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is possible only in noncausal systems, we have
¥y« p0) = [ y(€)p(t - t)dr

= [* ye)s — 1) =y % s(2). (3.246)

Matched filtering is thus equivalent to correlating the data with the signal
we are trying to detect. . .
Applications of matched filtering are discussed in Chapters 8 and 10.

Wiener-Helstrom Filter

An important variation on the Wiener ﬁltef was d.evised by Helstrom
(1967). He considered the problem of estimatlpg a signal that has bt?en
corrupted in two ways—Dby being convolved with a know.n.ﬁlter fuqctlon
(usually a blurring or low-pass filter) and by the addition of signal-
independent noise. The data to be filtered are of the form

y(®) = [s(2) * h(t)] + n(2), (3.247)

where h(t) and the autocorrelation functions of s(t) and n(z) are presu.med
known. An estimate &(t) of the signal is to be formed by filtering y(t) with a
filter of impulse response p(t). Again we choose the minimum mean-squared
error as the optimality condition.

Helstrom showed that the optimum filter for this problem has a transfer
function given by

H*(v)
[HW)? + [S.0/S,()]

Several limits are of interest. First, note that if h(t) = 6(t), H(v) = 1, ar}d
the original Wiener filter is recovered. Second, if thc2 signal-to-znmse ratio
is very good at all frequencies, such that [S,,(v)/S,(v)J « |H(v)|‘ , then P(v)
reduces to an inverse filter, P(v) = [H(v)] ~!. Finally, if .the SNR is very poor
and both signal and noise are white, then S,(v)/S,(v) is large and constant
and the Wiener—Helstrom filter becomes a matched filter P(v) oc [H(v)]*.

PW) = (3.248)

Application

of Linear Systems Theory
to Radiographic Imaging

4.1 A GENERAL MODEL

It is our goal in this section to devise a simple model that can be used
to describe transmission radiography, nuclear scanners, cameras with colli-
mators, and cameras with pinholes. Such a model may seem an unlikely
prospect since these systems are quite different in concept, intent, and
performance. Nevertheless, as we shall see, the important features of all of
them can be discussed within a common framework. _

Consider first a simple nuclear pinhole imaging system with the geometry
shown in Fig. 4.1. For now the object is assumed to be a planar gamma-ray
emitter; the extension to three-dimensional objects can be made later.
Additional simplifications concern the pinhole aperture and the detector,
both of which are also assumed to be planar. In practice these are reasonable
assumptions for very low-energy gamma rays that are absorbed in a small
thickness of aperture or detector material. In general, a planar description
of the aperture is not valid, since we need to know not only where the photon
strikes the aperture plate, but also its angle of incidence to calculate the
probability of its being transmitted through to the detector. However, if the
absorption coefficient of the aperture material is so high that the aperture
plate thickness can be made small compared to the pinhole diameter, then
the angle of incidence becomes unimportant and a planar description of the
aperture transmission suffices. Similarly, if the detector is either physically
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radioactive pinhole image
source

Fig. 4.1 Basic geometry for pinhole imaging of a planar emissive object.

x-ray object image
source ) .
Fig. 4.2 Basic geometry for transmission radiography of a planar object.

thin, or so absorbing that all detection takes place in a thin surface layer,

then again a planar description is adequate. . o
A simple transmission radiography system 1s shown in Fig. 4.2. (’ll‘ge
similarity to the pinhole system should be obvious. X rays are generated by

lanar object and
electron bombardment of a planar anode, pass through a p
impinge on a planar detector. All three planes are assumed to be parallel,

although in practice the x-ray anode is usually tipped at an angle to reduce
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Fig. 4.3 The geometry of a general model for radiographic imaging.
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the apparent focal spot size. There are some suspicious features of this model,
particularly the planar object. Nevertheless we shall begin our analysis.here
and let the model gradually become more realistic (and hence more
intractable). _

The common features of the transmission radiography system and the
pinhole camera, as we have modeled them, are thus a source plane, a trans-
mitting or aperture plane, and a detector plane (see Fig. 4.3).

4.1.1 The Source

We describe the source by an emission function S(r), where r is a two-
dimensional vector in the source plane. More precisely, f(r)d?r is the mean
number of photons per unit time emitted into all space from an elemental
area d’r located at the point r. It is important to note that f(x) should really
be a statistical quantity. If we observed the system for a finite time T, we
would not expect to find exactly Tf(r)d?r photons emitted from the element
d?r during the observation. Indeed, the very notion of an infinitesimal
number of photons, obtained by multiplying the infinitesimal area d?r by
any finite number, is a contradiction in terms. However, if we repeated the
observation many times, or considered an ensemble of many identical x-ray
systems, then Tf(r)d*r would represent the average value of all our ob-
servations. Deviations from this mean behavior are the subject of Chapter 10;
in this chapter all results are to be interpreted as statistical averages.

Of course, Tf(r)d?r represents the mean number of photons emitted
from d?r during the interval T only if f(r) is independent of time. Otherwise
a time integral is required. Time-varying sources are occasionally desirable,
as with pulsed x-ray tubes, or unavoidable, as with rapidly decaying isotopes.
But a time integral would be a distinct nuisance here, so we simply assume
it away and take f(r) to be constant in time.

One final comment on f(r) concerns the directional character of the
photon emission. If the source is a radionuclide distribution there is no
reason to assume any directionality at all. Photons are emitted with equal
probability in all directions. The situation is very different with x-ray sources.
The bremsstrahlung has a definite preferred orientation which depends on
electron energy, angle of electron incidence, and target material. Clearly such
complexity is incompatible with a simple model, so once again we ignore it
(for now) and consider only isotropic emitters.

4.1.2 The Detector

Having described an elemental source, let us now consider an elemental
detector of area d?r”, where r” is the two-dimensional position vector in the
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detector plane. This elemental detector subtends a solid angle dQ from the
source, given by ;
dr’ - cos6

R*
Referring to Fig. 4.4, we see that R is the distance from source element to

detector element and 6 is the angle between the normal to the detector surface
and the line of sight from source to detector. From simple geometry, we find

dQ = 4.1)

R = (s, + s,)/cos 0, 4.2)
so that
3
= 80 gy 43)
(51 + 52)

If there were no absorbing material in the space between ‘the source plane
and the detector plane, the detector would intercept a fraction dQ/4r of the
radiation emitted from any source element since a full sphere subtends 4n
steradians. The mean number of photons per unit time emitted by the area
element d?r in the source plane and intercepted by the area element d>r” in
the detector plane would then be given by

cos30
4n(sy + s5)°

Of course, not all of the photons intercepted by the detector are detectc?d.
And even when a photon is detected, its location r” cannot be m.easured with
absolute accuracy. The detector should, in principle, be considered as an
integral part of the imaging system. For now, however, we are concentrating

- on other portions of the system and may assume an ideal detector. This
restriction will be lifted shortly.

Jryd*r %2— = f(r) d*rd*r". " (4.4)

5 +5,
2]

R

d?r -
r
$,+Sp
4 \4
plane plane

Fig. 4.4 Diagram for solid-angle calculation (aperture plane not shown).
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4.1.3 The Transmitting Plane

Our description of the system is nearly complete. We have only to
account for the transmitting plane situated between the source and detector.
This is easily accomplished since we shall deal only with rays that travel in
straight lines; scattered radiation is the subject of another chapter. Thus a
ray emanating from the point r and striking the detector at r” must have
passed through the central plane at a specific point r’ (see Fig. 4.3). We shall
denote by g(r') the transmittance of the central plane at the point r’. In other
words, g(r') is the fraction of the incident photons that is transmitted through
the central plane.

We can now write down an expression for the density of detected photons
h(r"), defined so that h(r”")d?r” is the mean number of photons intercepted
by the detector area d*” in a time T. This definition says nothing about

where the photon came from, so an integration over the source plane is
required:

Td%*"

W) = s [, d2rc0s® 6 f(D)9@). 4.5)
Dimensionally, h(r”) is a fluence as defined in Appendix D. However, the
term fluence is more appropriate to a beam of moving particles than to a
static pattern of recorded photons. Thus, we shall call h(r”) a photon density
rather than a fluence.

The vector r' can be eliminated in terms of r and r”. Inspection of the
geometry of Fig. 4.3 reveals that

rs1 rr szr @)
or
where |
a=s5,/(s; +5,) (4.8)
and
b=5/(s; +s)=1-a. (4.9)

Some care must be taken in interpreting (4.6) or (4.7) since r, r’, and r”
are all two-dimensional vectors defined in different planes. If r has Cartesian
components (x, y) and r' has components (x', '), then by r' — r we mean a
two-dimensional vector with components (x' — x, y’ — y). The z dimension
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does not influence this vector difference. The three-dimensional distance R
is not simply |r — r”|, but is given by "

R=[r -+ + 5717
= [(x — x")* +( y— Y2 + (s, + s5)2]Y2 (4.10)

In spite of this complication, the notation is still intended to be suggestive.

Note that if all figures are drawn so that the radiation goes from left to right,

then the letters representing the important functions (f, g, and h) progress

from left to right, the number of primes on the coordinates (r,r’,r") increases

from left to right, and the designations for both absolute spacings (s, and s;)

and relative spacings (a and b) increase from left to right.

Equation (4.5) now becomes

he")d*" = Cd*r” |.

sourc

. d?rcos® 0 f(r)g(ar” + br), (4.11)
where
C = T[4n(s, + 53?1 . 4.12)

This equation is still rather complicated since 0 is a function of r and r”.
However, we shall often be interested in systems, where s, + s, is large
compared to Lrl or |r’|. In those cases it is a good approximation to take
0 ~ 0 and cos® 0 ~ 1. We are then left with '

hr")= C me d?r f(r)g(ar” + br), (4.13)

where the factor d?r”, originally inserted for didactic purposes, has been
dropped from both sides of the equation.

4.1.4 Reductionto a Canolutldn

Equation (4.13) now resembles a convolution integral. To exploit thi
resemblance, let us define a new variable rg, given by ‘

ro = —br/a (4.14)
and scaled versions of f and g by
F@3) = f(e) = f(—ary/b) (4.15)
and
grg) = g(aro). (4.16)
We then have

g(ar’ + br) = g(ar”’ — arg) = G’ — rp). 4.17)
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Fig. 4.5 Illustration of the significance of r{, in 4.14),

S%

5, —

S2
The significance of the variable rj is illustrated in Fig. 4.5. Multiplication
of the vector r, which is measured in the source plane, by —b/a (or, equiva-
lently, —s,/s,) is the same as projecting it through a point in the aperture
plane to the image plane. Similar geometric interpretations may be attached
to the scaled functions f and g. As Fig. 4.6 shows, g(ar”) is wider than g(r”)
since the scale factor a is less than one. The scaled function g(r”) may be
thought of as the original aperture function g(r') projected from a point in
the source plane to the image plane. By the same token, f@&”) is the original
source function projected through a point in the aperture plane to the image
plane. The tilde will always imply projection to the image plane.
After these manipulations (4.13) may be written

2
hr) = (g) ¢ [, e feae - v
= (a/b)*Cf(") = J("). (4.18)

Fig. 4.6 Illustration of scaled functions.
Note that f(ax) is wider than f(x)if a < 1 and
narrower than f(x) if a > 1. Note also that

af(ax) and f(x) yield the same value when 1
integrated over x. 2
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(The domain of the rj; integration may be taken as the entire two-dimensional
space, indicated by the subscript oo on the integral sign, since f, and hence
]J,) vanishes outside a finite area.) In other words, the detected photon density
may be thought of as the output of a two-dimensional linear system with
input f and impulse response proportional to . As in any linear system, a
frequency-domain description is very useful. A straightforward two-dimen-
sional Fourier transform of (4.18) yields

F,{h(x")} = H(p") = (a/b)*CF(p")G(p"), (4.19)

where p” is the spatial frequency vector conjugate to r” in the image plane.
The transform on the right of this equation may be evaluated in terms of the
original source and transmission functions f and g by use of the scaling
relation (B.94):

F(p") = #{f(—ar"/b)} = (b*/a*)F(—bp"/a) (4.20)
and
G(p") = F»{glar")} = (1/a*)G(p"/a). (4.21)
Our final result is then '
H(p") = (C/a®)F(—bp"/a)G(p"/a). (4.22)

Application of the basic equations (4.18) and (4.22) to various imaging
systems is the subject of the remainder of this chapter.

4.2 PINHOLE IMAGING

A pinhole camera is the simplest possible imaging system. Its major
features can be determined from elementary geometry without resort to the
elaborate mathematics unveiled in the Section 4.1. Our goal in this section
is therefore not to use the mathematics to understand the pinhole camera, but
rather the reverse—to use the pinhole camera to demystify the mathematics.

4.2.1 Geometrical Treatment

Consider an ideal pinhole aperture that is perfectly transmitting over a
small circular region of diameter dy,,, and perfectly opaque elsewhere, so that

N (U 2y <1
glr’) = circ(2r /d"")‘{o it 2r/dy, > 1,

where 7 = |r'|. The prime on d}, indicates that it is measured in the r’ plane.

(4.23)
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\

source pinhole
aperture

-illustrating the calculation of the point spread function for pinhole

detector

Fig. 4.7 Diagram
imaging. :

Suppose _that the source is a single emissive point. Then, since the rays
must travel in straight lines, the image consists of a collection of detected
photons confined to a circular region of diameter dg, (see Fig. 4.7). By
comparing similar triangles, we see that ’

S1+5, _dy :
5. a4 4.24)

"o
ph“'dph

Note that the value of d}}, is completely independent of the position of the
source. No matter what the projection angle 0 is, the circular pinhole always
projects to an undistorted circular image provided the aperture plane is
parallel to the detector plane. In brief, the system is shift-invariant.

If we consider two point sources a distance L apart, inspection of Fig. 4.7

sl.xows that the centers of their images in the r” plane are separated by a
distance L” given by

L" = L(s,y/s,) = L(b/a). (4.25)

Furfhern_xorc, the image is inverted; we say that the pinhole camera has
a magnification of —b/a (= —s,/s,).

4.2.2 Analytical Treatment

The results of the geometrical analysis also follow easily from (4.18). We

describe a point source at the location r, as a delta function, i.e.,

fr) = Ko@r —r,), 4.26)
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. . . and
where the superscript 6 reminds us we are c.leahng _thg g ptot::ts Zﬁ:éece’N o
K is the total number of photons per unit time emitte f)}' e e n;unber
that this definition is consistent with the.lnterprt?tatxon o S o e ot the
of emitted photons per unit time per unit area since, by the de

delta function,
j i dir=K f _s-r)dir=K. @21)

The scaled functions f(r) and g(r) that appear in (4.18) may be written
fry=K 8[(—ar"/b) — r,) = K(b?*/a*)o[r" + (bry/a)] 4.28) -
and :
429
g(r') = circ(2ar’/dy), (4.29)

i f delta functions, (A.37),
has been made of the scaling property ol c¢l ;
::h:‘&;;ethe right-hand form of (4.28). Equation (4.18) itself is now

(b (2l = -ﬁ\)
h"(r") = KC Ioo d r'05<r'0 + —E- circ ;,h
— KCcirc (2“"” + (br,/ “)‘). (4.30)
ph :

We next seek to persuade the reader that the circ f::gtior:i in thgl: :::?2::1
i gnified pinhole image that we deduced on
describes the same magnified pinho ' cdeduced on BT alue
i the circ function 1s locate

unds. First, note that the center of . . ue
gl;’of ' that makes the argument of the fu'nctlop zero. Thl:l f)bc:u;:ﬁv;lelgn a:‘ ol
— br,/a, in agreement with the geometrical picture. Let ry
coor'dinate of the center of the circ function, 1.¢,,

r/ = —br,/a. (4.31)
The circ function of (4.30) vanishes unless its argument is less than 1, or

' d., Sy + 52 432)
7 ” Ppb __ “ph 1 . . (
i< 2a 2 5
i " lies withi ircle of diameter diu/a
is i ity will hold provided r” lies within a circ ; .
2.1 ljnslzgﬁigd at r’. Thus, once again the geopetncal result }:s ’cl:oxgnlt;n:;
= é’quation (4.30) not only gives the right funcnpnal forp for (l"i '), e
the right magnitude. To see this, note that the disk of diameter dp

detector plane subtends a solid angle Q (as seen from the source plane)
given by

Q= /e 4.33)
T A(sy + $2)?
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The total number of detected photons in time T is thus the total number
emitted KT times the fractional solid angle Q/4n. But h(r”) is the detected

photon density. Within the disk region, h(r”) is the total number collected
divided by the area of the disk, i.e.,

KTQ/4xn KT

W) = ™ T, rge U ] <dw/2], @439

which, with the definition of C from (4.12), is in perfect accord with (4.30).

4.2.3 Resolution

Either the geometrical or the mathematical approach can be used to
determine the resolution distance of the system, i.e., the minimum resolvable
spacing of two point sources. The only real problem is specifying what we
mean by “minimum resolvable.” One possibility would be to adopt the full
width at half-maximum (FWHM) of the PSF as our resolution criterion.
In the present case, the PSF as measured in the image plane is a uniform
disk of diameter dy;,; the FWHM of this function is therefore also dy,. This
criterion would thus not count two points as resolved unless their separation
was such that there was no overlap at all between the two disk images. This
may seem to be an overly stringent condition. Surely an observer would
have no difficulty in asserting that two points were present if the centers of
their images were separated by, say 4dj,. Indeed, many writers adopt this
condition in discussing the resolution of a pinhole camera. Nevertheless,
we believe that the FWHM criterion is defensible in most practical circum-
stances. Unfortunately, the defense rests largely on noise considerations and
must therefore be postponed to Chapter 10. For now, we simply adopt the
FWHM criterion without real justification. The reader who objects to this
choice can sprinkle around factors of order unity to taste.

Our criterion thus says that the centers of the images of the two points
must be separated by dy, for the points to be resolved. Of more interest,
however, is how far apart the points themselves must be. In other words, we
are more concerned with the PSF scaled to the actual size of the object than
with the PSF as it appears in the image plane. This is an easy scaling since
we have already determined that the magnification of the pinhole camera
is —b/a (or —s,/s;). For two points to be barely resolved (by the FWHM
criterion), they must be separated in the object plane by a distance Opn» given
b

Y Son = diinafb = diufb = dia(sy + 53)/s,. (4.35)

To be more formal about it, the PSF of the pinhole camera is the mea-
sured point-source image h’(r") rescaled to account for the magnification,
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and normalized to unit source strength, i.e.,

PSF,;, = Ppul® — 1)) = K™ (b/a)’h(" )|+ = —busa

= c(i)2 circ (ﬂ':—'—D (4.36)
a oh

i a FWHM of d,,/b, in agreement with .(4.35). The scahpg must
xt\l/l:ll\lfehﬁe amplitude as v:ell as the lateral dimensions of the func;xolil. tTl:;
leading factor of b*/a? in (4.36) is required so that the total number o 1()1 0 ?cal
will be conserved, i.e., the integral of p,(r) over the r plane will be lthenttlthe
to the integral of hr”) over the r” plang. The read;er may verify 2 ine
constants in (4.36) are reasonable by showmg that the integral of p,:gr) is tllﬁt
ply QT/4n. Notice that p,,(r) has units of time per length squared, s_c: that
Pou(r) #* f(r) represents the mean number of collected photons per uni

in the rescaled image.

-

4.2.4 Modulation Transfer Function.

i 1, by Fourier
The MTF of the pinhole camera may be found, as usual, urier
transforming the PSF. The details of the transform are given in Appendix B;

Fig. 4.8 Isometric plot of the function 2J y(«p)/ap.
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by (B.114), the result is

_ Pulp)] _ |2J,(ndiyp/b)|
Mo =@ = ndupfb 437

where, as in Chapter 2, p is the magnitude of the two-dimensional spatial-
frequency vector, and J,( ) is the first-order Bessel function of the first kind.
The function 2J,(xp)/ap is the two-dimensional, circularly symmetric coun-
terpart of the sinc function defined in (2.58). It is sometimes referred to as
a “Besinc” function or, in the southwest, as a “sombrero” function (see Fig.
4.8). However, since the usage is not yet standardized, we shall refrain from
giving this function a name.

4.2.5 The Image Detector

Since the PSF (or the transfer function) is a complete specification of a
linear, shift-invariant system, it would seem that we have completed the
analysis of the pinhole camera. However, we have not yet included the effects
of the image detector. The problem is closely akin to the cascaded linear
systems discussed in Chapter 2. The first system is the image-forming pinhole
aperture. Its input is the two-dimensional source density f(r), and its output
is the photon density incident on the detector h(r"). If the detector were
ideal, its output would be just proportional to h(r’). Real detectors, however,
further degrade the image and must be treated as linear systems in their own
right.

Cascaded linear systems are most easily analyzed in the frequency do-
main. The input signal to the detector system is thus given by H(p"), the
Fourier transform of h(r’’). The transfer function of the detector will be de-

noted by D(p"), so the detector output is simply D(p")H(p"). With the aid
of (4.22), this becomes

D(p")H(p") = (C/a*)D(p")F(—bp"[a)G(p"/a). (4.38)

This equation may appear strange at first since the three functions on the
right all have different scale factors. But bear in mind that we are really in-
terested in how a particular spatial-frequency component in the object is
affected by the cascaded system. It is quite irrelevant to us whether the final
image is displayed at a large scale or a small one, What we must do, therefore,
is to rewrite this equation so that the object transform F(p) appears without
any scale factors. The coefficient of F(p) will then be the overall transfer
function of the cascaded system, referred back to the original object scale.

To accomplish this, we merely let p = —bp"”/a in (4.38). The result is

D(—ap/b)H(—ap/b) = (C/a*)D(— ap/b)F(p)G(— p/b). (4.39)



130 4 Application of Linear Systems Theory to Radiographic Imaging

Reading off the coefficient of F(p), we obtain the transfer function of the total
system, pinhole plus detector,

TF o = Pi(p) = (C/a*)D(— ap/b)G(— p/b). (4.40)

modification of the leading constant is necessary when rescaling

Egzi?:st Iil:: the frequency domain. The central ordinate theorem (B.?I?)

guarantees that the left-hand side of (4.40), when transforqu back to the

space domain, will have the same spatial integral as bef9re scaling. Tpe ficltgr

of b?/a? introduced into (4.36) is automatically taken into account in (4.40).

An inverse transform now gets us back to the space domain and to an
expression for the PSF of the total system:

PSF,, = Pilf) = (C/a®)# 7 *{D(—ap/b)G(— p/b)}. (4.41)

This function can be broken down into it:s component parts by use of the
convolution theorem (B.52). We then obtain

ptot(r) = pph(r) o pdet(r)’ (4'42)
where p,(r) is the PSF due to the pinhole alone [cf. (4.36)] as given by
(™) = (C/a®)F 3 {G(— p/b)} = (Cb?/a®)g(— br). (443).

Similarly, pa.(r) is the contribution of the detector to the overall PSF and
is given by
Paed®) = F 7 1{D(—ap/b)} = (b/a)*d(— br/a). (4.44)

dimensions of (area)” ! even though p; has dimensions of
g:: :)2: taig.hlflsote also that arf ideal detector, for which D(p") =1 at all
frequencies, leads t0 pye,(r) = 6(r) = (Pz/az)é(—br/a). ' | pSEs 0 a

It is also important to keep in mind tha} we are referring al sto

common scale—the scale of the original object in the r plane. The np;agon
Paei(r) does not mean the PSF of the detectox:; it means the contri u}t:gg
of the detector to the overall PSF as measured in the .ol:pect pla;fxe. The >
of the detector, as measured in the detector plane, is just d_(r ). The scale
factors in (4.44) serve to project this function through a point in the ape'rt:ﬁ'e
plane to the object or source plane. On the other hand, we had to ong:n thi
have h(r") expressed in the r” plane in order. to regard it as the input e:cal °
detector. Only after the cascading expressed in (4.38) was it correct to
the results to the r plane.

4.2.6 Design Considerations

We next inquire how these results might be use.d to design a pinhole
camera. The parameters at our disposal are tht’7 spacings s, and s, and the
diameter of the pinhole. It is assumed that the size and MTF of the detector
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are fixed, and that we must image an object of a specified size. Within these
constraints, we must optimize the resolution and the gamma-ray oollection
efficiency of the pinhole camera.

The first constraint to apply is the required size of the object field (field of
view, or FOV for short). If the detector is circular with diameter dge, and
the object lies within a circular region of diameter d., Which is large com-
pared to d,,, then the entire object can be imaged if

s b
dia > Fdoy =2 do. (4.45)
In other words, the magnified object must fit on the detector.

Equation (4.45) is not the only constraint on s, /s, ; the resolution distance
Jpn also depends on that parameter. Inspection of (4.35) shows that Opy takes
on its minimum of d;,, when s, /s, — 0.

Of course, (4.35) was derived on the assumption of an ideal detector, but
the same conclusion follows when a realistic detector is considered—the
best resolution is obtained with the smallest s, /s,. Qualitatively, the deg-
radation due to the detector is least serious when the image is greatly
magnified since then the width of the detector PSF is a small fraction of the
image size. More quantitatively, our goal is to make the detector’s contri-
bution to the transfer function, D(— ap/b) in (4.40), as large as possible. Since
D will generally decrease as the spatial frequency is increased, we must make
the magnitude of the argument of D, i.., the quantity | —ap/b|, as small as
possible at all frequencies. This can occur only if a/b is small. To restate the
argument in the space domain, the function d(— br/a) in (4.44) falls to one-half
its peak value when the argument of the function equals some specified value,
call it ry;,. The FWHM of p,,(r) is then given by 2(a/b)ry,, . The parameter
ry2 is a characteristic of the detector and presumably beyond our control.
The only way to minimize the FWHM of p,,,(r) is thus to minimize a/b.

Of course, a/b cannot be made arbitrarily small, since then (4.45) would
be violated and the FOV would be inadequate. The smallest allowed a/b is
the value for which (4.45) becomes an equality rather than an inequality,
ie, a/b=d,/d},.

To this point, we have fixed a/b, or s,/s,, but not s, and s, separately;
the total source-detector distance s, + s, is still a free parameter. It is clear
from (4.3) that s, + s, should be small in order to efficiently collect photons
[note that the factor (s, + s,) ™2 appears either explicitly or implicitly though
the constant C in all of our imaging equations]. There is, however, a penalty
to be paid if 5; + 5, is made too small. The problem lies in the obliquity
factor cos® 6 that last appeared in (4.11). The subsequent treatment was based
on the approximation cos® = 1, an approximation that breaks down for
large objects and small spacings. The planar model for the aperture can also
break down under these same conditions. The upshot is that gamma rays
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are collected less efficiently from the periphery of the ol'fject plgne than from
the center; a uniform object produces an image that is less intense at ?he
edges (see Fig. 4.9). The system designer must decide how much of this shading
can be tolerated and set s, + s, accordingly. . .

An additional consideration affecting the choice of S1 + 5, arises when
three-dimensional objects are considered. In that case, s, is a variable spec-
ifying depth within the object. If the pinhole i.s close to the sgrface of the
object, then the magnification and the collection efficiency yvxll l}oth vary
rapidly with depth in the object. Therefore, both. lateral spatxal @ensnons
and intensities will be distorted, possibly confusqlg th'e dla}gnostl_c process.
A value judgment, not readily amenable to quantification, is required to set

ble bounds on these distortions. . '
tole%e elast parameter we must consider is dp,. ane again a trade-off. is
involved—a large d,, will increase collection efficiency but' degrade sgatlal
resolution. In general, determination of just where to set this trade-off is an
extraordinarily difficult problem that ultimately comes down t.o the psy-
chophysical question: Does the human obse.rver perform better with a sharp,
noisy image or with a blurred but less noisy one? We do not propose to
answer this question in this book, although some possible approaches to the

h('”)

/ \
yi -
0 - 2 image
pl(:’qe
pinhole
uniform

source

Fig. 4.9 Illustration of image shading due to obliquity anq viggetting in t'he pinl{ole
camera. Solid line: obliquity alone. Dashed line: obliquity plus vignetting. For this drawing,
the pinhole material is assumed to be perfectly opaque.
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problem are briefly discussed in Chapter 10. Even if we confined our attention
to purely physical measures of image quality, we could not give a very com-
plete discussion at this point because we have not yet included noise in our
formulation. Therefore, we shall postphone the discussion of this problem
until Chapter 10. For now, it is sufficient to bear in mind that radiological
images in general, and nuclear pinhole images in particular, are almost al-
ways severely limited by the small number of detected photons. Collection
efficiency is of paramount importance.

4.3 TRANSMISSION RADIOGRAPHY

It is a simple matter to recast the pinhole-imaging equations into a form
applicable to transmission radiography. The basic difference is that in the
pinhole case the source function f(r) represents the object being imaged, and
the aperture function g(r') is under the control of the system designer. The
reverse is true in transmission imaging where g(r') represents the object
and f{(r) is the more-or-less controllable focal spot of the x-ray tube (Ter-
Pogossian, 1967; Rossmann, 1968, 1969 Doi, 1965; Doi and Rossman, 1975).

4.3.1 Disk Focal Spot

To accentuate the similarity, let us suppose that the focal spot is a
uniform, emissive disk of diameter dy,, i.e.,

J®) = fo circ(2r/dy,), (4.46)
where f, is the emission density (photons per unit area per unit time) within
the disk region (see Fig. 4.10).

To find the PSF of the system, we must consider the input to be a point
object described by
@) = 6@’ —r)). 4.47)
where r} is the location of the point in the r plane. This input function may
offend the reader’s intuition somewhat since g(r') is supposed to represent a
transmission, which is a dimensionless number in the range 0—1. The unit-
impulse transmission g’(r'), on the other hand, has dimensions of (length) 2
(see Appendix A) and has a peak value of infinity rather than unity. If a
mental picture is required, one can imagine a pinhole aperture whose area
is allowed to approach zero while the exposure time is increased in inverse
proportion to the area, so that the total x-ray flux transmitted through the
pinhole during the exposure is constant. This metaphor corresponds to the
notion of a point source, which we viewed as a very small, very bright source.
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Fig. 4.10 Diagram illustrating the calculation of the point spread function for transmis-

sion radiography with a disklike focal spot.
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In the limit, it became infinitesimally small and infinitely bright in such a
way that the total number of emitted photons remained c.on_stet’nt. In the
transmission case, the object becomes “infinitely transmissive” over an
infinitesimal area. o

We can now see that the PSF of the transmission radiography system,
as measured in the detector plane, is simply the pinhole image of the focal
spot. Substituting (4.46) and (4.47) into (4.13), we find

2
Wr)=C fmm d>r fo circ(;}) o(ar’ + br —r})

fs

c\. . [2lar -r
= (5-2-) fo cu'c[——————b i ]

C . [2)r" — (xy/a)|
This equation describes a uniform disk image of diameter dg,, given by
s b
fo=dy =i (449)

1

The disk is centered at r’ =rj/a =7ri(s; + sz')/sl.; the magnification m, 1s

therefore (s, + S,)/s;. Note that the magnification is always greater tha.n one

and that it is a positive number. The image inversion encountered in the
inhole camera does not occur here. o

b Two points are said to be just resolvable, on the FWHM criterion, if the

center-to-center spacing of their images is equal to df,. As in the pinhole
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camera case, we then scale the spacing back to the object plane (in this case,
the ¥’ plane) by dividing by the magnification. Formally, we set di, =ry/a
and solve for ry, which is then identified as the resolution distance &;,. (The
subscript fs indicates that we are considering only the contribution of the
focal spot to the resolution, and the prime shows that the resolution is mea-
sured in the r’ plane.) The result is

s
ts=deb=d;, —2—. .
fs dfl fs 54 + S5 (4 50)

The symmetry between (4.50) and (4.35) should not be overlooked. One is
obtained from the other by transposing the object dimension and the reso-
lution-determining system parameter (d;, or dgn)-

4.3.2 General Analysis

We may generalize our description to include an arbitrary focal-spot
distribution and also include the effect of the detector by again using (4.38).
This time, however, G(p"/a) represents the object. Since we are interested
in how a particular spatial-frequency component in the object is affected by
the system, we must rescale (4.38) so that G(p') appears on the right-hand
side. To accomplish this, we let p’ = p”/a in (4.38). The result is

D(ap")H(ap') = (C/a*)D(ap')F(—bp')G(p). 4.51)

This is the transmission-imaging counterpart of (4.39). The coefficient of
G(p’) is the overall transfer function of the system:

! C ’ ’
TFy = Py(p) = 72 D(ap")F(=bp'). 4.52)
Returning to the space domain, we find that the overall PSF is given by

PSF\o = Puolt) = o3 #5* {Dlap)F(—bp")}

= pf:(r,) - pdet(r’)9 (453)
where p,(r') is the PSF due to the focal spot alone,
. C __ , C -r
Pe(r') = pe F i {F(-bp)} = (az_bz)f (T) 4.549)

The detector contribution to the PSF is
Pau(r') = F 3 *{D(ap)} = (1/a*)d(r'/a). 4.55)



136 4 Application of Linear Systems Theory to Radiographic Imaging

Note that the scaling factors in this equation are different from those in the
pinhole case [cf. (4.44)] even though the same symbol p,.,(r) is used. Note
also that both p;, and p,,, have dimensions of (length)™4, in contrast to p,,
which had dimensions of time per (length)?. However, p,, is to be convolved
with a dimensionless quantity, a transmission, to get the image h, while p_,
is to be convolved with a source density having dimensions (length)™* -
(time)~!. Thus in both cases, h has dimensions (length) ™2 and represents the
mean number of photons per unit area in the image. :

4.3.3 Design Considerations

With these basic equations, we are now in a position to discuss the
design tradeoffs in transmission imaging. The first thing we shall discover
is that there is an optimum magnification even if there is no limitation
imposed by the finite detector size. This is in marked contrast to the pinhole
camera case where we found that the magnification should be as large as
possible. A large magnification (small s,/s,) served to minimize the widths
of both p,,(r) and p,,(r). In the transmission case, on the other hand, a
large magnification ameliorates the detector contribution to the overall blur
but exacerbates the focal spot contribution. To see this, recall that the
magnification m, is given by :

1 1
== 4.56)
om=—=1—, (4.56)
or
=1L 4.57)
mom
Therefore, »
, —mr’
pe(r') < f (~——-—m’ — 1), (4.58)
and
Paer(r’) o d(m,r'). (4.59)

The width of p,,(r’) is the smallest when the coefficient of ¥’ in the argument
of (4.58) is the largest, which occurs when m, = 1. This corresponds to the
“contact print” limit when the detector is in direct contact with the object
being radiographed. In that case the size of the focal spot is irrelevant and
a sharp shadow is always cast on the detector. Of course, this limit may not
be physically possible, as when the object of interest lies deep within the
patient’s body. Nor is it necessarily desirable to have a contact print when
the detector limitations are considered. Just as in the pinhole case, a large
maghnification serves to minimize the width of py,(r'), a result that should
be readily evident from (4.59).
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An explicit solution for the optimum magnification is possible when both
the detector and the focal spot can be represented as Gaussian funetions—
always a convenient mathematical artifice and occasionally a realistic one

as well. The problem is easiest in the frequency domain. Therefore let us
assume that

D(p") oc exp[ —=n(p"/p;)*] (4.60)
and

F(p) o exp[—=(p/p,)*], (4.61)

where pg and p, are characteristic widths of the MTF of the detector and
focal spot, respectively. From (4.52), we find for the overall MTF,

P tot !
MTF,, = th:(%))l— = exp[ —n(ap'/py)*] exp[ —n(bp'/p,)*] (4.62)

By virtue of (4.56) and (4.57),

1 (m, — 1)?
MTF,, = exp[— np”( — + . .
“ (mpd)* ~ mip} “e3)
The width of MTF,,, will be an extremum if
d [ 1 (m, — 1)2]
— + == 0, 464
dm,L(mp;)*  mip} @69

which has the solution

m™ =1+ (p,/pi). (4.65)

It is easily verified that the extremum corresponds to a maximum width for
MTF,, and hence an optimum configuration as implied by the superscript.
The behavior of (4.65) in two limits is of interest. First, note that a very
large focal spot (p, — 0) requires the contact-print configuration, m,=1.
Second, a very poor detector (p; — 0) requires large magnification.

As with the pinhole camera, an additional design consideration arises
Yvhen we consider the finite detector area. This problem is relatively un-
important when x-ray film or a film-screen system is used since a large area
is easy to obtain. With x-ray image intensifiers, on the other hand, the
detector area is very limited, which is unfortunate since the MTF is also
relatively poor and (4.65) shows that a large magnification is desirable.

4.3.4 Roealistic Focal Spots

\Yhile some x-ray tubes do have focal spots that approximate Gaussian
funct}ogs, they are the exception rather than the rule. A more realistic focal
spot is illustrated in Fig. 4.11, and its associated MTF is shown in Fig. 4.12.
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Fig. 4.11 Pinhole image of an actual x-ray tube focal spot, isometric and contour repre-
sentations. (From Wagner et al., 1974))
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Fig. 412 MTF obtained with the focal spot shown in Fig. 4.11, isometric and contour
representations. (From Wagner et al., 1974.)
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Many attempts have been made to reduce these complicated functions to
single numbers—something akin to our d;, in (4.46) or p s in (4.61). Fre-
quently, manufacturers and medical physicists will differ by as much as a
factor of 3 when asked to specify the “effective focal spot size” of a given
x-ray tube. We do not propose to enter this rather sterile debate. Suffice it to
say that the complete PSF or transfer function is required to properly specify
the characteristics of the focal spot; any lesser description provides less
information.

One qualitative difference between the Gaussian focal spot and the
realistic one in Fig. 4.11 concerns the phase of the transfer function. A
Gaussian transfer function has zero phase at all spatial frequencies, which
is seldom true with realistic focal spots. The existence of these phase shifts
is revealed in a radiograph of a bar target as shown in Fig. 4.13. The origin of

Fig. 4.13 Radiograph of a bar target illustrating phase shifts. Note that the. modulation
of the bars-vanishes at 4.5 Ip/mm, and that the phase of the modulation at lower frequencies is
opposite that at the higher frequencies. (Courtesy of Meryll Frost.)
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Fig. 4.14 Geometric explanation of the origin of the phase shifts seen in Fig. 4.13. At left,
a small focal spot gives a sharp shadow and 1009, modulation. The maximum intensity is at
point A, and the intensity at point B is zero. At right, point A “sees” only half as much of the
large square focal spot as point B does. Thus, the intensity at B is twice as large as at 4, which
is now a minimum instead of a maximum.

the reversals can be seen from the geometric construction given in Fig. 4.14.
Our discussion of transmission radiography to this point is by no means
complete. We are, however, approaching the limits of what can be learned
from a linear, shift-invariant model. We therefore conclude this section here,
but we shall return to the subject of transmission imaging in Section 4.8
where the various factors that invalidate our simple model are discussed.

4.4 SCANNERS

Our ultimate goal for this section is to give a fairly rigorous analysis of a
a scanner incorporating a multihole focused collimator of the type illustrated
in Fig. 1.19 (Barber, 1973; Beck, 1964a,b, 1968b). However, much insight
can be gained by starting with a decidedly nonrigorous analysis of a scanner
using a single-bore collimator.
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4.4.1 Definition of PSF

In order to calculate the PSF of a scanner, we must first state just what
we mean by PSF in this case. A rather obvious definition would take the
PSF to be the instantaneous count rate of the detector, considered as a
function of the position of a point source. There are two difficulties with
this definition. The first is that the term “instantaneous count rate” must be
understood in a statistical average sense. If the same measurement is repeated
many times, or an ensemble of identical systems is considered, then the count
rate of concern is AN /At, where AN, is the mean number of photons detected
in a vanishingly small time interval At. Of course, in real life one does not
have an ensemble of identical systems at his disposal, nor does he normally
have the opportunity to repeat the measurement many times. A single
measurement over a very small At would probably yield only zero or one
detected photon and give practically no information about the mean rate.
Some sort of averaging is clearly required.

In a practical scanner, this problem is solved by use of a count-rate meter
which can take one of several forms. An idealized count-rate meter was
discussed in Chapter 3, but a more practical form is the RC network shown
in Fig. 4.15. The operation of this circuit will be discussed more fully in
Section 4.4.7, but for now we simply note that it serves to average the count-
rate over a time interval R, C, which is under the operator’s control. It might
seem that a large value of R;C; would be desirable since then the measured
count rate would be an accurate estimate of the instantaneous rate defined
above. However, we must not forget that the scanner is moving. A long
averaging time will blur the point image in the direction of the scan. The
count-rate meter is not just an optional accessory; it is an integral part of
the scanner and makes its own contribution to the overall PSF. A full analysis
of a scanner must, therefore, include a calculation of both the collimator and

ratemeter contributions to the PSF. We shall accomplish both in due course
(Beck, 1968a,b; Rao and Wagner, 1967; Mozley, 1968).
The second difficulty with defining the PSF as an instantaneous count
rate is that it is dimensionally inconsistent with the definition of PSF used

buffer

amplifier
R
from Vin ’\/\;\, Vout _ to image
detector low \ ~ display
output i —c high—- impedance
— impedance j_— L dc voltmeter

‘Fig. 415 Simple count-rate meter for use with a rectilinear scanner.
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in the pinhole imaging discussion. In that case, we arranged for the detec.ted
photon density (i.e., the number detected per unit area) to be the emissmp
function f(r) convolved with the PSF. This required the PSF to have di-
mensions of time per unit area. Since the number of detected photons per
unit area will be a key parameter when we come to a discussion of noise, it is
highly desirable to standardize our definitions in such a way that this param-
eter is easy to calculate.

In a scanner, the conversion from counts (detected photons) per unit
time to counts per unit area must involve two mechanical parameters, viz.,
the linear scan speed v, and the number of scan lines per unit length (in the
direction perpendicular to the rapid scan). The latter parameter will be
denoted by n,. Straightforward dimensional analysis then shows that the
number of counts per unit area is the instantaneous count rate times n,/v,.
(The scan lines are assumed to be contiguous and have width 1/n;, and v, is
assumed to be constant. Furthermore, no consideration is given to the
behavior at the end of a raster line where the direction of scan is reversed.)
We shall include this factor n,/v, in our definition of PSF for the scanner.

4.4.2 Geometrical Analysis of the PSF
of a Single-Bore Collimator
Consider the geometry shown in Fig. 4.16 where a collimator of f.:onstant
bore diameter D, and bore length L, is viewing a point source a distance z

from the face of the collimator. In practice, the collimator will usually be
scanned in a rectilinear raster over the source. For ease of analysis, however,

Dbﬁ
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+ direction
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\ point sourco\
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Fig. 4.16 Geometry for the calculation of the PSF of a single-bore collimator.
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we assume that the collimator is stationary and the source is scanned; only
relative motion is important, so this procedure is still quite general. .

A great deal can be learned about the collimator PSF without elaborate
calculations. To illustrate, consider first the case z = 0, where the source
point is virtually in contact with the face of the collimator. Then, assuming
there is no penetration of the gamma rays through the walls of the collimator,
the count rate must be zero when the point source lies outside the disk region
of diameter Dy, directly in front of the bore. Furthermore, since L, will nor-
mally be much larger than Dy, the collection solid angle will, to a good approx-
imation, be independent of the location of the point within the disk region.
(This approximation is nothing more than a restatement of the cos36 ~ 1
condition that we have been using all along.) Finally, note that the scanner has
a magnification of one since the count rate will be a maximum when the
collimator is positioned directly over the point source. To image a second
point source a lateral distance L away, the collimator must be moved by L.
Of course, the final image can be displayed at any desired magnification,
but this is of no concern since we shall always refer the PSF back to the scale
of the object anyway. The main point here is that the magnification inherent
in the gamma-ray collection system, in contrast to that obtained with a
pinhole, is unity.

With these simple observations, we can now write down an expression
for the PSF of the single-bore collimator:

PSF,i(z = 0) = p,(r; z = 0) = const - circ(2r/D,). " (4.66)

The vector r, of course, represents the two-dimensional position of the
point in the plane z = 0; the collimator is assumed to be centered on r = 0.
To fix the constant in (4.66), consider a point source emitting K photons

| per second. Its emission density function is K é(r) and the instantaneous

count rate within the disk region is KQ/4=, where Q is the solid angle sub-
tended by the detector. The PSF must thus satisfy

o _mn KQ . (2r '_
Pau(;2 =0) »x Ki(r) = o, ax mrc( Db). (4.67)
Since the solid angle in this case is nDZ/4L2, the PSF is given by
=0 ="t D6 o
Pu(r;z2=0)= o, 1612 c1rc( Db). (4.68)

Note that p,, has dimensions of time per area, so that we can directly convolve
Psp With f{r) to get the number of detected photons per unit area. It is not
necessary to insert an exposure time T as we did in the pinhole camera and
transmission radiography cases.
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The general behavior of p,.(r; z) for z # 0 is also easy to determine. We
need to distinguish three regions in the source plane. The first, which we
shall call the umbra by analogy with lunar eclipses, is the disk-shaped region
of diameter Dy, directly in line with the collimator bore. (The term “umbra”
is a decided misnomer here since the detector is completely unobscured by
the walls of the collimator in this region; we could call it an inverse umbra or
negative umbra, but let’s not be any more pedantic than necessary.) The
PSF in the umbra region is approximately constant.

The second region to be discussed will be termed the penumbra. It is the
region between the umbra and a circle of diameter D,[1 + (2z/L,)] as shown
in Fig. 4.16. In this region, part of the detector is obscured by the collimator,
reducing the collection solid angle and hence the PSF. In the third region,
outside the circle of diameter D,[1 + (2z/L,)], all of the detector is obscured
and the PSF is zero (again neglecting penetration of gamma rays through the
collimator).

From these considerations, we can sketch the PSF for any z. In Fig. 4.17
we show the image of two well-resolved point sources. The sloping lines in
the penumbra region have been drawn as straight, but the more careful
analysis to be given below will show that they have a slight curvature. It
should also be kept in mind that we have not yet discussed the effect of the
count-rate meter. The image shown in Fig. 4.17 is that which would be
obtained with an infinitesimally slow scan. )

]
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Fig. 4.17 Image of two points with a single-bore collimator.
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4.4.3 Analytical Treatment of the Single-Bore Collimator

To complete the analysis of the single-bore collimator we must find an
analytical expression for p,(r; z) for z # 0 and Fourier transform it to find
the MTF. For this purpose, we again invoke the general model set up in
Section 4.1. To show the correspondence between the model and the present
problem, we note that the collimator can be replaced by a pair of thin
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apertures as shown in Fig. 4.18. If the apertures are made of a hypothetical
material that is absolutely opaque to gamma rays, then the aperture pair is
equivalent* to the collimator. (The collimator material is also still being
treated as impenetrable.)

With this equivalence, the problem closely resembles the pinhole camera
problem. One important difference, however, arises because the pinhole
aperture is used with an imaging detector that measures the coordinates of
each gamma ray impinging on it. The scanner detector, on the other hand, is
a spatially integrating detector that simply counts all gamma rays incident
on it, irrespective of their coordinates. The only position dependence is

impos;d _by the upper aperture in Fig, 4.18; a photon is counted only if it
falls within the transparent area of that aperture.

Detector Detector

il I} w J

Y rays s)=2

Source

f pione " Source

Flg. 4.18 Diagram showing the equivalence between a single-bore collimator and a pair
of circular apertures. Left: actual collimator. Right: equivalent apertures.

We can apply the pinhole-camera equations to the single-bore collimator

by taking the r” plane to be just in front of the upper aperture as shown in

Fig. 4.18. The function h(r”) then specifies the photon density incident on
the upper aperture. The lower aperture, whose transmission we shall desig-
nate g,(r'), plays the role of the pinhole. The source-to-aperture spacing s,
then corresponds to z, while the aperture-to-detector distance S, is Ly. The

* To be completely realistic, we should admit that there is one type of event for which the
two geometries are not exactly equivalent. A gamma ray incident on the wall of the collimator
can be either Compton scattered or photoelectrically absorbed. In either case a lower-energy
photon is produced, and there is some small probability that it will escape from the wall and
strike the detector. In practice, such events will usually be rejected by the pulse height analyzer.

In the equivalent aperture geometry, the collimator walls are not present, so a photon which
would strike the wall instead strikes the underside of the upper aperture. The scattered x ray
is then shiclded from the detector and is not counted even without a pulse height analyzer.
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function h(r”) is given by (4.13), which in the present notation becomes

W)= C [ fgi(a@” + bryd®r, (4.69)
where

=2z/(ly+2), b=Ly/(Ly+ 2) (4.70)

However h(r") is the number of photons per unit area in an observation
time T. For scanner problems we are often more interested in the number
per unit area per unit time. Therefore we define a flux density or fluence rate
by

h(") = E(—;—,l =C fw f@®)g.(ax” + br)d?r, 4.71)

where
C = C/T = [4n(L, + 2)*]" . (4.72)
Since the two apertures are identical and have diameter D,, we may write
g;(r') = circ(2r'/D,), i=1lor2. (4.73)

By retaining two separate subscripts, we may easily generalize the results
later so that they apply to a collimator with a tapered bore.

The instantaneous count rate is found by multiplying the photon flux
density incident on the upper aperture, h(r”), by the transmission of that
aperture, g,(r"”’), and integrating over r”, i.e.,

count rate = L h(r')g,(r")a*r"

=C [ & [ drfwga + bga"). @74

We may take the domains of both integrations to be infinite planes since
Sf(r) and g,(r") are zero outside a finite region. To calculate the PSF, we let
f(r) be the point source é(r — r,). The integration over r in (4.74) is now
trivial, and we find for the PSF

n, C
Uy

Palr;2) == [ a3 g, )gy(ar” + br,)

_nC 2 i (27 . (2lar” + br
= . fmd r clrc(Db)clrc(——-—Db

= mC L d*r’ circ(z:) circ[zalr" + (br,/a)l]. 4.75)

v, Dy D,
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Fig. 4.19 Diagram to aid in interpreting Eq. (4.75).

The integrand in this equation is a product of a circ function of diameter D,
with a second circ function of diameter D, /a as illustrated in Fig. 4.19; since
the parameter a is less than one, the second circ function is larger than the
first. The interpretation of this result is that the larger circ function represents
the lower aperture as projected from the source point onto the upper aperture.
The PSF is proportional to the area of overlap between the two circ func-
tions, or the portion of the detector that can be seen from the source location.

Examine (4.75) in the limit z — 0, or equivalently, a — 0 and b — 1. Then
the first circ function is much smaller than the second and may be treated
as a delta function:

_ (w\ D} _

where the constant #DZ/4 is necessary so that both sides of this equation will
have the same integral over r”. This approximation allows us to perform
the integral in (4.75) with the result

oo (mC\ D} . (2,
p,b(r,,z—O)—( v,) 2 clrc( D,)’ (4.77)

which agrees with (4.68) since C = (4nL2)~1ifz = 0.

At this point we can drop the subscript s denoting source point onr, and
refer to the PSF as p,(r;z = 0). There are two justifications for this step.
The first is that we can call the argument of a function whatever we please
so long as we are consistent. But the more important reason is that we shall
want to use p,(r,z = 0) in convolutions that are carried out in the r plane.
Recall that'in the usual definition of the PSF for a shift-invariant imaging
system, p(r) represents the response at some image point due to the source
point a vector distance r away. In the above development, the image point
was at the collimator location—the origin of coordinates-—and the source
point was at r,. The vector r, thus has the same meaning as the usual vector
r in p(r).

The behavior of p,(r; z) for nonzero values of z is illustrated in Fig. 4.20.
Note the curvature of the sloping edges in the penumbra region.
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Fig. 4.20 PSF of a single-bore collimator for various values of z, the distance from the
source plane to the collimator face.

4.4.4 Modulation Transfer Function

The MTF is proportional to the Fourier transform of (4.75). To perform
this transform, it is convenient to first finagle the equation into the form of
a convolution. The required manipulations are similar, but not identical, to
those carried out in Section 4.1.4. As before, we define

g1(") = gy(ar”) (4.78)
so that ,
gi(ar” + br) = g [(b/a)r + "] 4.79)
Equation (4.75) then becomes
(5 2) = (C/v)[g2(r") #* J1@) )= —brsa- (4.80)

The MTF appropriate to the plane z is now readily found by use of
(B.52), (B.94), and (B.114). The result is

MTF.. = IPsb(p;z)l - 2J,(1taD|,p/b) . Z]l(ﬂDbP/b)
= P.(0;2) naD,p/b nDyp/b |

The z = 0 limit is again of some interest. In that limit ¢ -0 and b— 1.
Then, since

4.81)

lim [2J,(X)/X] = 1, (4.82)
X-0
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we find

} Smd

1 MTF,, = |2J,(nDyp)/nDyp). © (4.83)

This result could, of course, have been obtained directly by transforming

(4.68). Npte that it depends on only the bore diameter D, and on no other
geometrical parameter.

4.4.5 The Focused Collimator

.Extension of our previous results to the case of a focused collimator
(Fig. 4.21) is rather straightforward since each bore can be treated separately.

focal
point

Fig. 4.21 Geometry of the focused collimator.
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We need merely to generalize the single-bore results to allow for a noncon-
stant bore diameter and an overall tilt. As in the single-bore case, we can
model each bore in a focused collimator by a pair of circular apertures. (In
practice, the bores often have a hexagonal cross section, but little error occurs
if we treat them as circular.) The lower aperture of the jth bore is described by

g1,(t') = circ|r’ — ¥,,|/D,), 4.84)
while the upper aperture for the jth bore is given by
g2,(r") = circQ2|r” — ¥3)|/D,). (4.85)

Note that D, and D, are assumed to be the same for all bores.

If each bore is to point exactly to a common focal point at z = z; (a
condition that is sometimes deliberately violated in practice), then we must
have T,; parallel to F,;, and their magnitudes must satisfy

72 j/ Ty i= (Lb + Zf)/ Zs for all j. (4.86)

Usually the walls will also be tapered so that the aperture diameters are in
the same proportions:

DZ/DI = (Lb + Zf)/Zf. . (4.87)

We can now write down a rather formidable expression for the PSF of
the focused collimator by analogy with (4.75). The result is

aomCop oo 2 =Ty 2|ar"+br—r,,|> 438
Pee(r;2) = Py Ld r E’l circ ~ D, circ D, , (4.88)

where a and b have the same meaning as before, and M, is the number of
bores in the collimator. The more masochistically inclined readers may
proceed to Fourier-transform this equation and find the general expression
for the MTF.

There is, however, one condition under which (4.88) can be considerably
simplified, viz., z = z;. This condition implies that the object being imaged
lies entirely in the focal plane. Since we set up the problem so that all b01:e
sights exactly overlap in the focal plane, we would expect the PSF in th!s
case to be exactly proportional to the PSF of a single bore. To verify this
conjecture, define

rj=r —T,. (4.89)
Then, in the argument of the second circ function of (4.88), we have
ar’ + br —¥,; = a(r] + T) + br — ¥y;
= arj + br, (4.90)
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where the last step follows from (4.86) and the fact that ¢ = z¢/(Ly + z¢) if
z = z;. Equation (4.88) now reads .

) _n,C°“" 20 o (275 ) 2|ar; + br|
Plriz) ="~ 3 [, a, cuc(D2 cire| =57—4). @9
But each term in the sum is independent* of j and identical with the single-
bore PSF given by (4.75) (except for the minor generalization of differing

aperture diameters, D, # D,). We have therefore shown, not surprisingly,
that

_ Pec(r; 2e) = Mypy(r; zp). 4.92)

It should be noted that p,(r; z;) exhibits no umbra region. By use of (4.87),
(4.91) is seen to represent the autocorrelation of a circ function rather than
the cross correlation of two different circ functions.

"4.4.6 Sensitivity and Resolution

An oft-used measure of sensitivity for a scanner is the planar sensitivity S.
This parameter is defined as the count rate obtained when the scanner is
viewing a uniform planar source of activity 1.0 uCi/cm?. (See Appendix D
for a discussion of radiation units.) In our notation, such a source is described
by f(r) = const. The value of the constant is fixed if we assume that each
nuclear disintegration produces exactly one emitted gamma ray with an
energy suitable for detection by the scanner. Then, since 1.0 uCi corresponds
to 3.7 x 10* disintegrations/sec, we have

f(r) =37 x 10* emitted photons/cm? sec, (4.93)

Different isotopes will give different values for the numerical constant in
this equation since, in general, the number of usable gamma rays per dis-
integration will be different from one.

The count rate is given in terms of the PSF by

count rate = (v,/n)p.(r; z) »+ f(r), (4.94)

where p(r;z) can refer to either p,(r;z) or p(r;z). We shall consider the
single-bore case first.

Since f(r) is a constant, the convolution in (4.94) becomes a simple integral
over the PSF. The planar sensitivity is then given by

Sup = fT. (37 x 109 [ putr;2)d?r (4.95)

* The fact that r depends on ¥, is of no concern since rj is a dummy variable of integration,
and the integration is over the entire r} = plane.
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or, from (4.75) and (4.72), .
' 2lar’ + br
s 210 0 g | dzrcim(%’_)cim( or’ ) (496)
® " 4n(L, + 2)° I © b b

in centimeters.
here now L, and z must be exprqssec_i in ce . _
N The intelgrbﬂ over r in (4.96), which involves only the second circ function,

is easily performed, with the result
2 2r’
S = 37 x lo‘an;’ f d*r circ(—ﬁ-)
® 7 4n(Ly + 2)* 4b% I b
37 x 10* =D} 1:D§' @97
~ an(L, + 2)* 4b* 4

With the aid of the definition of b, (4.70), S,,, reduces further to

37X 10* D¢ counts/sec 4.99)
Sw="¢ 12 uCijem’
i i i is independent of z and
i ions in centimeters). Note that this result is in
izlelz (siclgl:r;)s:::rsneters v, and n,. It does not matter how far you are from a

i t it.
iform source or how fast you are moving pastit. = | . _
umflot is a simple matter to modify the preceding derivation so that it applies

to a focused collimator. The result is

3.7 x 10* M nD3D?% cour.xts/s:c v 499)
St =""64 =72 uCifem

1 dimensions in centimeters). L o
@ To put these expressions for sensitivity into proper pers_pectlvehlt fli; :sef::
to restate them in terms of the collimator’s regsloh;tlon dlﬁ:::ti ¢ ethe re,so

the single-bore co , -

usual, as the FWHM of the PSF. For ; o, A o
ion di i the approximate sketches g1

n distance 8,,(2) can be estimated from A give:

lil:lgig. 4.17, whsebre the curvature of the PSF in the penumbra region 1s

neglected. We find

8,4(2) = Dyl + 2/Ls). (4.100)

i i imation.
se, if z — 0, 8, will equal Dy, without approxima
o ‘;?‘:e regard D, ::s the variable parameter and hold z and L, fixed, we

e S,y oC 0% . , (4.101)

Thus a twofold improvement in resolution (reductionAindé,‘,) mt:shtl :odxrnaz tzll:
i in sensitivity. And even :

the expense of a sixteenfold decrease 1 sitiy . c

behavi%r understates the problem when noise 18 considered. Let us ant
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cipate a simple result from Chapter 10, where it is shown that the signal-to-
noise ratio (SNR) in a scanner image is determined by the number of detected

photons per resolution element, which we shall denote by N;. For a given
source, we have

Ny Sy, - 82 oc 85,. (4.102)

To keep the SNR constant when §,, is reduced by a factor of 2, therefore,
means that either the source activity or the total scan time must be increased
by a factor of 64.

A somewhat different result applies to a focused collimator. In the focal
plane the PSF, as noted previously, is proportional to the autocorrelation
of a circ function. Numerical evaluation of this autocorrelation (Gaskill, 1978,
P. 304) shows that the resolution distance is given by

8¢ = 0.808D,(1 + z;/L,). (4.103)

(The factor of 0.808 would become unity if we neglected the curvature of
the PSF.) Furthermore, since the ratio D,/D, is fixed by (4.87), we have

Stc oc MyD3 oc My &, (4.104)
for fixed z; and L,,.

The major difference from the single-bore case arises when we realize
that M, itself is a function of D, or 0¢.. The reason is that the total diameter
of the detector crystal is usually fixed. Therefore, if each bore is made smaller,
more bores can be fit into the detector area. Specifically, we have

My, = ¢;(Dgei/D,)?, (4.105)

where Dy, is the diameter of the detector and oy is the packing fraction,
i.e., the fraction of the total area of the crystal that is covered by the open
part of the collimator. If all bores point to a common focal point, Olpe 1S
also the fraction of the detector area that can be seen from the focal point.
For a given minimum septal thickness, «, will be the largest for a hexagonal
array of bores. Typically, a, lies between 0.5 and 0.8, depending on septal
thickness and hence on photon energy.
From (4.87), (4.103), and (4.105), we now have

M, o 5¢? (4.106)

where D,,,, L,, z;, and dge are regarded as fixed. The number of counts per
resolution element, in this case, is given by

Nj oc 8¢, 62 oc 8. (4.107)

In other words, a constant SNR can be maintained when halving ;. by
“merely” increasing the source activity or the scan time a factor of 16. The
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situation is still drastic, but at least it is an improvement over the single-bore
case. '

The fourth-power law given in (4.107) is quite common in radiographic
imaging. For example, the reader may wish to test his understanding of the

arguments in this section by showing that (4.107) applies also to pinhole
imaging.

4.4.7 The Ratemeter

In this section we consider the contribution of the count-rate meter to
the overall PSF of a scanner (Rao and Wagner, 1967; Beck, 1968a). One
can imagine a scanner with very fine collimator bores so that the collimator
PSF is vanishingly narrow. (Never mind that the photon collection efficiency
is also vanishingly small—statistical considerations are not our concern at
this stage. Since this is a gedankenexperiment, the source can be infinitely
intense.) When this hypothetical collimator is raster-scanned over a point
source, photons can be detected only when the collimator is positioned
directly over the point. However, this is not to say that the image will be an
ideal point. Instead the ratemeter will have a nonzero output, and hence
the displayed image will be nonzero for some time after the collimator has
passed the true location of the point. In fact, the PSF in the scan direction
is just the temporal impulse response of the ratemeter with appropriate scale
factors. When the collimator is directly over the source, a brief burst of
photons is admitted to the detector which produces an equally brief electrical
signal, approximating an impulse, as the input to the ratemeter. The electrical
signal emerging from the ratemeter is then, by definition, its impulse response.
Of course, this impulse response would normally be calculated as a function
of time, but we can easily convert it to a function of position if we know the
scan speed.

A corollary result is that the ratemeter cannot degrade the image at all
in the direction perpendicular to the scan motion. To see this, note that if
our hypothetical collimator is displaced slightly so that the scan line does
not intersect the source point, no photons are ever admitted to the detector
and no input signal is ever applied to the ratemeter. Hence, its output also
remains zero.

To restate the conclusions of the last two paragraphs more formally,
suppose that the scanner is moving in the x direction at a uniform speed
v,. Then the ratemeter contribution to the PSF is given by

Pra(t) = (1/0,) 8(¥)Gem(x/,), (4.108)

where g,,,(¢) is the temporal impulse response of the ratemeter regarded as
an electrical filter. The leading factor of 1/v, in (4.108) is required so that
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P.m(r) will have dimensions of inverse area. The temporal impulse response
4:m(t) has dimensions of inverse time so that (1/v,)q(x/v,) has dimensions of
inverse length. Of course, §(y) also has dimensions of inverse length. With
this definition, f(r) s#* p.(r) ** p,,(r) represents the number of detected
photons per unit area [with f(r), as usual, being the number of emitted
photons per unit area per unit time].

As an example, we shall now calculate the PSF for the RC ratemeter
depicted in Fig. 4.15. For simplicity, we assume that the output impedance
of the amplifier driving the RC network is zero, while the input impedance
of the following amplifier is infinite. The same current i(t) thus flows through
R, and C;. From elementary circuit theory we then have

dvgu(t)

i()=C, it 4.109)
and
Vin(t) = iR + v,,,(0). 4.110)
Combining these equations, we find
R,C, d"’l"t“' T— @.111)

The left-hand side of this equation may be rewritten, with the aid of thé
usual integrating factor,

-t \d t
R.C —_— = —_—) = 4.112
! lexp(R,CI) dt [v°"'exP(R1C1)] Vins ( )

from which an integration and a little algebra yield

1 —t ¢ t
= d - . 4.113
o= o 27 ) [ OO0 (e ). 4119

Now what we are really interested in is not this general result so much
as the special case where v,(¢') is the unit impulse 6(t') and v,,(f) is the
impulse response g,,,(t). The integration is then essentially trivial, but we
must not forget that an integral involving a delta function can be nonzero
only if the argument of the delta function vanishes within the domain of
integration. We thus have

1 -t t v
= dr

_ [A/RCy)exp(—t/R,C;) if t>0
R if t<O.

4.114)
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The result that q,,,(t) = 0 if t < 0 should come as no surprise; it simply says
that no output can be produced from an electrical filter before an input is
applied. In this case the input is an impulse at ¢t = 0.

The product R, C, has dimensions of time and is called the time constant
of the filter. Basically, the counts are averaged over this time before being
displayed.

A compact notation for use in (4.114) is the Heaviside unit step function,
defined by

step(t) = {(1) ii i Z g' 4.115)
In terms of this function, (4.114) becomes
dolt) = R11C1 exp(R:él)step(t) (4.116)
and, with (4.108), our final result for the ratemeter PSF is
1 —-X
Pem(T) = o R.C, exp(vsR1 Cl>5( y)step(x). 4.117)

The FWHM of this function is v,R; C, In2 in the x direction and, of course,
zero in the y direction. It is plotted in Fig. 4.22.

To complete the analysis, we should now calculate the ratemeter con-
tribution to the scanner transfer function. This can be accomplished either
by directly transforming (4.117) or by returning to the circuit model and
expressing the voltage transfer ratio in the temporal frequency (v) domain.
The latter approach yields

Vou) | @QuvC)~™" 1 (4.118)

V) Ry +(2rivC))~' ~ 1+ 2mivR,C,’

Prm(P)

.

Fig. 4.22 Isometric plot of the ratemeter contribution to the scanner PSF.
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where V,,(v) and V,,(v) are the temporal Fourier transforms of v,,,(f) and
Uin(2), respectively, and i = \/_—_1 [not to be confused with the current.i(t)].
The temporal frequency v is related to &, the x component of the spatial
frequency, by

v = &u,. 4.119)
The spatial transfer function is thus

TFu(p)= Pea(p) = [1 + 2mi,R,C,] . (4.120)

Note that this function is independent of 5, the y component of p, since
the ratemeter cannot degrade the image in the y direction.

Equation (4.120) is interesting because P,,(p) is a complex function. To
interpret this result, it is helpful to rewrite it in modulus-phase form:

Prm(p) = [1 + (27"'€l)sR1Cl)2]—1/2 exp(i¢rm), (4'121)
where

$om = —tan"~12név,R,C,). (4.122)

In other words, if a sinusoidal activity pattern with spatial frequency ¢ were
to be scanned with our hypothetical ideal collimator and with a ratemeter
time constant of R, C,, the contrast of the displayed image would be reduced
by a factor of [1 + (2n¢v,R,C,)*]~*/? and the phase of the pattern would
be shifted by ¢,.,. The MTF, |P,(p)/P.(0)), is plotted in Fig. 4.23.

Fig. 4.23 - Isometric plot of the ratemeter contribution to the scanner MTF. The origin
(¢ = 0, n = 0) is at the center of the figure.
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4.4.8 Image Display and Overall System Characterization

The most common way to display the image from a scintillation scanner
is to use a modulated light source moving in synchronism with the scanner
head to expose a piece of film. If the light intensity is modulated in proportion
to the output of the ratemeter, then the film exposure is a linear function of
the gamma-ray activity in the source, and the techniques of linear systems
theory may be used to describe the film-exposing device. Of course, the film
itself responds nonlinearly to the exposure, but this creates no real difficulty
since the film characteristics are presumably known. The optical density of
the developed film is thus easily calculated from the exposure, which in turn
is calculated by successively convolving the gamma-ray source distribution
f(x) with the PSF’s describing the collimator, the ratemeter, and the display.

There is one subtlety in this prescription. A convolution integral cannot
be a rigorous description of the action of a scanner since the scanner detector
does not systematically explore all possible points on the x—y plane as implied
by a continuous integral. Rather the detector is usually swept continuously
in the x direction but moved in discrete steps in the y direction. However
the film exposure, which we shall call E(x, y), is defined over the entire film
plane (although it may be zero for some x—y values). The display spread
function evidently enters our formalism somewhat differently than the
collimator and ratemeter PSFs. '

To pursue this point, let us lump the collimator and ratemeter PSFs into
a single function p,,,,(r) defined by

Porm(T) = P(T) ** p,o(¥), (4.123)

where p (r) may be either pg(r) or p,(r) as appropriate. We adopt the view-
point that the scanner head is stationary and the source moves continuously
along a sequence of lines described by y = y,, with k being an integer index.
The interval between scan lines is n;”! where n,, as previously defined, is
the number of scan lines per unit length. The voltage output from the rate-
meter, when the instantaneous shift of the source relative to the detector is
(X0, yx), is given by an ordinary convolution:

o0, 1) ¢ [7 [* dx' Ay poralx', ¥)f (60 — X, 34— ¥). (4.124)

Let us suppose that the light source illuminates a square aperture of

side ¢, that is imaged at unit magnification onto the film. (Note that if ¢, =
n; !, the exposed scan lines will be contiguous.) Then, for the particular
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relative shift (x,, y,), the film exposure pattern is described by

Eran (% ) O D0, 33) rect("—';.f‘i) rect (”—?aﬂ) (4.125)

The total film exposure E(x,y) is obtained by summing (4.125) over all
possible source-detector shifts; the sum becomes an integral over the
continuous variable x, but remains a discrete sum over y,. The result is

E(x,y) « ; f _°°°° dx, rect(.’f_%.ﬁ) rect (:‘_’:_3_'5)
[T 7 % Y P )0 = X = V). (4126)

This equation looks very much like a repeated convolution except that one
of the integrals has been replaced by a sum. But this is a nontrivial change.
To see that (4.126) is not even approximately a continuous convolution, one
has only to consider the limit ¢, — 0. Then the film is exposed only along thin
lines and is unexposed between lines. This is, of course, a very poor display
format but, more important for the present discussion, it is one that cannot
be obtained by convolving f(x, y) with any realistic function. Instead, the
proper description of (4.126) follows the lines of the sampling theory dis-
cussion given in Section 2.5; the scanner samples the image in the y direction.

It was shown in Section 2.5 that a band-limited function can be recovered
from its samples by a low-pass filtering operation if the Nyquist condition,
(2.82), is satisfied. For the present problem the function being sampled is
Perm(r) ** f(r), and the sampling rate 1/A is just n;. Let us assume that the
collimator MTF is essentially zero for all y-directed spatial frequencies
greater than 7,,,.. (The ratemeter MTF does not enter this discussion since
it influences only the x-directed spatial frequencies.) Then the Nyquist
condition is n; > 2n,,... No assumptions about f(r) are needed.

The required low-pass filter may be an implicit rather than explicit part
of the system. A physician viewing a scanner image will often unconsciously
adjust his viewing distance so that his eye cannot resolve the scan lines. Or,
even if he can see them, he has learned to ignore the scan lines and concentrate
on the underlying image structure. The low-pass filter is thus the observer’s
eye or brain.

In any event, if n, is large enough, it is safe to say that we are interested
in only the low-frequency components of E(x, y), which we shall denote by
Ey(x, y). The derivation of Ey(x, y) parallels the derivation of (2.87). As far
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as the y dependence is concerned, (4.126) has the form [cf. (2.69)]

E(x,)) o< ¥ s(3) rect(y -~ y")
k &

= [Z s(y)o(y — yk)] * rect(f)
k a
= [S(y) Z;, o(y — yk)] » fect(£>, (4.127)

where

s(yp = f:o dx, rect (x — xo)

X [ 7 Do, Y) 60 = X,y — y)ax'dy.  (4128)

Since the y, values are evenly spaced, we can write y, = k/n, and hence

yor-n-2e>- ;)

=n ), 6(my — k) = n, comb(n, y). (4.129)
x

A one-dimensional Fourier transform on E(x, y) then yields‘
F,{E(x, )} oc [S(1) » comb(n/m)] sinc(en)

= [n, Y St — kn,)] sinc(e,1). (4.130)
k

The low-pass filter serves to select the k = Q term in this sum and reject all
others. An inverse transform then gives

Ey(x, y) o< s(y) * rect(y/e,). (4.131)

Combining (4.131) and (4.128) and rewriting them in convolution form, we
now have

B ) o[ 9612 Jroct(2) | o s e S, 4132

which we might have written down intuitively at the outset. In other words,
if we consider only the low-frequency components, it is rigorously correct

to ascribe a PSF to the film-exposing device even though (4.126) could not

be written in convolution form.
Furthermore, the display PSF need not be simply the square aperture
considered thus far. It can readily be modified to any positive-definite
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function simply by inserting appropriate transparencies in the optical
system. The film exposure system is thus a convenient place to control the
overall PSF of a scanner (Tsui et al., 1980). Of course, only smoothing and
not sharpening operations are possible in the display since we are restricted
to positive-definite PSFs. Still, it might be preferable to smooth the data
with the display rather than with the ratemeter since the former provides
a two-dimensional averaging, while the latter affects only the scan direction.

4.5 COLLIMATORS FOR SCINTILLATION CAMERAS

Fundamentally, collimators for use with scintillation cameras are no
different from those used with scanners (Causer, 1974; Rotenberg and
Johns, 1965; Miracle et al., 1979). The typical parallel-hole camera collimator
can be viewed either as an array of identical single-bore collimators as
described in Sections 4.4.2 and 4.4.3, or equivalently as the focused collimator
of Section 4.4.5 in the limit where the focal distance z, approaches infinity.
A magnifying camera collimator is nothing but a focused scanner collimator
with z; much greater than the actual object distance z (although in practice
the camera collimator will have many more holes). Similarly, a minifying
camera collimator is a focused scanner collimator where z; is large and
negative. _

Nevertheless, the present section is not superfluous; we cannot simply
rewrite the expression for the PSF of a scanner collimator and claim to
have solved the corresponding problem for a camera. Nontrivial differences
arise because a camera measures the x—y coordinates of each gamma ray
that interacts with the scintillation crystal, while a scanner simply counts
them.

In one sense the camera case is simpler because one less integration is
involved. For the scanner we had to first calculate the x-y distribution of
incident photons on the crystal face and then integrate it to get the total
count rate. By simply deleting the last integration we should have the
desired x—y distribution for a camera. This is indeed correct, but unfortu-
nately, not very useful, because the PSF so determined is not shift-invariant.
As illustrated in Fig. 4.24, the shape of the image of a point depends on the
location of the point relative to the collimator. This is a serious problem
because it means that the response to an arbitrary input cannot be written
as a convolution, and a simple transfer function cannot be defined.

An ingenious artifice to avoid this difficulty, introduced by Hal Anger,
is the “average PSF” obtained by averaging a point-source image over all
possible source locations. This approach is detailed in Section 4.5.1 and
given a more rigorous justification based on sampling theory in Section 4.5.2.
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Fig. 4.24 Illustration of shift-variant imaging with a parallel-hole collimator.

The upshot of this discussion is that a shift-invariant PSF can indeed be
defined and we can proceed in an orderly way to calculate the transfer
function and to consider practical design tradeoffs.

4.5.1 The Average PSF

A problem that sometimes arises when a high-energy low-resolution
collimator (one with large bores and thick septa) is used is that the shadows
of the septa can be seen on the final image. Since this regular geometrical
pattern can be annoying and may interfere with the diagnostic process,
Wilks et al. (1969) constructed a device called a “collywobbler” to wobble
the collimator back and forth during the exposure, blurring out the septal
shadows. Since there was no relative movement of the object and the de-
tector, the collywobbler did not substantially affect the image resolution.

The collywobbler was a mechanical realization of an earlier suggestion
by Anger (1964) who calculated the PSF of a collimator by assuming that
it was moving even if, in fact, it was not. Since moving the collimator alone
is equivalent to moving the source and detector in synchronism while
keeping the collimator fixed, Anger’s “mathematical collywobbler” calcula-
tion gave the average shape of the PSF, averaged over all possible locations
of the source point. Thus, even though the Wilks collywobbler is not often
used in practice, it is nevertheless a useful conceptual device.

The substance of the Anger calculation can be seen by modeling each
bore of a parallel-hole collimator as a pair of circular apertures, just as we
did in Section 4.4.3. For simplicity we assume for now that the image detector
is exactly coplanar with the upper aperture; this restriction will be lifted in
Section 4.5.3. We consider a unit point source located at the point r, and
denote the resulting point spread function by p,,. (r';r,). Two separate
arguments r’ and r, are required since the function is not shift invariant;
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location in both the image plane and the source plane must be specified. In
general, p,.(r’;r,) will also depend on the z coordinate of the source point,
but this dependence has been suppressed here in order to keep the notation
from becoming any more unwieldy.

The function p,,.(r”;r,) can be obtained from p,(r,; z) as given by (4.75)
by four simple modifications:

.(1)‘ The integration over r’ must be deleted since we are dealing with
an imaging rather than an integrating detector.

(2) The factor of n,/v,, peculiar to the scanner, must be deleted and the
exposure time T must be reinserted.

(3) Each circ function must be displaced by an amount ¥,, where the
kth bore in the collimator is centered at r = ¥,.

(4) A sum over all bores must be performed.
The result is

Ponc(r;8)=C Y circ[g-lr—D—l"l]circl:zlarl + br, _?"l], (4.133)
k.

b Db

where a and b still have the meanings given by (4.70).

We now want to average this expression over all possible positions of
the collimator, with the source point r, and the observation point r’ held
fixed. To shift the collimator, we simply add a vector R to each T, in (4.133).
The average PSF, averaged over a disk of radius R,,, is then given by

1", — C . 2|r" - ?k - R'
Ponc s DR, = ZRZ Lm d*R ; mrc[ D,

x circ[2|“' +br T - Rl]. (4.134)

Dy

.Now. if we ignore the collimator boundaries and allow R,, to approach
infinity, each term in the sum over k gives the same value for the integral.
The number of such terms, i.e., the number of bores in the area nR2, is

given by
K = a,(2R,,/Dy)?, (4.135)

vyhcre Olpg is the packing fraction defined just as in the scanner case. Then,
since K/nR2 = 4a,/nD}, we have

", 4a . 2 r" - R
<pphc(r b rl))Rm = 1392 C fw d2R CIIC[“—I'T‘,'—I:I

. 2 s —
X mrc[ Jar” + br, RI] 4.136)
D,

Note that R, no longer appears in this result.
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Equation (4.136) can be simplified somewhat by a change of variables,
R=R-r 4.137)
which gives

4o 2R’
. = __pf 2R o
{Ppnc@’ ;TP R, 7D? C fm d*R cu'c[—b]

x circ[zl(a — Dr D+ br, — R |]. (4.138)
b

But, from (4.70), a + b = 1, so that
(@ — Dr"” + br, = b(r, — ). (4.139)

With this substitution, (4.138) takes the form of the autoconvolution of
a circ function (which is the same as the autocorrelation since the circ is an
even function) evaluated at a “shift” of b(r, — r”), i.e.,

(Pone” ;1o = =17 C [9:(1) #* 91 ()]s =05, - (4.140)

nDE
where, as before, g,(r) denotes circ (2r/ D). Equation (4.140) can be generalized
to apply to a collimator with parallel but tapered bores by replacing g,(r) **
g,(r) by g,(r) =+ g,(r), where g, and g, denote circ functions of diameter D,
and D,, respectively.

We have now shown explicitly that r, and r” enter into {p,,.(r";r,))
only in the shift-invariant combination r, — r”. We are thus justified in
simplifying our notation and bringing it into line with that of previous
sections by writing

CPpnc(T”3E)) Res = Pone(r” — To) = Ppnc(X), (4.141)

where r = r” — r,. Because the magnification of the parallel-hole collimator
is +1, this simple change of variables is sufficient to go from the point image
in the r” plane, P, (r" — 1), to the point spread function in the r plane. The
overbar is retained as a remainder that we are dealing with an average
PSF.

Compare p,,;,(r), which is plotted in Fig. 4.25 with p,,(r) shown in Fig. 4.20.
The latter function is not an autocorrelation, but rather the correlation of
two different circ functions of different scales. It therefore has a flat top that
we referred to as the umbra region. By contrast, p,,.(r) is precisely an auto-
correlation and exhibits no umbra. This difference may appear strange at
first since the integrand in (4.136) for p,.(r) is so similar to that in (4.75) for
Ps(r). To understand the difference, it is important to look at just what is
being calculated. For p,,(r) the integration is over r”; viewed as functions of

4.5 Collimators for Scintillation Cameras 165

Flig. 4.25 Average PSF for a parallel-hole collimator. This function is the autocorrela-
tion of a circ function.

r” the two circ functions have different scales. For Ponc(r) on the other hand,

the integral is over the shift parameter R; as functions of R the two circ
functions of (4.136) have the same scale.

4.5.2 Sampling Theory Analysis

Let us back up to the stage of (4.133) in Section 4.5.1 where we had a
general expression for the shift-variant PSF before any averaging had been
applied. If, at this stage, the sum over k had been replaced with an integral
over T, we could easily have written p, (r”;r,) as a convolution and, in fact,
would have obtained (4.140), our final expression for Dpnc(r). In other words,
the averaging process is equivalent to replacing the sum in (4.133) by an
integral.

We have encountered this same situation once before. In discussing the
image-display portion of a scanner, we found that the film exposure, given
by (4.126), had the form of a convolution except that one of the integrals had
been replaced by a sum. In that case, we found that the difference between
sum and integral disappeared if the sampling rate was adequate and we
considered only the low-frequency components of the image. We shall now
show that the same conclusion follows for the present problem.
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Because of the various shifts and scale factors involved, this problem gets
rather tedious in the space domain. A more orderly approach is to imme-
diately transform (4.133) and carry out most of the manipulations in the
frequency domain. To this end, let us rewrite (4.133)

" I k3 (1 b 1 -—
Pone(r’;r,) = C ; 910" — T, (l' ton-—o r,), (4.142)

where §,(r) is the scaled circ function defined previously [see (4.73) and
(4.78)]. We now compute the Fourier transform of this equation with respect
to the r” variable only; r, is treated as a fixed parameter. Physically, this is
equivalent to fixing the location of a source point at r =r,, forming an
image, and then performing a two-dimensional transform on the image. By
use of the shift theorem of Fourier theory, (B.95), we have

Pphc(p”;rs) = fz{l’pnc(l'";l'.)}
=C ; [exp(—2ip” - F)G1(p")]

- {exp[—Znip" . (-‘1; - —g r,)] G 1(p”)}. (4.143)

Writing out the convolution integral in this equation in detail, we find

Poucl#’s1) = C 3 |., @*¢' exp(=2mip’ - 7,)G,(p)

xexp[—Zm'(p -p') ( rk—kr)]él(p"—p’). (4.144)

Collecting together all terms involving T,, we recognize that they are the
Fourier transform of a sum of delta functions:

Y exp|:—2ni?k . (p’ + l(;0” - P')):I = f d*r exp(—2mir - p) ). 6(r — F)
: a © k
=%, {2 [5(:-?,)]} (4.145)
k

where

p=p+(1/a)p" - p). (4.146)

Now if the bore centers T, form a square array with spacing ¢,, the sum
of delta functions is just a two-dimensional comb function:

o —T)= %comb(:—b). (4.147)
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We are treating the array here as infinite even though real collimators are
finite. This is a small error if the number of bores in the collimator is large.
The Fourier transform of this comb function is also a comb [see (B.48)],

#, {; ofr — Tn)} = comb(e,p) = é;: ; Sp—p) (4148

where the p, vectors also form a square array, but with spacing 1/z,.
Equation (4.144) now becomes

¢ b
P phc(P";l'.) = a—f,; fw d?p’ exp(2m(p - p) a r,)

x 8(p — PG (P)G1(p" — P). (4.149)
The delta function in this equation can be rewritten, using (4.146),
op — p) = d[p' + (1/a)p" — p') — pi] (4.150)

or,sincea=1—b,
op — po) = dlp'(1 — 1/a) + (1/a)p" — pi]
= (a*/b*)é[p’ + (a/blpi — (1/b)p"].. (4.151)
We thus find, after some algebra,

Poc(p”;r) = —2 bz Z exp[2mi(p, — p") " 1]

1 ~ (a a ,
xGl( bp"+b ')Gl<'I;Pk"5P)- (4.152)

If &, is small enough, a condition to be defined more precisely below,
then the various terms in this sum will not overlap significantly and a low-pass
filter (which could be the scintillation camera detector itself) may be used to

isolate the single term for which p, = 0. In the frequency domain, this
filtered image may be written

2 C . N
[Pouc(p”;1) .ﬁ%sgzexn(-hm ‘)G, (‘;)Gl( b” ) (4.153)

But, since g,(r') is real and symmetric,

G(—ap"/b) = G,(ap"/b) = (1/a*)G(p"/b).
An inverse transform thus yields ’

[Ponc(r”; 1)]ie = % [9:(0) +* 9,() ] b 1oy (4.154)
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Fig. 4.26 Location of the various terms of Eq. (4.152) in the p” plane. Solid circles: regions
of support for G,[ —(ap,/b) + (p"/b)); dashed circles: regions of support for G,[(ap,/b) —
(ap”/b)]; dot-dashed circle: passband of low-pass filter,

This result is in full accord with (4.140) since a6 = nD?/4. Low-pass fil-
tering is thus equivalent to “collywobbler averaging”.

An essential step in this derivation was the use of a low-pass filter to
isolate a single term in (4.152). We now inquire under what condition this is
possible. We need to consider only the zero-order term (p, = 0) and the four
surrounding first-order terms, all of which have |p,| = 1/e,. If none of the
first-order terms overlap the zero-order terms, then none of the higher-order
terms will either. The location and extent of the various orders is indicated
in Fig. 4.26. In constructing this diagram the center of each region was first
found by setting the argument of the corresponding function to zero, since
G(p")is a maximum for p” =0. For example, G,[ — (ap,/b)+(p"/b)] in (4.152)
has orders centered on the {” axis at £ = ta/e, (Where ¢’ and n” are the
Cartesian components of p”). The diameter of the circular region is found
by asserting that G,(p) has significant values only if p is less than some
maximum value which we shall denote by p,,. From this it follows that
G,(p"/b) is significant only within a circle of radius bp,, in the p” plane.
Similar arguments for the orders lying along the »” axis and for the G,
factors in (4.152) then lead to the complete diagram of Fig. 4.26.

From the diagram it is seen that there is no overlap of orders if

apy = 2bp,,. (4.155)
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This condition will insure that the kth-order G, terms will not overlap
either zero-order term. The condition for no overlap of the kth-order G,
terms and the zero order is p, > 2bp,,, but since a < 1, (4.155) is the more
stringent condition.

If (4.155) is satisfied for the lowest-order term, p, = 1/e,, it will be satisfied
for all orders. Therefore, using the definition of a and b from (4.70), we require

2/ey = 2L P, (4.156)

As a rough estimate, we may take p,, = 1/D,. Furthermore, if the septa are
thin, D, = ¢,. The results of this section are thus valid if

z2 2 2L,. 4.157)

In clinical practice, z will usually be at least 2L, since L, is typically only
2-3 cm. We are thus justified in using the shift-invariant PSF, (4.159) or
(4.140), to describe a camera collimator.

4.5.3 Modulation Transfer Function

Before writing down an expression for the modulation transfer function
(MTF), we shall first generalize the PSF to allow for the possibility of a gap
between. the exit face of the collimator and the detector crystal. This is a
simple modification because the photons continue to travel in straight lines
as they traverse the gap. For a point source, the radiation pattern incident
on the crystal is just a magnified version of the pattern emerging from the

collimator. The magnification factor, by analogy with projection radiog-
raphy, is

m=latlotz

s Ly+z
where L, is the gap length. The magnified point. image is obtained from
(4.140) by the substitution of r’/m, for r’ in the argument of p,,.(r"), with a

suitable amplitude scaling to conserve photons. The modified expression
for the average PSF is thus

n. o C o ,
Ponc(r’) = ‘n—D'p"z: m_f [9:1(r') #+ g4(r )]r'=br"/m.- | (4.159)

(4.158)

The leading factor of C/m? has a simple interpretation since

C _ T Ly+z \ _ T

m2 "~ 4n(L, + z)° Ly+z+L,) 4n(l,+z+L)*
In other words, since the distance from source to detector has been increased

(4.160)
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from L, + z to L, + z + L, the appropriate distance to use in the inverse-
square law is now L, + z + L,.

Even though the point image is magnified when the gap is present, the
magnification of the collimator is still +1. In other words, two points a
distance x apart in the r plane still produce two point images with a center-
to-center spacing of x in the r” plane. The point-spread function is just
Ponc(r), obtained from (4.159) by letting r’ —r.

The Fourier transform of P, (r) is now easily performed. By use of the
scaling law, (B.94), we find

4a, C mp\ |
Pouclp) = 113 2 [Gl(—bﬁ)] : (4.161)
Since g,(r) is the circ function of diameter Dy, we know from (B.114) that
_ D} 2J,(nDyp)
Gup) =4 — Doy (4.162)
The average MTF for the parallel-hole camera collimator is thus
Pu(p)| _ |2J:(xmDyp/b)|?
MTF,, (p) = |Z22=E| = | > . 4.163
welf) = B (0|~ | mmDon/b (4163

It is worth noting that P,.(p) is everywhere real and positive. The prob-
lem of phase shifts in the transfer function discussed earlier does not occur
here, and the MTF is a complete description of the system.

4.5.4 Resolution and Collection Efficlency

Having obtained an expression for the PSF, we may now readily com-
pute the collimator resolution distance defined as usual as the FWHM of
the PSF.

Since, by (4.159), the average collimator PSF is the autocorrelation of a
circ function, we need to determine what shift is required between two
identical circ functions to reduce their overlap area to one-half the area of
either function separately. By numerically evaluating the autocorrelation,
we find that the required shift is 0.808R, where R is the radius of the circ
function.

However, we note from (4.159) that the autocorrelation in P, is calcu-
lated with the shift variable given by br”/m,. To find the resolution distance
done, WE must set 1’ = donc/2 and then demand that the shift be equal to
0.808D,/2. In other words,

b6 e/ 2mg = 0.808Dy /2, (4.164)
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m
or, using the definition of b from (4.70) and of m, from (4.158), we have
L + Ly + '
8,0 = 0.808D,, —L-If—:-;f 4.165)

ngeral conclusions can be immediately drawn from this result. The
first is that a gap between the collimator and detector (nonzero L,) is bad.
The detgctor should a_tlways be as close to the exit surface of the collimator
v ;saspftac;zl. Anlr.)t}}er l(mp:lrtant conclusion is that a parallel-hole collimator
its resolution (smallest §,,,.) when the object is cl
face of the collimator (small z). - : osestto the entrance
Finally, (4.165) shows that the collimator resolution is always i
ally, ays improved
by. making the length of the bores, L,, greater. We should not concludpe from
this, hovyever, that a very 1arge Ly is always desirable. The difficulty is that
L, also n_nﬂuences the cqllectlon efficiency of the collimator. This point is
most easily seen by considering a point source in contact with the entrance

- face of the collimator (and not hidden b : . .
y the septa). The fracti
angle for photon collection is then given by pia) actional solid

[Q/4n]. -, = DY/16LZ, (4.166)
which obviously falls off rapidly if L, is increased.

. It .is a little trickier to calculate the dependence of Q/4n on L, if z # 0
since m.that case more than one collimator bore can collect photons from
each object point. ;n fact, the graphical construction of Fig. 4.27 shows that
the nuxgber of pa:rtlcipating bores is given approximately by a, (L, + z)?/LZ.
Then, since the distance from the point source to the exit face of the collimator

i

“average" ray
extreme roy

source

whencz :027 Diagram for the calculation of collection efficiency of a parallel-hole collimator
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is Ly, + z, the fractional solid angle subtended by all bores is [cf. (4.166)]

g _ Dlza apf(Lb + 2)2 — aprlf
4n  16(L,+2)? Lz 1612

In other words, if the septa are thin so that the packing fraction is near 1,
the efficiency of a parallel-hole collimator is nearly independent of the source
location and equal to the value for z = 0 given in (4.166).

The graphical arguments that led to (4.167) will now be replaced by a
more rigorous analytical treatment. The key point to recognize is that the
area integral of the PSF represents the mean number of counts collected
from a unit point source. Since a unit point source is, by definition, one which
on the average emits one photon per unit time, the integral of the PSF must
be identical to QT/4n. The calculation of the collection efficiency of a parallel-
hole collimator thiis reduces to the problem of integratin g the autocorrelation
of a circ function. [See (4.59).]

This integral might seem to be fairly difficult, but the central ordinate

theorem of Fourier theory, (B.96), comes to our rescue. For any function
f(r) we have

(4.167)

| 10 = [#F:{f0}],-0 = FO. (4.168)
Therefore, letting f(r) be g,(r) =+ g,(r), we find
[ [9:0 »» g, dr = [G, O (4.169)
But G,(0) may itself be determined by the central ordinate theorem:
2
6.0 = [ gu0arr =", (4.170)

We now apply these results, together with the scaling theorem (B.94) to the
expression for p,,. given in (4.159). The result is

Qr gz g C (m\2 (nDE\?
P J; Ponc(r”) d? zn_DLé-rh? (f) (—z—b) : (4.171)

By use of the definitions of b and C from (4.70) and (4.72), respectively, we
again arrive at (4.167). Note that m, cancels out of Q2/4n, as it must since the
collection efficiency has already been determined once the photons emerge
from the collimator; no photons are lost in traversing the gap.

Equation (4.167) for the efficiency and (4.165) for the resolution distance
are the basic design equations for parallel-hole camera collimators. The
trade-offs involved are illustrated in Fig. 4.28 where we plot 4, and Q/4n
for three hypothetical collimators. We see from this figure that the source
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Collimator Bore Diameter Bore Length
No. Db Lp
I 2.5 mm 20 mm
2 25 mm 10 mm
3 5 mm 20 mm

1t 23
T4 6 b %
z(cm) Z(cm)

Fig. 4.28 Variation of resolution and efficiency with z for three hypothetical parallel-
hole collimators.

distance z is an important consideration in collimator design. If we could
place the collimator in contact with the source (z = 0), an obvious impo§si-
bility for sources within the body, then we could obtain any desired resolution
without loss of efficiency simply by decreasing D, and L, in the same pro-
portion. The drawback of this approach is that the choice of a small L, leads
to a collimator whose performance degrades rapidly as z is increased.

4.5.5 Comparison of the Parallel-Hole
Collimator and the Pinhole

An important practical question that often arises is whether to use a
pinhole or a collimator in a particular situation. This simple question turns
out to be surprisingly slippery. As in any comparison, we must first state
what is being held constant, what is being varied, and what is being compared.
To limit the choices somewhat, let us rather arbitrarily fix the resolution and
the field of view and compare collection efficiencies. For the parallel-hole
collimator, the field of view is just equal to the detector diameter dj,,. The
same FOV is obtained for the pinhole if s, = s, so that the magnification is
unity [see (4.45)]. This choice has the additional virtue that detector reso-
lution limitations affect the pinhole and collimator cameras in the same way
since the magnifications are equal.

We now set 8, = ¢ and use (4.35) and (4.165) to eliminate d;, and D,,.
Equations (4.33) and (4.167) may then be combined to yield

Qe _ dogest . 4.172)
Q.. _ (O808)(L, + Ly + 27
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In this equation s, refers to the pinhole geometry while L,, L, and z refer
to the parallel-hole collimator. In practice, s, is limited by obliquity consid-
erations as discussed in Section 4.2.6. However, if we ignore that problem
for the moment, the best performance with both systems is obtained by
putting the pinhole or the collimator as close to the source as possible, for
example in contact with the patient’s skin, thus making s, = z. By plugging
in typical numbers for o (~ 0.5-0.8), Ly(~2-3 cm), Ly(~2-6 cm), and
z(~ 2-15 cm), we see that the collimator usually has a modest advantage in
collection efficiency over a pinhole. However, the large variability in the
parameters precludes dogmatism.

Two limits are of some interest. If z> L, + L, and a,,; ~ (0.808)2, we
find that the collimator has a fourfold advantage. The opposite extreme of
L; + Ly, >» z would seem to greatly favor the pinhole, but in fact this is not
so, at least in medical applications. For such small z values the obliquity
considerations for the pinhole, which were ignored in the formulation of
(4.172), strongly reduce both the efficiency and the FOV of the pinhole
camera. In practice, a pinhole will seldom if ever have an efficiency advantage
over a parallel-hole collimator. The usefulness of the pinhole lies in the ease
with which magnification can be changed, allowing the region of interest
effectively to fill the available detector area.

An important similarity between pinhole and collimator imaging comes
up when we contemplate decreasing the resolution distance of either system.
If we improve the resolution of the pinhole by decreasing 4, while holding
sy and s, fixed, (4.33) and (4.35) show that Qup oc dif, oc 6%,. Similarly, we
may improve the resolution of the collimator by holding L,, L,, and z fixed
and decreasing Dy,. Then (4.165) and (4.167) show that Q. oc D? oc 02e-
Reducing the resolution distance thus requires a compensating increase in
either patient dose or exposure time. In fact, by arguments similar to those
adduced for scanners in Section 4.4.6, we can show (and shall do so in
Chapter X) that the required dose or exposure time for constant signal-to-
noise ratio varies inversely as the fourth power of the resolution distance
[cf. (4.107)]. In other words, a twofold improvement in the resolution of the
collimator or pinhole must be accompanied by a 16-fold increase in either
the exposure time or the amount of radioactivity in the object if we wish to
maintain constant SNR.

Precisely this same result was shown in Section 4.4.6 to apply to a scanner
used with a multibore focused collimator. However, the result has even more
serious implications for pinhole or collimator imaging with a scintillation
camera because the resolution distance referred to in the fourth-power law
is the one appropriate to the pinhole or collimator alone. There is a further
image degradation, not present in a scanner, due to the image detector. Thus
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even if we do reduce D, or dy, by a factor of 2, the overa1.1 system .resolution
is improved by a smaller factor. The lesson to be drawn is that it is extraor-
dinarily difficult to improve resolution in nuclear imaging.

4.5.6 Detector Considerations: Minifying and
Magnifying Collimators

Althohgh it was mentioned in Section 4.5.5, the image detect.or has not
yet been included in our formulation. For a parallel-hole colh.matqr, in-
clusion of the detector is trivial since the collimator has‘ a magnification of
unity. As in Section 4.2.5, we describe the detcctqr eltl.ler. by a transfer
function D(p) or by a PSF, d(r). The unit magnification eliminates the need

for any scaling factors and we have directly

Paes(r) = d(r) (4.173)
and
Pin(r) = pphc(r) ** Pyer(T)- (4.174)

One conclusion to be drawn from this equation is that the final image
resolution with a parallel-hole collimator can never be better than the reso-
lution of the detector itself. Since the intrinsic resolution distance of typical
scintillation detectors such as the Anger camera is usually about 4-8 mm,
magnification techniques that enlarge the image. onto the det.ector face are
highly desirable. We have already discussed this approach in connection
with pinhole imaging in Section 4.2.5. However, we a.lso showed m.Sectlon
4.5.5 that pinholes are usually somewhat less efficient than colhma.tors,
especially when obliquity factors are taken into account. ’I:hese cqnsnder-
ations have led in recent years to the development of magnifying collimators
as depicted in Fig. 1.22. o o

Conversely, there are some clinical apphcatlons' where resolution is
relatively unimportant but a large field of view is required. F'or these cases a
minifying collimator as shown in Fig. 1.21 can be used It is yvorth noting
that a minifying collimator is an upside-down magnifying collimator, a fact
that can be used to reduce the number of collimators a department must
acquire. o

In this section we shall not make any great distinction between a mag-
nifying and a minifying collimator. Mathematically they are virtually indis-
tinguishable and we shall use the subscript mc for b(_)th.

We assume that all bores in the collimator point to a common fpf:al
point a distance z; from the entrance face of the collimator; z is a positive
number for a magnifying collimator and a negative one for a minifying
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collimator. In either case, the magnification is given by

mp, =2 Lo+ Ly @)

2e — 2
where m,,, > 1 for a magnifying collimator and My < 1 for a minifying one.
(Note that z, L, and L, are always positive numbers.) If z; - + o0, we are
back to the parallel-hole case and m,,. — 1. Note also that very large mag-
nifications can be obtained by setting z ~ z;. However large minification
ratios are more difficult since they require z » |z].

The next step is to modify our previous results for collimator PSF,
resolution, and efficiency so that they will apply to magnifying and minifying
collimators. It is not so obvious that this step is possible since we have relied
so heavily on the average-PSF concept introduced in Section 4.5.1. With a
magnifying or minifying collimator we cannot form a reasonable average
PSF by holding the source and detector fixed and translating the collimator
over all possible positions since this corresponds to moving the image spot
all over the detector. The resulting PSF would be huge and meaningless.
Collywobblers do not work with magnifying or minifying collimators.

A closely related trick can, however, be employed. Suppose we hold the
collimator fixed, move the source point through a vector distance R, and
move the detector by m,, R. Then the center of the image of the point remains
stationary relative to the detector and integration over all R yields a very
reasonable average PSF. Of course, this is purely a mathematical device, not
a practical way to remove collimator structure.

The remainder of the calculation closely parallels Section 4.5.1. We start
with (4.88) for the PSF of a focused scanner collimator and modify it by

deleting the integral over r”’ and replacing the factor of n,/v, with T. This
leaves

Pucl®;t) =CY circ(————2|" » '”|> circ[zlar + br, — ful} (4.176)
j D, D,
where, as in Section 4.4.5, F,;and F, j denote the center positions of the lower
and upper apertures of the jth bore, and D, and D, are their diameters.
Equations (4.86) and (4.87) are also assumed to still hold.
The averaging process described above may be written out explicitly by
substituting (v — my,R) for r’ and (r, — R) for r, in (4.176), and then inte-
grating over R. The result is [cf. (4.134)]

N — C 2 . 2'1‘" -— 721 - mmch
<pmc(r ’rs)>Rm = Eﬁ—, j:lisc d*“R ; Cer[ D2

X circ[zla(r. — MucR) ; b(r,— R) — Tul]» 4.177)
1
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where the integral is over a disk of radius R,,, and we have assumed that

- the collimator-detector gap L, is zero, a restriction that can be lifted later.

If R, — 0, all terms in the sum lead to the same value for the integral. To
calculate the number of such terms, note that when the vector R exl?lorgs
all points within the disk of radius R,,, the center of the first cznrc function b:rl
(4.177) sweeps out an area in the r” plane given by n(mmcRm) . The num

of terms in the sum, K, is then just the number of bores of diameter D, that
will fit in this area. Thus [cf. (4.135)],

K = 0(2MmcRm/D2)? (4.178)
and
K/nR3, = (4atpe/nDImZ. - (4179)
The following change of variables in (4.177) is now useful:
R =m,R-r1"—Ty. (4.180)

i i ificati lement since
Note that this change also requires a modification of the area e
d?R = (m,)”2d*R’. We can now use (4.86), (4.87), (4.175), and (4.179), plus a

D ( , ) '|]
1 mc

7 4“!' 2D A8 2_R’. . _%_
P31 =C1r_DP§L> d*R c1rc(D2 cire|

—c ¥ [92() #* 92(0') Je = spases 7 Imencs (4.181)
nD3

where
g,(r') = circ(2r'/D,). (4.182)

All that remains is to refer this average PSF back to the. original gbj?ct
scale and to recast our notation in a form that is more evidently shift in-
variant. We can combine these steps by defining

pmc(r - l‘,) = mnic(l’mc(mmcr;rs))
Ayt
nD?%

There is virtually no difference between the functional form of this
equation and that of the corresponding equatiop for tt}e pa.rallel-ho_le case,
(4.140). The factor of D,/D, in the shift variable is of minor import since, by
(4.87), D, ~ D, ~ Dy if z; » Ly, a condition that is certainly satisfied for any

practical collimator. The conclusion is that a magnifying or minifying
collimator has essentially the same PSF and resolution as a parallel-hole

= C =2 m},.[9,(r) #* g:(t) ]y ~s0ui)rs 0.  (4:183)
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f:ollimator with the same values of the parameters Ly, Dy, and z. Similarly,
it should not require an elaborate calculation to convince the reader that
the results of Section 4.5.3, where a collimator-detector gap was allowed
and the transfer function was calculated, are still applicable.

On the other hand, it is worthwhile to reconsider the results of Section
4.5.4 for the collection efficiency. Equation (4.183) differs from its counter-
part, (4.140), in one important respect—the leading factor of m2,. Therefore,
by retracing the analysis that led up to the efficiency expression for the

pa'rglle:l-hole case, (4.167), we find that the efficiency of a magnifying or
minifying collimator is ‘

Q _ Dim,

4n = 1612 Oyt - (4.184)
'In other words, a magnifying collimator becomes more efficient as the source
1s moved away from the collimator face while a minifying collimator becomes
less efficient. :

- To conclude this section, we shall state the result for the composite PSF

of'a.sy.stem consisting of a scintillation detector and either a magnifying or
minifying collimator. The result is

Piot(F) = Pye,(r) 2% pp(r), (4.185)
where : :

pdet(r ) = mlznc d(mmcr) (4186)

The proc?f of this result follows the lines of Section 4.2.5 [cf. (4.44)].
The importance of (4.186) is that by use of a magnifying collimator
(Mne > 1) we can make py,,(r) effectively narrower and reduce the image deg-

rgdation due to the detector. Of course, the price must be paid in field of
view. '

4.6 FURTHER COMPLICATIONS

A linear, shift-invariant system is a mythical beast. The analyses given
so far in this chapter must fail, to a greater or lesser degree, when applied to
rea}l {'adiographic systems which can be neither exactly linear nor exactly
shift invariant. The purpose of this section is to catalog the factors that cause

tﬁe breakdown of our simple models and to comment briefly on some of
them.

The factors neglected so far include:

1. scattered radiation;
2. statistical fluctuations;
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3. shift-variant imaging due to:

a. the obliquity (cos? ) factor;
b. nonparallelism of source and detector planes;
¢. anisotropic emission;

septal penetration;

patient motion;

problems associated with three-dimensional objects;
. spectral effects;

. detector limitations, including

SRR SN

a. quantum efficiency;
b. nonlinearities;
c. geometrical distortions.

The first two items on this list, scattered radiation and statistical fluc-
tuations, are enormously important in the analysis of radiographic systems.
A separate chapter is devoted to each later in this book. Detector limitations
are discussed in some detail for specific detectors in Chapter 5. Spectral
effects are discussed in Chapters 7 and 11. The remaining topics are treated
in this section.

4.6.1 Shift Varlance

Real imaging systems are always shift-variant if for no other reason than
their finite size; a point whose image entirely misses the detector cannot
produce the same response as one in the center of the field of view. Several
other, more subtle, sources of shift-variant behavior were mentioned and
then ignored in the development of the general model in Section 4.1.

One justification for ignoring these effects is that, with the exception of
the detector-boundary problem, they vary slowly with the position of the
object point. Astronomers are fond of talking about an “isoplanatic patch,”
by which they mean an ill-defined (but scarcely nebulous) patch of sky over
which the shape of a star image is “essentially constant.” The source of the
shift variance in astronomy—atmospheric inhomogeneities—is absent in
radiographic imaging, but the principle is still applicable.

Before treating specific sources of shift variance, a brief comment on
notation is required. We have already used two slightly different notations
to denote the point response of an imaging system. For a general shift-
variant system the response measured at point r due to an object at r, was
denoted by p(r;r,). For a shift-invariant system the response function was
written p(r — ro). For application of the isoplanatic patch concept, still a
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third notation is useful. We acknowledge that the response depends strongly
on the difference r — r, and only weakly on the absolute object position r,
by writing it p[r — ro,r,]. To avoid confusion with p(r;ry), we shall use
square brackets instead of parentheses and a comma instead of a semicolon
in this new notation.

Of the systems discussed so far, shift variance is the least troublesome for
the scintillation scanner. In this case only the boundary of the raster pattern
causes any significant deviation from the true shift invariance. If we agree
not to consider points within, say, twice the FWHM of the PSF of the edge
of the field of view, then it is an excellent approximation to ignore the shift-
variant behavior.

Shift variance may also be ignored, at least insofar as the image-forming
operation is concerned, with a camera-collimator combination. Away from
the boundary, the collimator may be treated as shift-invariant if we interpret
the PSF in terms of either the “collywobbler-average” function of Section
4.5.1 or the filtered image of Section 4.5.2. Of course, the camera detector can
respond differently to different source points even though the collimator is
shift-invariant. Typically an Anger camera has poorer resolution at the edge
of the field of view, shows some degree of geometric distortion, and has a
sensitivity that varies by perhaps +10% over the field. The source of these
difficulties is discussed in Chapter 5.

Pinhole cameras are only slightly more complicated in this-regard. The
cos* @ factor reduces the amplitude of the PSF as the edge of the field is
approached, but the shape of the PSF is virtually unchanged over the field
if the aperture plate is thin. (Recall that a circular pinhole projected from any
angle produces a circular image if the detector plane is parallel to the aper-
ture plane.) A thick aperture plate does result in a shape change for large 0,
as indicated in Fig. 4.9, but this effect can be minimized by tapering the pin-
hole. In other words, the shift-variant point response for a pinhole can, to a
good approximation, be factored as

Pon[r — ro,10] = cos? O(ro)ppu(r — Fo), (4.187)

where p,,(r — r,) was calculated in Section 4.2.

The case in which shift variance is most important is transmission radi-
ography. Practical x-ray tubes almost always have a tilted anode, as shown
in Fig. 1.6, in order to reduce the projected area of the focal spot.

To analyze the tilted-anode geometry and to simultaneously allow for
the fact that bremsstrahlung emission is far from isotropic, we introduce the
concept of photon radiance, denoted by L(r,, ), where v,is a three-dimensional
vector specifying position on the source and fi, is a three-dimensional unit
vector pointing from the source point to the object point of interest. The
photon radiance is defined such that L(r,,fip)da, dQ is the number of pho-
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tons per second emitted by a source element of area da, into the solid angle
dQ in the direction fi,. This definition differs from the usual definition of
radiance in optics in two respects. First, it is expressed in terms of photon
flux density per steradian rather than energy flux density per sterac_lian. ThesF
two quantities are related by the photon energy. The second dlffe}-enoe is
more subtle. In optics, the area involved in the definition of radiance is
usually taken as the projected area of the source projected onto a plane nor-
mal to the direction of propagation. With this definition, diffuse optical
radiators (Lambertian surfaces) have constant radiance, independent of
orientation. There is no analog of diffuse radiators in radiology, so a defini-
tion in terms of actual source area rather than projected area is more natural.

Suppose that the x-ray anode is a plane tilted at an angle 6, measured
from the z axis as shown in Fig. 4.29. The vector ¢, is confined to this plane.
The normal to the plane is defined by a unit vector i, given by

fi, = (0,cos 0,,sin 6,). (4.188)

Therefore,
t, i, =0. g (4.189)

To make contact with our previous theory, we must project the photon
radiance onto the x—y plane and thereby determine the emissiop function
f(r) defined in Section 4.1.1. Here, r is a two-dimensional vector in the x-y
plane, or, equivalently, a three-dimensional vector whose z component is
zero. The photons which are emitted from point ¢, in the directlpn of fiy will
pass through the x—y plane at point r only if the vector r — ¢, is parallel to
fiy, or

r—e, =ofly, (4.190)

Fig. 4.28 Geometry for calculating the shift-variant PSF in transmission radiography
with a tilted-anode x-ray tube.
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where a is a scalar. Equations (4.189) and (4.190) can be satisfied simulta-
neously only if

r-fi
o= By - 8.’ 4.191)
from which we find
. r-fi,
f,=r— A, 8, fi,. (4.192)

Thus f(r) must be proportional to L(r — ofiy, fi). Two considerations are
- necessary tq ﬁx the constant of proportionality. The first is that S(r) repre-
sents an emission into 4x steradians while L(z,, i,) represents emission into
one steradian; a factor of 4x is therefore needed. The second point is that
we must relate the area element d?r in the plane z = 0 to the area element
da, in the actual source plane. This step is accomplished by projecting both
da, and d*r onto a plane normal to fi, and demanding that the projected
areas be equal. In this way, all photons that are emitted by the element da
in the direction fi, must also pass through d?r. This then requires that :

(B, - 8,)da, = (8, - 2) d’r, (4.193)

where' i. isa t;nit vector parallel to the z axis and hence normal to the plane
containing d*r. But notice that fi, * 2 is just cos @ where, as before, 0 is the

angle between the z axis and the line along which the x rays travel. Similarly
we define -

fip - A, = cosd,. 4.199)
For the two functions f(r) and L(r,,n,) to describe the same emission pat-
terns, we must have
L(r — ofi, fip) da, dQ = f(r)d*r dQ/4n (4.195)
or, with (4.193) and (4.194),

cosf

S@O)=4n cos?, L(r — oy, fi). (4.196)

Of course, f(r) is now also a function of fi, even though thi .
not exhibited explicitly. o gh this dependence is

We shall illustrate this general result by returning to the disk focal spot

of Sectio_n 4.3.1. In this case we assume that the high-energy electrons bom-
bard a circular region on the anode, so that

L(r,, o) = Lo(fio) circ(2r,/d,,), (4.197)

4.0 rurume vunpjpiivauvie cw-

where L(fi,) describes the angular dependence of the x-ray emission and is
independent of r,. Equation (4.196) now becomes

_ . cosf . [2[r — odiy|
S =dn—— ) Ly(fio) cnrc[ i ] (4.198)

This expression for f(r) describes an effective focal-spot distribution that
is appropriate to those x rays that are emitted in the direction A,. Note that
f(r) is actually a very complicated function of fi, since 8, 8,, and « all depend
on fiy. Moreover, a is a function of r also. However, the important features
of the solution may be discerned by studying two special cases.

First, to verify that (4.198) is reasonable, suppose that the anode is actu-
ally parallel to the plane z = 0. Then 0, =7/2,r-fi, =0, =0, and 6, = 6.

The effective focal spot is then a simple circ function as expected:

{(r) = 4nLy(fg) circ@r/de)  if 6, =m/2. (4.199)

Next we consider a general anode angle 6, but assume that the object
point lies on the z axis. The relevant vectors in component form are then

fi, = (0,0,1) (object point on z axis),
fi, = (0,cos8,,sinb,),

r =(x,,0), (4.200)
from which, after a little algebra, we obtain
I — ofio| = [x? + (y*/sin? 6,)*]'2. (4.201)

The circ function in (4.198) is nonvanishing within a region whose bound-
aries are determined by setting (4.201) equal to dg,/2. This region is an ellipse
with major axis d;, and minor axis dg,sin 6,. In other words, the apparent
dimension of the focal spot in the y direction is reduced by the factor sin@,,
improving the resolution in that direction.

This same procedure can be used to find the shape of the effective focal
spot for any object point. In all cases, it turns out to be an ellipse, but the
algebra required to substantiate that statement is somewhat tedious. For
this reason, and also because the disk focal spot is very artificial to begin
with, the point will not be pursued further here. :

We shall close this section by presenting a general expression for the
shift-variant PSF in the tilted-anode geometry. To accomplish this end, we
need to rewrite (4.196) in such a way that its r dependence is more evident.
In particular, the r dependence of « must be exhibited. A useful vector iden-
tity here is the so-called BAC-CAB rule,

Ax(BxC)=BA-C)—CA-B), (4.202)
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which enables us to write

1
P oy = oo [r(Bo ) — o - )] = [, x (r x 8], (4203

The shift-variant PSF is now found by substituting (4.196) and (4.203)
into (4.54) and reinstating the cos® @ factor. The final result is

C cos‘HL{ﬁ, x [(r — ro) x fig]

Prslr —ro,ro] = 4n a*b? cos#, —~bcosé,

, ﬁo}. (4.204)

4.6.2 Septal Penetration

In this section we shall be concerned with photons that penetrate some
distance through nominally opaque material and are detected when they
should be blocked (Mather, 1957; Beck, 1968a,b). This phenomenon is more
important in nuclear medicine than in diagnostic radiology for two reasons.
First, gamma rays of interest in nuclear medicine are usually more energetic
and hence more penetrating than diagnostic x rays. And second, the very act
of image formation in nuclear medicine consists of blocking unwanted pho-
tons. Small amounts of penetration can thus be very important when com-
pared to the small number of photons that are deliberately passed.

The first point to be made is that penetration can be described by adding
a new term to the geometrical PSF calculated previously (Harris et al., 1964;
Beck, 1964b; Mather, 1957). This statement follows because all detected
photons can be divided into two mutually exclusive classes: those that have
penetrated through the nominally opaque material and those that did not
encounter any opaque material in the first place. For a point source the
detected photons of the latter class constitute the geometrical PSF of the
previous sections. The photons of the former class produce another image
which we shall call the penetration PSF.

The penetration PSF for a pinhole camera is easily calculated. Since it
will generally be shift-variant we must fix the source point r, and the obser-
vation point r” and then determine what path a photon must travel to get
from r, to r”. If the path goes through the clear aperture of the pinhole, we
are not interested since this photon contributes to the geometrical PSF rather
than the penetration PSF. If, however, the path includes a thickness t(r",r,)
of absorbing material, we must calculate the probability that the photon

will pass through the material unimpeded and g0 on to the detector. If the
linear attenuation coefficient of the material is u, this probability is simply
exp[ —ut(r”,r,)]. Scattering in the material can usually be neglected, espe-
cially if the detector is capable of energy discrimination.
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As an example, consider a simple pinhole drilled through a lead plate of
thickness t,. For simplicity we assume that s, =5, a.,nd'to < dyy,. If the
plate is parallel to the detector, the path length ¢(r",r,) is given by

tr",r,) = to/cos (", 1,), (4.205)

where, as before, 6(r”,r,) is the angle of the ray measured from the nox:mal
to the detector plane. By a straightforward extension of the arguments given
in Section 4.2, the penetration PSF is found to be [cf. (4.36)]

PoenlT — 1,,1,] = C(b/a)? exp[ —uto/cos 6(x",1,)], (4.206)

where r = —ar”/b, and the expression is valid everywhere except witl'fin the
geometrical image of the pinhole. (If ¢, were comparable to the pinhole
diameter, this expression would also be in error near the edge of the geo-
‘metrical image.)

For penetration to be negligible the integral of p,..[r — r,,r,] over the
r plane must be small compared to the corresponding integral of p,,(r —r,)
given by (4.36). Roughly speaking, this requires that

2 2 2
Tdae exp(— uty) « mdp (:9_1‘"_32) . 4.207)

4 4 S1

Let us turn now to a somewhat more difficult problem—the calculation
of the penetration PSF for a camera with a parallel-hole collimator. One
effect of penetration in this case is to reduce the effective bore length. Even
if the septa are very thick, gamma rays can still penetrate through t!le corners
of the septa, thereby increasing the angular field of view of each individual
bore. Since the mean penetration length is x~!, many authors ma%ce an
approximate correction for this effect by replacing L,, with L, — 4~ ! in the
equations for resolution, (4.165), and collection efficiency, (4.167). [In (4.165)
this replacement applies only to the denominator. The numerator L, + L.,.+ z
is the total distance from source to detector and is therefore constant.] Since
uL, must surely be large compared to unity in any usable collimator, this
correction is a small one. ‘

A more serious penetration problem occurs as the incidence anglg is
increased. Then the pathlength through any one septum decreases rapidly
but the number of septa in the path increases correspondingly. The qverall
effect is to produce a broad, low-amplitude PSF very much as in the pinhole
case.
A simple yet quite reasonable estimate of the total penetration can be
obtained by just ignoring the fine structure of the collimator (Newel.l et al.,
1952). In other words, we imagine that the absorbing atoms are umform.ly
distributed through the volume of the collimator rather than arranged in
discrete septa. The effective density of absorbing atoms is then given by the
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actual density times (1 — a,¢). This approximation is a poor one for small
values of the incidence angle 0, but rapidly improves as @ is increased. At
the extreme, if = 0 then a photon can in reality penetrate a septum only
by traversing the full bore length L,; the probability of this occurrence is
exp(—uL,), a very small number. The model of a uniform distribution
of absorber, however, predicts a probability of penetration at 8 =0 of
exp[ —uLy(l — aye)]. This is still a small number in practice, but is much
larger than exp(—uL,). The real justification for the model is that we are
usually more interested in the total penetration, i.e., the integral of the PSF,
than in the details of the shape of the PSF. Since the largest contribution to
the integral will come from rays that cross several septa, the behavior near
0 = 0 is of little concern.

With these preliminaries we can now write down an expression for the

penetration PSF of a parallel-hole collimator. By analogy with (4.206), we
have

Poenl®” = 1,11 = T[4n(Ly + L, + 7] exp["c‘;’;‘;}(lr,,"s""]. (4.208)

Once again, the penetration PSF is a broad, slowly varying function. To
find the total penetration we must integrate (4.208) over the detector plane.
This step can be carried out numerically or even analytically if a small-angle
approximation for 8(r",r,) is valid.

Although such approximate techniques may give a useful indication of
the penetration performance of a collimator for a scanner or camera, the
only reliable way to get detailed information about penetration seems to be

computerized ray tracing (Rotenberg and Johns, 1965; Jahns, 1981; Miracle
et al., 1979). ,

4.6.3 Patient Motion

Patient motion, an important practical problem in both diagnostic ra-
diology and nuclear medicine, is easy to graft onto our formalism. As a
highly idealized example, suppose the patient moves at constant velocity
v during an exposure of time T taken with a scintillation camera. Then the
image of a point is uniformly smeared over a line of length vT. We can
describe this situation by a PSF for patient motion given by

o) = gerect( )80, (4.209)
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where r = (x, y) and the x axis is parallel to v. The normalizing factor 1/vT
ensures that p,.(r) approaches 4(r) if v— 0. The overall system response is
now found by convolving p,,(r), given by (4.174), with p,(r).

Note that we did not specify above whether a pinhole, a parallel-hole
collimator, or a magnifying or minifying collimator was used. It was not
necessary to do so since we have been careful to refer all PSFs back to the
original object scale. When a patient moves a distance vT, the corresponding
PSF has width vT without need for any scale factors and without regard for
the magnification of the rest of the system. Equation (4.209) is thus as appli-
cable to projection radiography as it is to nuclear medicine.

One system that does behave somewhat differently with respect to patient
motion is the scintillation scanner. In that case the effect of patient motion is
better described as an image distortion rather than as a blur. Our previous

‘example of a patient moving at constant velocity would result in a skewing

of the scan raster in general. If v were parallel to the rapid-scan direction, the
uniform patient motion would be exactly equivalent to an alteration of the
scan velocity v,. To take a more realistic example, suppose the patient moves
during a single scan line and remains stationary during the remainder of the
scan. Then the image would be distorted along that one line and unaffected
elsewhere, although the sections of the scan taken before and after the motion
would not necessarily match at their interface. Such a discontinuity is a
common and easily identifiable sign of patient motion in scanner images.

Although patient motion is easy to treat analytically, it is not so easy to
deal with in practice and, indeed, may often constitute the ultimate limitation
to image quality. This is especially true if the motion is due to the natural
cardiac and respiratory cycles. There are really only two possible ways to
control image blur due to these movements. Either the exposure time can be
made so short that no significant motion occurs, or “gated” imaging can be
employed. One important example of the latter approach is gated liver
imaging in nuclear medicine. Liver images are particularly susceptible to
motion blur since the liver is adjacent to the diaphragm. However, if a
transducer is used to monitor the patient’s respiration, the scintillation
camera can be electronically gated off except during the relatively quiet
period of full expiration. Of course, total imaging time must then be increased
to record the same number of total counts, but the image quality is signif-
icantly improved.

4.6.4 Three-Dimensional Objects

Our entire analysis so far has been a kind of “Radiology in Flatland”
(Abbott, 1952). We have consistently described gamma-ray-emitting objects
by a two-dimensional distribution of source activity, while objects of interest
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in diagnostic radiology have been treated as absorbing planes. A full treat-
ment of three-dimensional objects requires the methods developed in
Chapters 7 and 9, but a few comments are presented here primarily in an
effort to convince the reader that the foregoing sections of this chapter were
more than an exercise in futility.

Consider first the nuclear medicine case where a three-dimensional object
can be described by a three-dimensional source activity function, f(r, z).
Here, r is still a two-dimensional vector in a plane a distance z from the
collimator face or pinhole plane. A three-dimensional volume element is
thus specified by dv = d*r dz. The activity function is defined in such a way
that f(r, z) d*r dz is the number of photons per unit time emitted by material
within the volume element d?r dz located at coordinates (r, z) or, equivalently,
x,y,2).

If the radiation were not appreciably absorbed within the patient’s body,
we could now use all of our previous results simply by replacing f(r) with
f(r,2)dz and then integrating over z. For example, (4.13) becomes

h') =T [ dz[an(z + %17 [ d*r fir, Dg(ar” + br),  (4.210)
where

a=2z/(z+s,) (4.211)
and '
b = 32/(2 + 52). (4.212)

(Of course, z is identical to our previous parameter s, , but the new designation
emphasizes that it is a variable rather than a constant.).

However, (4.210) is not yet completely satisfactory because self-absorption
may not be negligible. Furthermore, the body has very inhomogeneous
attenuation properties, a fact that is essential to the success of diagnostic
radiology but is a distinct nuisance in nuclear medicine. As discussed more
fully in Chapter 7, a ray traversing this inhomogeneous medium is attenuated
by a factor

exp(— J‘s" u(r',z’)dl’), (4.213)
where u(r’, z’) is the linear attenuation coefficient at point (r’, z’), and the line

integral runs from the source point S to the detector point D. Incorporating
this factor in (4.210), we have

exp( - J;D ur',z) dl’)

4n(z + s,)?

h(t")=T L ® dz fw d*r @ 2)gar” + br), (4.214)
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where the three-dimensional coordinates of S are (r, z). The important quali-
tative point about (4.214) is that calculation of the two-dimensional image
h(r”) in general requires the knowledge of two separate three-dimensional
distributions, f(r, z) and u(r, z).

Often it is valid to replace u(r, z) in (4.214) by a constant. For example,
if only soft tissue intervenes between S and D, it is quite reasonable to replace
K(r, 2) by py,o, the attenuation coefficient of water. This approximation does
not, however, completely circumvent the problem since the path length from
S to D depends on r, z, and the external contours of the patient’s body.
Perhaps the best that can be said in general is that a nuclear medicine image
does not really measure f{(r, z), but rather f(r,z2) exp(—[$ udl). The expo-
nential factor may or may not approximate a constant, depending on photon
energy, depth of the organ being imaged and obesity of the patient. For
example, a lung scan of a plump woman may show regions of apparently
reduced activity due entirely to absorption in the breasts. On the other hand,

- if a liver scan is performed with a parallel-hole collimator on a slender

patient, it would be very reasonable to regard the exponential factor as a
constant multiplier for each plane z. And finally, for high-energy photons
such as the 360-keV gamma rays from !3'I and superficial organs like the
thyroid, very little error is made in ignoring absorption altogether.

The problem of three-dimensional objects becomes even more untidy
in the transmission radiography case. If we represent a volume absorber by
a stack of N absorbing planes, the generalization of (4.13) is

N
ht")=C L d’r f@) 1 giax” + br), 4.215)
i=1
where g,(r') is the transmission of the ith plane at point r’,
z
=1-b=—"t 4.216
4 i Z,+ 5, (4.216)

and z, is the distance of the ith plane from the source plane.
Equation (4.215) is most easily interpreted if the focal-spot distribution

~ canbe approximated by a delta function,

fi) = 1, 8(r), 4.217)
in which case,
N
h@r") = qu E gi(ar”). (4.218)

- In other words, the measured image h(r”) consists of a multiplicative (and
.- hence nonlinear) superposition of images of each of the planes, with the

magnification for the ith plane given by 1/a,.
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When a screen-film system is used as the image detector, a further
simplification is possible. As discussed in Chapter 5, the optical density D
in the developed film is usually a linear function of the logarithm of the
exposure, i.c.,

D@") = D, + ylog[h(r")], (4.219)

where D, and y are constants characteristic of the film. The logarithm
converts the multiplicative superposition of (4.218) into an additive one:

N
D(r") = Dy + ylog(Cfy) + v té\:x log[gi(a;r”)]. (4.220)

In a peculiar sense, then, we have salvaged the linear systems approach to
transmission radiography even with three-dimensional objects. We need only
to regard the logarithm of the transmission, rather than the transmission
itself, as the input to the system and to regard the optical density D(r”) as
the output to obtain a linear input—output relation.

Of course, all of this was possible only because we assumed a delta-
function source. The situation is far more complicated when we have a
general source function and a three-dimensional (or multiplanar) object.
Without really attempting a full solution, we can suggest the nature of the
difficulty by rewriting (4.215). Suppose we are interested in one particular
plane, say the jth. Then the factors in the N-fold product in (4.215) can be
regrouped as .

s N
h(@')=C fw d’r(f(r) il;[, giaxr’ + b,r))g,(a,r" +byr).  (4.221)

The point spread function appropriate to the jth plane is calculated as in
Section 4.3 by letting g,(r') be a delta function,

gir) = 6@ —r,). (4.222)

The resulting image is given by

7" N
W x,) = (9) f['—‘ - 9-1’—] 11 g,(a‘r" +o, - a,r")). (4.223)
b)"Lby by liv; b,

In other words, the PSF is determined not only by the actual source function
f(x), but also by the details of the absorbing structures in all other planes.
For example, a sharp-edged absorber in one plane can partially obscure
the focal spot for some values of r’ and hence improve the apparent system
resolution. The PSF is, of course, highly shift-variant because of parallax
among the various planes.

4.0 UL vuinpnvativiie

One important limit should be mentioned. When the three-d?mensional
object is relatively structureless and has low contrast (e.g., soft tissue), then
the effect of the product term in (4.223) is merely to modul?,te the overz.ill
intensity of the source distribution without seri_ously affecting t'he details
of its shape. The imaging system is still shift-variant, l?ut a rele.ltlvel.y large
isoplanatic patch can be defined. In this case we are justified in using the
planar models of Section 4.3 to calculate PSF, MTF, etc.



