ) ~ 1, an approximation that breaks down for
large objects and small spacings. The planar model for the aperture can also
break down under these same conditions. The upshot is that gamma rays
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are collected less efficiently from the periphery of the object plane than from
the center; a uniform object produces an image that is less intense at the
edges (see Fig. 4.9). The system designer must decide how much of this shading
can be tolerated and set s, + s, accordingly.

An additional consideration affecting the choice of s, + s, arises when
three-dimensional objects are considered. In that case, s, is a variable spec-
ifying depth within the object. If the pinhole is close to the surface of the
object, then the magnification and the collection efficiency will both vary
rapidly with depth in the object. Therefore, both lateral spatial dimensions
and intensities will be distorted, possibly confusing the diagnostic process.
A value judgment, not readily amenable to quantification, is required to set
tolerable bounds on these distortions.

The last parameter we must consider is dy,. Once again a trade-off is
involved—a large d;,, will increase collection efficiency but degrade spatial
resolution. In general, determination of just where to set this trade-off is an
extraordinarily difficult problem that ultimately comes down to the psy-
chophysical question: Does the human observer perform better with a sharp,
noisy image or with a blurred but less noisy one? We do not propose to
answer this question in this book, although some possible approaches to the

hir”)
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Fig. 4.9 [lllustration of image shading due to obliquity and vignetting in the pinhole
camera. Solid line: obliquity alone. Dashed line: obliquity plus vignetting. For this drawing,
the pinhole material is assumed to be perfectly opaque.
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problem are briefly discussed in Chapter 10. Even if we confined our attention
to purely physical measures of image quality, we could not give a very com-
plete discussion at this point because we have not yet included noise in our
formulation. Therefore, we shall postphone the discussion of this problem
until Chapter 10. For now, it is sufficient to bear in mind that radiological
images in general, and nuclear pinhole images in particular, are almost al-
ways severely limited by the small number of detected photons. Collection
efficiency is of paramount importance.

4.3 TRANSMISSION RADIOGRAPHY

It is a simple matter to recast the pinhole-imaging equations into a form
applicable to transmission radiography. The basic difference is that in the
pinhole case the source function f(r) represents the object being imaged, and
the aperture function g(r') is under the control of the system designer. The
reverse is true in transmission imaging where g(r') represents the object
and f(r) is the more-or-less controllable focal spot of the x-ray tube (Ter-
Pogossian, 1967; Rossmann, 1968, 1969; Doi, 1965 ; Doi and Rossman, 1975).

4.3.1 Disk Focal Spot

To accentuate the similarity, let us suppose that the focal spot is a
uniform, emissive disk of diameter d,,, i.e.,

f(r) oy fO Circ(zr/dfs)’ (446)

where f; is the emission density (photons per unit area per unit time) within
the disk region (see Fig. 4.10).
To find the PSF of the system, we must consider the input to be a point
object described by
g’r') = o(r' — r)). (4.47)

where r} is the location of the point in the r' plane. This input function may
offend the reader’s intuition somewhat since g(r’) is supposed to represent a
transmission, which is a dimensionless number in the range 0—1. The unit-
impulse transmission g°(r'), on the other hand, has dimensions of (length) 2
(see Appendix A) and has a peak value of infinity rather than unity. If a
mental picture is required, one can imagine a pinhole aperture whose area
is allowed to approach zero while the exposure time is increased in inverse
proportion to the area, so that the total x-ray flux transmitted through the
pinhole during the exposure is constant. This metaphor corresponds to the
notion of a point source, which we viewed as a very small, very bright source.
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Fig. 4.10 Diagram illustrating the calculation of the point spread function for transmis-
sion radiography with a disklike focal spot.

In the limit, it became infinitesimally small and infinitely bright in such a
way that the total number of emitted photons remained constant. In the
transmission case, the object becomes “infinitely transmissive” over an
infinitesimal area.

We can now see that the PSF of the transmission radiography system,
as measured in the detector plane, is simply the pinhole image of the focal
spot. Substituting (4.46) and (4.47) into (4.13), we find

2
W) = C & f, circ(d—') d(ar” + br — 1))

source
fs

_fc . [2]ar — 1y
_(ﬁ) f0c1rc[_b i ]

C .| 2IF" = (ry/a
= (F) To c1rc|:—|Wr(/;/—)|:|. (4.48)
This equation describes a uniform disk image of diameter dy,, given by
A ) (4.49)
5 a

The disk is centered at ' =r'/a = r|(s, + s,)/s,; the magnification m, is
therefore (s, + 5,)/s;. Note that the magnification is always greater than one
and that it is a positive number. The image inversion encountered in the
pinhole camera does not occur here.

Two points are said to be just resolvable, on the FWHM criterion, if the
center-to-center spacing of their images is equal to d;,. As in the pinhole
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camera case, we then scale the spacing back to the object plane (in this case,
the ' plane) by dividing by the magnification. Formally, we set d;, = r,/a
and solve for r|, which is then identified as the resolution distance &;,. (The
subscript fs indicates that we are considering only the contribution of the
focal spot to the resolution, and the prime shows that the resolution is mea-
sured in the r' plane.) The result is

op)
5y + 32-

i's = dl’.‘ib = d:l's (450)

The symmetry between (4.50) and (4.35) should not be overlooked. One is
obtained from the other by transposing the object dimension and the reso-
lution-determining system parameter (d, or dyp).

4.3.2 General Analysis

We may generalize our description to include an arbitrary focal-spot
distribution and also include the effect of the detector by again using (4.38).
This time, however, G(p"/a) represents the object. Since we are interested
in how a particular spatial-frequency component in the object is affected by
the system, we must rescale (4.38) so that G(p') appears on the right-hand
side. To accomplish this, we let p’ = p”/a in (4.38). The result is

D(ap')H(ap') = (C/a*)D(ap')F(—bp')G(p'). (4.51)

This is the transmission-imaging counterpart of (4.39). The coefficient of
G(p') is the overall transfer function of the system:

C
TFy = Po(p) = e D(ap')F(—bp'). (4.52)
Returning to the space domain, we find that the overall PSF is given by

&
PSFio = Pult) = 3 %2 Y{D(ap’)F(—bp")}

= prs(r’) ** pae(r’), (4.53)
where p(r') is the PSF due to the focal spot alone,
e G = . C -
Pes(r') = . F, ' {F(—bp")} = (W)I(T) (4.54)

The detector contribution to the PSF is
Paer’) = F, ' {Dlap')} = (1/a*)d(x'[a). (4.55)
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Note that the scaling factors in this equation are different from those in the
pinhole case [cf. (4.44)] even though the same symbol p,.,(r') is used. Note
also that both p, and p,,, have dimensions of (length) ", in contrast to Poh
which had dimensions of time per (length)®. However, P 18 to be convolved
with a dimensionless quantity, a transmission, to get the image h, while
Is to be convolved with a source density having dimensions (length)
(time)~". Thus in both cases, h has dimensions (length) 2 and represents the
mean number of photons per unit area in the image.

Ppn

4.3.3 Design Considerations

With these basic equations, we are now in a position to discuss the
design tradeoffs in transmission imaging. The first thing we shall discover
is that there is an optimum magnification even if there is no limitation
imposed by the finite detector size. This is in marked contrast to the pinhole
camera case where we found that the magnification should be as large as
possible. A large magnification (small s,/s,) served to minimize the widths
of both p,(r) and py(r). In the transmission case, on the other hand, a
large magnification ameliorates the detector contribution to the overall blur
but exacerbates the focal spot contribution. To see this, recall that the
magnification m, is given by

1 1
m= =T (4.56)
or
1 -1
b=1-— =T (4.57)
m_m,
Therefore,
, —mr’
Pra(r’) oc f ( ) (4.58)
m, — 1
and
Paed(r’) oC d(m,x'). (4.59)

The width of p.(r') is the smallest when the coefficient of r’ in the argument
of (4.58) is the largest, which occurs when m, = 1. This corresponds to the
“contact print” limit when the detector is in direct contact with the object
being radiographed. In that case the size of the focal spot is irrelevant and
a sharp shadow is always cast on the detector. Of course, this limit may not
be physically possible, as when the object of interest lies deep within the
patient’s body. Nor is it necessarily desirable to have a contact print when
the detector limitations are considered. Just as in the pinhole case, a large
magnification serves to minimize the width of Paer’), @ result that should
be readily evident from (4.59).
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An explicit solution for the optimum magnification is possible when both
the detector and the focal spot can be represented as Gaussian functions—
always a convenient mathematical artifice and occasionally a realistic one
as well. The problem is easiest in the frequency domain. Therefore let us
assume that

D(p") oc exp[ —a(p"/py)’] (4.60)
and

F(p) o< exp[—n(p/p,)*], (4.61)

where p; and p, are characteristic widths of the MTF of the detector and
focal spot, respectively. From (4.52), we find for the overall MTF,

MTF,, = li;‘%)l" = exp[ —n(ap'/pi)] exp[ —n(bp'/p,)*] (4.62)
lot
By virtue of (4.56) and (4.57),
1 (m, — 1)
. —np? _ 4.63
MTF,, = o] (G s+ mip} ¥
The width of MTF,,,, will be an extremum if
132
i[ ; 2+‘""“”]=0, (464)
dm, L(m,p7) mpy

which has the solution

m® =1+ (p,/pi)*. (4.65)

It is easily verified that the extremum corresponds to a maximum width for
MTF,, and hence an optimum configuration as implied by the superscript.
The behavior of (4.65) in two limits is of interest. First, note that a very
large focal spot (p; — 0) requires the contact-print configuration, m, = 1.
Second, a very poor detector (p; — 0) requires large magnification.

As with the pinhole camera, an additional design consideration arises
when we consider the finite detector area. This problem is relatively un-
important when x-ray film or a film-screen system is used since a large area
is easy to obtain. With x-ray image intensifiers, on the other hand, the
detector area is very limited, which is unfortunate since the MTF is also
relatively poor and (4.65) shows that a large magnification is desirable.

4.3.4 Realistic Focal Spots

While some x-ray tubes do have focal spots that approximate Gaussian
functions, they are the exception rather than the rule. A more realistic focal
spot is illustrated in Fig. 4.11, and its associated MTF is shown in Fig. 4.12.
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Many attempts have been made to reduce these complicated functions 1o
single numbers  something akin 1o our d_ in (4.46) or p, in (4.61). Fre-
quently, manufacturers and medical physicists will differ by as much as a
factor of 3 when asked to specify the “elfective focal spot size™ ol a given
x-riay tube. We do not propose to enter this rather sterile debate. Suflice it to
say that the complete PSF or transfer function is required to properly specify
the charactenstics of the focal spot: any lesser description provides less
information.

One qualitative difference between the Gaussian focal spot and the
realistic one in Fig. 4.11 concerns the phase of the transfer function. A
Gaussian transfer function has zero phase at all spatal frequencies, which
is seldom true with realistic focal spots. The existence of these phase shifts
is revealed in a radiograph of a bar target as shown in Fig. 4.13. The origin of

Fig. 4.11  Pinhole image of an actual x-ray tube focal spot, iIsometric and contour repre-
sentations. (From Wagner et ul., 1974.)

Fig. 4.13 Radiograph of a bar target fllustratng phase shifts. Note that the modulanion
Fig. 4.12 MTF obtained with the focal spot shown in Fig 411

Isometre and contour ol the bars vaomishes at 45 Ip mm, and that the phase of the modulation at lower fregquencies i
representatwons (From Wagner ¢ al. 1974)

apposite that at the higher trequencies. (Courtesy of Meryll Frost
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Fig. 4.14 Gcol_'netric explanation of the origin of the phase shifts seen in Fig. 4.13. At left,
a s.mal] focal spot gives a sharp shadow and 100% modulation. The maximum intensity is at
point 4, and the intensity at point B is zero. At right, point A “sees” only half as much of the

t.arge square focal spot as point B does. Thus, the intensity at B is twice as large as at A, which
1S now a minimum instead of a maximum.

the reversals can be seen from the geometric construction given in Fig. 4.14.
Our discussion of transmission radiography to this point is by no means
complete. We are, however, approaching the limits of what can be learned
from a linear, shift-invariant model. We therefore conclude this section here,
but we shall return to the subject of transmission imaging in Section 4.8
where the various factors that invalidate our simple model are discussed.

4.4 SCANNERS

Our ul‘limate goal for this section is to give a fairly rigorous analysis of a
a scanner incorporating a multihole focused collimator of the type illustrated
in Fig. 1.19 (Barber, 1973; Beck, 1964a,b, 1968b). However, much insight

can be ggined by starting with a decidedly nonrigorous analysis of a scanner
using a single-bore collimator.
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4.41 Definition of PSF

In order to calculate the PSF of a scanner, we must first state just what
we mean by PSF in this case. A rather obvious definition would take the
PSF to be the instantaneous count rate of the detector, considered as a
function of the position of a point source. There are two difficulties with
this definition. The first is that the term “instantaneous count rate” must be
understood in a statistical average sense. If the same measurement is repeated
many times, or an ensemble of identical systems is considered, then the count
rate of concern is AN /At, where AN is the mean number of photons detected
in a vanishingly small time interval At. Of course, in real life one does not
have an ensemble of identical systems at his disposal, nor does he normally
have the opportunity to repeat the measurement many times. A single
measurement over a very small At would probably yield only zero or one
detected photon and give practically no information about the mean rate.
Some sort of averaging is clearly required.

In a practical scanner, this problem is solved by use of a count-rate meter
which can take one of several forms. An idealized count-rate meter was
discussed in Chapter 3, but a more practical form is the RC network shown
in Fig. 4.15. The operation of this circuit will be discussed more fully in
Section 4.4.7, but for now we simply note that it serves to average the count-
rate over a time interval R, C, which is under the operator’s control. It might
seem that a large value of R, C, would be desirable since then the measured
count rate would be an accurate estimate of the instantaneous rate defined
above. However, we must not forget that the scanner is moving. A long
averaging time will blur the point image in the direction of the scan. The
count-rate meter is not just an optional accessory; it is an integral part of
the scanner and makes its own contribution to the overall PSF. A full analysis
of a scanner must, therefore, include a calculation of both the collimator and
ratemeter contributions to the PSF. We shall accomplish both in due course
(Beck, 1968a,b; Rao and Wagner, 1967; Mozley, 1968).

The second difficulty with defining the PSF as an instantaneous count
rate is that it is dimensionally inconsistent with the definition of PSF used

buffer
amplifier

from
detector

to image
display

high- impedance

dc volitmeler

low
output
impedance

Fig. 4.15 Simple count-rate meter for use with a rectilinear scanner.
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in the pinhole imaging discussion. In that case, we arranged for the detected
photon density (i.e., the number detected per unit area) to be the emission
function f(r) convolved with the PSF. This required the PSF to have di-
mensions of time per unit area. Since the number of detected photons per
unit area will be a key parameter when we come to a discussion of noise, it is
highly desirable to standardize our definitions in such a way that this param-
eter is easy to calculate.

_ In a scanner, the conversion from counts (detected photons) per unit
nme‘to counts per unit area must involve two mechanical parameters, viz.,
tllle linear scan speed v, and the number of scan lines per unit length (in the
direction perpendicular to the rapid scan). The latter parameter will be
denoted by n,. Straightforward dimensional analysis then shows that the
number of counts per unit area is the instantaneous count rate times n/v,.
(The scan lines are assumed to be contiguous and have width 1/m, and v, is
assumed to be constant. Furthermore, no consideration is given to the
behavior at the end of a raster line where the direction of scan is reversed.)
We shall include this factor n,/v, in our definition of PSF for the scanner.

4.4.2 Geometrical Analysis of the PSF
of a Single-Bore Collimator

Consider the geometry shown in Fig. 4.16 where a collimator of constant
bore diameter Dy, and bore length Ly, 1s viewing a point source a distance z
from the face of the collimator. In practice, the collimator will usually be
scanned in a rectilinear raster over the source. For ease of analysis, however,
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Fig. 4.16 Geomelry for the calculation of the PSF of a single-bore collimator.
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we assume that the collimator is stationary and the source is scanned; only
relative motion is important, so this procedure is still quite general.

A great deal can be learned about the collimator PSF without elaborate
calculations. To illustrate, consider first the case z = 0, where the source
point is virtually in contact with the face of the collimator. Then, assuming
there is no penetration of the gamma rays through the walls of the collimator,
the count rate must be zero when the point source lies outside the disk region
of diameter D,, directly in front of the bore. Furthermore, since L, will nor-
mally be much larger than D,, the collection solid angle will, to a good approx-
imation, be independent of the location of the point within the disk region.
(This approximation is nothing more than a restatement of the cos® 8 = 1
condition that we have been using all along.) Finally, note that the scanner has
a magnification of one since the count rate will be a maximum when the
collimator is positioned directly over the point source. To image a second
point source a lateral distance L away, the collimator must be moved by L.
Of course, the final image can be displayed at any desired magnification,
but this is of no concern since we shall always refer the PSF back to the scale
of the object anyway. The main point here is that the magnification inherent
in the gamma-ray collection system, in contrast to that obtained with a
pinhole, is unity.

With these simple observations, we can now write down an expression
for the PSF of the single-bore collimator:

PSF(z = 0) = pr; z = 0) = const - circ(2r/Dy). (4.66)

The vector r, of course, represents the two-dimensional position of the
point in the plane z = 0; the collimator is assumed to be centered on r = 0.

To fix the constant in (4.66), consider a point source emitting K photons
per second. Its emission density function is K é(r) and the instantaneous
count rate within the disk region 1s KQ/4n, where Q is the solid angle sub-
tended by the detector. The PSF must thus satisfy

il _m KQ . (2r
Pe(r; 2 = 0) xx K 4(r) = i > cnrc(Eb). (4.67)
Since the solid angle in this case is nDZ/4LZ, the PSF is given by
W B
Pulr;z=0)= 1_’: 7 ng 2 cm:(D—b), (4.68)

Note that p,, has dimensions of time per area, so that we can directly convolve
pe With f(r) to get the number of detected photons per unit area. It is not
necessary to insert an exposure time T as we did in the pinhole camera and
transmission radiography cases.
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The general behavior of Polr;z) for z # 0 is also easy to determine. We
need to distinguish three regions in the source plane. The first, which we
shall call the umbra by analogy with lunar eclipses, is the disk-shaped region
of diameter D, directly in line with the collimator bore. (The term “umbra”
is a decided misnomer here since the detector is completely unobscured by
the walls of the collimator in this region; we could call it an inverse umbra or
negative umbra, but let’s not be any more pedantic than necessary.) The
PSF in the umbra region is approximately constant.

The second region to be discussed will be termed the penumbra. It is the
region between the umbra and a circle of diameter Dy[1 + (22/Ly)] as shown
in Fig. 4.16. In this region, part of the detector is obscured by the collimator,
reducing the collection solid angle and hence the PSF. In the third region,
outside the circle of diameter D[1 + (2z/L,)], all of the detector is obscured
and the PSF is zero (again neglecting penetration of gamma rays through the
collimator).

From these considerations, we can sketch the PSF for any z. In Fig. 4.17
we show the image of two well-resolved point sources. The sloping lines in
the penumbra region have been drawn as straight, but the more careful
analysis to be given below will show that they have a slight curvature. It
should also be kept in mind that we have not yet discussed the effect of the

count-rate meter. The image shown in Fig. 4.17 is that which would be
obtained with an infinitesimally slow scan.

L
count I |
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Fig. 417 Image of two points with a single-bore collimator.

4.4.3 Analytical Treatment of the Single-Bore Collimator

To complete the analysis of the single-bore collimator we must find an
analytical expression for p,(r; z) for z # 0 and Fourier transform it to find
the MTF. For this purpose, we again invoke the general model set up in
Section 4.1. To show the correspondence between the model and the present
problem, we note that the collimator can be replaced by a pair of thin
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apertures as shown in Fig. 4.18. If the apertures are made of a hypo{hel_icz_il
material that is absolutely opaque to gamma rays, then the aperture pair is
equivalent* to the collimator. (The collimator material is also still being
treated as impenetrable.)

With this equivalence, the problem closely resembles the pinhole camera
problem. One important difference, however, arises because thc_ pinhole
aperture is used with an imaging detector that measures the coordinates c_)f
each gamma ray impinging on it. The scanner detector, on the other hapd, is
a spatially integrating detector that simply counts all gamma rays incxder.n
on it, irrespective of their coordinates. The only position dependenc; is
imposed by the upper aperture in Fig. 4.18; a photon is counted only if it
falls within the transparent area of that aperture.

Detector Deteclor

r“ plane

' plone

Y rays S| =1

Source r plone " Source
Fig. 4.18 Diagram showing the equivalence between a single-bore collimator and a pair

of circular apertures. Left: actual collimator. Right: equivalent apertures.

We can apply the pinhole-camera equations to the single-bore collimatqr
by taking the r” plane to be just in front of the upper aperture as s_hown in
Fig. 4.18. The function h(r”) then specifies the photon density incident on
the upper aperture. The lower aperture, whose transmission we shall Flcmg—
nate g,(r'), plays the role of the pinhole. The source-to-aperture spacing s,
then corresponds to z, while the aperture-to-detector distance s, is L,. The

* To be completely realistic, we should admit that there is one type of event for which the
two geometries are not exactly equivalent. A gamma ray incideni on the wall of the collimator
can be cither Compton scattered or photoelectrically absorbed. In either case a lower-energy
photon is produced, and there is some small probability that it will escape l'romllh:: wall and
strike the detector. In practice, such events will usually be rejected by the pulse height analyz..cr.

In the equivalent aperture geometry, the collimator walls are not present, so a photon which
would strike the wall instead strikes the underside of the upper aperture. The scattered x ray
15 then shielded from the detector and is not counted even without a pulse height analyzer.
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function h(r") is given by (4.13), which in the present notation becomes

h(r')=C LO f(0)g,(ar” + br)d>r, (4.69)

where

a=z/(L, + 2), b=Ly/(L, + z). (4.70)

Howcver h(r”) is the number of photons per unit area in an observation
time T. For scanner problems we are often more interested in the number

per unit area per unit time. Therefore we define a flux density or fluence rate
by

h(r") = h—(,}) =C [ fwgi(ar" + bryd*, 4.71)

where
C = C/T = [4n(Ly + 2] . 4.72)
Since the two apertures are identical and have diameter D, , we may write
gi(r') = circ(2r'/Dy), i=10r2 (4.73)

By retaining two separate subscripts, we may easily generalize the results
later so that they apply to a collimator with a tapered bore.
The instantaneous count rate is found by multiplying the photon flux

density incident on the upper aperture, i(r”), by the transmission of that
aperture, g,(r"), and integrating over r”, i.e.,

count rate = L h(r")g,(r")d?r"

- L a2 L d*rf)g,(ar” + brg,(t”).  (4.74)

We may take the domains of both integrations to be infinite planes since
f(r) and g,(r") are zero outside a finite region. To calculate the PSF, we let

1 (.r) be the point source (r —r,). The integration over r in (4.74) is now
trivial, and we find for the PSF

8 o
Palri2) = == [ 4" g:(")gular” + br)

= n,CJ' dzr”circ(zL) circ(———zlar” és br")
v, Jo D D,

b

e (2 i
i :T L dzr"mrc( D' )circ[ﬂlr_ﬂ‘-’)—l] (4.75)

b Dh
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Fig. 4.19 Diagram to aid in interpreting Eq. (4.75).

The integrand in this equation is a product of a circ function of diameter D,
with a second circ function of diameter D, /a as illustrated in Fig. 4.19; since
the parameter a is less than one, the second circ function is larger than the
first. The interpretation of this result is that the larger circ function represents
the lower aperture as projected from the source point onto the upper aperture.
The PSF is proportional to the area of overlap between the two circ func-
tions, or the portion of the detector that can be seen from the source location.

Examine (4.75) in the limit z — 0, or equivalently, a » 0 and b — 1. Then
the first circ function is much smaller than the second and may be treated
as a delta function:

2 D}
circ( Db) ~ % 34), (4.76)
where the constant mD?/4 is necessary so that both sides of this equation will
have the same integral over r”. This approximation allows us to perform
the integral in (4.75) with the result

nC\nDZ . (2,
sz =0)= = s 27
il 2=10) ( . ) 2 mrc( Db), (4.77)

which agrees with (4.68) since C = (4nL2) ™ if z = 0.

At this point we can drop the subscript s denoting source point on r, and
refer to the PSF as p,(r;z = 0). There are two justifications for this step.
The first is that we can call the argument of a function whatever we please
so long as we are consistent. But the more important reason is that we shall
want to use py(r,z = 0) in convolutions that are carried out in the r plane.
Recall that in the usual definition of the PSF for a shift-invariant imaging
system, p(r) represents the response at some image point due to the source
point a vector distance r away. In the above development, the image point
was at the collimator location—the origin of coordinates—and the source
point was at r,. The vector r, thus has the same meaning as the usual vector
rin p(r).

The behavior of p,(r; z) for nonzero values of z is illustrated in Fig. 4.20.
Note the curvature of the sloping edges in the penumbra region.
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Fig. 4.20 PSF of a single-bore collimator for various values of z, the distance from the
source plane to the collimator face.

4.4.4 Modulation Transfer Function

The MTF is proportional to the Fourier transform of (4.75). To perform
this transform, it is convenient to first finagle the equation into the form of
a convolution. The required manipulations are similar, but not identical, to
those carried out in Section 4.1.4. As before, we define

g:(r") = g,(ar”) (4.78)
so that
gilar” + br) = g,[(b/a)r + r"]. (4.79)
Equation (4.75) then becomes
Paslr; 2) = (mClo)[g5(") #+ Fo(1")] =  pes- (4.80)

The MTF appropriate to the plane z is now readily found by use of
(B.52), (B.94), and (B.114). The result is
2J (raDyp/b)| |2J,(nD,,p/b)
maDyp/b nDyp/b

The z =0 limit is again of some interest. In that limit a—0and b 1.
Then, since

_ |Pulps2a)|
il Po: sy

(4.81)

lim [2J,(X)/X] =1, (4.82)
X0
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we find

lim MTE,, = |2J,(xDyp)/xDyp). (4.83)

z—0

This result could, of course, have been obtained directly by transforming
(4.68). Note that it depends on only the bore diameter D, and on no other
geometrical parameter.

4.45 The Focused Collimator

Extension of our previous results to the case of a focused collimator
(Fig. 4.21) is rather straightforward since each bore can be treated separately.

Y

Lb
| [ | /

¢ \ l,f/
V!
it
1[!j
W
#‘l
focal
point

Fig. 4.21 Geomelry of the focused collimator.
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We need merely to generalize the single-bore results to allow for a noncon-
stant bore diameter and an overall tilt. As in the single-bore case, we can
model each bore in a focused collimator by a pair of circular apertures. (In
practice, the bores often have a hexagonal cross section, but little error occurs
if we treat them as circular.) The lower aperture of the jth bore is described by

g,,(r') = circ(2r’ — ¥,;|/D,), (4.84)
while the upper aperture for the jth bore is given by
r" s FIJl/DZ) (485)

Note that D, and D, are assumed to be the same for all bores.

If each bore is to point exactly to a common focal point at z = z (a
condition that is sometimes deliberately violated in practice), then we must
have T, ; parallel to T,;, and their magnitudes must satisfy

gzj(r”) = Cil’c(z

72;/T1; = (Ly + z¢)/z forall j. (4.86)

Usually the walls will also be tapered so that the aperture diameters are in
the same proportions:

D,/Dy = (Ly + 2z,)/z. (4.87)

We can now write down a rather formidable expression for the PSF of
the focused collimator by analogy with (4.75). The result is

C' My " w " s
Pn:(r;z):?:}—f°o & ¥ circ(zlr = rZJ|)circ(zlar i r”l), (4.88)

Jj=1 2 Dl
where a and b have the same meaning as before, and M, is the number of
bores in the collimator. The more masochistically inclined readers may

proceed to Fourier-transform this equation and find the general expression
for the MTF.

There is, however, one condition under which (4.88) can be considerably
simplified, viz., z = z;. This condition implies that the object being imaged
lies entirely in the focal plane. Since we set up the problem so that all bore
sights exactly overlap in the focal plane, we would expect the PSF in this

case to be exactly proportional to the PSF of a single bore. To verify this
conjecture, define

=1 =Ty, (4.89)
Then, in the argument of the second circ function of (4.88), we have
ar’ + br — Ty ; = a(r] + T, + br — ¥,

= arf + br, (4.90)
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where the last step follows from (4.86) and the fact that a = z;/(L,, + z) if
z = z;. Equation (4.88) now reads

S Mp 7 o
Pre(r;z) = 5 Y _L d*r} circ(%)circ(m). (4.91)
2

Us ji=1 Dl.

But each term in the sum is independent* of j and identical with the single-
bore PSF given by (4.75) (except for the minor generalization of differing
aperture diameters, D, # D,). We have therefore shown, not surprisingly,
that

Pec(r; z¢) = Mypa(r: z). (492)

It should be noted that p.(r; z;) exhibits no umbra region. By use of (4.87),
(4.91) is seen to represent the autocorrelation of a circ function rather than
the cross correlation of two different circ functions.

4.4.6 Sensitivity and Resolution

An oft-used measure of sensitivity for a scanner is the planar sensitivity S.
This parameter is defined as the count rate obtained when the scanner is
viewing a uniform planar source of activity 1.0 uCi/cm?. (See Appendix D
for a discussion of radiation units.) In our notation, such a source is described
by f(r) = const. The value of the constant is fixed if we assume that each
nuclear disintegration produces exactly one emitted gamma ray with an
energy suitable for detection by the scanner. Then, since 1.0 uCi corresponds
to 3.7 x 10* disintegrations/sec, we have

f(r) = 3.7 x 10* emitted photons/cm? sec, (4.93)

Different isotopes will give different values for the numerical constant in
this equation since, in general, the number of usable gamma rays per dis-
integration will be different from one.

The count rate is given in terms of the PSF by

count rate = (v,/n)p.(r; z) *x f(r), (4.94)

where p.(r;z) can refer to either p,(r;z) or p;.(r;z). We shall consider the
single-bore case first.

Since f(r) is a constant, the convolution in (4.94) becomes a simple integral
over the PSF. The planar sensitivity is then given by

_b o g
S = 07 x 109 [ patrizyd® (495)

* The fact that rj depends on T, is of no concern since ry is a dummy variable of integration,
and the integration is over the entire rj = plane.
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or, from (4.75) and (4.72),

3.7 x 10¢ 2r" 2lar”
% = gLt S N |ar” + br|
e L d*r fm d rurc(‘Db)cuc(—Db Y], (4.96)

where now L, and z must be expressed in centimeters.

_ 'I‘P_lc integral over r in (4.96), which involves only the second circ function,
i1s easily performed, with the result

37 x 10" =h? 2
G o D e 2 0t 2=l
* = an(L, + 2)° b2 J;, d*r cxrc(Dh)
_ 37 x10* aD D}
dn(L, + 2)*> 4b2 4 ° el

With the aid of the definition of b, (4.70), S, reduces further to

5 _37x 10450_; counts/sec
o 64 L2 uCi/em? e

(all dimensions in centimeters). Note that this result is independent of z and
the_ scan parameters v, and n,. It does not matter how far you are from a
uniform source or how fast you are moving past it.

It is a simple matter to modify the preceding derivation so that it applies
to a focused collimator. The result is

_37x10* = nD}D} counts/sec
64 = uCifem?
(all dimensions in centimeters).

To put these expressions for sensitivity into proper perspective, it is useful
to restate them in terms of the collimator’s resolution distance defined as
usz‘ial, as the FWHM of the PSF. For the single-bore collimator, the re:so-
lution distance J,,(z) can be estimated from the approximate sketches given

in Fig. 417, where the curvature of the PSF in the numbra ion i
neglected. We find » i

Sf c

(4.99)

d(2) = Dy(l + z/Ly). (4.100)

Of course, if z - 0, §,, will equal D, without approximation.
" If we regard D, as the variable parameter and hold z and L, fixed, we
ave
Sep o 83, (4.101)

Thus a twofold improvement in resolution (reduction in d,,) must come at
the expense of a sixteenfold decrease in sensitivity. And even this drastic
behavior understates the problem when noise is considered. Let us anti-
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cipate a simple result from Chapter 10, where it is shown that the signal-to-
noise ratio (SNR) in a scanner image is determined by the number of detected
photons per resolution element, which we shall denote by N,. For a given
source, we have

Nyt 8, - 8% oc8%.- (4.102)

To keep the SNR constant when d,, is reduced by a factor of 2, therefore,
means that either the source activity or the total scan time must be increased
by a factor of 64.

A somewhat different result applies to a focused collimator. In the focal
plane the PSF, as noted previously, is proportional to the autocorrelation
of a circ function. Numerical evaluation of this autocorrelation (Gaskill, 1978,
p- 304) shows that the resolution distance is given by

8;c = 0.808D,(1 + z/Ly). (4.103)

(The factor of 0.808 would become unity if we neglected the curvature of
the PSF.) Furthermore, since the ratio D, /D, is fixed by (4.87), we have

S oc MyD* oc M, 5%, (4.104)

for fixed z; and L, .

The major difference from the single-bore case arises when we realize
that M\, itself is a function of D, or d;.. The reason is that the total diameter
of the detector crystal is usually fixed. Therefore, if each bore is made smaller,
more bores can be fit into the detector area. Specifically, we have

M, = o,{Dgei/D2)?, (4.105)

where Dy, is the diameter of the detector and o, is the packing fraction,
i.e., the fraction of the total area of the crystal that is covered by the open
part of the collimator. If all bores point to a common focal point, o, is
also the fraction of the detector area that can be seen from the focal point.
For a given minimum septal thickness, o, will be the largest for a hexagonal
array of bores. Typically, o, lies between 0.5 and 0.8, depending on septal
thickness and hence on photon energy.
From (4.87), (4.103), and (4.105), we now have

M, o &2 (4.106)
where Dy, Ly, z, and o, are regarded as fixed. The number of counts per
resolution element, in this case, is given by

N;oc S 82 o 6t (4.107)

In other words, a constant SNR can be maintained when halving é,. by
“merely” increasing the source activity or the scan time a factor of 16. The
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situation is still drastic, but at least it is an improvement over the single-bore
case.

The fourth-power law given in (4.107) is quite common in radiographic
imaging. For example, the reader may wish to test his understanding of the

arguments in this section by showing that (4.107) applies also to pinhole
imaging.

4.4.7 The Ratemeter

In this section we consider the contribution of the count-rate meter to
the overall PSF of a scanner (Rao and Wagner, 1967: Beck, 1968a). One
can imagine a scanner with very fine collimator bores so that the collimator
PSF is vanishingly narrow. (Never mind that the photon collection efficiency
is also vanishingly small—statistical considerations are not our concern at
this stage. Since this is a gedankenexperiment, the source can be infinitely
intense.) When this hypothetical collimator is raster-scanned over a point
source, photons can be detected only when the collimator is positioned
directly over the point. However, this is not to say that the image will be an
ideal point. Instead the ratemeter will have a nonzero output, and hence
the displayed image will be nonzero for some time after the collimator has
passed the true location of the point. In fact, the PSF in the scan direction
1s just the temporal impulse response of the ratemeter with appropriate scale
factors. When the collimator is directly over the source, a brief burst of
photons is admitted to the detector which produces an equally brief electrical
signal, approximating an impulse, as the input to the ratemeter. The electrical
signal emerging from the ratemeter is then, by definition, its impulse response.
Of course, this impulse response would normally be calculated as a function
of time, but we can easily convert it to a function of position if we know the
scan speed.

A corollary result is that the ratemeter cannot degrade the image at all
in the direction perpendicular to the scan motion. To see this, note that if
our hypothetical collimator is displaced slightly so that the scan line does
not intersect the source point, no photons are ever admitted to the detector
and no input signal is ever applied to the ratemeter. Hence, its output also
remains zero.

To restate the conclusions of the last two paragraphs more formally,
suppose that the scanner is moving in the x direction at a uniform speed
v Then the ratemeter contribution to the PSF is given by

Pem(®) = (1/0) 8(y)q, mx/v,), (4.108)

where g,,.(?) is the temporal impulse response of the ratemeter regarded as
an clectrical filter. The leading factor of 1/v; in (4.108) is required so that
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P.mlr) will have dimensions of inverse area. The temporal lmpu_lse re_spo};‘;icf
qm(t) has dimensions of inverse time so l}_lal (l/_v,)q(x/vf) has d;merisl):oilvim
i:;r:erse length. Of course, §(y) also has dimensions of inverse length. d
this definition, f(r) ** p.(r) *x p,.(r) represents the number offdetei(tzizd
photons per unit area [with f(r), 1as usual, being the number of em
i r unit time].

pho.iosn:npf::(:;l::)l:e\iepzhall now calculate the PSF for the RC. ratemetz;
depicted in Fig. 4.15. For simplicity, we assume tha.t the o?lpul anegzgce
of the amplifier driving the RC network is zero, whlle_ the mp;t un[t)he -
of the following amplifier is inﬁnite: The same current i(z) thus flows thr

R, and C,. From elementary circuit theory we then have

()= . Booull) i
ilt)= C; T
and
U(1) = IRy + Doy (2). (4.110)
Combining these equations, we find
@00 = 111
RICI dft 15 Uswt = Vjn- (4 )

The left-hand side of this-equation may be rewritten, with the aid of the
usual integrating factor,

=t \d eI S (4.112)
R,C, exp(ﬁ) a [Uout CXP(R,CI)] Vin»

from which an integration and a little algebra yield

1 -t vapl-> i, @it
vouI([) = m exp(—Rl Cl) f_ - vin(t )CXP(RICI) (

Now what we are really interested in i<.s. n_ot this gem::ral result so mut;:ll:
as the special case where v,,(¢') is th1_: uqlt impulse 6{{} and_u?u,l(l)b:ft e
impulse response g,,(t). The integratlo_n is then essentl.ally trwt:)a ,nonzem
must not forget that an integral involvu}g a dei.ta funct‘loi_l can de e
only if the argument of the delta function vanishes within the doma

integration. We thus have

1 <=y t " t )d'
= el o(t)exp| —— |dr
=)= RC, “"(Rlc,)f-w 3 p(&cl

_{(1/R1C1)exp(~r/RlC1) if t>0 (4.114)

0 il t<0.



156 4 Application of Linear Systems Theory to Radiographic Imaging

The result that ¢,,.(t) = 0 if t < 0 should come as no surprise; it simply says
that no output can be produced from an electrical filter before an input is
applied. In this case the input is an impulse at ¢ = 0.

The product R, C, has dimensions of time and is called the time constant
of the filter. Basically, the counts are averaged over this time before being
displayed.

Ct not IlO fo] use 1n 4 14 [+ V de un StC fullCl]Oll
]

step(1) = { (1) ii i x 8 (4.115)
In terms of this function, (4.114) becomes
gl o exp(:i)step(r) (4.116)
R,C; R,C, :
and, with (4.108), our final result for the ratemeter PSF is
1 —-X
Pinll) = " R.C, EXP(E,EI_CI)‘;(” step(x). (4.117)

The FWHM of this function is U,R,C,In2 in the x direction and, of course
zero in the y direction. It is plotted in Fig. 4.22. ,

_ To complete the analysis, we should now calculate the ratemeter con-
tnbu‘lion to the scanner transfer function. This can be accomplished either
by directly transforming (4.117) or by returning to the circuit model and

expressing the voltage transfer ratio in the temporal frequency (v) domain.
The latter approach yields

boulr) _  2rivC,)™ |
Vo) R, + (2nivC,)™" ~ 1+ 22ivR,C,’ (4.118)

Prmlr)

&y

— X

Fig. 4.22 Isometric plot of the ratemeter contribution to the scanner PSF
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where V,,(v) and V, (v) are the temporal Fourier transforms of v, () and
v;,(1), respectively, and i = /=1 [not to be confused with the current i(1)].
The temporal frequency v is related to £, the x component of the spatial
frequency, by

v=¢E,. (4.119)

The spatial transfer function is thus
TFu(p)= Prulp) = [1 + 2nilv,R,C,] 7. (4.120)

Note that this function is independent of », the y component of p, since
the ratemeter cannot degrade the image in the y direction.

Equation (4.120) is interesting because P, (p) is a complex function. To
interpret this result, it is helpful to rewrite it in modulus-phase form:

Po(p) = [1 + (2n&v,R,C,)*] ™' exp(idp,m), (4.121)
where

¢, = —tan"'(2név,R,C,). (4.122)

In other words, if a sinusoidal activity pattern with spatial frequency & were
to be scanned with our hypothetical ideal collimator and with a ratemeter
time constant of R, C,, the contrast of the displayed image would be reduced
by a factor of [1 + (2rév,R,C,)*] '/* and the phase of the pattern would
P,ulp)/P.(0)], is plotted in Fig. 4.23.

be shifted by ¢,,,. The MTF,

Fig. 4.23 Isometric plot of the ratemeter contribution to the scanner MTF. The origin
(& = 0. n = 0)s at the center of the figure.
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4.4.8 Image Display and Overall System Characterization

The most common way to display the image from a scintillation scanner
1s to use a modulated light source moving in synchronism with the scanner
head to expose a piece of film. If the light intensity is modulated in proportion
to the output of the ratemeter, then the film exposure is a linear function of
the gamma-ray activity in the source, and the techniques of linear systems
theory may be used to describe the film-exposing device. Of course, the film
itself responds nonlinearly to the exposure, but this creates no real difficulty
since the film characteristics are presumably known. The optical density of
the developed film is thus easily calculated from the exposure, which in turn
is calculated by successively convolving the gamma-ray source distribution
f(r) with the PSF’s describing the collimator, the ratemeter, and the display.

There is one subtlety in this prescription. A convolution integral cannot
be a rigorous description of the action of a scanner since the scanner detector
does not systematically explore all possible points on the x-y plane as implied
by a continuous integral. Rather the detector is usually swept continuously
in the x direction but moved in discrete steps in the y direction. However
the film exposure, which we shall call E(x, y), is defined over the entire film
plane (although it may be zero for some x—y values). The display spread
function evidently enters our formalism somewhat differently than the
collimator and ratemeter PSFs,

To pursue this point, let us lump the collimator and ratemeter PSFs into
a single function p,,,,(r) defined by

Peem(F) = pe(r) »# p,(r), (4.123)

where p(r) may be either Pree(r) or py(r) as appropriate. We adopt the view-
point that the scanner head is stationary and the source moves continuously
along a sequence of lines described by y = y,, with k being an integer index.
The interval between scan lines is n; ' where n,, as previously defined, is
the number of scan lines per unit length. The voltage output from the rate-
meter, when the instantaneous shift of the source relative to the detector is
(X0, 1), is given by an ordinary convolution:

Uou((xﬁ!yk) o J'inw f_mw dx’dyrpcrm{x’a y‘)f(x() - st Ve — y') (4124)

Let us suppose that the light source illuminates a square aperture of
side ¢, that is imaged at unit magnification onto the film. (Note that ife, =
n; ', the exposed scan lines will be contiguous.) Then, for the particular
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relative shift (x,, y,), the film exposure pattern is described by

_ X — X4 Yi—:¥§ 5
B, .. (% 9) oc 055(%00 ) rect( 2 )recl(—s ) (4.125)

The total film exposure E(x,y) is obtained by summing (4.125) over t211111
possible source-detector shifts; the sum becomes an integral ow.lrel: e
continuous variable x, but remains a discrete sum over y,. The result is

o X — Xp ¥=—
E(x,y)eczkl_[_mdxorw‘( & )rect( b )

a

T[T X Y Pl Y ko = Xy = ¥). (4126)

This equation looks very much like a repeated con_vqlutmn exr::e;?tlth;t on:
of the integrals has been replaced by a sum. But tln_s isa nontnv;a change.
To see that (4.126) is not even approximately a continuous convolution, :}):_1;
has only to consider the limit ¢, — 0. Thcg t}}e film is exposed only alo(t; g 11
lines and is unexposed between lines. This 1s,_0f course, a very poor disp! ag;
format but, more important for the present dlscu§51_on, it is one that c;nnl(])
be obtained by convolving f(x, y) with any realistic funcno_n. Instead, é':
proper description of (4.126) follows the lines of tl?e samplmg th;pryt‘ ;n
cussion given in Section 2.5; the scanner sarrfpigs the image in the y directi ed
It was shown in Section 2.5 that a band—hmnt.ed f}mcnon can‘be rac?i\‘fgr
from its samples by a low-pass filtering operation if ﬂ?e Nyq};lst con ;:d()llls,
(2.82), is satisfied. For the present proble_m _the function being sanlllf; i
Permlr) #* f(r), and the sampling rate 1/A is just . Let us a§sux?e a s
corllimator MTF is essentially zero for all y-directed spaqal re_queqc:ce
greater than n,,,,. (The ratemeter MTF does not enter this dnscussnc:]l sinc :
it influences only the x-directed spatial frequencies.) Then the Nyquis
condition is n; > 2., NO assumptions ab_out f (l:) are needed. [ t
The required low-pass filter may be an m?phcn rqther than expl:c:} palr
of the system. A physician viewing a scanner image will often unco?scmu(s) :
adjust his viewing distance so that his eye cannot rcsolye the scan lines. [,
even if he can see them, he has learned to ignore the scan _llnes and concentra e
on the underlying image structure. The low-pass filter is thus the observer’s
) Ionr :;;lz;aem, if n, is large enough, it is safe to say that we are 1nterest;d
in only the low-frequency components of E(x, y), whlch we sha111 gd",?n(:: fa);
E,c(x, ¥). The derivation of E,(x, y) parallels the derivation of (2.87).
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as the y dependence is concerned, (4.126) has the form [cf. (2.69)]

E(x,y) o ¥ s(y,) recz(y = '”“)
&

k a

= [; s(y)o(y — yk)] * rect(g)

= [s( y) g, oy — yd] * rect(i), (4.127)

Eq

where

s(yy) = Jt'm dx, rect (X ; xo)
LT Pan V) fxo — x5 - y)axdy.  (a128)

Since the y, values are evenly spaced, we can write y, = k/n, and hence

20y —y)= Zé[y— (i):l
k k "
=N ; o(my — k) = n, comb(n, y). (4.129)

A one-dimensional Fourier transform on E(x, y) then yields

FUE(x, y)} oc [S(n) » comb(n/n,)] sinc(e,n)

= [n, ‘? Sy — kn,)}sinc(s,n). (4.130)

The low—pa_ss filter serves to select the k = 0 term in this sum and reject all
others. An inverse transform then gives

Ey(x, y) oc s(y) = rect( y/e,). (4.131)

Combining (4.131) and (4.128) and rewriting them in convolution form, we
now have

Ey(x, y) oc [rect (j)rccl(éi)} *x pooal(X, ¥) =% f(x, p), (4.132)

ea a

yvhich we might have written down intuitively at the outset. In other words,
if we consider only the low-frequency components, it is rigorously correct
to ascribe a PSF to the film-exposing device even though (4.126) could not
be written in convolution form,

Furlhennore. the display PSF need not be simply the square aperture
considered thus far. It can readily be modified to any positive-definite
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function simply by inserting appropriate transparencies in the optical
system. The film exposure system is thus a convenient place to control the
overall PSF of a scanner (Tsui et al., 1980). Of course, only smoothing and
not sharpening operations are possible in the display since we are restricted
to positive-definite PSFs. Still, it might be preferable to smooth the data
with the display rather than with the ratemeter since the former provides
a two-dimensional averaging, while the latter affects only the scan direction.

4.5 COLLIMATORS FOR SCINTILLATION CAMERAS

Fundamentally, collimators for use with scintillation cameras are no
different from those used with scanners (Causer, 1974: Rotenberg and
Johns, 1965 ; Miracle et al., 1979). The typical parallel-hole camera collimator
can be viewed either as an array of identical single-bore collimators as
described in Sections 4.4.2 and 4.4.3, or equivalently as the focused collimator
of Section 4.4.5 in the limit where the focal distance z, approaches infinity.
A magnifying camera collimator is nothing but a focused scanner collimator
with z; much greater than the actual object distance z (although in practice
the camera collimator will have many more holes). Similarly, a minifying
camera collimator is a focused scanner collimator where z, is large and
negative.

Nevertheless, the present section is not superfluous; we cannot simply
rewrite the expression for the PSF of a scanner collimator and claim to
have solved the corresponding problem for a camera. Nontrivial differences
arise because a camera measures the x—y coordinates of each gamma ray
that interacts with the scintillation crystal, while a scanner simply counts
them.

In one sense the camera case is simpler because one less integration is
involved. For the scanner we had to first calculate the x—y distribution of
incident photons on the crystal face and then integrate it to get the total
count rate. By simply deleting the last integration we should have the
desired x—y distribution for a camera. This is indeed correct, but unfortu-
nately, not very useful, because the PSF so determined is not shift-invariant.
As illustrated in Fig. 4.24, the shape of the image of a point depends on the
location of the point relative to the collimator. This is a serious problem
because it means that the response to an arbitrary input cannot be written
as a convolution, and a simple transfer function cannot be defined.

An ingenious artifice to avoid this difficulty, introduced by Hal Anger,
is the “average PSF” obtained by averaging a point-source image over all
possible source locations. This approach is detailed in Section 4.5.1 and
given a more rigorous justification based on sampling theory in Section 4.5.2.
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Fig. 4.24 Illustration of shift-variant imaging with a parallel-hole collimator.

The upshot of this discussion is that a shift-invariant PSF can indeed be
defined and we can proceed in an orderly way to calculate the transfer
function and to consider practical design tradeoffs.

4.5.1 The Average PSF

A problem that sometimes arises when a high-energy low-resolution
collimator (one with large bores and thick septa) is used is that the shadows
of the septa can be seen on the final image. Since this regular geometrical
pattern can be annoying and may interfere with the diagnostic process,
Wilks et al. (1969) constructed a device called a “collywobbler” to wobble
the collimator back and forth during the exposure, blurring out the septal
shadows. Since there was no relative movement of the object and the de-
tector, the collywobbler did not substantially affect the image resolution.

The collywobbler was a mechanical realization of an earlier suggestion
by Anger (1964) who calculated the PSF of a collimator by assuming that
it was moving even if, in fact, it was not. Since moving the collimator alone
is equivalent to moving the source and detector in synchronism while
keeping the collimator fixed, Anger’s “mathematical collywobbler” calcula-
tion gave the average shape of the PSF, averaged over all possible locations
of the source point. Thus, even though the Wilks collywobbler is not often
used in practice, it is nevertheless a useful conceptual device.

The substance of the Anger calculation can be seen by modeling each
bore of a parallel-hole collimator as a pair of circular apertures, just as we
did in Section 4.4.3. For simplicity we assume for now that the image detector
is exactly coplanar with the upper aperture: this restriction will be lifted in
Section 4.5.3. We consider a unit point source located at the point r, and
denote the resulting point spread function by pone (r':r,). Two separate
arguments r” and r, are required since the function is not shift invariant:
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location in both the image plane and the source plane must be spcciﬁcd._ In
general, py,..(r”;r,) will also depend on the z cqordinale of the source po%nl,
but this dependence has been suppressed here in order to keep the notation
from becoming any more unwieldy. :

The function p,,(r";r,) can be obtained from pg(r,; z) as given by (4.75)
by four simple modifications:

(1) The integration over r’ must be deleted since we are dealing with
an imaging rather than an integrating detector.

(2) The factor of n,/v,, peculiar to the scanner, must be deleted and the
exposure time T must be reinserted. .,

(3) Each circ function must be displaced by an amount T,, where the
kth bore in the collimator is centered at r = F,.

(4) A sum over all bores must be performed.

The result is

- [2le =7l . [2]ar” + br, — T
pur’;r)=C ; cu'c[ = :lcnrc[ D, , (4.133)

b

where a and b still have the meanings given by (4.70). i

We now want to average this expression over all possible p_osmons of
the collimator, with the source point r, and the observation point r'" held
fixed. To shift the collimator, we simply add a vector R to each ?k in (4.133).
The average PSF, averaged over a disk of radius R, is then given by

z < 2R 5 cire] X — T —R|
Ponl” ;T DR, = ARE Jaie d’R zk:cn‘c[ D,

y Circ[zlarn + bl’s ¥i fk - Rl] (4134)
Dy,

Now if we ignore the collimator boundaries and allow R, to approach
infinity, each term in the sum over k gives the same value for the mtczgrgl_
The number of such terms, ie., the number of bores in the area nRZ, is
given by

K = 0,(2R/Dy)?, (4.135)
where o, is the packing fraction defined just as in the scanner case. Then,

since K/nR}, = 4o, /nDi, we have

1 da f 2 . 2||'” == Rl
{Ponclr’s X DR, = 73"% C L.. d’R cnrc[T

b

X circl:g‘a—r’— +—P£5—— 5!j| (4.136)
D,

Note that R, no longer appears in this result.
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Equation (4.136) can be simplified somewhat by a change of variables,

R=R-r, (4.137)
which gives

g 4a ’ - 2R’
<Pphc(r ;rg)>Rm = P C J;J dzR Cer[F]

nD? b
2 — I — ’
x circ[ ll@~ e + br, - R I]. (4.138)
D,
But, from (4.70), a + b = 1, so that
(@— 1)r" + br, = b(r, — ) (4.139)

With this substitution, (4.138) takes the form of the autoconvolution of
a circ function (which is the same as the autocorrelation since the circ is an
even function) evaluated at a “shift” of b(r, — r"), i.e,

ot st = 2 C [00) 2 0]y (4140

where, as before, g,(r) denotes circ(2r/ Dy). Equation (4.140) can be generalized
to apply to a collimator with parallel but tapered bores by replacing g, (r) **
g,(r) by g,(r) #+ g,(r), where g, and g, denote circ functions of diameter D a
and D,, respectively.

We have now shown explicitly that r, and r” enter into Ppnet”; 1))
only in the shift-invariant combination r, —r”. We are thus justified in
simplifying our notation and bringing it into line with that of previous
sections by writing

(pphc(r“;rs)>km = .ﬁphc(r" = rs) = -pphc(rJa (4‘]41)

where r = r” — r,. Because the magnification of the parallel-hole collimator
is + 1, this simple change of variables is sufficient to go from the point image
in the r” plane, Pone(r” — 1), to the point spread Junction in the r plane. The
overbar is retained as a remainder that we are dealing with an average
PSF.

Compare p,(r), which is plotted in Fig. 4.25 with Psb(r) shown in Fig. 4.20.
The latter function is not an autocorrelation, but rather the correlation of
two different circ functions of different scales. It therefore has a flat top that
we referred to as the umbra region. By contrast, Ppne(r) is precisely an auto-
correlation and exhibits no umbra. This difference may appear strange at
first since the integrand in (4.136) for Ponc(r) is so similar to that in (4.75) for
Ps(r). To understand the difference, it is important to look at just what is
being calculated. For p,,(r) the integration is over r”: viewed as functions of
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Fig. 4.25 Average PSF for a parallel-hole collimator. This function is the autocorrela-
tion of a circ function.

r’ the two circ functions have different scales. For ﬁp,_,c(r) on the other haz?d,
the integral is over the shift parameter R; as functions of R the two circ
functions of (4.136) have the same scale.

4.5.2 Sampling Theory Analysis

Let us back up to the stage of (4.133) in Section 4.5.1 wht_:re we had a
general expression for the shift-variant PSF before any averaging h:.ad been
applied. If, at this stage, the sum over k had been replaced \\_uth an u_ltegral
over T, we could easily have written p,,.(r'";r,) as a convolution and, in fact,
would have obtained (4.140), our final expression for T)p,,c(r).l In other words,
the averaging process is equivalent to replacing the sum in (4.133) by an
integral. : :

We have encountered this same situation once before. In dlscussmg_ the
image-display portion of a scanner, we found that the film exposure, given
by (4.126), had the form of a convolution except that one ol"thc integrals had
been replaced by a sum. In that case, we found that the difference between
sum and integral disappeared if the sampling rate was adequate and we
considered only the low-frequency components of the image. We shall now
show that the same conclusion follows for the present problem.
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Because of the various shifts and scale factors involved, this problem gets
rather tedious in the space domain. A more orderly approach is to imme-
diately transform (4.133) and carry out most of the manipulations in the
frequency domain. To this end, let us rewrite (4.133)

5 ey o B 1
Penc(t’sr) =C Z g,(r" — 73, (f = Ers B E rx), (4.142)
K

where §,(r) is the scaled circ function defined previously [see (4.73) and
(4.78)]. We now compute the Fourjer transform of this equation with respect
to the r” variable only; r, is treated as a fixed parameter. Physically, this is
equivalent to fixing the location of a source point at r = r,, forming an
image, and then performing a two-dimensional transform on the image. By
use of the shift theorem of Fourier theory, (B.95), we have

Pphc(p”;rs.) = Fz{pphc(r”;rs)}
= C; [exp(—2nip” "TWGi(p")]

"k {exp,:—h:ip” i (é I — i—’r,)}@l(p"}}_ (4.143)

Writing out the convolution integral in this equation in detail, we find

P p'i1) = C Y. [ d* exp(~2nip’ - £,)G,(p)
k

1 -
x ew[— 2ni(p"—p’)- (E T, —g rs)]G:(ﬂ” —p'). (4.144)

Collecting together all terms involving ¥,, we recognize that they are the
Fourier transform of a sum of delta functions:

) CXP[— 27T, - (ﬁ' % é "~ P'))] = f d’r exp(—2nir- p) ¥ 8(r — ¥,)
k o k

=%, {g [6(r— T*)]} (4.145)
where
P =9+ (1/a)p" - p). (4.146)

Now if the bore centers ¥, form a square array with spacing ¢, , the sum
of delta functions is just a two-dimensional comb function:

Y o - F,) = lz comb(i). (4.147)
k &y

Ep
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We are treating the array here as infinite even though real collimators are

finite. This is a small error if the number of bores in the collimator is large.
The Fourier transform of this comb function is also a comb [see (B.48)],

%, {Z S(r — rk)} = comb(e,p) = alg g o(p — P, (4.148)

where the p, vectors also form a square array, but with spacing 1/g,.
Equation (4.144) now becomes

", ¢ d?p' 2ni(p” — '}él‘
Powe(p ,r,)=£—%§_|; p'exp el L

x 8(p — p)G,(p)G (p" — p'). (4.149)
The delta function in this equation can be rewritten, using (4.146),
op — p) = dLp" + (1/a)(p" — p') — pi] (4.150)

or,sincea=1—b,

8lp — p) = d[p'(1 — 1/a) + (1/a)p” — py]
= (a*/b*)é[p’ + (a/b)p, — (1/b)p"]. (4.151)

We thus find, after some algebra,

Ca? - 5 or]
Pone(p"31) = 573 2. exp[2mi(p, — p”) - x
b k

1 1" - a a "
XGI(—EPJ,‘*EP)G:(BPJ‘_{JP)' (4.152)

If &, is small enough, a condition to be defined ‘more precisely below,
then the various terms in this sum will not overlap sigmﬁ_canlly and alow-pass
filter (which could be the scintillation camera detector itself) may be ysed to
isolate the single term for which p, = 0. In the frequency domain, this
filtered image may be written

a2 C . p«'f % _apfl
[Ponclp” st )i = P e exp(—2nip” - r,)G, (‘E)Gl( b ) S

But, since g,(r’) is real and symmetric,
G,(—ap"/b) = G,(ap"/b) = (1/a*)G(p"/b).

An inverse transform thus yields

s > ‘
[Ppne(r"s 1) i = 2 [g:(r) #* g, (F) ] b~ ey (4.154)
b
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Fig. 4.26 Location of the various terms of Eq.(4.152) in the p” plane. Solid circles: regions

of support for G,[~(ap,/b) + (p"/b)]; dashed circles: regions of support for G,[(ap,/b) —
(ap”/b)]; dot-dashed circle: passband of low-pass filter.

This result is in full accord with (4.140) since aycee = nDE/4. Low-pass fil-
tering is thus equivalent to “collywobbler averaging”.

An essential step in this derivation was the use of a low-pass filter to
isolate a single term in (4.152). We now inquire under what condition this is
possible. We need to consider only the zero-order term (px = 0) and the four
surrounding first-order terms, all of which have |pi| = 1/e,. If none of the
first-order terms overlap the zero-order terms, then none of the higher-order
terms will either. The location and extent of the various orders is indicated
in Fig. 4.26. In constructing this diagram the center of each region was first
found by setting the argument of the corresponding function to zero, since
G(p")is amaximum for p” = 0. For example, Gi[—(ap,/b)+(p"/b)] in (4.152)
has orders centered on the ¢ axis at {” = +afe, (where ¢” and n” are the
Cartesian components of p”). The diameter of the circular region is found
by asserting that G,(p) has significant values only if p is less than some
maximum value which we shall denote by p,,. From this it follows that
G,(p”/b) is significant only within a circle of radius bp,, in the p” plane.
Similar arguments for the orders lying along the »” axis and for the G,
factors in (4.152) then lead to the complete diagram of Fig,. 4.26.

From the diagram it is seen that there is no overlap of orders if

ap, 2 2bp,,. (4.155)
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This condition will insure that the kth-order G, terms will not overlap
either zero-order term. The condition for no overlap of the kth-order G,
terms and the zero order is p, > 2bp,,, but since a < 1, (4.155) is the more
stringent condition.

I (4.155) is satisfied for the lowest-order term, p, = 1/e,, it will be satisfied
for all orders. Therefore, using the definition of a and b from (4.70), we require

2/ey = 2Ly, (4.156)

As a rough estimate, we may take p, = 1/D,. Furthermore, if the septa are
thin, Dy & &,. The results of this section are thus valid if

2 2 2L, (4.157)

In clinical practice, z will usually be at least 2L, since L, is typically only
2-3 cm. We are thus justified in using the shift-invariant PSF, (4.154) or
(4.140), to describe a camera collimator.

4.5.3 Modulation Transfer Function

Before writing down an expression for the modulation transfer function
(MTF), we shall first generalize the PSF to allow for the possibility of a gap
between the exit face of the collimator and the detector crystal. This is a
simple modification because the photons continue to travel in straight lines
as they traverse the gap. For a point source, the radiation pattern incident
on the crystal is just a magnified version of the pattern emerging from the
collimator. The magnification factor, by analogy with projection radiog-
raphy, is

L +Ly+z
my = N (4.158)
where L, is the gap length. The magnified point image is obtained from
(4.140) by the substitution of r"/m, for r” in the argument of Ppnc(r”), with a
suitable amplitude scaling to conserve photons. The modified expression
for the average PSF is thus

Ul 4a C ’ g
Ponc(F”) = 752 22 [91(F) # 61 - (4.159)

The leading factor of C /m: has a simple interpretation since

C ' Ly+z ) _ T
Ly+z+L,) 4n(L,+z+L)"

m?  4n(L, + 2)*
In other words, since the distance from source to detector has been increased

(4.160)
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from L, +zto L, +z+ L,, the appropriate distance to use in the inverse-
square law is now Ly, + z + L.

Even though the point image is magnified when the gap is present, the
magnification of the collimator is still + 1. In other words, two points a
distance x apart in the r plane still produce two point images with a center-
to-center spacing of x in the r” plane. The point-spread function is just
Ppnc(r), obtained from (4.159) by letting r” —r.

The Fourier transform of Ppne(r) is now easily performed. By use of the
scaling law, (B.94), we find

4o C m 2
Poc(p) = ﬁg’é =) [Gl (7;—")} : (4.161)
Since g,(r) is the circ function of diameter Dy,, we know from (B.114) that

’_‘&3 2J,(nDyp)

Gilp) =— s (4.162)
The average MTF for the parallel-hole camera collimator is thus
Poc(p)| _ |20 (xm,D\p/b)|?
MTF ,..(p) = |-B2el| - | =1\ 0P/0) 4.163
welP) =B 0| = | “amDopb i

It is worth noting that P,,..(p) is everywhere real and positive. The prob-
lem of phase shifts in the transfer function discussed earlier does not occur
here, and the MTF is a complete description of the system.

4.5.4 Resolution and Collection Efficiency

Having obtained an expression for the PSF, we may now readily com-
pute the collimator resolution distance defined as usual as the FWHM of
the PSF.

Since, by (4.159), the average collimator PSF is the autocorrelation of a
circ function, we need to determine what shift is required between two
identical circ functions to reduce their overlap area to one-half the area of
either function separately. By numerically evaluating the autocorrelation,
we find that the required shift is 0.808R, where R is the radius of the circ
function.

However, we note from (4.159) that the autocorrelation in Ponc 18 calcu-
lated with the shift variable given by br"/m,. To find the resolution distance

Ophe, WE must set r” = Opne/2 and then demand that the shift be equal to
0.808D,,/2. In other words,

b ppe/2my = 0.808D,, /2, (4.164)
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or, using the definition of b from (4.70) and of m, from (4.158), we have

Sone = 0.808D, (4.165)

b

Several conclusions can be immediately drawn from this result. The
first is that a gap between the collimator and detector (nonzero Ly) is bad.
The detector should always be as close to the exit surface of the collimator
as practical. Another important conclusion is that a parallel-hole collimator
has its best resolution (smallest d,,,.) when the object is closest to the entrance
face of the collimator (small z).

Finally, (4.165) shows that the collimator resolution is always improved
by making the length of the bores, L,, greater. We should not conclude from
this, however, that a very large L,, is always desirable. The difficulty is that
L, also influences the collection efficiency of the collimator. This point is
most easily seen by considering a point source in contact with the entrance
face of the collimator (and not hidden by the septa). The fractional solid
angle for photon collection is then given by

[Q/4n]. - = Dy/16L3, (4.166)

which obviously falls off rapidly if L, is increased.

It is a little trickier to calculate the dependence of Q/4n on L, if z # 0
since in that case more than one collimator bore can collect photons from
each object point. In fact, the graphical construction of Fig. 4.27 shows thazl
the number of participating bores is given approximately by o, (L, + 2)*/L¢.
Then, since the distance from the point source to the exit face of the collimator

Ly +2

20y -
Ds thtl

" w
overoge’ roy

exireme ray

source

Fig. 4.27 Diagram for the calculation of collection efficiency of a parallel-hole collimator
when z # 0.
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is L, + z, the fractional solid angle subtended by all bores is [cf. (4.166)]

2 = Dy tpe(Ly, + 2)* oDy
dn  16(Ly + 2)? L - 16l

In other words, if the septa are thin so that the packing fraction is near 1,
the efficiency of a parallel-hole collimator is nearly independent of the source
location and equal to the value for z = 0 given in (4.166).

The graphical arguments that led to (4.167) will now be replaced by a
more rigorous analytical treatment. The key point to recognize is that the
area integral of the PSF represents the mean number of counts collected
from a unit point source. Since a unit point source is, by definition, one which
on the average emits one photon per unit time, the integral of the PSF must
be identical to QT/4n. The calculation of the collection efficiency of a parallel-
hole collimator thus reduces to the problem of integrating the autocorrelation
of a circ function. [See (4.59).]

This integral might seem to be fairly difficult, but the central ordinate

theorem of Fourier theory, (B.96), comes to our rescue. For any function
f(r) we have

(4.167)

[ fd?r = [#,4 10}, -0 = FO). (4.168)
Therefore, letting f(r) be g,(r) *+ g,(r), we find
J., 9.9+ 9,001 a%r =[G, (0% (4.169)
But G,(0) may itself be determined by the central ordinate theorem :
D}

G1(0) = L gi(r)d?r =0 (4.170)

4
We now apply these results, together with the scaling theorem (B.94) to the
expression for p,,. given in (4.159). The result is

Qr x  qunadoe s C (m N\ (xD2\2
E; o J; pphc(r )er = '75}{;5 (—b—l) (—42) . (4171)
"1

By use of the definitions of b and C from (4.70) and (4.72), respectively, we
again arrive at (4.167). Note that m, cancels out of Q/4x, as it must since the
collection efficiency has already been determined once the photons emerge
from the collimator; no photons are lost in traversing the gap.

Equation (4.167) for the efficiency and (4.165) for the resolution distance
are the basic design equations for parallel-hole camera collimators. The
trade-offs involved are illustrated in Fig. 4.28 where we plot Sone and Q/4n
for three hypothetical collimators. We see from this figure that the source
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Collimator Bore Diameter Bore Length
No. Dy Ly
| 2.5 mm 20 mm
2 25 mm 10 mm
3 S5 mm 20 mm

I 23

N i

¥t
z (cm)
Fig. 4.28 Variation of resolution and efficiency with z for three hypothetical parallel-

hole collimators.

distance z is an important consideration in collimator design_. If we coul_d
place the collimator in contact with the source (z = 0), an ObYlOUS impossi-
bility for sources within the body, then we could obtain any d'es:red resolution
without loss of efficiency simply by decreasing D, anq L, in the same pro-
portion. The drawback of this approach is that the choice pf a small L, leads
to a collimator whose performance degrades rapidly as z is increased.

4.5.5 Comparison of the Parallel-Hole
Collimator and the Pinhole

An important practical question that often arises lis whether_to use a
pinhole or a collimator in a particular situation. This simple question turns
out to be surprisingly slippery. As in any comparison, we nTust first state
what is being held constant, what is being varied, and what is being oorppared.
To limit the choices somewhat, let us rather arbitrarily fix the resolution and
the field of view and compare collection efficiencies. For the parallel-hole
collimator, the field of view is just equal to the detector diametel.' d;ﬂ_. Th.e
same FOV is obtained for the pinhole if s; = s, so that the magnification is
unity [see (4.45)]. This choice has the additional virtue thalt detector reso-
lution limitations affect the pinhole and collimator cameras in the same way
since the magnifications are equal. i '

We now set 4, = d,,. and use (4.35) and (4._1 65) to el_lmmatc dy,and D,.
Equations (4.33) and (4.167) may then be combined to yield

ks 4oy st 4.172)

Q,,  (0808)%(L, + L, + 2)*
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In this equation s, refers to the pinhole geometry while Ly, Ly, and z refer
to the parallel-hole collimator. In practice, s, is limited by obliquity consid-
erations as discussed in Section 4.2.6. However, il we ignore that problem
for the moment, the best performance with both systems is obtained by
putting the pinhole or the collimator as close to the source as possible, for
example in contact with the patient’s skin, thus making s, = z. By plugging
in typical numbers for %y(~05-0.8), Ly(~2-3 cm), Ly(~2-6 cm), and
z(~ 2-15 cm), we see that the collimator usually has a modest advantage in
collection efficiency over a pinhole. However, the large variability in the
parameters precludes dogmatism.

Two limits are of some interest. If z > Lg + L, and o, ~ (0.808), we
find that the collimator has a fourfold advantage. The opposite extreme of
Lg + Ly » z would seem to greatly favor the pinhole, but in fact this is not
so, at least in medical applications. For such small z values the obliquity
considerations for the pinhole, which were ignored in the formulation of
(4.172), strongly reduce both the efficiency and the FOV of the pinhole
camera. In practice, a pinhole will seldom if ever have an efficiency advantage
over a parallel-hole collimator. The usefulness of the pinhole lies in the ease
with which magnification can be changed, allowing the region of interest
effectively to fill the available detector area.

An important similarity between pinhole and collimator imaging comes
up when we contemplate decreasing the resolution distance of either system.
If we improve the resolution of the pinhole by decreasing dp, while holding
sy and s, fixed, (4.33) and (4.35) show that Qo dgf, oc 82, Similarly, we
may improve the resolution of the collimator by holding L,, L,, and z fixed
and decreasing D,,. Then (4.165) and (4.167) show that Q. oc D o 82,
Reducing the resolution distance thus requires a compensating increase in
either patient dose or exposure time. In fact, by arguments similar to those
adduced for scanners in Section 4.4.6, we can show (and shall do so in
Chapter X) that the required dose or exposure time for constant signal-to-
noise ratio varies inversely as the fourth power of the resolution distance
[cf. (4.107)]. In other words, a twofold improvement in the resolution of the
collimator or pinhole must be accompanied by a 16-fold increase in either
the exposure time or the amount of radioactivity in the object if we wish to
maintain constant SNR.

Precisely this same result was shown in Section 4.4.6 to apply to a scanner
used with a multibore focused collimator. However, the result has even more
serious implications for pinhole or collimator imaging with a scintillation
camera because the resolution distance referred to in the fourth-power law
is the one appropriate to the pinhole or collimator alone. There is a further
image degradation, not present in a scanner, due to the image detector. Thus
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even if we do reduce D, or d}, by a factor of 2, the overall system ‘rcsolution
is improved by a smaller factor. The lesson to be drawn is that it is extraor-
dinarily difficult to improve resolution in nuclear imaging,

4.5.6 Detector Considerations: Minifying and
Magnifying Collimators

Although it was mentioned in Section 4.5.5, the image dctect_or has not
yet been included in our formulation. For a parallel-hole collllmatqr, in-
clusion of the detector is trivial since the collimator has.a magnification of
unity. As in Section 4.2.5, we describe the d;tccl(.)r l:lt].]CI‘. by a transfer
function D(p) or by a PSF, d(r). The unit magnification eliminates the need
for any scaling factors and we have directly

Pae(r) = d(r) (4.173)
and
pml(r) - pphc(r) gl pdel(r)' (4-174)

One conclusion to be drawn from this equation is that the final image
resolution with a parallel-hole collimator can never be bett‘er than the reso-
lution of the detector itself. Since the intrinsic resolution distance of typical
scintillation detectors such as the Anger camera is usually about 4-8 mm,
magnification techniques that enlarge the imagelonto the det_ector face are
highly desirable. We have already discussed this approach in connection
with pinhole imaging in Section 4.2.5. However, we allso showed m'Sectlon
455 that pinholes are usually somewhat less efficient than coll:ma}ors,
especially when obliquity factors are taken into account. 'I:hese cgnsxder—
ations have led in recent years to the development of magnifying collimators
as depicted in Fig. 1.22. o =

Conversely, there are some clinical appllcat10n§ where resolution is
relatively unimportant but a large field of view is required. F_or these cases a
minifying collimator as shown in Fig. 1.21 can be u_seFi. It is 'worth noting
that a minifying collimator is an upside-down magnifying collimator, a fact
that can be used to reduce the number of collimators a department must
acquire. e

In this section we shall not make any great distinction between a mag-
nifying and a minifying collimator. Mathematically they are virtually indis-
tinguishable and we shall use the subscript mc for bc_)lh.

We assume that all bores in the collimator point to a common f_cnf:al
point a distance z; from the entrance face of the collimator; z; 1s a positive
number for a magnifying collimator and a negative one for a minifying
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collimator. In either case, the magnification is given by

My = z_fj'ﬁ’_tﬁ (4.175)
Z—z
where m,,. > 1 for a magnifying collimator and My < 1 for a minifying one.
(Note that z, L,, and L, are always positive numbers.) If z;, — + o0, we are
back to the parallel-hole case and Mue = 1. Note also that very large mag-
nifications can be obtained by setting z ~ z,. However large minification
ratios are more difficult since they require z > |z

The next step is to modify our previous results for collimator PSF,
resolution, and efficiency so that they will apply to magnifying and minifying
collimators. It is not so obvious that this step is possible since we have relied
so heavily on the average-PSF concept introduced in Section 4.5.1. With a
magnifying or minifying collimator we cannot form a reasonable average
PSF by holding the source and detector fixed and translating the collimator
over all possible positions since this corresponds to moving the image spot
all over the detector. The resulting PSF would be huge and meaningless.
Collywobblers do not work with magnifying or minifying collimators.

A closely related trick can, however, be employed. Suppose we hold the
collimator fixed, move the source point through a vector distance R, and
move the detector by m,, .R. Then the center of the image of the point remains
stationary relative to the detector and integration over all R yields a very
reasonable average PSF. Of course, this is purely a mathematical device, not
a practical way to remove collimator structure.

The remainder of the calculation closely parallels Section 4.5.1. We start
with (4.88) for the PSF of a focused scanner collimator and modify it by
deleting the integral over r” and replacing the factor of n,/v, with T. This

leaves
2 " —_— A 2 I —_ |
pmc(r";rs] =C Z circ -f__r_zj_l circ ml . (4176)
F D, D,
where, as in Section 4.4.5, T,;and T,; denote the center positions of the lower
and upper apertures of the jth bore, and D, and D, are their diameters.
Equations (4.86) and (4.87) are also assumed to still hold.

The averaging process described above may be written out explicitly by

substituting (r"" — mqR) for r” and (r, — R) for I, in (4.176), and then inte-
grating over R. The result is [cf, (4.134)]

i _ C i Z!r” a ?2' 8 mm:R‘
(Pl ). = ARE J:iisc d’R ? cnrc[—————{;——_]

2

X circ[%r—-ﬂﬁ_gbm—_ Rtr_‘f.ljl (4.177)
1
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where the integral is over a disk of radius R,,J, gnd we have assprned that
the collimator-detector gap L, is zero, a restriction that can be_11ftcd later.
If R,, — o0, all terms in the sum lead to the same value for the integral. To
calc:late the number of such terms, note that when the vectpr R explorgs
all points within the disk of radius R,,, the center of the first c:zlrc function b;n
(4.177) sweeps out an area in the r* plane given by n(mmRm‘) . The num}l T
of terms in the sum, K, is then just the number of bores of diameter D, that
will fit in this area. Thus [cf. (4.135)],

K = oy (2mg, R, /D,)? (4.178)
and
K/nR3, = (4o /nD3)mg,.. (4.179)
The following change of variables in (4.177) is now useful:
R'=m,R—r"—T,. (4.180)

i i i i f the area element since
Note that this change also requires a modification o
d*R = (m,,.)"?d*R’. We can now use (4.86), (4.87), (4.175), and (4.179), plus a

( ) "]
Dl mmc

I Oy W |
{Pumelr ;rs»:Cn—Dp%J‘wdRc"C(D circ D,

2

=C iﬁ% [92(") *#% 92(t') )1 < sDas11tee - 1 menc (4.181)
D3
where
g,(r') = circ(2r'/D,). (4.182)

All that remains is to refer this average PSF l_)ack to the' original (-)b_]t‘tct
scale and to recast our notation in a form that is more evidently shift in-
variant. We can combine these steps by defining

_prm:(r == rs) = mlilc(.pmc(mmcr;rs)>

=C 4ip; mﬁm[ﬁ'z(r') % Qz(r')]r'zbm;w,ur.—r)- (4.183)
nD3

There is virtually no difference belwcen.the functional form of this
equation and that of the corresponding equation for ll_le pa_rallel-hqlc cast,)c,
(4.140). The factor of D,/D, in the shift variable is of minor 1mport§1;1cc, y
(4.87), D, =~ D, =~ D, if z; » L,, a condition that is certar.nly satisfie .o_rra.ny
practical collimator. The conclusion is that a magn:fymg or mli’l]l {lm]g
collimator has essentially the same PSF and resolution as a parallel-hole
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collimator with the same values of the parameters L, Dy, and z. Similarly,
it should not require an elaborate calculation to convince the reader that
the results of Section 4.5.3, where a collimator-detector gap was allowed
and the transfer function was calculated, are still applicable.

On the other hand, it is worthwhile to reconsider the results of Section
4.5.4 for the collection efficiency. Equation (4.183) differs from its counter-
part, (4.140), in one important respect— the leading factor of mZ_. Therefore,
by retracing the analysis that led up to the efficiency expression for the

parallel-hole case, (4.167), we find that the efficiency of a magnifying or
minifying collimator is

2.2
g = Dbmmn

&I (4.184)

In other words, a magnifying collimator becomes more efficient as the source
is moved away from the collimator face while a minifying collimator becomes
less efficient.

To conclude this section, we shall state the result for the composite PSF
of a system consisting of a scintillation detector and either a magnifying or
minifying collimator. The result is

Piod(F) = Paer) % ppc(r), (4.185)
where

pdc:(r) = milcd(mmcr)' (4186)

The proof of this result follows the lines of Section 4.2.5 [cf. (4.44)].
The importance of (4.186) is that by use of a magnifying collimator
(mpe > 1) we can make p,,,(r) effectively narrower and reduce the image deg-

radation due to the detector. Of course, the price must be paid in field of
view.

4.6 FURTHER COMPLICATIONS

A linear, shift-invariant system is a mythical beast. The analyses given
so far in this chapter must fail, to a greater or lesser degree, when applied to
real radiographic systems which can be neither exactly linear nor exactly
shift invariant. The purpose of this section is to catalog the factors that cause

the breakdown of our simple models and to comment briefly on some of
them.

The factors neglected so far include:

1. scattered radiation:
2. statistical fluctvations:
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3. shift-variant imaging due to:

a. the obliquity (cos® 6) factor;
b. nonparallelism of source and detector planes;
. anisotropic emission;

. septal penetration;

. patient motion;

. problems associated with three-dimensional objects;
. spectral effects;

. detector limitations, including

O~ N

a. quantum efficiency;
b. nonlinearities;
c. geometrical distortions.

The first two items on this list, scattered radiation and statistical fluc-
tuations, are enormously important in the analysis of radiographic systems.
A separate chapter is devoted to each later in this book. Detector limitations
are discussed in some detail for specific detectors in Chapter 5. Spectral
effects are discussed in Chapters 7 and 11. The remaining topics are treated
in this section.

4.6.1 Shift Variance

Real imaging systems are always shift-variant if for no other reason than
their finite size; a point whose image entirely misses the detector cannot
produce the same response as one in the center of the field of view. Several
other, more subtle, sources of shift-variant behavior were mentioned and
then ignored in the development of the general model in Section 4.1.

One justification for ignoring these effects is that, with the exception of
the detector-boundary problem, they vary slowly with the position of the
object point. Astronomers are fond of talking about an “isoplanatic patch,”
by which they mean an ill-defined (but scarcely nebulous) patch of sky over
which the shape of a star image is “essentially constant.” The source of the
shift variance in astronomy-—atmospheric inhomogeneities—is absent in
radiographic imaging, but the principle is still applicable.

Before treating specific sources of shift variance, a brief comment on
notation is required. We have already used two slightly different notations
to denote the point response of an imaging system. For a general shift-
variant system the response measured at point r due to an object at r, was
denoted by p(r;r,). For a shift-invariant system the response function was
written p(r — ry). For application of the isoplanatic patch concept, still a
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third notation is useful. We acknowledge that the response depends strongly
on the difference r — r, and only weakly on the absolute object position Iy
by writing it p[r — ro,To)- To avoid confusion with p(r;ry), we shall use
square brackets instead of parentheses and a comma instead of a semicolon
in this new notation.

Of the systems discussed so far, shift variance is the least troublesome for
the scintillation scanner. In this case only the boundary of the raster pattern
causes any significant deviation from the true shift invariance. If we agree
not to consider points within, say, twice the FWHM of the PSF of the edge
of the field of view, then it is an excellent approximation to ignore the shift-
variant behavior.

Shift variance may also be ignored, at least insofar as the image-forming
operation is concerned, with a camera-collimator combination. Away from
the boundary, the collimator may be treated as shift-invariant if we interpret
the PSF in terms of either the “collywobbler-average” function of Section
4.5.1 or the filtered image of Section 4.5.2. Of course, the camera detector can
respond differently to different source points even though the collimator is
shift-invariant. Typically an Anger camera has poorer resolution at the edge
of the field of view, shows some degree of geometric distortion, and has a
sensitivity that varies by perhaps +10% over the field. The source of these
difficulties is discussed in Chapter 5.

Pinhole cameras are only slightly more complicated in this regard. The
cos® @ factor reduces the amplitude of the PSF as the edge of the field is
approached, but the shape of the PSF is virtually unchanged over the field
if the aperture plate is thin. (Recall that a circular pinhole projected from any
angle produces a circular image if the detector plane is parallel to the aper-
ture plane.) A thick aperture plate does result in a shape change for large 6,
as indicated in Fig. 4.9, but this effect can be minimized by tapering the pin-
hole. In other words, the shift-variant point response for a pinhole can, to a
good approximation, be factored as

Pon[r — ro,1 o] = cos? 0(ro)p,ul(r — ro), (4.187)

where p_.(r — r,) was calculated in Section 4.2

The case in which shift variance is most important is transmission radi-
ography. Practical x-ray tubes almost always have a tilted anode, as shown
in Fig. 1.6, in order to reduce the projected area of the focal spot.

To analyze the tilted-anode geometry and to simultaneously allow for
the fact that bremsstrahlung emission is far from isotropic, we introduce the
concept of photon radiance, denoted by L(x,,f,), wherer, is a three-dimensional
vector specifying position on the source and N, is a three-dimensional unit
vector pointing from the source point to the object point of interest. The
photon radiance is defined such that L(x,,0p)da,dQ is the number of pho-
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tons per second emitted by a source element of area da, into the soli‘d_angle
dQ in the direction fi,. This definition differs from the usual definition of
radiance in optics in two respects. First, it is expres;ed in terms pf photon
flux density per steradian rather than energy flux density per stera@nan. The;e
two quantities are related by the photon energy. The §qcond dlﬁCFCDCC 15
more subtle. In optics, the area involved in the d_eﬁmuon of radiance is
usually taken as the projected area of the source pro‘}ect.et_i onto a plane nor-
mal to the direction of propagation. With this deﬁ_mtlon,' diffuse optical
radiators (Lambertian surfaces) have constant radlancf:, independent qf
orientation. There is no analog of diffuse radiators in radxol(_)gy, so a defini-
tion in terms of actual source area rather than projected area is more natural.

Suppose that the x-ray anode is a plane tilted at an angle 0, rqeasured
from the z axis as shown in Fig. 4.29. The vector ¢, is confined to this plane.
The normal to the plane is defined by a unit vector fi; given by

i, = (0,cos f,,sin G,). (4.188)

Therefore,
tf.-0,=0 (4.189)

To make contact with our previous theory, we must projqcl_the phot_on
radiance onto the x—y plane and thereby dctermine. the emission function
[f(r) defined in Section 4.1.1. Here, r is i two-dimensional vector in the X-y
plane, or, equivalently, a three-dimensional _vecto_r whosg z c_ompoxleut is
zero. The photons which are emitted from point r, in the d:rectlpn of fiy will
pass through the x—y plane at point r only if the vector r — ¢, is parallel to
oy, or

r— v, = afly, (4.190)

Fig. 4.29 Geometry for calculating the shift-variant PSF in transmission radiography
with a tilted-anode x-ray tube.
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where « is a scalar. Equations (4.189) and (4.190) can be satisfied simulta-
neously only if

— i fi,
~ g P’ (4.191)
from which we find
T o, |
.= ﬁo < ﬁs ng. (4192)

Thus f(r) must be proportional to L(r — oy, itg). Two considerations are
necessary tq fix the constant of proportionality. The first is that f(r) repre-
sents an cn_nssion into 4= steradians while L(r,, fip) represents emission into
one steradian; a factor of 4n is therefore needed. The second point is that
we must relate the area element d?r in the plane z = 0 to the area element
da, in the actual source plane. This step is accomplished by projecting both
da, and d*r onto a plane normal to fi, and demanding that the projected
areas bc equal. In this way, all photons that are emitted by the element d
in the direction fi, must also pass through d?r. This then requires that E

(R * By)da, = (8, - 2) d°r, (4.193)

where. i' isa l;nit vector _parallcl to the z axis and hence normal to the plane
containing d°r. But notice that fi, - % is just cos 0 where, as before, 0 is the

angle between the z axis and the i : ik
i nd the line along which the x rays travel. Similarly

iy - i, = cos 0. (4.194)

For the two functions f(r) and L(r i i
,Ng) to describe the same e i L
terns, we must have ; e

L(r — afg, ) da, dQ = f(r)d*r dQ/an (4.195)
or, with (4.193) and (4.194),
cos(
f(r) = 4n ey L(r — odiy, f1,). (4.196)

Of course, f(r) is now also a function of fi, ev 1
se, en though th i
not exhibited explicitly. ’ B

We‘shall i]Iustrate_ this general result by returning to the disk focal spot
of Scctlgn 43.1. [n_thls case we assume that the high-energy electrons bom-
bard a circular region on the anode, so that

L(r,,hg) = Ly(ig) cire(2r, /d,.), (4.197)
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where L(f,) describes the angular dependence of the x-ray emission and is
independent of ¢,. Equation (4.196) now becomes

: Lo(ﬁn)circ[zlr;aﬁo‘]. (4.198)
fs

cos
fe) = cos 0,
This expression for f(r) describes an effective focal-spot distribution that
is appropriate to those x rays that are emitted in the direction f,. Note that
f(r) is actually a very complicated function of i, since 6, 8, and « all depend
on fi,. Moreover, a is a function of r also. However, the important features
of the solution may be discerned by studying two special cases.
First, to verify that (4.198) is reasonable, suppose that the anode is actu-
ally parallel to the plane z = 0. Then 0, = /2, r - i, =0, « = 0, and 0, = 0.
The effective focal spot is then a simple circ function as expected:

f(r) = dnLo(dg)circ(2r/dy,)  if 6, = /2. (4.199)

Next we consider a general anode angle 6, but assume that the object
point lies on the z axis. The relevant vectors in component form are then

i, = (0,0,1) (object point on z axis),
i, = (0,cosf,,sin 0,),

r =(x,0), (4.200)
from which, after a little algebra, we obtain
Ir — o = [x* + (y?/sin®0,)*]"/% (4.201)

The circ function in (4.198) is nonvanishing within a region whose bound-
aries are determined by setting (4.201) equal to d;,/2. This region is an ellipse
with major axis dg, and minor axis d;,sin6,. In other words, the apparent
dimension of the focal spot in the y direction is reduced by the factor sin8,,
improving the resolution in that direction.

This same procedure can be used to find the shape of the effective focal
spot for any object point. In all cases, it turns out to be an ellipse, but the
algebra required to substantiate that statement is somewhat tedious. For
this reason, and also because the disk focal spot is very artificial to begin
with, the point will not be pursued further here.

We shall close this section by presenting a general expression for the
shift-variant PSF in the tilted-anode geometry. To accomplish this end, we
need to rewrite (4.196) in such a way that its r dependence is more evident.
In particular, the r dependence of « must be exhibited. A useful vector iden-
tity here is the so-called BAC—CAB rule,

Ax(BxC)=BA-C)-C(A-B) (4.202)
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which enables us to write

1

A e % _ g ;
r— afiy, = " ﬁ; [r(Rg - By) — fg(r - )] = (EE, [h, x (r x ny)]. (4.203)

The shift-variant PSF is now found by substituting (4.196) and (4.203)
into (4.54) and reinstating the cos® @ factor. The final result is

C cos*g A, x [(r—ro) x 1g] _
pfs[’*'“"ﬂ]“*"&?ﬁcoses L{ —bcosg,  Mo(- (4209)

4.6.2 Septal Penetration

In this section we shall be concerned with photons that penetrate some
distance through nominally opaque material and are detected when they
should be blocked (Mather, 1957; Beck, 1968a,b). This phenomenon is more
important in nuclear medicine than in diagnostic radiology for two reasons.
First, gamma rays of interest in nuclear medicine are usually more energetic
and hence more penetrating than diagnostic x rays. And second, the very act
of image formation in nuclear medicine consists of blocking unwanted pho-
tons. Small amounts of penetration can thus be very important when com-
pared to the small number of photons that are deliberately passed.

The first point to be made is that penetration can be described by adding
a new term to the geometrical PSF calculated previously (Harris et al., 1964;
Beck, 1964b; Mather, 1957). This statement follows because all detected
photons can be divided into two mutually exclusive classes: those that have
penetrated through the nominally opaque material and those that did not
€ncounter any opaque material in the first place. For a point source the
detected photons of the latter class constitute the geometrical PSF of the
previous sections. The photons of the former class produce an
which we shall call the penetration PSF.

The penetration PSF for a pinhole camera is easily calculated. Since it
will generally be shift-variant we must fix the source point r, and the obser-
vation point r” and then determine what path a photon must travel to get
from r, to r”. If the path goes through the clear aperture of the pinhole, we
are not interested since this photon contributes to the geometrical PSF rather
than the penetration PSF. If, however, the path includes a thickness 1(r",r,)
of absorbing material, we must calculate the probability that the photon
will pass through the material unimpeded and go on to the detector. If the
linear attenuation coefficient of the material is yu, this probability is simply
exp[ — ut(r”, r)]. Scattering in the material can usually be neglected, espe-
cially if the detector is capable of energy discrimination.

other image
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As an example, consider a simple pinhole drilled through a lcafi plate of
thickness t,. For simplicity we assume that s, = s, a%nd.zfa «dy,. If the
plate is parallel to the detector, the path length t(r”,r,) is given by

tr",r,) = to/cos O(r",r,), (4.205)

where, as before, O(r",r,) is the angle of the ray rpcasured from the noqnal
to the,dctector plane. By a straightforward extension of the arguments given
in Section 4.2, the penetration PSF is found to be [cf. (4.36)]

ppen[r — T, rs] = C(b/a)z exXp [ ﬁﬂ.ID/COS 8([‘”, l'!)], (4.206)

where r = —ar”/b, and the expression is valid everywhere except with‘m tl';e
geometrical image of the pinhole. (If t, were comparable to the pinhole
diameter, this expression would also be in error near the edge of the geo-
meti?;? l;:z;iffa)tion to be negligible the integral of p"‘.“[r — r,,T,] Over tht;
r plane must be small compared to &‘u: corr.espondmg integral of p,,(r — r,
given by (4.36). Roughly speaking, this requires that

G ndZ, sy + 5,\*
% exp(— puty) < T"h ('—Sli) . (4.207)
Let us turn now to a somewhat more difficult problem—thg calculation
of the penetration PSF for a camera with a parallcl-!'zole colllmatcl)]r. ]gn::.
effect of penetration in this case is to reduog the effective bore lex;lgt : :r :
if the septa are very thick, gamma rays can still penetrate through u edc‘olrg :
of the septa, thereby increasing the angulzuj ﬁelfllof view of each in 1\1#: ua
bore. Since the mean penetration length is p~ ', many authors x:n’a_ e:;x;
approximate correction for this effect by rcplamng Lb with L, — ;11 ;nms)
equations for resolution, (4.165), and collen‘:tion efficiency, (4.167). [In (4. £
this replacement applies only to the dcnommator.‘ The numerator L, + L§ z
is the total distance from source to detec’cm_' an_d is therefore cons.tant.] u;}ce
uL, must surely be large compared to unity in any usable collimator, this
ion is a small one. 8 3 _
Cor::cggléssirious penetration problem occurs as the incidence angl.e llS
increased. Then the pathlength through any one septum _decreascs rapid ]}i
but the number of septa in the path increases corrcspondmgly. The qviral
effect is to produce a broad, low-amplitude PSF very much as in the pinhole
CaSCA simple yet quite reasonable estimate of the tota_l pcnetrauon“can t;e
obtained by just ignoring the fine structure of the golllmator (Newe'fer a].,
1952). In other words, we imagine that the ‘absorbmg atoms are uni or(:invy
distributed through the volume of the collin'_lator rathqr than qrran%e ;1“
discrete septa. The effective density of absorbing atoms is then given by the
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actual density times (I — a,e). This approximation is a poor one for small
values of the incidence angle 6, but rapidly improves as 0 is increased. At
the extreme, if 6 = 0 then a photon can in reality penetrate a septum only
by traversing the full bore length Ly; the probability of this occurrence is
exp(—puly), a very small number. The model of a uniform distribution
of absorber, however, predicts a probability of penetration at § =0 of
exp[ —puLy(1 — a,)]. This is still a small number in practice, but is much
larger than exp(—puL,). The real justification for the model is that we are
usually more interested in the total penetration, i.e, the integral of the PSF,
than in the details of the shape of the PSF. Since the largest contribution to
the integral will come from rays that cross several septa, the behavior near
6 = 0 is of little concern.

With these preliminaries we can now write down an expression for the

penetration PSF of a parallel-hole collimator. By analogy with (4.206), we
have

Ppanl¥”’ = 1,,1.] = T[4n(L, + L, + z)*]? expl:%f;’f%l)i)jl. (4.208)

Once again, the penetration PSF is a broad, slowly varying function. To
ﬁn(_i the total penetration we must integrate (4.208) over the detector plane.
This step can be carried out numerically or even analytically if a small-angle
approximation for 0(r",r,) is valid.

Although such approximate techniques may give a useful indication of
the penetration performance of a collimator for a scanner or camera, the
only reliable way to get detailed information about penetration seems to be

computerized ray tracing (Rotenberg and Johns, 1965; Jahns, 1981; Miracle
et al., 1979),

4.6.3 Patient Motion

~ Patient motion, an important practical problem in both diagnostic ra-
diology and nuclear medicine, is easy to graft onto our formalism. As a
highly idealized example, suppose the patient moves at constant velocity
'vdurmg an exposure of time T taken with a scintillation camera. Then the
image of a point is uniformly smeared over a line of length vT. We can
describe this situation by a PSF for patient motion given by

= I X 5
PomlT) = L rect 5 o), (4.209)
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where r = (x, y) and the x axis is parallel to v. The normalizing factor 1/vT
ensures that p,.(r) approaches d(r) if v— 0. The overall system response is
now found by convolving p(r), given by (4.174), with p_(r).

Note that we did not specify above whether a pinhole, a parallel-hole
collimator, or a magnifying or minifying collimator was used. It was not
necessary to do so since we have been careful to refer all PSFs back to the
original object scale. When a patient moves a distance vT, the corresponding
PSF has width vT without need for any scale factors and without regard for
the magnification of the rest of the system. Equation (4.209) is thus as appli-
cable to projection radiography as it is to nuclear medicine.

One system that does behave somewhat differently with respect to patient
motion is the scintillation scanner. In that case the effect of patient motion is
better described as an image distortion rather than as a blur. Our previous
example of a patient moving at constant velocity would result in a skewing
of the scan raster in general. If v were parallel to the rapid-scan direction, the
uniform patient motion would be exactly equivalent to an alteration of the
scan velocity v,. To take a more realistic example, suppose the patient moves
during a single scan line and remains stationary during the remainder of the
scan. Then the image would be distorted along that one line and unaffected
elsewhere, although the sections of the scan taken before and after the motion
would not necessarily match at their interface. Such a discontinuity is a
common and easily identifiable sign of patient motion in scanner images.

Although patient motion is easy to treat analytically, it is not so easy to
deal with in practice and, indeed, may often constitute the ultimate limitation
to image quality. This is especially true if the motion is due to the natural
cardiac and respiratory cycles. There are really only two possible ways to
control image blur due to these movements. Either the exposure time can be
made so short that no significant motion occurs, or “gated” imaging can be
employed. One important example of the latter approach is gated liver
imaging in nuclear medicine. Liver images are particularly susceptible to
motion blur since the liver is adjacent to the diaphragm. However, if a
transducer is used to monitor the patient’s respiration, the scintillation
camera can be electronically gated off except during the relatively quiet
period of full expiration. Of course, total imaging time must then be increased
to record the same number of total counts, but the image quality is signif-
icantly improved.

4.6.4 Three-Dimensional Objects

Our entire analysis so far has been a kind of “Radiology in Flatland”
(Abbott, 1952). We have consistently described gamma-ray-emitting objects
by a two-dimensional distribution of source activity, while objects of interest
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in diagnostic radiology have been treated as absorbing planes. A full treat-
ment of three-dimensional objects requires the methods developed in
Chapters 7 and 9, but a few comments are presented here primarily in an
effort to convince the reader that the foregoing sections of this chapter were
more than an exercise in futility.

Consider first the nuclear medicine case where a three-dimensional object
can be described by a three-dimensional source activity function, f{(r, z).
Here, r is still a two-dimensional vector in a plane a distance z from the
collimator face or pinhole plane. A three-dimensional volume element is
thus specified by dv = d2rdz. The activity function is defined in such a way
that f(r,z)d*r dz is the number of photons per unit time emitted by material
within the volume element d2r dz located at coordinates (r, z) or, equivalently,
(x, y,2).

If the radiation were not appreciably absorbed within the patient’s body,
we could now use all of our previous results simply by replacing f(r) with
f(r,z)dz and then integrating over z. For example, (4.13) becomes

) =T [7 dz[4n(z + 5,2 L d*rf(r,2)g(ar" + br), (4210)
where
a=1z/(z+s,)

(4.211)
and

b=s,/(z + s,). (4.212)

(Of course, z is identical to our previous parameter s,, but the new designation
emphasizes that it is a variable rather than a constant.)

However, (4.210)is not yet completely satisfactory because self-absorption
may not be negligible. Furthermore, the body has very inhomogeneous
attenuation properties, a fact that is essential to the success of diagnostic
radiology but is a distinct nuisance in nuclear medicine. As discussed more

fully in Chapter 7, a ray traversing this inhomogeneous medium is attenuated
by a factor

exp( - fs 4 u(r’,z')di‘), (4.213)

where u(r', z’) is the linear attenuation coefficient at point (', z’), and the line

integral runs from the source point § to the detector point D. Incorporating
this factor in (4.210), we have

exp( = J; . p(r’,z)‘df’)

h(r") = T_[D'dz L d2r i a6 + o, @214)
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ee-dimensional coordinates of S are (r, z). The impqrtanl guah-
;IEFJ: ;:;:r:? l:labout (4.214) is that calculation of the lwo—dimensu_)nal ir‘nai]c
h(r") in general requires the knowledge of two separate three-dimension
istributions, f{(r, z) and u(r, z).

dlﬂgften it isf\salic; to replace pu(r,z) in (4.214_») _by a constant, For examlple,
if only soft tissue intervenes between S and D, itis quite reasonable to n:l::i ace
u(r, z) by py,0, the attenuation coefficient of water. “_Fhls approxlmanolr: : oes
not, however, completely circumvent the problem since the path _leng’t b::im
S to D depends on r, z, and the external contours of the patient’s body.
Perhaps the best that can be said in general is that a nuclc%r medicine image
does not really measure f(r,z), but rather f(r,z) exp(—j's J«!d.f)- The ;xpo-
nential factor may or may not approximate a constant, depending onp olt:on
energy, depth of the organ being imaged and obesity qf the patient. gr
example, a lung scan of a plump woman may show regions of apparlf:n y
reduced activity due entirely to absorption in the breastfs. On the other dd,
if a liver scan is performed with a parallel-hole colhmator' on a slender
patient, it would be very reasonable to regard the exp(_menual factc;lr as a
constant multiplier for each plane z. And finally, for hgh—cnergy p u:t(:ﬁs
such as the 360-keV gamma rays from '_“I and superficial organs like the
thyroid, very little error is made in ignormg absorption altogether. T

The problem of three-dimensional objects becomes even more Ll;: 1by
in the transmission radiography case. If we represent a vo!ume absorber by
a stack of N absorbing planes, the generalization of (4.13) is

N
") =C f d* fir) [1 gilair” + b;v), (4.215)
= i=1
where g,(r') is the transmission of the ith plane at point r',
Z:
=1-b=—vd, (4.216)
o . bl Z; =+ Sy

' i [ lane.
and z; is the distance of the ith plane from the source p o TN
Equation (4.215) is most easily interpreted if the focal-spot distribution
can be approximated by a delta function,

S(r) = fo6(r), (4.217)
in which case, 3
hr") = Cfo [1 gilair”). 4.218)
i=1

In other words, the measured image h(r") consists of a multip!icarige (and
hence nonlinear) superposition of images of each of the planes, with the
magnification for the ith plane given by 1/a;.
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When a screen-film system is used as the image detector, a further
simplification is possible. As discussed in Chapter 5, the optical density D
in the developed film is usually a linear function of the logarithm of the
exposure, i.e.,

D(r") = Do + ylog[h(r")], (4.219)

where D, and y are constants characteristic of the film. The logarithm
converts the multiplicative superposition of (4.218) into an additive one:

N
D(r") = Dy + ylog(Cfp) + y ‘Z log[g;(a;r")]. (4.220)
=1

In a peculiar sense, then, we have salvaged the linear systems approach to
transmission radiography even with three-dimensional objects. We need only
to regard the logarithm of the transmission, rather than the transmission
itself, as the input to the system and to regard the optical density D(r"”) as
the output to obtain a linear input—output relation.

Of course, all of this was possible only because we assumed a delta-
function source. The situation is far more complicated when we have a
general source function and a three-dimensional (or multiplanar) object.
Without really attempting a full solution, we can suggest the nature of the
difficulty by rewriting (4.215). Suppose we are interested in one particular
plane, say the jth. Then the factors in the N-fold product in (4.215) can be
regrouped as

N
h")=C J‘m dzr(f(r] [1 giar” + b,-r))gj(a_,-r” +br).  (4221)
i#j

The point spread function appropriate to the jth plane is calculated as in
Section 4.3 by letting g;(r') be a delta function,

gj(r') = 5(r' —r,). (4.222)

The resulting image is given by

C £y dxt |8 b,
() =( = L L. ,-(a,-r“ +—=(r, —ax" ) 4223
wor = (5 )5 e p6=ar)). @2
In other words, the PSF is determined not only by the actual source function
/(r), but also by the details of the absorbing structures in all other planes.
For example, a sharp-edged absorber in one plane can partially obscure
the focal spot for some values of ' and hence improve the apparent system
resolution. The PSF is, of course, highly shift-variant because of parallax
among the various planes.
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One important limit should be mentioned. When the lhree-d‘nmcnfl?;ear:
object is relatively structureless and has lpw contrast (e.g., s;’)fl l:sl:ue V c
the effect of the product term in (4.22}) 1s rnere_ly to modu file lhe (:j e
intensity of the source dislributiqn w_lthOL}I sengusly aﬁe'ctmlg' ll. el e
of its shape. The imaging system 1s sull_ shift-variant, l_)ul _;}lrs"a ive iyn [ﬁe
isoplanatic patch can be defined. In this case we are justified in using
planar models of Section 4.3 to calculate PSF, MTF, etc.



