Chapter 2 Groundwork

Most of the material in this chapter is stated without proof. This is done
because the proofs entail discussions that are lengthy (in fact, they
form the bulk of conventional studies in Fourier theory) and remote from
the subject matter of the present work.

Omitting the proofs enables us to take the transform formulas and
their known conditions as our point of departure. Since suitable nota-
tion is an important part of the work, it too is set out in this chapter.

The Fourier transform and Fourier’s integral theorem

The Fourier transform of f(z) is defined as
f_.” f(x)g—i'lr:l dx.

This integral, which is a function of s, may be written F(s). Transform-
ing F(s) by the same formula, we have -

f _°_ F(s)eitms ds.

When f(z) is an even function of z, that is, when f(z) = f(—z), the
repeated transformation yields f(w), the same function we began with.
This is the cyclical property of the Fourier transformation, and since the
cycle is of two steps, the reciprocal property is implied:if F(s) is the Fourier
transform of f(z), then f(z) is the Fourier transform of F(s).

The cyclical and reciprocal properties are imperfect, however, because
when f(z) is odd—that is, when f(z) = —f(—z)—the repeated trans orma-
tion yields f(—w). In general, whether f(z) is even or odd or neither,
repeated transformation yields f(—w).
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The customary formulas exhibiting the reversibility of the Fourier
transformation are '

F) = [ fe)eamdz
f@) = [ F(s)ene= ds.

In this form, two successive transformations are made to yield the original
function. The second transformation, however, is not exactly the same as
the first, and where it is necessary to distinguish between these two sorts of
Fourier transform, we shall say that F(s) is the minus-i transform of f(z)
and that f(z) is the plus-i transform of F(s).

Writing the two successive transformations as a repeated integral, we
obtain the usual statement of Fourier’s integral theorem:

f(z) = /—': [ f_: f(z)e—i2rss d':c] gitres dg.

The conditions under which this is true are given in the next section, but it
must be stated at once that where f(z) is discontinuous the left-hand side
should be replaced by 3{f(z +) + f(z —)], that is, by the mean of the
unequal limits of f(z) as z is approached from above and below.

The factor 2r appearing in the transform formulas may be lumped with
s to yield the following version (system 2):

F@) = [ f@esdz
f@) = 5 [, ) ds.
And for the sake of symmetry, authors occasionally write (system $):
F) = gy [ S d
f@) = @Lﬂi [, F@eds.

All three versions are in common use, but here we shall keep the 2r in the
exponent (system 1). If f(z) and F(s) are a transform pair in system 1,
then f(z) and F(s/2r) are a transform pair in system 2, and f[z/(2r)!] and
Fls/(2r)}] are a transform pair in system 8. An example of a transform
pair in each of the three systems follows.

System 1 System 2 System 8
fle) F(s) fla) F() - fz) F(s)
P O e~vz'  gmetlir P L L

An excellent notation which may be used as an alternative to F(s) is
f(s). Various advantages and disadvantages are found in both notations.
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The bar notation leads to compact expression, including some convenient
manuscript or blackboard forms which are not very suitable for type-
setting. Consider, for example, these versions of the convolution

theorem,
FG=F+«G
F»G=FG
FG=F+6
F+G = Fa,

which display shades of distinction not expressible at all in the capi'tal
notation. See Chapter 6 for illustrations of the freedom of expression
permitted by the bar notation. A certain awkwardness sets in, however,
when complex conjugates or primes representing derivatives have to be
handled; this awkwardness does not afflict the capital notation. Therefore
we have departed from the usual custom of adopting a single notation.
In the early mathematical sections, where f and g are nearly the only
symbols for functions, the capital notation is mainly used. In the
physical sections, preemption of capitals such as E and H for the repre-
sentation of physical quantities leads more naturally to bars.

Neither of the above two notations lends itself to symbolic statements
equivalent to ‘“‘the Fourier transform of exp (—wz?) is exp (—=s?)”;
however, we can write

gs—r:’ = “—"ll
or e o,

In the first of these, ¥ can be regarded as a functional operator which con-
verts a function into its transform. It may be applied wherever the 'bar
and capital notations are employed, but will be found most appropriate
in connection with specific functions such as those above. It lends itself
to the use of affixes, (for example, &,, %, F) and mixes with symbols for
other transforms. It can also distinguish between the minus-z and plus-i
transforms through the use of ! for the inverse of &; or like the bar
notation, but not the capital notation, it can remain discreetly silent.
The properties of this notation make it indispensable, and it is adopted
in suitable places in the sequel. )

The sign © or equivalents, several of which are in use, is not as versatile
as § but is useful for algebraic work. It is also often used to denote the
Laplace transform.

Conditions for the existence of Fourier transforms

A circuit expert finds it obvious that every waveform has a spectrum, alnd
the antenna designer is confident that every antenna has a radiation
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pattern. It sometimes comes as a surprise to those whose acquaintance
with Fourier transforms is through physical experience rather than
mathematics that there are some functions without Fourier transforms.
Nevertheless, we may be confident that no one can generate a waveform
without a spectrum or construct an antenna without a radiation pattern.

The question of the existence of transforms may safely be ignored when
the function to be transformed is an accurately specified description of a
physical quantity. Physical possibility is a valid sufficient condition for
the existence of a transform. Sometimes, however, it is convenient to
substitute a simple mathematical expression for a physical quantity., It
is very common, for example, to consider the waveforms

sint (harmonic wave, pure alternating current)
H(t) (step)
8() (impulse).

It turns out that none of these three has, strictly speaking, a Fourier
transform. Of course, none of them is physically possible, for a waveform
sin ¢ would have to have been switched on an infinite time ago, a step H(¢)
would have to be maintained steady for an infinite time, and an impulse
8(t) would have to be infinitely large for an infinitely short time. How-
ever, in a given situation we can often achieve an approximation so close
that any further improvement would be immaterial, and we use the simple
mathematical expressions because they are less cumbersome than various
slightly different but realizable functions. Nevertheless, the above
functions do not have Fourier transforms; that is, the Fourier integral
does not converge for all s. It is therefore of practical importance to
consider the conditions for the existence of transforms.

Transforming and retransforming a single-valued function f(z), we
have the repeated integral

f_"“ gitraz [f:" f(z)eitmss da:] ds.

This expression is equal to f(z) (or to [f(z +) + f(z —)] where f(2) is
discontinuous), provided that

1. The integral of |f(z)| from — « to = exists
2. Any discontinuities in f(z) are finite

A further but less important condition is mentioned below. In physical
circumstances these conditions are violated! when there is infinite
energy, and a kind of duality between the two conditions is often noted.
For instance, absolutely steady direct current which has always been

! Exceptions are provided by finite-energy waveforms such as (1 + |z/)t and z~! sin z,
which nevertheless do not have absolutely convergent infinite integrals.
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Fig. 2.1 A function with an infinite number of maaima.

flowing and always will flow represents infinite energy and violates the
first condition. The distribution of energy with frequency would have to
show infinite energy concentrated entirely at zero frequenc.y and would
violate the second condition. The same applies to harmonic waves.

It is sometimes stated that an infinite number of maxima amli minima
in a finite interval disqualifies a function from possessing a Fotlmer trans-
form, the stock example being sin z—' (see Fig. 2.1), 'whif:h oscillates 'wn.h
ever-increasing frequency as z approaches zero. 'Thls: kind of behavior is
not important in real life, even as an a[?proxlrflat:'on. .We therefore;
record for general interest that some functions with infinite number_s 0
maxima and minima in a finite interval do have transforms. ‘?‘h{s is
allowed for when the further condition is given as.boundfd mfnahon.’
Again, however, there are transformable functions Wltl'l an infinite num-
ber of maxima and with unbounded variation in a ﬁmte.mterva!, a cir-
cumstance which may be covered by requiring f(z) to satisfy a-L'lpschlt.z
condition.? Then there is a more relaxed condition used b.y Dini. This
is a fascinating topic in Fourier theory, but it is not immediately relevant
to our branch of it, which is physical applications. I:‘urthermore, we by
no means propose to abandon useful functions which do not possess
Fourier transforms in the ordinary sense. On the ?ontrary, we lr}clude
them equally, by means of a generalization to Fourier transforms in the

* A function f(z) has bounded variation over the interval z = a to z = b if there is a
number M such that

f(@) = f(@)| + |fxs) — f@)| + . . . +|f) = flzar)| £ M

for every method of subdivisiona <z, <z < ... < Zn-1 < b. Any function having
an absolutely integrable derivative will have bounded variation. ;
3 A function f(z) satisfies a Lipschitz condition of order a at z = 0 if

|f(h) = f(O)] < Blhl®

for all |k] < ¢, where B and g8 are independent of k, 8 is positive, and « is the upper boun:]
of all 8 for which finite B exists.
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limit. Conditions for the existence of Fourier transforms now merely

distinguish, where distinction is desired, between those transforms which
are ordinary and those which are transforms in the limit,

Transforms in the limit

Although a periodic function does not have a Fourier transform, as may
be verified by reference to the conditions for existence, it is nevertheless
considered in physics to have a spectrum, a “line spectrum.” The line
spectrum may be identified with the coefficients of the Fourier series for
the periodic function, or we may broaden the mathematical concept of the
Fourier transform to bring it into harmony with the physical standpoint.
This is what we shall do here, taking the periodic function as one example
among others which we would like Fourier transform theory to embrace,
Let P(z) be a periodic function of z. Then

[=1P@) &z

does not exist, but if we modify P(z) slightly by multiplication with a
factor such as exp (—az?), where a is a small positive number, then the
modified version may have a transform, for

[ le=P()| dz

may exist. Of course, any infinite discontinuities in P(z) will still dis-
qualify it, but let us select P(z) so that exp (—az?)P(z) possesses a
Fourier transform. Then as « approaches zero, the modif ying factor for
each value of z approaches unity, and the modified functions of the
sequence generated as a approaches zero thus approach P(z) in the limit.
Since each modified function possesses a transform, a corresponding
sequence of transforms is generated; now, as a approaches zero, does this
sequence of transforms also approach a limit? We already know that it
does not, at least not for all s; we content ourselves with saying that the
sequence of regular transforms defines or constitutes an entity that shall
be called a generalized function. The periodic function and the gen-
eralized function form a Fourier transform pair in the limit.

The idea of dealing with things that are not functions but are describ-
able in terms of sequences of functions is well established in physics in
connection with the impulse symbol &(z). In this case a progression of
ever-stronger and ever-narrower unit-area pulses is an appropriate
sequence, and a little later in the chapter we go into this idea more fully.
We use the term *‘generalized function” to cover impulses and their like.

Periodic functions fail to have Fourier transforms because their infinite
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integral is not absolutely convergent; failure may also be due to the infinite
discontinuities associated with impulses. In this case we replace any
impulse by a sequence of functions that do have transforms; then tl.1e
sequence of corresponding transforms may approach a limit, and again
we have a Fourier transform pair in the limit. As before, only one mem-
ber of the pair is a generalized function involving impulses.

It may also happen that the sequence of transforms does not approach
a limit. This would be so if we began with something that was both
impulsive and periodic; then the members of the transform pair in the
limit would both be generalized functions involving impulses.

At this point we might proceed to lay the groundwork leading to the
definition of a generalized function. Instead we defer the rather severe

E(x)

O(x)

TN

'\/\/ '

Fig. 2.2 An even function E(z) and an odd function 0(z).

E(x)+ O(x)

— . -

Fig. 2.3 The sum of E(z) and O(z).

=f(==)

Fig. 2.4 Constructions for the even and odd
parts of a given function f(z).

general discussion to a much later stage, since it can be read with more
profit after facility has been acquired in handling the impulse symbol 8(z).

Oddness and evenness

Symmetry properties play an important role in Fourier theory. Argu-
ments from symmetry to show directly that certain integrals vanish,
without the need of evaluating them, are familiar and perhaps often seem
trivial in print. More alertness is needed, however, to ensure full
exploitation in one’s own reasoning of symmetry restrictions and the
corresponding restrictive properties generated under Fourier transforma-
tion. Some simple terminology is recalled here.

A function E(z) such that E(—z) = E(z) is a symmetrical, or even,
function., A function O(z) such that O(—z) = —O0(z) is an anti-
symmetrical, or odd, function (see Fig. 2.2). The sum of even and odd
functions is in general neither even nor odd, as illustrated in Fig. 2.3,
which shows the sum of the previously chosen examples.

Any function f(x) can be split unambiguously into odd and even parts.
For if f(z) = Ev(z) + 01(z) = Ei(x) + 01(z), then Ey — Eq = 0y — Oy;
but E; — E,is even and 0; — 0, odd, hence E, — E, must be zero.

The even part of a given function is the mean of the function and its
reflection in the vertical axis, and the odd part is the mean of the function
and its negative reflection (see Fig. 2.4). Thus

E(z) = }f(z) + f(—=)]
and 0(z) = }f(z) — f(—2))].
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The dissociation into odd and even parts changes with changing origin
of z, some functions such as cos z being convertible from fully even to fully
odd by a shift of origin.

Significance of oddness and evenness

Let
f(z) = E(@) + 0(z),

where E and O are in general complex. Then the Fourier transform of
f(z) reduces to

2 fu" E(z) cos (2rzs) dz — 2 fo 0(z) sin (2rzs) dz.

It follows that if a function is even, its transform is even, and if it is odd,
its transform is odd. Full results are
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Imag odd

Imag even Imag even

Real and even

Real and odd

Imaginary and even
Complex and even

Complex and odd

Real and asymmetrical
Imaginary and asymmetrical

Real even plus imaginary odd Real

Real odd plus imaginary even Imaginary
Even Even
0Odd Odd

Real and even

Imaginary and odd
Imaginary and even
Complex and even
Complex and odd

Complex and hermitian
Complex and antihermitian

Imag odd

These properties are summarized in the following diagram:

f(z) = o(x) + e(z) = Re o(z) + i Im o(z) + Re e(z) + i Im e(z)

F(s) = 0(s) + E(s) = Re 0(s) + 1 Im O(s) + Re E(s) + ¢ Im E(3).

Figure 2.5, which records the phenomena in another way, is also valua-
ble for revealing at a glance the “relative sense of oddness”: when f(z) is
real and odd with a positive moment, the odd part of F(s) has 7 times a
negative moment; and when f(z) is real but not necessarily odd, we also
find opposite senses of oddness. However, inverting the procedure—
that is, going from F(s) to f(z), or taking f(z) to be imaginary—produces
the same sense of oddness.

Real even functions play a special part in this work because both they
and their transforms may easily be graphed. Imaginary odd, real odd,
and imaginary even functions are also important in this respect.

Another special kind of symmetry is possessed by a function f(z) whose

]
I||||l

Imag
(Displaced to right)

Fig. 2.5 Symmetry properties of a function and its Fourier iransform.
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Re f(z)

e P

Fig. 2.6 Hermitian functions have their real part even and their imaginary part
odd. Their Fourier transform is pure real.

real part is even and imaginary part odd. Such a function will be
described as hermitian (see Fig. 2.6); it is often succinctly defined by the
property

flz) = f*(—a),
and as mentioned above its Fourier transform is real. As an example of
algebraic procedure for handling matters of this kind, consider that

fx) = E + 0 + iE + 0.
Then f(—z) =E—O+iE—iQ
and f¥(—z) = E — 0 — iE +10.
If we now require that f(z) = *(—2z) we must have 0 = 0 and E = 0.
Hence f(z) = E + 10.

Complex conjugates

The Fourier transform of the complex conjugate of a function f(z) is
F*(—3), that is, the reflection of the conjugate of the transform. Special
cases of this may be summarized as follows:

real F(s)
If f(z) is ::fl:fmary the transform of f*(z) is F?Ef(l) = F*(—s3).
odd —F*(s)
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Related statements are tabulated for reference,

flx) 2. F(s)
f*(z) D F*(—3)
f*(—z) D F*(s)
f(—x) 2 F(-s)
2 Re f(z) 2 F(s) + F*(—s)
2 Im f(z) D F(s) — F*(—3s)
f(@) + f*(—z) D 2 Re F(s)
f@) = f*(—z) 2 2Im F(s)

Cosine and sine transforms

The cosine transform of a function f(z) is defined as
2 ﬁ)” f(z) cos 2rsx dx.

The cosine transform is the same as the Fourier transform if f(z) is an
even function. In general the even part of the Fourier transform of f(z)
is the cosine transform of the even part of f(z).

It will be noted that the cosine transform, as defined, takes no account
of f(z) to the left of the origin.

Let F.(s) represent the cosine transform of f(z). Then the cosine trans-
formation and the reverse transformation by which f(z) is obtained from
F.(s) are identical. Thus

F.s) =2 f 0“ f(z) cos sz dz
flx) =2 _];‘ F.(8) cos 2rsz ds.
The sine transform of f(z) is defined by
F,(s) =2 foﬂ f(z) sin 2rsz dzx.
This transformation is also identical with its reverse; thus
flz) =2 fon F.(s) sin 2rsz dz.

We may say that 7 times the odd part of the Fourier transform of f(z) is
the sine transform of the odd part of f(z).

Combining the sine and cosine transforms of the even and odd parts
leads to the Fourier transform of the whole of f(z):

5f(z) = §.E(z) — i5,0(z),

where the operators §, &., and ¥, stand for the minus-i Fourier, cosine, and
sine transformations, respectively. It will be clear that the terms on the
right are the even and odd parts of F(s), not the real and imaginary parts.
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If f(z) is zero to the left of the origin, then
= }F.(s) — ¥iF.(s),
or, to restate this property for any f(z),
3F.(s) — ¥iF.(s) = 5f(@) H(@),

where H(z) is the unit step function (unity when z is positive and zero
when z is negative).

In this text the terms “‘cosine transform” and “sine transform” will be
avoided, but they are commonly used elsewhere. The definitions other
than the above which may, however, be encountered are

[, 1@ <

and ()f f(z) sa:dx

Some advantage would accrue from the adoption of

cos
8:r dx

f _w,, f(z) cos 2msa dx.

Interpretation of the formulas

Habitués in Fourier analysis undoubtedly are conscious of graphical
interpretations of the Fourier integral. Since the integral contains a
complex factor, probably the simpler cosine and sine versions are more
often pictured. Thus, given f(z), we picture f(z) cos 2rsz as an oscilla-
tion (see Fig. 2.7a), lying within the envelope f(z) and —f(z). Twice the

f(x) f(x) cos 2mzs f(x) cos 2mxs
o~ o~ o~
lx V T N e I.:-
(a) ,f’
F 4
,/
s
s
- ', ——-—,,
- -
(b) ()

Fig. 2.7 The product of f(z) with cos 2rxs, as a function of z.
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area under f(z) cos 2wrsz is then F.(s), for F.(s) = 2 ﬂ: f(z) cos 2wsz dax.

In Fig. 2.7b this area is virtually zero, but a rather high value of s is
implied. Figure 2.7¢c is for a low value of s.
The Fourier integral is thus visualized for discrete values of s. The

f(x) dx cos 2wxs

(e)

Fe(s)

(d)
Fig. 2.8 The product of f(z) dz with cos 2rzs, as a function of s.



20 THE FOURIER TRANSFORM AND ITS APPLICATIONS

F(s)

Fig. 2.9 The surface f(z) cos 2mwsz shown sliced in one of two possible ways.

‘1",; Im F
Min =0 I =0
= —20 i“/ Re F Re F

Ez::___r__r:::\*m 6*\@
A B s [ LR
A B

(a) (&

Fig. 2.10 The Fourier integral on the complex plane of F(s) when s is (a) small,
(b) large.

interpretation of s is important: ¢ characterizes the frequency of the
cosinusoid and is equal to the number of cycles per unit of x.

As an exercise in this approach to the matter, contemplate the graphical
interpretation of the algebraic statements

-0 §— o

F@o1 _q fo” j@@)dz s=0.

The sine transform may be pictured in the same way, and the complex
transform may be pictured as a combination of even and odd parts.

A complementary and equally familiar picture results when the inte-
grand f(z) cos 2rzs dz is regarded as a cosinusoid of amplitude f(z) dz and
frequency z; that is, it is regarded as a function of s, as in Fig. 2.8a. The
same thing is shown in Fig. 2.8b and Fig. 2.8¢ for other discrete values of z.
The summation of such curves for all values of z gives F.(s). A feeling
for this approach to the transform formula is engendered in students of
Fourier series by exercises in graphical addition of (co)sinusoids increasing
arithmetically in frequency.
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Each of the foregoing points of view has dual aspects, according as one
ponders the analysis of a function into components or its synthesis from
components. The curious fact that whether you analyze or synthesize
you do the same thing simply reflects the reciprocal property of the
Fourier transform. Figure 2.9 illustrates the first view of the matter. If
we visualize the surface represented by the slices shown for particular
values of s, and then imagine it to be sliced for particular values of z, we
perceive the second view.

In a further point of view we think on the complex plane (see Fig. 2.10),
taking ¢ to be fixed. The vector f(z) dz is rotated through an angle
2rsx by the factor exp (—12msx). As z— #+ =, the integrand f(z) dx
exp (—12rsx) shrinks in amplitude and rotates indefinitely in angle,
causing the integral to spiral into two limiting points, 4 and B. The vec-
tor AB represents the infinite integral F(s) as in Fig. 2.10a. In Fig. 2.10b
the more rapid coiling-up for a larger value of s is shown. The behavior
of F(s) as s— « and when s = 0 is readily perceived.

This kind of diagram, of which Cornu’s spiral is an example, is familiar
from optical diffraction. It is known as a useful tool both for qualitative
thinking and for numerical work in optics. It arises in the propagation
of radio waves, and neatly summarizes the behavior of radio echoes
reflected from ionized meteor trails as they form. Probably it would be
illuminating in fields where its use is not customary.

Problems

I 'What condition must F(s) satisfy in order that f(zr) » 0Oasz— + »?
2 Prove that |F(s)|? is an even function if f(z) is real.

3 The Fourier transform in the limit of sgn z is (irs)"!. What conditions for
the existence of Fourier transforms are violated by these two functions? (sgn z
equals 1 when z is positive and —1 when z is negative.)

4 Show that all periodic functions violate a condition for the existence of a
Fourier transform.

5 Verify that the function cos z violates one of the conditions for existence of a
Fourier transform. Prove that exp (—az?) cos 2 meets this condition for any
positive value of a.

6 Give the odd and even parts of H(z), e'%, e=*H(z), where H(z) is unity for
positive z and zero for negative z.

7 Graph the odd and even parts of [1 + (z — 1)?]"%

8 Show that the even part of the product of two functions is equal to the product
of the odd parts plus the product of the even parts.

9 Investigate the relationship of F3f to f when f is neither even nor odd.
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10 Show that FFFFSf = f.
11 It is asserted that the odd part of log x is a constant. Could this be correct ?

12 Is an odd function of an odd function an odd function? What can be said
about odd functions of even functions and even functions of odd functions?

13 Prove that the Fourier transform of a real odd function is imaginary and
odd. Does it matter whether the transform is the plus-i or minus-i type?

14 An antihermitian function is one for which f(z) = —f*(—z). Prove that
its real part is odd and its imaginary part even and thus that its Fourier transform
is imaginary.

15 Point out the fallacy in the following reasoning. “Let f(z) be an odd func-

tion. Then the value of f(—a) must be —f(a); but this is not the same as f(a).
Therefore an odd function cannot be even.”

16 Let the odd and even parts of a function f(z) be o(z) and e(z). Show that,
irrespective of shifts of the origin of z,

f _: lo(z)|* dz + f _.- le(z)|* dz = const.

17 Note that the odd and even parts into which a function is analyzed depend
upon the choice of the origin of abscissas. Yet the sum of the integrals of the
squares of the odd and even parts is a constant that is independent of the choice
of origin. What is the constant?

18 Let axes of symmetry of a real function f(z) be defined by values of a such
that if 0 and e are the odd and even parts of f(z — a), then

fotdz — fetdz
Jotdz + [e*dz

has a maximum or minimum with respect to variation of a. Show that all {unc-
tions have at least one axis of symmetry. If there is more than one axis of
symmetry, can there be arbitrary numbers of each of the two kinds of axis?

19 Note that cos z is fully even and has no odd part, and that shift of origin
causes the even part to diminish and the odd part to grow until in due course the
function becomes fully odd. In fact the even part of any periodic function will
wax and wane relative to the odd part as the origin shifts. Consider means of
assigning “abscissas of symmetry” and quantitative measures of “degree of
symmetry” that will be independent of the origin of z. Test the reasonableness
of your conclusions—for example, on the functions of period 2 which in the range
—1 <z < laregivenby A(z), A(zx — %), A(zx — }). See Chapter 4 for triangle-
funection notation A(x).

20 The function f(z) is equal to unity when z lies between —% and % and is zero
outside. Draw accurate loci on the complex plane of F(s) from which values of
F(0), F(3), F(1), F(13), and F(2) can be measured.

21 The function f(z) is equal to 100 when z differs by less than 0.01 from 1, 2, 8,
4, or 5 and is zero elsewhere. Draw a locus on the complex plane of F(s) from
which F(0.05) can be measured in amplitude and phase.
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Chapter 3 Convolution
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The idea of the convolution of two functions occurs widely, as witnessed
by the multiplicity of its aliases. The word “convolution” is coming into
more general use as awareness of its oneness spreads into various branches
of science. The German term Falfung is widely used, as is the term
“composition product,” adapted from the French. Terms encountered
in special fields include superposition integral, Duhamel integral, Borel’s
theorem, (weighted) running mean, cross-correlation function, smoothing,
blurring, scanning, and smearing. _

As some of these last terms indicate, convolution describes the action
of an observing instrument when it takes a weighted mean of some physi-
cal quantity over a narrow range of some variable. When, as very often
happens, the form of the weighting function does not change appreciably
as the central value of the variable changes, the observed quantity is a
value of the convolution of the distribution of the desired quantity with

_ the weighting function, rather than a value of the desired quantity itself.
All physical observations are limited in this way by the resolving power of
instruments, and for this reason alone convolution is ubiquitous. Later
we show that the appearance of convolution is coterminous with linearity
plus time or space invariance, and also with sinusoidal response to
sinusoidal stimulus.

Not only is convolution widely significant as a physical concept, but
because of a powerful theorem encountered below, it also offers an advan-
tageous starting point for theoretical developments. Conversely, because
of its adaptability to computing, it is an advantageous terminal point for
numerical work.

24
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The convolution of two functions f(z) and g(z) is

[ seatz = w) du,
or briefly, f(z) * g(z).

The convolution itself is also a function of z, let us say h(z).

Various ways of looking at the convolution integral suggest themselves.
For example, suppose that g(z) is given. Then for every function f(z)
for which the integral exists there will be an h(z). Following Volterra,
we may say that h(z) is a functional of the function f(z). Note that to
calculate h(z,) we need to know f(z) for a whole range of z, whereas to
calculate a function of the function f(z) atz = z,, we need only know f(z1).

In Fig. 8.1 the product f(u)g(z — u) is shown shaded, and the ordinate
h(z) is equal to the shaded area.

flx)

glx)

Fig. 8.1 The convolution integral h(x) = f(z) * g(z) represented by a shaded area.
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A second example with a different f(z) but the same g(z) is shown in
Fig. 8.2 to illustrate the general features relating the functional k(z) to
f(z). It will be seen that h(z) is smoother in detail than f(z), is more
spread out, and has less total variation.

In another approach, f(z) is resolved into infinitesimal columns (see
Fig. 8.8). Each column is regarded as melted out into heaps having the
form of g(z) but centered at its original value of z. Just two of these
melted-down columns are shown in the figure, but all are to be so pictured.
Then h(z) is equal to the sum of the contributions at the point z made by
all the heaps; that is,

ha@) = [ f@e@ - z) da.

A further view is illustrated in Fig. 3.4, where g(u) is shown folded back on

glx)

Fig. 3.2 Ilustrating the smoothing effect of convolution (h = f * g).

f(x)
/--.

flx) dxy gz = x) —

/ :

4 :
=23 X=X

1

Fig. 3.3 The convolution integral regarded as a superposition of characteristic
contributions.
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/

Fig. 8.4 Convolution from the Faltung standpoint.

u‘:’&x

itself about the line # = 4. As before, the area under the product curve
f(u)g(xz — u) is the convolution k(z), and its dependence on the position
of the line of folding (German Faltung) may often be visualized from this
standpoint.

These suggestions do not exhaust the possible interpretations of the
convolution integral; others will appear later.

It should be noticed that before the operations of multiplication and
integration take place g(z) must be reversed. It is possible to dispense
with the reversal, and in some subjects this is more natural. A conse-
quence of the reversal is, however, that convolution is commutative; that

is,
Frg =g+
or [ g — w du = [~ gf( — w du

Convolution is also associative (provided that all the convolution inte-
grals exist),

) Je(g*h) = (f*g) *h,
and distributive over addition,
folg+h) =frg+fah
The abbreviated notation with asterisks (*) thus proves very convenient
in formal manipulation, since the asterisks behave like multiplication
signs.
Examples of convolution

Consider the truncated exponential function

(.l 0
E@ =1, z < 0.
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We shall calculate the convolution between two such truncated exponen-
tials with different (positive) decay constants. Thus

ab [° E(auw)E@Bz — fu) du
aE(B2) [," Elau — Bu) du

aE(az) *» bE(8z)

- abE(gr) 12— 85) = 1
b E(az) — E(Bz)
B —a

The result is thus the difference of two truncated exponentials, each
with the same amplitude, as illustrated in Fig. 8.5. This function occurs
commonly; for instance, it describes the concentration of a radioactive
isotope which decays with a constant a while simultaneously being
replenished as the decay product of a parent isotope which decays with a
constant 3. From the commutative property of convolution we see that
the result is the same if @ and 3 are interchanged, and as t — = one of the
terms dies out, leaving a simple exponential with constant & or 8, which-
ever describes the slower decay. As a special case we calculate E(azx) *
E(az) by taking the limit as 8 — a— 0. Thus we find

E(azx) * E(az) = lim E(az) — E(Bz)

B—a—0 B —a
d
= - dj..' E(ax)
= 2E(az).

This particular function describes the response of a eritically damped
resonator, such as a dead-beat galvanometer, to an impulsive disturbance.
As a further example consider E(—az) * E(8z). This gives an entirely

BE(fix — Bu)

ﬁ—"_b; [E(a ) — E(Bt)]

\/\ Fig. 3.6 Convolation of two trun-
cated exponentials.
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different type of result. Thus
E(—az) = E(8z)

f " E(—az + aw)E(8u) du
fz. g-avtazg—Bu qy r>0

faq g-autazg=hu gy z <0

_ E(—azx) + E(Bz)
a+ B
Here we have a function that is peaked at the origin and dies away with a
constant « to the left and with a constant 8 to the right,

In calculations of this kind care is required in fixing the limits of the
integrals and checking signs, because the ordinary sort of algebraic error
can make a radical change in the result. The following graphical con-
struction for convolution is useful as a check. Plot one of the functions
entering into the convolution backward on a movable piece of paper as
shown in Fig. 8.8, and slide it along in the direction of the axis of abscissas.

I
—-—
—

=

Fig. 3.6 Graphical construction for convolution. The movable piece of paper has
a graph of one of the functions plotted backward.

m-mmMm
b

A* it _L—I—T—-l‘

N N |

Fig. 3.7 [Ezamples for practicing graphical convolution. The arrows represent
tmpulses.
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When the movable piece is to the left of the position shown, the product
of g with f reversed is zero. By marking an arrow in some convenient
position, we can keep track of this. Then suddenly, at the position shown,
the integral of the product begins to assume nonzero values. By moving
the paper a little farther along, as indicated by a broken outline, we find
that the convolution will be positive and increasing from zero approxi-
mately linearly with displacement. Farther along still, we see that a
maximum will occur beyond which the convolution dies away.

In the second example given above, two oppositely directed exponential
tails, the absence of a zero stretch, and the presence of a cusp at the origin
are immediately apparent from the construction. In addition to qualita-
tive conclusions such as these, certain quantitative results are yielded by
this construction in many cases, particularly where the functions break
naturally into parts in successive ranges of the abscissa.

It is well worth while to carry out this moving construction until it is
thoroughly familiar. There is no doubt that experts do this geometrical
construction in their heads all the time, and a little practice soon enables
the beginner also to dispense with the actual piece of paper. Examples
for practice are given in Fig. 8.7.

Serial products

Consider two polynomials

ap+ ayz + ax* + azz* + . ..
and bo+ bz + box® + bx* + . . ..

Their product is
aohy + (aohy + arbo)x + (aob: + aiby + asho)x?
+ (achs + aibs + asby + asbo)z®* + . . .,

which we may call

cot+cx+ et e+ ...,

where ¢y = ayby
¢ = @by + arbo
e = aoh: + arb: + azbo

c3 = achs + ar1bs + azby + ash.

This elementary observation has an important connection with con-
volution. Suppose that two functions f and g are given, and that it is
required to calculate their convolution numerically. We form a sequence
of values of f at short regular intervals of width w,

{(fofifafs o o . fubs
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Approximate value
of convolution integral

b h fofy. .. fy
] foBow

fo hfa by .. f, ]

M[-nsssu: xo|

fo i fo by fn ]

(fo8y + f18,)w

”DG; + )‘15; + fgig)w

fo h fo by .. fo

{fﬂ—l‘- + fu‘n—l)w

fo fy fo By .. fa }

f8.@

Fig. 3.8 Explaining the serial product.

and a corresponding sequence of values of g,

{90 91 92 g3 . - . gn}.

We then approximate the convolution integral

1@ - 2) ar

b:v summing products of corresponding values of f and g, taking different
discrete values of z one by one. It is convenient to write the g sequence
on a movable strip of paper which can be slid into successive positions
relative to the f sequence for each successive value. The first few stages
of this approach are shown in Fig. 8.8. It will be noticed that the g
sequence has been written in reverse as required by the formula. Since
f*g = g =, the f sequence could have been written in reverse, in which
case i would have been written on the movable strip.

It will be seen that this procedure generates the same expressions that
occur in the multiplication of series, and we therefore introduce the term
“serial product” to describe the sequence of numbers

{fogo fogr + figo foga + figr + fage . . . }

derived from the two sequences

{fofifafs. ..} and  {gogigags...]J.
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2
2 |1 |2
2 | 1] 4
3 i (9)
3 ! (0)
4 Y (18)

(10)

(8)
4 4 s6 Fig. 3.9 Calculating a serial product by hand.

We transfer the asterisk notation to represent this relationship between
the three sequences as follows:

(fofo .. fa) *lgo g1 . - - @) = {fogo fougr +frgo - . . fmgn}.
Alternatively, we may define the (i + 1)th term of the serial product of
{f:} and {g:} to be

Efﬂi—j-
J

In practice the calculation of serial products is an entirely feasible
procedure (for example, on a hand calculator by allowing successive
products to accumulate in the product register). The two sequences are
most conveniently written in vertical columns, and the answers are written
opposite an arrow marked in a convenient place on the movable strip.
Figure 3.9 shows an early stage in the calculation of {2 2 8 8 4} «
{11 2}. The value of 4, shown opposite the arrow, has just been cal-
culated, and the values still to be calculated as the movable strip is taken
downward are shown in parentheses. Note that the sequence on the
moving strip has been written in reverse (upward).

It will be seen that the serial product is a longer sequence than either of
the component sequences, the number of terms being one less than the
sum of the numbers of terms in the components:

(22884} *{112}={2491013108}.

Furthermore the sum of the terms of the serial product is the product
of the sums of the component sequences, a fact which allows a very valua-
ble check on numerical work. As a special case, if the sum of one of the
component sequences is unity, then the sum of the serial product will be
the same as the sum of the other component. These properties are
analogous to properties of the convolution integral.

A semi-infinite sequence is one such as

{(fofifo...h
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which has an end member in one direction but runs on without end in the
other. If we take the serial product of such a sequence with a finite
sequence, the result is also semi-infinite; for example,

(11})+«{1284...)=({18579....

A semi-infinite sequence may or may not have a finite sum, but this does
not lead to problems in defining the serial product because each member is
the sum of only a finite number of terms. Of course, the numerical check,
according to which the sum of the members of the serial product equals
the product of the sums, breaks down if any one of the sums does not exist.

The serial product of two semi-infinite sequences presents no problems
when both run on indefinitely in the same direction; thus

(1284...)*{1234 ...]={141020 ...},

but if they run on in opposite directions then each member of the serial

product is the sum of an infinite number of terms. This sum may very
well not exist; thus

{...4821}+{1284...

does not lead to convergent series.
Two-sided sequences are often convenient to deal with and call for no

special comment other than that one must specify the origin explicitly,
for example, by an arrow as in -

{...010.20409080706 ...}

i

{...0001000...} = {J}
i

plays an important role analogous to that of the impulse symbol §(z).
It has the property that

The sequence

(i = 1f1 = {f}

for all sequences {f}. This property is, of course, also possessed by the
one-n?ember sequence {1} and by other sequences such as {1 0 0}.
Serial multiplication by the sequence

(...0001—=1000...] or {1 —1}
is equivalent to taking the first finite difference; that is,

=1 s«{...faofafifife...]
={.. fa-f2 fo—fa imfo fo=fi ...}

Where it is important to distinguish between the central difference
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fusy — fa—y and the forward difference fo;1 — fu, it is necessary to specify
the origins of the sequences appropriately. Apart from a shift in the
indexing of the terms, however, the resulting sequence is the same.

The sequence

lll...(n’r.errns)...l
nn n

generates the running mean over n terms, a familiar process for smoothing
sequences of meteorological data. It may be written, as in the case of
weekly running means of daily values, as

1
Fli111111)

The sequence {1 1 1 1 1 1 1} itself generates running sums, in this case
over seven terms.
The semi-infinite sequence

f1111...

enters into a serial product with another sequence to generate a familiar
result. Thus if {f} is a sequence and 8, is the sum of the first n terms,
then the sequence {S} defined by

{8) = {8182 8s ...}
may be expressed in the form
{(1111...)={f1 ={(S}h

Since each term of the sequence {f} is the difference between two succes-
sive terms of {8}, a converse relationship can also be written:

{1 =1} = {8} = {f}.
Substituting in the previous equation, we have
(1111...}+{1 —1} * {S} = {S};

in other words the two operations neutralize each other. We may express
this reciprocal relationship by writing

(1111...)*{1=1}={1000..]
or, in a two-sided version,
(..0001111...)%{...0001=100...]
T 1
=(...0001000...}
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Another example of a reciprocal pair of sequences is
1234...} and {1 —2 1}.

This is an important relationshi i

; p because the reciprocal sequence repre-
sents the s:olutlon to the problem of finding {g} when {f] and {kfpare
given and it is known that

{f} « {9} = (h}.

{9} = {f1" = {h},

h e : . .
:.lvl :;re {f]~"is the reciprocal of {f}], that is, the sequence with the property

The answer is

{fi-ts{fl={..00100...}

Inversion of serial multiplication If {f} * { i
f 9} = (R}, then [k}
called the serial product of {f} and {g}, because the sequence {) C(m:?:

prises the coefficients of the polynomial which is th
nomials represented by {f] and {g}. et et ek

Conversely, the process of findin i
/> the pre g {g} when {f] and {h} are given may
be called serial division, and in fact one could carry out the sgolution of
such a problem by actually doing long division of polynomials.

For example, to solve the problem. '

{11} *{gogigs...} ={1881}

one could write

00+g12+g’z’+___m1+3x+832+3l'

1+az
The long division would then proceed as follows:
14 22 + 22
1+ z)1 + 8z + 8z + «°
1i4+» 2
2z + 3a*
2z + 2zt
22 + 23
z! 4 2?
Thus got+ gz +gx*+ ... =1+ 2 + 2°
or [g0 9192 ...} ={1 21}.

This, of course, is recognizable immediately as the correct answer.
Howevglar, 1t 1s not necessary to organize the calculation at such length.

A f:onvenlent way of doing the job on a hand calculator may be shown by

going back to an example in the previous section, where {2 2 8 8 4} =
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{1 1 2} was calculated. The situation at the end of the calculation is as
shown in Fig. 8.10a, the serial product being in the right-hand column.
Now, suppose that the left-hand column {f } and the right-hand column
{h} were given. To find {g}, write the sequence upward on the movable
strip of paper, and place it in position for beginning the calculation of the
serial product (see Fig. 3.10b). Clearly g, is immediately deducible, for it
has to be such that when it is multiplied by the 2 on the left the result is 2.
Hence in the space labeled go one may write 1 and then move the paper
down to the next position (see Fig.8.10c). Then, when ¢y is multiplied by
2 and added to the product of 2 and 1, the result must be 4. This gives
g1, and so on.

With a hand calculator one forms the products of the numbers in the
left-hand column with such numbers on the moving strip as are already
known and accumulates the sum of the products. Subtract this sum
from the current value of {h} opposite the arrow and divide by the first
member of [f] at the top of the left column to obtain the next value of
{g}. Enter this value on the paper strip, which may then be moved
down one more place. The process is started by entering the first value
of {g}, which is ho/fo. This inversion of serial multiplication is as easy as .
the direct process and takes very little longer.

Compared with long division, this method is superior, since it involves
writing down no numbers other than the data and the answer. Further-
more it is as readily applicable when the coefficients are large numbers or
fractions. Long division might, however, be considered for short
sequences of small integers.

Table 8.1 lists a few common sequences and their inverses. Most of

o]

1) + {6} = (A}

2 (gy) _2_1
2 1> 4
3 9
3 10
4 13
10 10
8 8

(b) (e)

Fig. 8.10 (a) Completion of serial multiplication of {2 2 8 3 4] by {112}
(b) and (c) first steps in the inversion of the process.
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Table 3.1 Some sequences and their inverses

Sequence Inverse
{11} {1 =11-11-1...
{1 =1} fr11111...)
{101} {10-1010, }
{10 —1) f1tor1ot1o0...
{111} (1 2700 2t L 0
{121} {1 —28 —45 —6...}
[n+1}={1284...} {1 —1}* =1 -2 1}
In+1)?! =114916...} (1 —1}*1% {1 1)
{(n+1)) ={18¢7...] {1 —1)*& {14 1)
{1 —a} [1aata®., ..}
{1 —a}*? {1 2a 8a? 4a® . . .}
; {s“':}+=}{1 e g2 ] [1 —e=}
1.—6“""1) [1 =1} *{1 —e=]/(1 —¢=
{sin w(n + 1)} {1 —2cosw ll/siicg :
{cos wn} ) {1 ~2cosw 1} * {1 — cos w}™!
{e=®T)) gin w(n + 1)} {1 =2 % cosw e~} /e~ sin w
{e~=" cos wn} {1 —2=cosw e} *{1 —e = cos w|™!

the _entries may be verified by serial multiplication of corresponding
entries, whereupon the result will be found tobe {1 0 0 0 . . .}. The

table is precisely equivalent to a list of polynomial pairs beginning as
follows:

14z l—z+z=24 ...
11—z l4+zt+ztst2zt4+ ...

1+ 2 1—z4a2t 4 ...

In this case the property of corresponding entries would be that their
product was unity.

S'on%e of the later entries in Table 8.1 represent exponential and other
variations reminiscent of the natural behavior of circuits, and will prove
more difficult, though not impossible, to verify at this stage. They are
readily derivable by transform methods.

Th.e serial product in matrix notation Let the sequence {kh} be the
serial product of two sequences {f} and {g}, where

{ifl =1{fofifa...fal
{9} = {0091 02 ... ga}
{h} = {ho hy hs . . . Bminl-

Evidently all three sequences can be expressed as single-row or single-
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column matrices, but since the sequences have different numbers of mem-
bers, matrix notation might not immediately spring to mind. The rela-
tionship between {f}, {g}, and {h} can, however, be expressed in terms of
matrix multiplication as follows.

First we recall the special case of a matrix product where the first factor
has n rows and n columns, and the second has n rows and one column only.
The product is a single-column matrix of n elements. Thus

ay ays 200 o Qin Ty anry + d12T2 + woee + @ 1nTn
an azz ... Qi zz | _ | Gata 4+ apx:+ . . . + Al
Qn1 Apn2 e Ann In an1T1 + Anal2 + . e + A pnTn

Now we form a column matrix [y] whose elements are equal one by one to
the members of the sequence |k} ; we also form a column matrix [z], whose
carly members are equal one by one to the members of the sequence {g}
as far as they go, and beyond that are zeros until there are as many efle-
ments in [2] as in [y]. Since each member of {k] is a linear combination
of members of {g} with a suitable set of coefficients selected from {f}, we
can arrange the successive sets of coefficients, row by row, to form a square
matrix such that the rules of matrix multiplication will generate the
desired result. Thus, to illustrate a case where {f} has five members, {g)
has three, and {k} has seven, we can write:

70 0 0 0 0 0 07 [g0| [fogo ho|
fiu o 0 0 O 0 0 'R fi1g0 + fog hy
Fit fuifo 00050 -0 g2 fogo + f1g1 + foge hs
Faio g ke fe 00 00: -0 0 { =| figo + fogr + frg2 | = hs
fo fs f2 fr fo O 0}10 fsgo + f1g1 + fog: he
0 f4 fa .fz f fo 0 0 f49'1 +,fﬂg'] ks

Lo o 5 f £ £ Sollo] Lia: 1 L]

The elements in the southeast quadrant of the f matrix could be replaced
by zeros without affecting the result. i :

By listing parts of the sequence { f} row by row with progressive shift as
required, we have succeeded in forcing the serial product mtolmatnx
notation. This may appear to be a labored and awkward exercise, and
one that sacrifices the elegant commutative property. In fact, however,
matrix representation for serial products is widely used fm control-system
engineering and elsewhere because of the rich possibilities offered by the
theory of matrices, especially infinite matrices.

Sequences as vectors Just as the short sequence {z1 z2 :r.a} may be
regarded as the representation of a certain vector in three-dimensional
space in terms of three orthogonal components, so a sequence of n mem-
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bers may be regarded as representing a vector in n-dimensional space.
As a rule we do not expend much effort trying to visualize the n mutually
perpendicular axes along which the vector is to be resolved, but simply
handle the members of the sequence according to algebraic rules which are
natural extensions of those for handling vector components in three-
dimensional space. Nevertheless, we borrow a whole vocabulary of terms
and expressions from geometry, which lends a certain picturesqueness to
linear algebra.
If the relationship between two sequences {z} and {y] is

{a} * {z} = {y},
where {a} is some other sequence, then an equivalent statement is
X =Y,

where X and Y are the vectors whose components are {z} and {y}, and T
is an operator representing the transformation that converts X to Y.
The transformation consists of forming linear combinations of the com-
ponents of X in accordance with the rules that are so concisely expressed
by the serial product.

It will be recalled that the number of members of the sequence |y}
exceeds the number of members of {z} if {z) has a finite number of mem-
bers. To avoid the awkwardness that arises if X and Y are vectors in
spaces with different numbers of dimensions, the vector interpretation is
usually applied to infinite sequences {x} and {y}. If the sequences aris-
ing in a given problem are in actual fact not infinite, it is often permissible
to convert them to infinite sequences by including an infinite number of
extra members all of which are zero.

As in the case of representation of sequences by column matrices, the
commutative property {a} * {z} = {z} * {a] is abandoned. One of the
sequences entering into the serial product is interpreted as a vector, and
one in an entirely different way. To reverse the roles of {z} and {a}—for
example, to talk of the vector A—would be unthinkable in physical fields
where the vector interpretation is used. This apparent rigidification of
the notation is compensated by greater generality. To illustrate this we
may note first that, to the extent that matrix methods are used for dealing
with vectors, there is no distinction between the representations of
sequences as column matrices and as vectors. Now, examination of the
square matrix in the preceding section that was built up from members of
the sequence {f} reveals that in each row the sequence {f]} was written
backward, the sequence shifting one step from each row to the next.
This reflects the mode of calculation of the serial product, where the
sequence {f} would be written on a movable strip of paper alongside a
sequence {g} and shifted one step after each cycle of forming products and
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adding. In the procedure for taking serial products there is no provision
for changing the sequence | f} from step to step. Indeed it is the essence
of convolution, and of serial multiplication, that no such change occurs.
But in the square-matrix formulation, it is just as convenient to express
such changes as not. Thus the matrix notation allows for a general
situation of which the serial product is a special case.

This more general situation is simply the general linear transformation
as contrasted with the general shift-invariant linear transformation. If
the indexing of a sequence is with respect to time, then serial multiplica-
tion is the most general time-invariant linear transformation, and would
for example be applied in problems concerned with linear filters whose
elements did not change as time went by. If, on the other hand, one were
dealing with the passage of a signal through a filter containing time-vary-
ing linear elements such as motor-driven potentiometers, then the rela-
tionship between output and input could not be expressed in the form of a
serial product. In such circumstances, where convolution is inapplicable,
the property referred to loosely as “harmonic response to harmonic
excitation” also breaks down.

The autocorrelation function

The self-convolution of a funetion f(z) is given by
fof = [ f@)f@ — w du.

Suppose, however, that prior to multiplication and integration we do not
reverse one of the two component factors; then we have the integral

[ faofe = 2) du,
which may be denoted by f*f. A single value of f * f is represented by

7 N flu = )
N
A

~
~

flw)f(u—2)
~

flu)

el
L !!"|

P
”-

Fig. 8.11 The autocorrelation function represented by an area (shown shaded).
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the s]3aded.area in Fig. 8.11. A moment’s thought will show that if the
function f is to be displaced relative to itself by an amount z (without
rev?r..\sal), then the integral of the product will be the same whether T is
positive or negative. In other words, if f(z) is a real function, then f*f

is an even function, a fact which is not true in i
i general of the convol
integral. It follows that elution

frf= [7. feftu — 2) du = I fafu + 2) du,

\a'rhich, of course, is deducible from the previous expression by substitu-
tion of w = u — z.

. It is -sh?wn in the appendix to this chapter that the value of f*fat
Its origin is a maximum; that is, as soon as some shift is introduced, the
integral of the product falls off.

When f(z) is complex it is customary to use the expression
[ st = 2) du
or [ . s+ 2) du.

(Not:e that it is. possible to place the asterisk in the wrong place and thus
obtain the conjugate of the standard version.)

It is often convenient to normalize by dividing by the central value.
Then we may define a quantity y(z) given by

_ oS+ 2) du
[ sair ) du

v(z)

and it is clear that
7(0) = 1.

We. shall refer to v(z) as the autocorrelation function of f(z). How-
ever, it of.ten happens that the question of normalization is unimportant
in a particular application, and the character of the autocorrelation is
of more interest than the magnitude; then the nonnormalized form is
referred to as the autocorrelation function.

As an example, take the function f(z) defined by

0 <0
flz) =11 —-2 0<z<l1
0 r>1.
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Then, for 0 <z < 1,
= frafu+ 2) du

[0 -0l = @+ @) du
1 =z, =
=3 2t%
The best way to determine the limits of integration is to make a graph
such as the one in Fig. 8.11. Where z > 1, the integral is zero, and

since the integral is known to be an even function of z, we have

- | |z| Mf B
f_,f*(u)f(u+:r)du={§ 34- 6 1<z<1
0 |=| > 1.
The central value, obtained by putting z = 0, is 4; hence
slal el _
'y(x)=‘ FT+'Q_ 1<z<1
0 2| > 1.

We note that ¥(0) = 1, and as with the convolution integral, the area
under the autocorrelation function may be checked (it is 1) to verify that
it is equal to the square of the area under f(z).

A second example is furnished by

o e—as z > 0
f&= { 0 r <0.
Then
f_"“ Sw)f(u + 2) du = [oﬁ e—av gaztv) dy
_ e—ale|
="
and
v(z) = ekl

The autocorrelation function is often used in the study of functions
representing observational data, especially observations exhibiting some
degree of randomness, and ingenious computing machines have been
devised to carry out the integration on data in various forms. In any
case, the digital computation is straightforward in principle. In the
theory of such phenomena, however, as distinct from their observation
and analysis, one wishes to treat functions that run on indefinitely, which
often means that the infinite integral does not exist. This may always
be handled by considering a segment of the function of length X and
replacing the values outside the range of this segment by zero; any diffi-
culty associated with the fact that the original function ran on indefinitely
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is t‘hus. removed. The autocorrelation v(z) of the new function fx(z),
which is zero outside the finite segment, is given, according to the defini-
tion, by

2 1) fxtu + ) du
[ fx(u) fx*(u) du

2 s + @)

[ fxfet ) du

v(z) =

Thus the infinite integrals are reduced to finite ones, and, of course, this
is precisely what happens in fact when a calculation is made on a finite
quantity of observational data.

Now if we are given a function f(z) to which the definition of v(z)
does not apply because of its never dying out, and we have calculated
v(2) for finite segments, we can then make the length X of the segment
as long as we wish. It may happen that as X increases, the values
of v(z) settle down to a limit; in fact, the circumstances under which
this happens are of very wide interest. This limit, when it exists, will
be denoted by C(z), and it is given by

X
C(z) = lim _mﬁu)f @ ) du
e [H @) du

A:s this branch of the subject is often restricted to real functions, such as
signal waveforms, allowance for complex f has been dropped.

Exeﬂfise Show that when this expression is evaluated for a real
function for which «(z) exists, then C(z) = y(z).

Since the limiting autocorrelation C is identical with ~ in cases where
Y is applicable, it would be logical to take C as defining the autocorrela-
tion function, and this is often done, In the discussion that follows, how-
ever, we shall understand the term “autocorrelation function” to include
the operation of passing to a limit only where that is necessary.
. As. an example of a function that does not die out and for which the
infinite integral does not exist, consider a time-varying signal which

is. a combination of three sinusoids of arbitrary amplitudes and phases,
given by

V(t) = Asin (at + ¢) + Bsin (8t + x) + Csin (v¢ + ¢).
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Then
37 ,
’ "4 t)dt
[lavere +9

= fiTT A sin (at’ + ¢) A4 sin (at’ + af + ¢)
l + B sin (8t + x)Bsin (8t' + 6t + x)
+ Csin (yt' +¢)Csin (v¢' + v + ¢)
+ cross-product terms] dt’
= fiTT { A%[cos at — cos (2at’ + at + 2¢)]
- + B?[cos 8t — cos (28t + Bt + 2x)]
+ C%cos ¥t — cos (2t + vt + 2]
+ cross-product terms} dt’
= AT cos at + B2T cos Bt + C?T cos vt + F(¢,T) + G(t,T),

where F stands for oscillatory terms and G for terms arising from cross
products. As T increases, F and G become negligible with respect to the
three leading terms, which increase in proportion to 7. Hence

[Novaewa + o ar
7 ' '
[l e

AT cos at + BT cos gt + C*T cos vt + F(t,T) + G(¢t,T)
- AT + BT + C*T + F(0,T) + G(0,T)

and

*r ’ 1] '
f“”_ VYV (@E + 1) dt

e [Lwere

iy ey (A? cos at + B? cos gt + C* cos vt).
Note that the limiting autocorrelation function C(f) is a superpositi?n of
three cosine functions at the same frequencies as contained in the signal
V(t), but with different relative amplitudes, and that C(Fi) =1 ‘

Since the principal terms in the numerator of v(z) increase in pro-
portion to X, another way to obtain a nondivergt?nt result is to divide
by X before proceeding to the limit. The expression

.1 orax
lim 5 [ f00f( + 2) du

is not equal to unity at its origin but is generally referred to 51mpl'y
as the “autocorrelation function’ because it becomes the same as C(z) if
divided by its central value (provided the central value is not zero).
It may therefore be regarded as a nonnormalized form of C(z).

~
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When time is the independent variable it is customary to refer to the
time average of the product V(t)V (¢t + ), and write

FOVE+m = lim 1 [ vVt a,

where the operation of time averaging is denoted by angular brackets
according to the definition
1 ryr

(.= lim -

o Pehgrd dt.

Using this notation for the example worked, we have
F@®V(t+ 1) = A2cos ar + B2cos fr + C? cos yr,

which, of course, is a little simpler than the normalized expression. It
should be noticed, however, that we do not get a useful result in cases
for which v exists.

A conspicuous feature of (' in this example is the absence of any trace
of the original phases. Hence, autocorrelation is not a reversible process;
it is not possible to get back from the autocorrelation function to the
original function from which it was derived. Autocorrelation thus
involves a loss of information. In some branches of physics, such as
radio interferometry and X-ray diffraction analysis of substances, it is
easier to observe the autocorrelation of a desired function than to observe
the function itself, and a lot of ingenuity is expended to fill in the lost
information.

The character of the lost information can be seen by considering a
cosinusoidal function of z. When this function is displaced relative to
itself, multiplied with the unshifted funetion, and the result integrated,
clearly the result will be the same as for a sinusoidal function of the same
period and amplitude. Furthermore, the result will be the same for
any harmonic function of 2, with the same period and amplitude, and
arbitrary origin of z. Thus the autocorrelation function does not
reveal the phase of a harmonic function. Now, if a function is com-
posed of several harmonic waves present simultaneously, then when
it is displaced, multiplied, and integrated, the result can be calcu-
lated simply by considering the different periods one at a time. This
is possible because the product of harmonic variations of different
frequencies integrates to a negligible quantity. Consequently, each of
the periodic waves may be slid along the z axis into any arbitrary phase,
without affecting the autocorrelation. In particular, all the components
may be shifted until they become cosine components, thus generating an
even function which, among all possible functions with the same auto-
correlation, possesses a certain uniqueness,
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Pentagram notation for cross correlation

The cross correlation f(z) of two real functions g(x) and h(z) is defined as
f@ = gvh= [ g — Dh(w) du.

It is thus similar to the convolution integral except that the component
g(u) is simply displaced to g(u — z), without reversal. To denote this
operation of g on k we use a five-pointed star, or pentagram, instead of the
asterisk that denotes convolution. While cross correlation is slightly
simpler than convolution, its properties are less simple. Thus, whereas
g * h = h * g, the cross-correlation operation of h on g is not the same as
that of g on h; that is,

gxh # h*xg.

By change of variables it can be scen that

f@) =g*h= [_‘. glu — z)h(u) du = f_.‘ g(wh(u + =) du
f—2) = hwg = [ h(u— Do du = [ haglu + 2) dus
gxh=g(=)*h

As in the case of the autocorrelation function, the cross correlation is
often normalized so as to be equal to unity at the origin, and when appro-
priate the average (g(u — z)h(u)) is used instead of the infinite integral.
When the functions are complex it is customary to define the (complex)
cross-correlation function by

gcxh = f_'_ g*(u — z)h(u) du = f:.. g*(Wh(u + z) du.

The energy spectrum

We shall refer to the squared modulus of a transform as the energy spec-
trum; that is, |[F(s)|? is the energy spectrum of f(z). The term is taken
directly from the physical fields where it is used. It will be seen that
there is not a one-to-one relationship between f(z) and itsenergy spectrum,
for although f(z) determines F(s) and hence also |[F(s)]? it would be
necessary to have? pha F(s) as well as |F(s)| in order to reconstitute f(z).

2 The phase angle of the complex quantity F(s) is written pha F(s) and is defined as
follows: if there is a complex variable = = r exp 6, then pha z = 6.
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Frequency Frequency

(a) &
Fig. 8.12 Specira of X radiation from molybdenum: (a) power spectrum; (b)
cumulative spectrum.

Knowledge of the energy spectrum thus conveys a certain kind of informa-
tion about f(z) which says nothing about the phase of its Fourier com-
ponents. It is the kind of information about an acoustical waveform
which results from measuring the sound intensity as a function of
frequency.

The information lost when only the energy spectrum can be given is of
precisely the same character as that which is lost when the autocorrelation
function has to do duty for the original function. The autocorrelation
theorem, to be given later, expresses this equivalence.

When f(z) is real, as it would be if it represented a physical waveform,
the energy spectrum is an even function and is therefore fully determined
by its values for s 2 0. To stress this fact, the term “positive-frequency
en}ergy spectrum” may be used to mean the part of |F(s)|* for which
sz 0,

Since |F(s)|? has the character of energy density measured per unit of s,
it would have to become infinite if a nonzero amount of energy were
associated with a discrete value of 5. This is the situation with an infi-
nitely narrow spectral line. Now we can consider a cumulative distribu-
tion function which gives the amount of energy in the range 0 to s:

[ @) ds.

Any spectral lines would then appear as finite discontinuities in the
cumulative energy spectrum as suggested by Fig. 8.12, and some mathe-
matical convenience would be gained by using the cumulative spectrum in
conjunction with Stieltjes integral notation. The convenience is espe-
cially marked when it is a question of using the theory of distributions for
some question of rigor. However, the matter is purely one of notation,
and in cases where we have to represent concentrations of energy within
bands much narrower than can be resolved in the given context, we shall
use the delta-symbol notation described later,
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Appendix

Prove that the autocorrelation of the real function f(z) is a maximum at
the origin, that is,

[ s s+ 2 du < [ (f) du.

Let ¢ be a real number. Then
[_‘, (f(u) + ¢f(u + 2)]2du > 0

and [ (S du+ 2 [ faof(u + 2) du

+ ¢ f_: [flu + z))2 du > 0;
that is, aet + be + ¢ > 0,

e= [ lfa)) du
2 [ fu)fu + 2) du.

where a

b

Il

Now, if the quadratic expression in € may not be zero, that is, if it has no
real root, then
b? — 4ac < 0.

Hence in this case /2 < a, or

<
[ . faoftu + <) du

=7 €1
7. e du

The equality is achieved at z = 0; consequently the autocorrelation
function can nowhere exceed its value at the origin. The argument is the
one used to establish the Schwarz inequality and readily generalizes to
give the similar result for the complex autocorrelation function.

Exercise Extend the argument with a view to showing that the equality
cannot be achieved for any value of = save zero.

Problems

1 Calculate the following serial products, checking the results by summation.
Draw graphs to illustrate.

a. {6917 20 10 1} * {3 8 11}

b.{11111)*%{1111}

. {1428588457609}x(11)

d. (142858845769} ={F 4%

(121

{ta i

T58821)*{1 —1}
1375821} *{1111..,]

o 1}*{101

el *x{edch al
{181}%{100000 +1}
(181)»{12¢}

. Multiply 181 by 122

. Multiply 10,801 by 10,202
(181}*{1282}

Comment on the smoothness of your results in d and f relative to the longer
of the two given sequences.

s. Consider the result of 7 in conjunction with Pascal’s pyramid of binomial
coefficients.

t. Seek longer sequences with the same property vou discovered in k.

u. Contemplate j, k, I, m, and n with a view to discerning what leads to serial
products which are even.

v. Master the implication of n, o, p, and ¢, and design a mechanical desk com-
puter to perform serial multiplication.

S e e e WD D W W

{1
{1
{1
{1
1
{1
{1
{a

2eP eI nFe e TS

2 Derive the following results, where H(z) is the Heaviside unit step function
(Chapter 4):

2*H(z) * e*H(z) = (2¢* — 2 — 2z — 2)H(2)
[sin z H(z)]** = §(sin z — z cos z)H(z)
[(1 = z)H(x)] * [e*H(2)] = zH(z)
H(z) * [e*H(z)] = (= — 1)H ()
[e*H (z)]** = re*H(z)
[e*H(z)]** = 3z%*H(z)

Prove the commutative property of convolution, that is, that f* g = g * f.

3

4 Prove the associative rule fx (g * k) = (f*g) *h.

5 Prove the distributive rule for addition f* (g + ) = f*g + f*A.
6

The function f is the convolution of g and k. Show that the self-convolutions
of f, g, and h are related in the same way as the original functions.

7 Iff=g*h, show that fx f = (g% g) * (h*h).
8 Show that if a is a constant, a(f * g) = (af) *¢g = f * (ag).
9 Establish a theorem involving f(g * k).

10 Prove that the autocorrelation function is hermitian, that is, that C(—u) =
C*(u), and hence that when the autocorrelation function is real it is even. Note
that if the autocorrelation function is imaginary it is also odd; give some thought
to devising a function with an odd autocorrelation function.
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11 Prove that the sum and product of two autocorrelation functions are each
hermitian.

12 Alter the origin of f(z) until f *f‘o is a maximum. Investigate the assertion
that the new origin defines an axis of maximum symmetry, making any neces-
sary modification. Investigate the merits of the parameter

o,

|

f*s 0
to be considered a measure of “degree of evenness.”
13 Show that if f(z) is real,

L] - -
[7 f@p=a ds = [ 1B@Rdz - [T (06 da,

and note that the left-hand side is the central value of the self-convolution of
f(z); that is, f *fiu.
14 Find reciprocal sequences for {1 8 3 1} and {1 4 6 4 1].

15 Find reciprocal sequences for {1 1} and {1 1 1}.

16 Establish a general procedure for finding the reciprocal of finite or semi-
infinite sequences and test it on the following cases:

{6432 168421...}
{64 64 48 32 20 12 7 4 . . .|

2
1 e cos (1 evcos(—) ...ecos( =) ...
10 10 10

17 Find approximate numerical values for a function f(x) such that
f(x) * E(z)

is zero when evaluated numerically by serial multiplication of values taken at
intervals of 0.2 in z, except at the origin. Normalize f(z) so that its integral is
approximately unity.

18 The cross correlation g * & is to be normalized to unity at its maximum
value. It is argued that

0 < f lo(u) — h(u + 2))* du = f gt du — 2[ g(wk(u + =) du + f B du,
and therefore that
f gwh(u +2)du € 7 f g2 du +§-f k*du = M.

Consequently (g * k)/M is the desired quantity. Correct the fallacy in this
argument.

Chapter 4 Notation for some
useful functions

ANMAITATTATIANATIANATIA

Many useful functions in Fourier analysis have to be defined piecewise
because of abrupt changes. For example, we may consider the function
f(z) such that

0 z <0
J&) =1z 0 z€ 1
1 x> 1.

This function, though simple in itself, is awkwardly expressed in com-
parison with a function such as, for example, 1 + 2%, whose algebraic
expression compactly states, over the infinite range of z, the arithmetical
operations by which it is formed. For many mathematical purposes a
function which is piecewise analytic is not simple to deal with, but for
physical purposes a “‘sloping step function,” to give it a name, may be at
least as simple as a smoother function.

Fourier himself was concerned with the representation of functions
given graphically, and according to E. W. Hobson “was the first fully to
grasp the idea that a single function may consist of detached portions
given arbitrarily by a graph.”

To regain compactness and clarity of notation, we introduce a number
of simple functions embodying various kinds of abrupt behavior. Also
included here is a section dealing with sinc z, the important interpolating
function, which is the transform of a discontinuous function, and some
reference material on notations for the Gaussian function.

51
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Rectangle function of unit height and base, I1 (x)

The rectangle function of unit height and base, which is illustrated in
Fig. 4.1, is defined by

0 |z| > %
I@)=1& | =%
1 2| < %.

It provides simple notation for segments of functions which have simple
expressions, for example, f(z) = II(z) cos 7z is compact notation for

0 < —%
f(z) = { cos 7z <2<}
0 <z

(see Fig. 4.2). We may note that hll[(z — ¢)/b] is a displaced rectangle
function of height 4 and base b, centered on z = ¢ (see Fig. 4.8). Hence,
purely by multiplication by a suitably displaced rectangle function, we

n(x)

| 1

Fig. 4.1 The rectangle function of unil height and base, I1(z).

f(x)

Fig. 4.2 A segmented function expressed by I1(x) cos wx.

hn(-’—;—"-)

f— = —

e——b ——>

Fig. 4.8 A displaced rectangle function of arbilrary height and base expressed in
terms of I1(z).
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can select, or gate, any segment of a given function, with any amplitude,
and reduce the rest to zero.

The rectangle function also enters through convolution into expressions
for running means, and, of course, in the frequency domain multiplication
by the rectangle function is an expression of ideal low-pass filtering. It is
important in the theory of convergence of Fourier series, where it is
generally known as Dirichlet’s discontinuous factor. The notation rect z,
which has been suggested for this function, does not lend itself readily to
notation such as I, I *II, and IIf.

For reasons explained below, it is almost never important to specify
the values at ¢ = +3, that is, at the points of discontinuity, and we shall
normally omit mention of those values. Likewise, it is not necessary or
desirable to emphasize the values II(+4) = ¥ in graphs; it is preferable
to show graphs which are reminiscent of high-quality oscillograms
(which, of course, would never show extra brightening halfway up the
discontinuity).

The triangle function of unit height and area, A (x)
By definition,

0 lz| > 1

AP =121z bl <1

This function, which is illustrated in Fig. 4.4, gains its importance largely
from being the self-convolution of II(z), but it has other uses—for example,
in giving compact notation for polygonal functions (continuous functions
consisting of linear segments).

Note that hA(z/%b) is a triangle function of height h, base b, and area
$hb.

Various exponentials and Gaussian and Rayleigh curves

Figure 4.5 shows, from left to right, a rising exponential, a falling exponen-
tial, a truncated falling exponential, and a double-sided falling exponential.

Alz)

Fig. 4.4 The triangle function of unit height and area, A(z).
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Figure 4.6 shows the Gaussian function exp (—#z?). Of the various
ways of normalizing this function, we have chosen one in which both the
central ordinate and the area under the curve are unity, and certain
advantages follow from this choice. The Fourier transform of the
Gaussian function is also Gaussian, and proves to be normalized in pre-
cisely the same way under our choice. In statistics the Gaussian distri-
bution is referred to as the “normal (error) distribution with zero mean”
and is normalized so that the area and the standard deviation are unity.
We may use the term “probability ordinate” to distinguish the form

When the standard deviation is o, the probability ordinate is

]_ —z 1202
a(2r)} ’

and the area under the curve remains unity. The central ordinate is
equal to 0.8989/s. Prior to the strict standardization now prevailing

R SH s

Fig. 4.6 Various exponential functions.

Probability

Fig. 4.6 The Gaussian function exp (—wz*) and the probability ordinate (2m)~t
exp (—32%).
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in statistics, the error integral erf z was introduced as

_2 (s
erfx—; 0 & dt.

The complementary error integral erfc z is defined by
erfcx =1 — erf z.

The probability integral a(z), now widely tabulated, is
1 = z
a(z) = @f_zr“’dt = erfa-

In this volume we use exp (—=z?) extensively because of its symmetry
under the Fourier transformation. Its integral is related to erf z and
a(z) as follows:

foz e di = i‘ erf iz = -}a[(%)*x}
[Z. e dt= g+ et vz = § + fal(@m)'e]

The customary dispersion parameters of exp (—wz?) are (see Fig. 4.6)
as follows:

a. Probable error = 0.2691 = 0.6745¢
b. Mean absolute error (mean of |z]) = »—! = 0.8183 = 0.7979¢
¢. Standard deviation (mean of 2?) = (2r)~} = 0.83989 = ¢

d. Width to half-peak 0.9394 = 2.355¢
e. Equivalent width 1.0000 = 2.5066¢

In two dimensions the Gaussian distribution generalizes to
8——r(=’+y')'
again with symmetry under the Fourier transformation, with unit central

ordinate, and with unit volume. The version used in statistics, for
arbitrary standard deviations ¢. and oy, is

1
ooy

gt 1oty 20!

Under conditions of circular symmetry, and putting z* + y* = 7%, the
two-dimensional probability ordinate becomes

b it

o r‘ﬂa"'
T



56 THE FOURIER TRANSFORM AND ITS APPLICATIONS

exp (—m‘/‘r’)
ITl

exp (—mwris?) =Y,

Fig. 4.7 Standard sequences of Gaussian functions.

The probability R(r) dr of finding the radial distance in the range r to
r + dr is 2rr dr times the above expression; hence

r
R r) = — e—r’{?rl'
=5

This is referred to as Rayleigh’s distribution, since it occurred in the
famous problem of the drunkard’s walk discussed by Rayleigh. In a
simple version of the problem the drunkard always falls down after taking
one step, and the direction of each step bears no relation to the previous
step. After a long time has elapsed, the probability of finding him at
(z,y) is a two-dimensional Gaussian function (according to which he is
more likely to be at the origin than elsewhere), and the probability of
finding him at a distance » from the origin is given by a Rayleigh dis-
tribution. Since the Rayleigh distribution has a peak that is not at the
origin, the above statements may appear contradictory. If they do, the
reader will find it instructive to contemplate the matter further.
The following are some infinite integrals often needed for checking:

f_: e dr =1 f_: e dy = 7t f_: et = ()
f_.u e~4=' dzy = (j—{)} fuu ze " dx = % ]ﬁm-xze—" dz = %

Sequences of Gaussian functions play a special role in connection with
transforms in the limit. The sequence exp (—=7%*) as 7 approaches zero
is useful for multiplying with functions whose integrals do not converge.
The limiting member of the sequence is unity. The sequence |r|~! exp
(—=x*/7%) is used for recovering ordinary functions, in cases of impulsive
behavior, by convolution. The properties which make the Gaussian
function useful in these contexts are that its derivatives are all continuous

-
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and that it dies away more rapidly than any power of z; that is,
lim ze¢=" = 0

r—+=

for all n.
Figure 4.7 shows these two important sequences; later we emphasize
that corresponding members are Fourier transform pairs.

Heaviside’s unit step function, H(x)

An indispensable aid in the representation of simple discontinuities, the
unit step function is defined by

0 z<0
Hz)={(} =2=0)
1 | R

and is illustrated in Fig. 4.8. It represents voltages which are suddenly
switched on or forces which begin to act at a definite time and are constant
thereafter. Furthermore, any function with a jump can be decomposed
into a continuous function plus a step function suitably displaced. Asa
simple example of additive use, consider the rectangle function II(z),
which has two unit discontinuities, one positive and one negative. If
these are removed, nothing remains. Hence II(z) is expressible entirely
in terms of step functions as follows (see Fig. 4.9):

H(x)

Fig. 4.8 The unit step function.

{H(x + %)

/-—H(X - Vg)

Fig. 4.9 Two functions whose sum s I1(z).
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Fig. .10 Graphs of sint and sin t H(t) which exhibit a principal use of the unit
step function.

EH(t — t,)
E
Fig. 411 A voltage E which ap-
ﬂ} pears at i = ty represented in step-
ty t  function notation by EH(t — t,).

xH(x)

Fig. 4.12 The ramp function
x  xH(z).

N(z) = Hz + §) — H= - 3.

Since multiplication of a given function by H(z) reduces it to zero where
z is negative but leaves it intact where z is positive, the unit step function
provides a convenient way of representing the switching on of simply
expressible quantities. For instance, we can represent a sinusoidal
quantity which switches on at ¢t = 0 by sin t H(t) (see Fig. 4.10). A
voltage which has been zero until ¢ = #; and then jumps to a steady value
E is represented by EH(t — t;) (see Fig. 4.11).

The ramp function R(z) = xH(x) furnishes a further example of nota-
tion involving H(z) multiplicatively (see Fig. 4.12). (F/m)R(t) repre-
sents the velocity of a mass m to which a steady force FH(t) has been
applied, or the current in a coil of inductance m across which the potential
difference is FH(t). It will be seen that R(z) is also the integral of H(z)
and, conversely, that H(z) is the derivative of R(z). Thus

R@) =[°, H@) dz
and R'(z) = H(z).
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Step-function notation plays a role in simplifying integrals with variable
limits of integration by reducing the integrand to zero in the range beyond
the original limits. Then constant limits such as — = to ® or 0 to «
can be used. For example, the function H(z — z') is zero where 2’ > =z,
and therefore f_’_ f(z’) dz’ can always be written f_‘ f(e"H(z — ') dz’.
Thus in the example appearing above we can write

R@) =[* B@) i = [ H@)HG - o) éz.
This last integral reveals the character of R(z) as a convolution integral,
R(z) = H(z) » H(x),

and in general we may now note that convolution with H(z) means
integration (see Fig. 4.18):

H@) +f@) = [ f@)He - 2)dw = [©_f) d
or 1@ = L8 o)

Usually, it is not important to define H(0), but for the sake of com-
patibility with the theory of single-valued functionsit is desirable to assign
& value, usually 4. Certain internal consistencies are then likely to be
observed. For instance, in the equation R'(z) = H(z) it is clear that
R'(0+)=H(O+) =1 and that R'(0 —) = H(0 —) = 0, and if we
deem R'(0) to mean lima.o [R(z + % Az) — R(z — } Az)]/Az, we find
R'(0) = . Furthermore, the Fourier integral, when it converges at
a point of discontinuity, gives the midvalue.

However, there is no obligation to take H(0) = }; it is not uncommonly
taken as zero. This is a natural consequence of a point of view according
to which (see Fig. 4.14)

H(z) = ling [(1 = e=")H(z)).

~ f(=)

x'=x x'

Fig. .18 The shaded area is f —:- f(z') dz', or a value of the convolution of f(z)
with H(z).
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Atx) (1= e*")H(x) /
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(a) ® (©)
Fig. 4.14 (a) The function H(z); (b) an approzimation to H(z); (c) the integral
of (b).

Then H(0) = 0. The circumflex indicates that there is a slight difference
from the definition already decided on.

1 0
Thus H(z) = (0 ig 0
and H(z) = H(z) + 35°2)
! _]0 z#0
where (x) = 1 b 0.

The function §°(z) is one of a class of null functions referred to below.
No discrepancy need arise from the relation R'(z) = H(z), since the
integral of H(z), regarded as

lim [©_ (1 = e H(u) du,

r—0

is certainly R(z); and R’(0), regarded as the limiting slope at z = 0 of
approximations such as those shown in Fig. 4.14¢, is certainly equal to
HA(0), namely, 0.

It is sometimes useful to have continuous approximations to H(z).
The following examples all approach H(z) as a limit for all z as r — 0.

¥+ L arctan =
™ i
1 “w
% erfe ( - “::) -5 f“z e du

§'+18i§£———fx r—‘sinct—!du
w T - T

[rrm (%) au

31 — =) z> 0.
'& + _,&(1 — er!r) z < 0.

An example which approaches H(z) as r — 0 for all z except £ = 0 is
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0 < —r
fon AT i 55

In this case
ling fles) = Hz) + (§ — ) 8(),

since f(0,r) = 1 — ¢! for all . A further example which approaches

H(z) ast— 0 is
p . |
f_.. A (u F) du.
T

The difference between H(z) and any version such that H(0) »= 4 is a
null function whose integral is always zero. If it were necessary to make
physical observations of a quantity varying as H(z) or H(z), with the
finite resolving power to which physical observations are limited, it would
not be possible to distinguish between the mathematically distinct alter-
natives, since the weighted means over nonzero intervals, which are the
only quantities measurable, would be unaffected by the presence or
absence of null functions. For physical applications of H(z) it is there-
fore perhaps more graceful not to mention H(0).

The sign function, sgn x
The function sgn z (pronounced signum z) is equal to 41 or —1, accord-
ing to the sign of = (see Fig. 4.15). Thus

-1 z<0

BT =1 z> 0.

Clearly it differs little from the step function H(z) and has most of its
properties. It has a positive discontinuity of 2. The relation to H(z) is

sgnzr = 2H(z) — 1.

Fig. 4.15 The odd function sgn z.
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A w qx
However, lim4_,. [-.4 sgn z dz = 0, whereas f__. H(z) does not exist.

Furthermore, we may note that sgn z, unlike H(z), is an odd function,
and this property sometimes makes it more useful in symbolic expressions.

The filtering or interpolating function, sine x
We define

sin 7z
Tz

sinc r = ,

a funection with the properties that

sinc 0 = 1
sinc n

-
f sinc z dz
-

n = nonzero integer

This funetion will appear so frequently, in many different connections,
that it is convenient to have a special symbol for it, especially in some
agreed normalized form. In the form chosen here, the central ordinate is
unity and the total area under the curve is unity (see Fig. 4.16a); the
word “‘sine” appears in Woodward’s book! and has achieved some cur-
rency. A table of the sinc function appears on page 368.

The unique properties of sinc « go back to its spectral character: it
contains components of all frequencies up to a certain limit and none
beyond. Furthermore, the spectrum is flat up to the cutoff frequency.
By our choice of notation, sinc z and II(s) are a Fourier transform pair;
the cutoff frequency of sinc z is thus 0.5 (cycles per unit of z).

When sine z enters into convolution it performs ideal low-pass filtering;
that is, it removes all components above its cutoff and leaves all below
unaltered, and under certain special circumstances discussed later under
the sampling theorem, it performs an important kind of interpolation.

In terms of the widely tabulated sine integral Si z (shown in Fig. 4.16¢),
where

Brd j;x sin udu,

u

we have the relations

T . Si (rx)
sincudy = ——
0 T
: d Si (rx)
sinc z = 5~ ——
dr =«

! P. M. Woodward, “Probability and Information Theory with Applications to Radar,”
MecGraw-Hill Book Company, New York, 1953.

Notation for some useful functions 63

and for the integral of sinc z (see Fig. 4.16b) we have

. x M 1 Si (‘l’ﬂ:)
H(:r)*smcz=f_»smc ua‘u-2+ .
sine x
e ,—-.\‘
g N N— x
(a)
H(x) # sinc x
_— / .
— -
(b)
Six
b I
2
1 b—
|
1 z

(e)

Fig. 4.16 (a) The filtering or interpolating function sinc z; (b) its integral; (c)
the sine integral Si z.
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since? x

L | x

H(x) # sinc® z
/-v—/ 1

Fig. 4.17 The square of sinc 7 and ils integral.

Another frequently needed function, tabulated on page 368, is the
square of sinc z (see Fig. 4.17):

S sin rx \?
sine2z =(—— ) -
T

This function represents the power radiation pattern of a uniformly
excited antenna, or the intensity of light in the Fraunhofer diffraction
pattern of a slit. Naturally, it shares with sinc = the property of having
a cutoff spectrum, since squaring cannot generate frequencies higher than
the sum-frequency of any pair of sinusoidal constituents. A little
quantitative thought along the lines of this appeal to physical principles
would soon reveal that the Fourier transform of sine? z is A(s). The
cutoff frequency is one cycle per unit of z.
Among the properties of sinc? z are the following:

sinc? 0 = 1
sinc*n = 0 n = nonzero integer

- -
f sinc*z = 1.
-
In two dimensions a function analogous to sinc z is

J 1(11‘?‘)_
2r

Il

which has unit volume, a central value of n/4, and a two-dimensional
Fourier transform II(s). Another generalization to two dimensions,
which has analogous filtering and interpolating properties, is

sine z sinc y.

The two-dimensional Fourier transform of this function is II(u)II(v).
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Pictorial representation

Certain conventions in graphical representations will be adopted for the
purpose of clarity. For example, theorems relating to Fourier transforms
will be illustrated, where possible, by examples which are real. In these
diagrams the points where the abscissa and ordinate are equal to unity
are marked if it is appropriate to do so.

In representing purely imaginary quantities a dashed line is always
Im F(s)
\
\

- Re F(s) -
\ -..\\ 73/\ --{ /
/
N\ o oy A3 .
\ / I?
\ 7 \ /

Fig. 4.18 Representation of a complex function F(s) by its real and imaginary parts.

pha F(s)

-
L]
.

..
tssnsssent®

Fig. 4.19 Complex function shown in modulus and phase.

Imaginary

Fig. 4.20 Complex function in three dimensions.
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Fig. 4.21 Values of F(s) on the
complex plane of F(s).

used; hence complex quantities may be shown unambiguously and clearly
by their real and imaginary parts (see Fig. 4.18).

Sometimes a complex function may be shown to advantage by plotting
its modulus and phase, as in Fig. 4.19. Another method is to show a
three-dimensional diagram (see Fig. 4.20), and a third method is to show
a locus on the complex plane (see Fig. 4.21).

Summary of special symbols

A small number of special symbols which are used extensively throughout
this work are summarized in Table 4.1 and in Fig. 4.22 for reference.

m(x) Alx) H(z)
L i / \ ! L
sgn x 8(x) 1I(x)
: _ \ ‘ | I ]
1 S S L

————

¢ H o] ' o b ;
!

Fig. 4.22 Summary of special symbols.
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Table 4.1 Special symbols
Function Notation
Rectangle I(z) = {(l) Fii :%
7
Triangle A@ = {1 H !ﬂ N
Heaviside unit step H(z) = { ; * Z g
z
Sign (signum) sgn T = { 1_1 i Z g
Impulse symbol* &(z)
Sampling or replicating symbol* I1II(z) = E é(z — n)
Even impulse pair 1(z) = 386(z + 7) + 36(z — 3)
0Odd impulse pair Wz) = 38(z + 3) — 38(z — 3)
Filtering or interpolating sinc z = =%
Tz

Asterisk notation f .

pidoepardion 1@ 9@ * [ 7 jwo - wdu  (p. )
Asterisk notation for serial

ot )+l = l);,f,m_,-} (p- 82)
Pentagram notation f(z) * g(z) = f _-. flu)g(z + u) du (p- 40)
Various two-dimensional M(zy) = M(z)(y)

functions 28(z,y) = () 8(y)

MI(z,y) = IH(z)I1I(y)
!sinc (z,y) = sinc z sinc y

* See Chapter 5.
Problems
1 Show that

H(z+9) a>0
H(az + b) = =

II(—:—P) a<o,
a

H(az + b) = H(x + z)y(a) + H(—z = "-’) H(—a).

and hence that

2 Discuss the function §[1 + z/(z?)!] used by Cauchy.



68 THE FOURIER TRANSFORM AND ITS APPLICATIONS

3 Show that the operation H(z) * is an integrating operation in the sense that
HG) «U@H@) = [ 1(@) da.

4 Calculate (d/dz) [II(z) = H(z)] and prove that (d/dz)[f(z) = H(z)] = f(z).

5 By evaluating the integral, prove that sinc z = sinc r = sinc z.

6 Prove that sinc = = Jo(rz) = Jo(wz).

7 Prove that 4 sinc 4z * sin ¢ = sin .

8 Show that

Ni(z) = H(z +3) — H(z — 3)
=H@E+z)+HEF —-z) -1

H(t — 2%

3(sgn (z + %) — sgn (z = 3)]

and that II(z?) = II(z/2").
9 Show that
A@) = 11(z) +11(2)
=TI(z) « H(z + %) — I(2) » H(z — 7).
10 Experiment with the equation f[f(z)] = f(z) and note that f(z) = sgn :c1is a
solution. Find other solutions and attempt to write down the general solution
compactly with the aid of step-function notation.

11 Show that erf z = 2®(2¥oz) — 1, where

x 1 2yt
- —u 2 .
P(z) f_ - o@n)! € du

12 Show that the first derivative of A(z) is given by

Al(z) = =11 (z) sgn

and calculate the second derivative.

13 In abbreviated notation the relation of A(z) to II(x) could be written
A =1 *Il or A = II*%. Show that

M* =T s A = 4(z + 13Tz + 1) + § — )(z) + 3z — 1) (z — 1).
Show also that

% = 3z + 13 HE +1}) -3+ D HE + P + 3z - HHE -
g(z + 13)*H(z + 13) — 3(z + 7 3 t&(zilb’H(x-— 1

14 Examine the derivatives of [I*? at z = §+ and z = 1§+ and reach some
conclusion about the continuity of slope and curvature.

I5 Show that (d/dz)|z| = sgn r and that (¢/dz) sgn 2 = 28(z). Comment on
the fact that

dz|  d? _

2 [2zH(x)] = 25(z).

4

Chapter 5 The impulse symbol

Tl Tofo] Tal [aTo] Tala TaTa] ela] Tolo] Tlo!

It is convenient to have notation for intense unit-area pulses so brief that
measuring equipment of a given resolving power is unable to distinguish
between them and even briefer pulses. This concept is covered in
mechanics by the term “impulse.” The important attribute of an
impulse is its integral; the precise details of its form are unimportant.
The idea has been current for a century! or more in mathematical circles
and was extensively employed by Heaviside, for example, who used the
symbol pl.? The notation é(x), which was subsequently introduced into
quantum mechanics by Dirac,® is now in general use. The underlying
concept permeates physics. Point masses, point charges, point sources,
concentrated forces, line sources, surface charges, and the like are familiar
and accepted entities in physies. Of course, these things do not exist.
Their conceptual value stems from the fact that the impulse response—
the effect associated with the impulse (point mass, point charge, and the
like)—may be indistinguishable, given measuring equipment of specified
resolving power, from the response due to a physically realizable pulse.
It is then a convenience to have a name for pulses which are so brief and
intense that making them any briefer and more intense does not matter.

We have in mind an infinitely brief or concentrated, infinitely strong

! For historical examples from the writings of Hermite, Cauchy, Poisson, Kirchhoff,
Helmholtz, Kelvin, and Heaviside, see B. van der Pol and H. Bremmer, “Operational
Caleulus Based on the Two-sided Laplace Integral,” Cambridge University Press, Cam-
bridge, England, 1955.

3 This symbol means the derivative of the unit step function.

*P. A. M. Dirac, “The Principles of Quantum Mechanics,” 3d ed., Oxford University
Press, Oxford, 1947,

69
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unit-area impulse and therefore wish to write
§(z) =0 z#0
and f_._ 5(z)dz = 1.

However, the impulse symbol* 5(z) does not represent a function in the
sense in which the word is used in analysis (to stress this fact Dirac coined
the term “improper function’), and the above integral is not a meaningful
quantity until some convention for interpreting it is declared. Here we

use it to mean
lim [ © m (z) dz.
par g g T

The function r—'II(z/7) is & rectangle function of height ~' and base 7
and has unit area; as = tends to zero a sequence of unit-area pulses of ever-
increasing height is generated. The limit of the integral is, of course,
equal to unity. In other words, to interpret expressions containing the
impulse symbol, we fall back on certain sequences of finite unit-area pulses
of brief but nonzero duration, and of some particular shape. We perform
the operations indicated, such as integration, differentiation, multiplica-
tion, and then discuss limits as the duration approaches zero. There is
some convenience mathematically in taking the pulse shape always
Gaussian; obviously, one has to prepare for possible awkwardness in
retaining I(z) as a choice, where differentiation is involved. However,
the essence of the physics is that the pulse shape should not matter, and
we therefore proceed under the expectation that the choice of pulse shape
will remain at our disposal.

We adapt our approach to each case as it arises. Later we give a
systematic presentation of the theory of generalized functions, a recently
developed exposition of the sequence idea in tidied-up mathematical form.

The need to broaden Fourier transform theory was mentioned earlier
in connection with functions, such as periodic functions, which do not
possess Fourier transforms. The term “transform pair in the limit” was
introduced to describe cases where one or both members of the transform
pair are generalized functions. All these cases can be expressed with the
aid of the impulse symbol and its derivatives, §(z), &' (z), and so on, which
thus furnish the notation for the broadened theory.

The convenience of the impulse symbol lies in its reserve over detail.
As a specific example of the relevance of this feature to physical systems,
consider an electrical network, say a low-pass filter. An applied pulse
of voltage produces a certain transient response, and it is readily observa-

«We use the word “symbol”’ systematically to signpost the entities that are not func-
tions; we may also use the term “generalized function,” introduced in 1953 by Temple.
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ble, as the applied pulses are made briefer and briefer, that the response
settles down to a definite form. It is also observable that the form of the
response is then independent of the input pulse shape, be it rectangular,
triangular, or even a pair of pulses. This happens because the high-
frequency components, which distinguish the different applied pulses,
produce negligible response. The network is thus characterized by a
certain definite, readily observable form of response, which can be elicited
by & multiplicity of applied waveforms, the details of which are irrelevant;
it is necessary only that they be brief enough. Since the response may
be scrutinized with an oscilloscope of the highest precision and time
resolution, we must, of course, be prepared to keep the applied pulse
duration shorter than the minimum set by the quality of the measuring
instrument. The impulse symbol enables us to make abbreviated state-
ments about arbitrarily shaped indefinitely brief pulses.

An intimate relationship between the impulse symbol and the unit step

function follows from the property that f _‘_ 8(z) dz’ is unity if z is
positive but zero if = is negative. Hence

[, 8@ dz = H@).

This equation furnishes an opportunity to illustrate the interpretation of
an expression containing the impulse symbol. First we replace 5(z) by
the pulse sequence r~'II(z/7) and contemplate the sequence of integrals

’
e, en()ar.
2 =
Aslong as  is not zero or infinite, each such integral is a function of z that
may be described as a ramp-step function, as illustrated in Fig. 5.1. Now
fix z, and consider the limit of the sequence of values of the integral gen-
erated as r approaches zero. We see that if we have fixed on a positive

(negative) z, then the limit of the integral will be unity (zero). Therefore,
in accordance with the definition of H(z) we can write

lim [*_ e G) dz’ = H(z).

-0/

The equation

[Z.5@)de = H@)
is shorthand for this.
Since under ordinary circumstances

[ 5@ de
f@)

9(z)
implies that

¢’ (2),
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one writes by analogy

5(z) = c—iH(z)

and states that “the derivative of the unit step function is the impulse
symbol.” Since the unit step function does not in fact possess a deriva-
tive at the origin, this statement must be interpreted as shorthand for
“the derivatives of a sequence of differentiable functions that approach
H(z) as a limit constitute a suitable defining sequence for §(z).” The
ramp-step functions of Fig. 5.1 are differentiable and approach H(z).
Since the amount of the step is in all cases unity, the area under each
derivative function is unity, thus qualifying the sequence of derivative
functions as a suitable sequence to define a unit impulse.

It is not necessary to deal in terms of sequences of rectangle functions
to discuss impulses. Representations of §(z) in terms of various pulse
shapes include the following sequences, generated as r approaches zero
(through positive values).

rin(Z)

I
]
I
o

; i
T= lé"'?} :
1 1
I 1
! i
1
1’=1--.__Aki——-:-—————-—-.-i——1
I
T=2—“ [ } : I
I i
L L
- H ! L

x

Fig. 5.1 A rectangular pulse sequence and the sequence of ramp-step funclions
obtained by integration.
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(5

is composed of rectangle functions, all having their left-hand edge at the
origin; it is often considered in the analysis of circuits where transients
cannot exist prior to ¢ = 0, the instant at which some switch is thrown.
If one uses this sequence instead of the centered sequence, the results will
not necessarily be the same. This is discussed below in connection with
the sifting property. The sequence

The sequence

=1 e—r:'f Lo

of Gaussian profiles, which has been mentioned previously, has the con-
venient property that derivatives of all orders exist. On the other hand,
these profiles lack the convenience of being nonzero over only a finite

range of z. The sequence
A (5)
=

of triangle functions is useful for discussing situations where first deriva-
tives are needed, since the profiles are continuous. In addition, they
have an advantage in being zero outside the interval in which |z| < 7.
The sequence

o &
! sine =
T

has the curious property of not dying out to zero where z # 0; at any
value of = not equal to zero the value oscillates without diminishing as
r— 0. The sequence serves perfectly well to define &(z) for a reason
that is given below in connection with the sifting property. The reso-
nance profiles

T

w(x? + 72)

decay rather slowly with increasing z. A product with an arbitrary func-
tion may well have infinite area. To eliminate this possibility completely,
one is led to contemplate sequences that are zero outside a finite range,
thus obtaining freedom to accept products with functions having any kind
of asymptotic behavior. In addition, one would like to have derivatives

of all orders exist.
- i Al z
TSP [1 - (a:/r)2:| H(Qr)
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is a specific example of a sequence of profiles, each of which is zero outside
the interval in which |z| < 7, and each of which possesses derivatives of all
orders. To see that it is possible for a function to descend to zero with
zero slope, zero curvature, and all higher derivatives zero, differentiate
the function

e '*H(z),

and evaluate the derivatives at £ = 0. There may seem to be a clash
with the Maclaurin formula, according to which

f() = f(0) + =f(0) + :';—zf"(o) 4+ ...+ f;_'; f®(0) + remainder,

In the case of many functions familiar from analysis, the remainder term
can be shown to vanish asn — . In the case we have chosen here, how-
ever, the first » + 1 terms vanish and the remainder term contains the
whole value of the function.

The sifting property

Following our rule for interpreting expressions containing the impulse
symbol, we may try to assign a meaning to

[, #@)f() da.

e "l*_.r-ln(%)“:)

|
|
[

/ J x
Y Ml

Fig. 5.2 Ezplaining the sifting property. The shaded area is approzimately

7f(0).
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8(x)

Fig. 5.8 Graphical representation of the
impulse symbol §(z) as a spike of unit
height.

x

Thus we substitute the sequence r—'I(z/r) for 4(z), perform the multi-
plication and integration, and finally take the limit of the integral as

T— 0:
lim [ *_ 7~ (:-’) f(a) da.

In Fig. 5.2 the integrand is indicated in broken outline. Its area is r—!
times the shaded area. The shaded area, whose width is r and whose
average height is approximately f(0), amounts to approximately 7f(0).
Hence the area under the integrand approaches f(0) as r approaches zero.
Thus we write

[ 7. s@)f) dz = f(0)

and refer to this statement as the sifting property of the impulse symbol,
since the operation on f(z) indicated on the left-hand side sifts out a single
value of f(z). It will be seen that it is immaterial what sort of pulse is
incorporated in the integrand, and this fact is the essence of the utility
of &8(z). It just stands for a unit pulse whose duration is much smaller
than any interval of interest, and consequently whose pulse shape means
nothing to us; only its integral counts. It will be represented on graphs
(see Fig. 5.8) as a spike of unit height, and impulses in general will be
shown as spikes of height equal to their integral.
It is clear that we can also write

[, 8@ — )@ dz = f(a)
and [ " 8@ f( — a) dz = f(—a).

The resemblance to the convolution integral can be emphasized by writing
[ s@fz - ahde = [ 8z - ) f) dz’ = f(a)
or, in asterisk notation,

3(z) = f(x) = f(z) * 8(x) = f(=z).
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If f(z) has a jump at z = 0, a little thought devoted to a diagram .su?h
as the one Fig. 5.2 will show that the sifting integral will have a limit-
ing value of }[f(0 +) + f(0 —)]. Consequently, it is more general to
write

ba) ) = TS )

The expression on the right-hand side differs from f(z) only by a nu_ll
function, and hence the refinement is ordinarily not important. This
does not alter the fact that }[f(z +) + f(z —)] can be different in value
from f(z).

Thi(a)symmetrical sequence 7~ 'II[(z — 47)/7] mentioned above “'rill be
seen to have the property of sifting out f(z +). At points of d.lscon-
tinuity of f(z), the use of this asymmetrical sequence therefore gives a
different result. In transient analysis, where discontinuities at the
switching instant ¢ = 0 are particularly common, the choice of sequence
can thus appear to give different answers. The difference, however, can
only be instantaneous. _

The impulse symbol has many fascinating properties, most of which
can be proved easily. An important one which must be watched care-
fully in algebraic manipulation is

3(ax) = ﬁ 8(z);

that is, if the scale of z is compressed by a factor a, thus reducing the area
of the pulses which previously had unit area, then the strength of the
impulse is reduced by the factor |a|. The modulus sign allows for the
property

5(—z) = é(x).

From this it would seem that the impulse symbol has the property of
evenness; however, we gave an equation earlier involving a sequence of
displaced rectangle functions which were not themselves even (Prob. 19).

It can easily be shown by considering sequences of pulses that we may
write, if f(z)is continuous at z = 0,

f(z) 8(z) = f(0) &(z).
From the sifting property, putting f(z) = z, we have
f_: z 8(z) dz = 0.

One generally writes
z 8(z) = 0,
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111(z)

EEERENEN]

Fig. 5.4 The shah symbol III(x).

although if the prelimit graphs are contemplated, it will be seen that this
equation conceals a nonvanishing component reminiscent of the Gibbs
phenomenon in Fourier series. Thus it is true that

lim [:rr*lﬂ ("E)] =0 for all z;
—0 T
(9o

and, moreover, the limit of the minimum value is —%. Consequently,
among those functions which are identically zero, zé(z) is rather curious,

and one has the feeling that if it could be applied to the deflecting elec-
trodes of an oscilloscope, one would see spikes.

nevertheless,

The sampling or replicating symbol Il (x)

Consider an infinite sequence of unit impulses spaced at unit interval as
shown in Fig. 5.4. Any reservations that apply to the impulse symbol
() apply equally in this case; indeed, even more may be needed because
we have to deal with an infinite number of infinite discontinuities and a
nonconvergent infinite integral. For example, all the conditions for exist-
ence of a Fourier transform are violated. The conception of an infinite
sequence of impulses proves, however, to be extremely useful—and easy
to manipulate algebraically,

To describe this conception we introduce the shah® symbol III(z) and
write

Oi(z) = ) &z —n).

nm—
5 The symbol III is pronounced shah after the Cyrillic character III, which is said to

have been modeled on the Hebrew letter (shin), which in turn may derive from the

Egyptian g 2 , & hieroglyph depicting papyrus plants along the Nile.
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Various obvious properties may be pointed out:

IEE(az) = % K (z - g)

III(—z) = III(z)
IIl(z + n) = III(z) n integral

MI(z — }) = Iz + %)
[""_*;* I(z) dz = 1
III(z) = 0 T # n.

Evidently, ITI(z) is periodic with unit period.
A periodic sampling property follows as a generalization of the sifting
integral already discussed in connection with the impulse symbol. Thus

multiplication of a function f(z) by III(z) effectively samples it at unit
intervals:

M@f@) = 2, f(r) 5z — n).
The information about f(z) in the intervals between integers where
III(x) = 0is not contained in the product; however, the values of f(z) at
integral values of z are preserved (see Fig. 5.5).

The sampling property makes III(z) a valued tool in the study of a
wide variety of subjects (for example, the radiation patterns of antenna
arrays, the diffraction patterns of gratings, raster scanning in television
and radar, pulse modulation, data sampling, Fourier series, and comput-
ing at discrete tabular intervals).

f(=) (=) f(x)

v 1

x z

Fig. 5.6 The sampling property of 11I(z).

fx) () » f(x)

® o £
Fig. 5.6 The replicating property of I1I(z).
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Just as important as the sampling property under multiplication is a
replicating property exhibited when ITI(z) enters into convolution with a
function f(z). Thus

@) *f@) = ) fl—n);
as shown in Fig. 5.6, the function f(z) appears in replica at unit intervals
of & ad infinitum in both directions. Of course, if f(x) spreads over a base
more than one unit wide, there is overlapping.

The III symbol is thus also applicable wherever there are periodic
structures. This twofold character is not accidental, but is connected
with the fact that III is its own Fourier transform (in the limit), which of
course makes it twice as useful as it otherwise would have been.

The self-reciprocal property under the Fourier transformation is
derived later.

The even and odd impulse pairs n(x) and '1(x)
Figure 5.7 shows the often-needed impulse-pair symbols defined by

n(z) = $5(z + 3 + i@ - 3),
h@) = ¥z + §) — 33z - ¥).

n(x)

0 01 O

Ii(x)

| .

z
Fig. 5.7 The even and odd im- l
pulse pairs, 11(z) and Yy(z).
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f=)

1(x) « f(x)

LT N N

Fig. 5.8 The convolution of 11(z) with f(z).

The impulse pairs derive importance from their transform relationship
to the cosine and sine functions. Thus

1(x) O cosms cosrr D (s)
I(z) o isinwrs sin 7z 2 1;(s).

When convolved with a function f(z), the even impulse pair 11(z) has
a duplicating property. Thus, as illustrated in Fig. 5.8,

nz) *f(z) = ¥z + P + = — H.

There are occasions when 11(z) might better consist of two unit impulses,
but as defined it is normalized to unit area; that is,

f_: 1n(z) de = 1,
which has advantages.
If the finite difference of f(z) is defined by

Af(z) = flz + %) — fz — D),
Af(x) = 21(2) = f(x).
Thus the finite difference operator can be expressed as
A=20x,

then

Derivatives of the impulse symbol

The first derivative of the impulse symbol is defined symbolically by

¥ (z) = a%ﬁ(n:).
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The mental picture that accompanies this conception is the same as that
involved in the conception of an infinitesimal dipole in electrostatics, and
it is well known that the idea of an infinitesimal dipole is convenient and
easy to think with physically. The &(z) notation carries this facility
over into mathematical form, but, of course, there are difficulties because
we cannot ask a function to go positively infinite just to the left of the
origin and negatively infinite just to the right, and to be zero where
|z] > 0. To cap this we would wish to write &'(0) = 0.

For rigorous interpretation of statements involving & (z) we may fall
back on sequences of pulses such as were invoked in connection with &(z),
and consider their derivatives (two examples are given in Fig. 5.9).
Then statements such as

[Z ¥@adz =0

~a(3)

PR S
w(x? + 72)

~0(;) sen = B —27x
w(=2 + r2)2

s

D

Fig. 5.9 Pulse sequences (above) and their derivatives (below) which, as T — 0,
are used for contemplating the meaning of §(x) and &'(z).
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are deemed to be shorthand for statements such as

4 ® —rx

El_'.l(]) f—“ [1r(:.|:2 + r")’] 2% =
where the quantity in brackets is the derivative of one of the pulse
shapes considered previously in discussing é(x). The precise form of
pulse adopted is unimportant—even a rectangular one will do—but in
later work the possibility that a differentiable pulse shape may offer an
advantage should be considered.

A derivative-sifting property

vaf=[7 ¥@-)f@)d = f@

may be established in this way. Further properties are

f_: z & (z)dz = —1
[o o @ldz = =
228 (x) =0

§(—z) = —8'(x) ré(z) = —d(x)
f(x) &' (x) = £(0) & (x) — f(0) &(z).

The following relations apply to derivatives of higher order.
f ;q §"(x)dz = 0
8"(z) * fz) = f"'(2)
_: z? §"(z) de = 2
5 (z) = (=1)"nlz é(z)
8™ (z) * f(z) = f™(2)
[, 59@f@) dz = (—1)7(0)

Null functions

Null functions are known chiefly for having Fourier transforms which are
zero, while not themselves being identically zero. By definition, f(z) is a
null function if

[ﬂ” f(z) dz = 0

for all @ and b. An alternative statement is

[, 1@l dz =0,
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8%z) 8'(x) x8(x)

e b c

Fig. 5.10 Sequences (below) defining §%z), 8*(x), and z §(x) (abore).

Null functions arise in connection with the one-to-one relationship
between a function and its transform, a relationship defined by Lerch’s
theorem, which states that if two functions f(z) and g(z) have the same
transform, then f(z) — g(z) is a null function.

An example of a null function (see Fig. 5.10) is §°(z), an ordinary single-
valued function defined by

0 z2#0

() = 1 z=0

which thus has a discontinuity at £ = 0 similar in a way to that possessed
by H(z) [defined so that H(0) = %]. Under the ordinary rules of integra-
tion, the integral of 8°(x) is certainly zero. However, it aptly describes
the current taken by a series combination of a resistance and a capacitance
from a battery, in the limit as the capacitance approaches zero.

We can now more succinctly state the relation between H(z) and the
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step function H(z) of Fig. 4.14; thus
H(z) = H(z) + $5'(2),

the difference between the two being a null function.
The symbol 8!(z) has to be considered in terms of sequences of pulses in
the same way as §(z). Consider the sequence

()

ast— 0. Then we can attach meaning to the statements

s@-{L 115
[2. 8@ dz =0,
and [ B@rd=1.

We could describe 8 (z) as a null symbol.

Exercise Would we wish to call §(z) a null symbol ?

Some functions in two and more dimensions

One encounters the two- and three-dimensional impulse symbols ?8(z,y),
5(x,y,2), as natural generalizations of &(z). For example, 28(z,)
describes the pressure distribution over the zy plane when a concentrated
unit force is applied at the origin; *5(x,y,z) describes the charge density in
a volume containing a unit charge at the point (0,0,0). In establishing
properties of 25(z,y) one considers a sequence, as 7 — 0, of functions such
as 721 (z/r)[I(y/r) or (4/=)r—UI[(xz? + y?)}/7], which have unit volume

f"rl(i)ﬂ(¥)

28(xy)

Fig. 5.11 The two-dimensional impulse symbol *§(z,y) and a defining sequence of
functions a,b,c.
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(Fig. 5.11). Then we have

Bk b)) 2+ yr#0
2(xy) = { A 2 4y =0,

f_q‘ f_.‘ 25(z,y) de dy = 1,
1
28(az,by) = [ab| 25(x,y),

and the very interesting relation
*8(z,y) = 8(z) &(y).

Introducing the radial coordinate r such that r* = z* + y?, we can express
2§(z,y) in terms of 8(r):

25(z,y) = 3(r)

wlr|

In three dimensions,

0 2yt =0
3 .
6(3,!1.2) - { @0 72 + yg + 2t =
f_: fj_ f_n. 18(z,y,2) dedy dz = 1,
and 8(x,y,2) = 8(2) 8(y) 8(2) = *é(zy) 8(2).
In cylindrical coordinates r? = a2 + y?,
2 _ 8(r) 3(2)
5($’y;2) F ""t?'i ’
and with p? = 2% 4+ y* + 2%
(p)
3 e .
8(x,y,2) 2mp?

For describing arrays in two dimensions we have the bed-of-nails
symbol *III(z,y), illustrated in Fig. 5.12 and defined by

Mi(zy) = Y Y e —my — ).

Figure 5.18 shows an approach to the discussion of its properties. It has
the property

III(z,y) = III(z)II1(y)

and various extensions of the integral properties of 28(z,y) and III(z),
for example,

[, [ fay) M) dzdy = D Y fomn).
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It is doubly periodic,

HIl(z + m, ¥y + n) = 11l(z,y) m,n integral,

°TIT ("’ ?’)

and ¥ v

1
X7
represents a doubly periodic array of two-dimensional unit impulses with
period X in the z direction and YV in the y direction.

Tabulation at discrete intervals of two independent variables (two-
dimensionally sampled data), and the coefficients of double Fourier series
are handled through the relation

f(zy) ML(zy) = 3 3 f(m,n) *6(z — m, y — n).
m n

Convolution with 2III(z,y) describes replication in two dimensions,
such as one has in a two-dimensional array of identical antennas, and, as
with III in one dimension, 2III has the distinction of being its own two-
dimensional Fourier transform (in the limit).

The scheme of multidimensional notation introduced here permits
various self-explanatory extensions which are occasionally useful for
compactness. Thus

I (2,y,2) = II(2)IT1(y)III(z)
T(z,y) = I(2)II(y)

sin «wr sin wy
wizy

(z,y) = 1u(z)u(y).

Isine (z,y) =

11(z,y)

Fig. 5.12 The bed-of -nails symbol, *111(x,y).
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7-111(y) « TI(¥) TI(x) #11(3)

Fig. 6.13 Two functions whose product is suitable for discussing *111(z,y).

Two other important two-dimensional distributions do not need new
symbols. The row of spikes (see Fig. 5.14) is adequately expressed by
IT1(z) é(y) and the grating by III(z). These two distributions form a two-
dimensional Fourier transform pair and are suitable for discussing phe-
nomena such as the diffraction of light by a row of pinholes or by a
diffraction grating.

The concept of generalized function

As has been seen, a good deal of convenience attends the use of the impulse
symbol é(z) and other combinations of impulses such as III(z) and u(z).
The word “symbol” has been used to call attention to the fact that these
entities are not functions, but despite their apparent lack of status they

III(x) 8(y) I1{x)

Fig. 5.14 The row of spikes (left) and grating (right).
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have many uses, one of which is to provide derivatives for functions with
simple discontinuities. Ordinarily we would say in such cases that the
derivative does not exist, but the impulse symbol permits simple dis-
continuities to be accommodated.

The importance of dealing with discontinuous and impulsive behavior,
even though it is nonphysical, was explained earlier in connection with the
indispensable but nonphysical pure alternating and pure direct current.

Pure alternating current means an eternal harmonic variation, which
cannot be generated. However, the response to a variation that is simple
harmonic over a certain interval and zero outside that range can be made
independent of the time of switching on, to a given precision, by waiting
more than a certain length of time before observing the response. Since
the details of time and manner of switching on are irrelevant, they might
as well be relegated to the infinitely remote past, thus making it conven-
ient to refer to the observable response as the response to pure alternating
current.

Impulses are likewise impossible to generate physically, but the
responses to different sufficiently brief but finite pulses can be made
indistinguishable to an instrument of given finite temporal resolving
power.

Since precision of measurement is known to be limited by the temporal
and spectral resolution of the measuring instrument, the physical limita-
tions referred to in the preceding paragraphs can be characterized as
“fnite resolution.” The feature of finite resolving power invoked in the
explanation contains the key to the mathematical interpretation of
impulse-symbol notation: integrals containing the impulse symbol are to
be interpreted as limits of a sequence of integrals in which the impulse is
replaced by a sequence of unit-area rectangular pulses 7—'II(z/7). The
limit of the sequence of integrals may exist, even though the rectangular
pulses grow without limit.

Thus the statement

[, 8@)f@) dz = f(0)

is deemed to mean

lim S ("f) f(z) dz = £(0).
In this interpretation of the statement the integrals can exist, and the
limit of the integrals as r — 0 can exist. The physical situation to which
this corresponds is a sequence of ever more compact stimuli producing
responses which become indistinguishable under observation to a given
precision, no matter how high that precision is.

A satisfactory mathematical formulation of the theory of impulses has
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been evolved along these lines and is expounded in the books of Lighthill*
and Friedman.? Lighthill credits Temple with simplifying the mathe-
matical presentation; Temple® in turn credits the Polish mathematician
Mikusiriski* with introducing the presentation in terms of sequences in
1948. Schwartz’s two volumes® on the theory of distributions unify “in
one systematic theory a number of partial and special techniques proposed
for the analytical interpretation of ‘improper’ or ‘ideal’ functions and
symbolic methods.””®

The idea of sequences was current in physical circles before 1948,
however.”

The introduction of rectangular pulse sequences was not meant to imply
that other pulse shapes are not equally valid. In fact the essence of the
approach is that the detailed pulse shape is unimportant. The advantage
of rectangular pulses is the purely practical one of facilitating integration.
However, rectangular pulses do not lend themselves to discussing the
derivative of an impulse. For that we need something smoother which
does not itself have an impulsive derivative. Now for a general theory
in which we wish to discuss derivatives of any order it is advantageous to
have a pulse sequence such that derivatives of all orders exist. Schwartz
and Temple introduce pulse shapes which have all derivatives and further-

more are zero outside a finite range; an example mentioned earlier in this
chapter is®

7lg T =Y lz] <r
0 |z| > =.

In actual fact one never inserts such a function explicitly into an integral;

when it becomes necessary to integrate, a pulse shape with a sufficient
number of derivatives is chosen. Often a rectangular pulse suffices.

Ifarticularly well-behaved functions The term “generalized func-
t!on” may be defined as follows. First we consider the class S of func-
tions which possess derivatives of all orders at all points and which,

! M. J. Lighthill, “An Introduction to Fourier Analysis and Generalised Functions,”
Cambridge University Press, Cambridge, England, 1958,

* B. Friedman, “Principles and Techniques of Applied Mathematics,” John Wiley &
Sons, New York, 1956.

* G. Temple, Theories and Applications of Generalised Functions, J Lond. Math. Soc.,
vol. 28, p. 181, 1958.

4J. G.-Mikusinski, Sur la méthode de généralisation de Laurent Schwartz et sur la con-
vergence faible, Fundamenta Mathematicae, vol. 85, p. 235, 1948,

® L. Schwartz, “Théorie des distributions,” vols. 1 and 2, Herman & Cie, Paris, 1950
and 1951,

8 Temple, op. cit., p. 175.

?B. van der Pol, Discontinuous Phenomena in Radio Communication, J. Inst. Elec.
Engrs., vol. 81, p. 881, 1987,

¥ Schwartz, op. cit., p. 22.
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71 exp (~22%) -1 exp (—mx2/72) exp (—x2/7%)

(a) ®) (c)

Fig. 5.15 Sequences of particularly well-behaved functions: (a) not regular; (b)
regular; (c) exercise.

together with all the derivatives, die off at least as rapidly as [z[~" as
|z] — «,nomatter how large Nmaybe. We shall refer tomembers of the
class S as particularly well-behaved functions. We note that the deriva-
tive and the Fourier transform of a particularly well-behaved function are
also particularly well behaved. To prove the second of these statements
let

F(s) = f _: F(z)e—*= dx.

The conditions met by the particularly well-behaved function more than
suffice to ensure that the Fourier integral exists. Differentiating p times,
we have

Fo) = [ ((—i#ra)F (@)l da,

and integrating by parts N times, we have

P2 = | capmagn [ - g (e B @leoms da |
<O [ | @) e
= 0(Js[™);

hence F(s) belongs to S.

Regular sequences Among sequences of particularly well-behaved
functions we distinguish sequences p,(z) which lead to limits when multi-
plied by any other particularly well-behaved function F(x) and integrated.
Thus if

lim [~ p.(@)F () dz
=0

exists, then we call p,(z) a regular sequence of particularly well-behaved
functions.
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A sequence of particularly well-behaved functions which is not regular
(see Fig. 5.15) is

rle
An example of a regular sequence is

P :'.fr’_

In this example each member of the sequence has unit area, but that is not
essential;forinstance, consider theregularsequence (1 + ") exp (—a?/72).

Generalized functions A generalized function p(x) is then taken to
be defined by a regular sequence p,(z) of particularly well-behaved func-
tions. In fact the generalized function is the regular sequence, and since
the limit to which a regular sequence leads can be the same for more than
one sequence, a generalized function is finally defined as the class of all
regular sequences of particularly well-behaved functions equivalent to a
given regular sequence. The symbol p(z) thus represents an entity
rather different from an ordinary function. It stands for a class of func-
tions, and is itself not a function. Therefore, when we write it in a con-
text where ordinary functions are customary, the meaning to be assigned
must be stated. For example, we shall deem that

[ ;‘ p(z)F (z) dz,

where p(z) is a generalized function and F(z) is any particularly well-
behaved function, shall mean

lim [ * p()F (@) dz,

where p,(z) is any regular sequence of particularly well-behaved functions
defining p(x).

Two points may be noticed. First, the sequenees 7~'II(z/r) and
r=1A(z/r) do not define a generalized function in the present sense, for the
members of these sequences do not possess derivatives of all orders at all
points. Second, the function F(z) on which the limiting process is tested
has to be particularly well-behaved.

These highly restrictive conditions enable one to make a logical develop-
ment at the cost of appearing to exclude the simple sequences and simple
functions we ordinarily handle. We must bear in mind, however, that
where differentiability is not in question we may fall back on rectangular
pulses, and that where only first or second derivatives are required, II*?
and I1** suffice. The requirement on asymptotic behavior is met by the
rectangular pulse. On the other hand, the sequence 7~ sinc (z/7), which
satisfies the requirement on differentiability, does not die away quickly
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enough to be a regular sequence in the strict sense; nevertheless, it is
usable when it enters into a product with a function which is zero outside
e finite interval.

The advantage of the Gaussian pulse as a special but simple case of a
particularly well-behaved function has been exploited systematically by
Lighthill,” whose line of development is followed.

The sequence exp (—72z?) defines a generalized function I(z), for

lim [, e () da = [ F@) dz,
which integral exists. Hence we can make the following statement about
I(z):
[2 I@F@ & = [ F@) d=,

where F(z) is any particularly well-behaved function.
The sequence 7' exp (—=z?/7?) defines a generalized function, for

lim f _-.. r=le~*='I"F(x) dx
r—0

exists and is equal to F(0), where F(z) is any particularly well-behaved
function. To prove this note that

‘ f_'n +—le1"F(z) dz — F(0) |

I

‘ f " rler i [F(z) — F(0)] do l
max lF’(x}}f

imax \F'@)|,

N

T—le—x.t‘.fr’lz! dz

o
—=

which approaches zero as 7— 0. The generalized function defined by
this and equivalent sequences we call §(z), and we can state immediately
that

[ s@F(@) dz = F(0),
where F(z) is any particularly well-behaved function.

Algebra of generalized functions We have introduced one rule for
handling the symbol standing for a generalized function, namely, that
giving the meaning of

f_: p(z)F(z) dz.

Further rules are needed for handling the symbols for generalized func-
tions where they appear in other algebraic situations.
Let p(z) and g(z) be two generalized functions, defined by the regular

* Lighthill, op. cit.
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sequences p,(z) and g,(z), respectively. Now consider the sequence
p.(z) + ¢q.(). First, we note that it is a sequence of particularly well-
behaved functions. Next, we see whether the sequence is a regular one,
that is, whether

lim f " (@) + ¢.@)F () dz
—0

exists, where F(z) belongs to 8. The integral splits into two terms, each
of which has a limit, since p.(z) and p.,(z) are by definition regular
sequences. The sum of the two limits is the limit whose existence thus
establishes that p.(z) + ¢.(z) is a regular sequence that consequently
defines a generalized function. This generalized function we would wish
to assign as the denotation of

p(z) + q(z);

it remains only to verify that the result is the same irrespective of the
choice of the defining sequences p,(z) and ¢,(z), and indeed we see that the
defining sequences p,(x) + ¢.(x) are equivalent, since the sum of the two
limits is independent of the choice of p,(z) and g¢,(x).
We now have a meaning for the addition of generalized functions.
Let p(z) be a generalized function defined by a sequence p,(z). From
the formula for integration by parts,

[ h@F@ dz = — [ p(@)F (@) da,

where F(z) is any particularly well-behaved function and so therefore is
F"(:r:).' Since F'(z) is a particularly well-behaved function, and since
p-(z) is by definition a regular sequence, it follows that

— lim f _: p-(2)F' () dz
—0
exists, hence
lim f _: po(z)F(z) dz
=0
exists. Thus 2)(z) is a regular sequence of particularly well-behaved

functions, and all such sequences are equivalent. To the generalized
function so defined we assign the notation

?'(2).

This gives us a meaning for the derivative of a generalized function.
Here is an example of a statement which can be made about the derivative
?'(z) of a generalized function p(z):

[C Y @F@ dz = - [~ p@F @ de.
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Similarly, f_‘_ p™(x)F(z) dz = (—1)» f: p(z)F™(z) de.

Since by definition F™(x) exists, however large » may be, it follows that
we have an interpretation for the nth derivative of a generalized function,
for any n.

Differentiation of ordinary functions Generalized functions possess
derivatives of all orders, and if an ordinary function could be regarded as
a generalized function, then there would be a satisfactory basis for
formulas such as

2 [H@) = 8(a).
If f(z) is an ordinary function and we form a sequence f,(z) such that
lim [ *_ f.(2)F(z) dz = . j@F@) dx,
—0 = -

where F(z) is any particularly well-behaved function, then the sequence

defines a generalized function, which we may denote by the same symbol

f(z). The symbol f(z) then has two meanings. We shall limit attention

to functions f(z) which as |z| — « behave as |z|~¥ for some value of N.
A suitable sequence f,(z) is given by

[r=le=="I"] » [f(z)e~7"").
With this enlargement of the notion of generalized functions we can

embrace the unit step function H(z) as a generalized function and assign
meaning to its derivative H'(z). Thus

[C B @F@ de = - [ H@F@) i
=~ [[F@dz

= [PP@
= F(0),
but . 6@F@ dz = F(),
hence H'(z) = 8(x).

The generalized function &(z) is thus the derivative of the generalized
function H(z), and this is how we interpret formulas such as H'(z) = 8(z);
we take the symbol for an ordinary function such as H(x) to stand for the
corresponding generalized function.
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Problems
I What is the even part of
$z+9) +dz+2 —8E+1)+3@) +d(z—1)—8(z—2 — éz —8)?

2 Attempting to clarify the meaning of §(zy), a student gave the following
explanation. “Where u is zero, 8(u) is infinite. Now zy is zero where z = 0
and where y = 0, therefore §(zy) is infinite along the z and y axes. Hence
8(zy) = 8(z) + 8(y).” Explain the fallacy in this argument, and show that

§(z) + ﬁ(y)’
o(zy) = ]
3 Show that
u(z) = 82" — )
and that 8(z* — a?) = }a|"{é(z — a) + 8(2 + a)}.
4 Show that
f_" eitrse dg = §(z)
and that
[, d@emeda = 1.
5 Show that
a(az+b)=r|a(z+%)- a 0.
6 If f(z) = 0 has roots z,, show that
8(z — )
6 = e ————
) E @l

wherever f’(z,) exists and is not zero. Consider the ideas suggested by &(z*)
and 8(sgn x).

7 Show that
wd(sin wz) = IIl(z)
and 8(sin ) = 2 TTT (5)
T
8 Show that

II(z) + II(z — 4) = 2 I1I(2) = III(z) * 411(2x — %).

9 Show that
M) ( ) @) ( ) -

and also that III(z)II ( ) = ITI(z)II ( )
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10 Can the following equation be correct?
zdz—y) =y bz — ).
11 Show that A(x) * 2 @, 8(x — n) is the polygon through the points (n,a,).

12 Prove that
8(—z) = —8&(z)
z 8'(z) = —é(x).
Show also that
f(a) 8'(z) = f(0) §'(z) — f'(0) (),

for example, by differentiating f(z) ().

13 In attempting to show that é'(z) = —é(z)/2 a student presented the follow-
ing argument. ‘‘A suitable sequence, as 7 approaches zero, for defining &(z) is
r/m(z? + 72). Therefore a suitable sequence for §'(z) is the derivative

E T _ —2rz
drx(z®+ 1) =w(z?+ 77?2
-2 T

- 2+ P x(2® + 'r’}.

The second factor is the sequence for 8(z), and the first factor goes to —2/z in
the limit as r approaches zero. Therefore §'(z) = —28(z)/2z.” Explain the
fallacy in this argument.

14 Show that

z*6™ (z) = (—1)"nld(z)
and hence that z* §"'(z) = 208(z)
and 23 8"(z) = 0.

15 The function [z] is here defined as the mean of the greatest integer less than
z and the greatest integer less than or equal to z. Show that

&) = II(z)
and also that di (2]H)] = M(2)H(z) — 35(z).
X

(The common definition of [z] as the greatest integer less than z is not fully suit-
able for the needs of this exercise; the two definitions differ by the null function
which is equal to # for integral values of z and is zero elsewhere.)

16 The sawtooth function Sa(z) is defined by Sa(z) = [z] — z + 3. Show
that

Sa'(z) = IIl(z) — 1
and that é[Sa(:c)H(:)] = [III(z) — 1]H(z).
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17 Show that sgn?z = 1 — §%z).
18 The Kronecker delta is defined by
w={o ia}
Show that it may be expressed as a null function of i — j as follows:
8 = 8%z — 7).

19 We wish to consider the suitability of a sequence of asymmetrical profiles,
such as 7~ 1{A(z/r) 4+ FA[(z — 7)/7]}, for representing the impulse symbol. Dis-
cuss the sifting property that leads to a result of the form

Batf =pdof+vi_«f,

where &, is a symbol based on the asymmetrical sequence, 6, is based on the
sequence 7-I[(z — 47)/7], and 4_ is based on the sequence r'I[(z + 37)/7]
(r positive).

20 Prove the relation 23(z,y) = &(r)/x|r|.

21 Tllustrate on an isometric projection the meaning you would assign to
III[(z? 4+ y*)}]. How would you express something which on this diagram
would have the appearance of equally spaced concentric rings of equal height ?
22 'The function f,(z) is formed from f(z) by reversing it; that is, f,(z) = f(—z).
Show that the operation of forming f, from f can be expressed with the aid of the
impulse symbol by

f*s
and hence that (f*xé)*é =1

23 Under what conditions could we say that (f* 8) * & = f* (5 % §)?

24 All the sequences f(r,7) given on page 73 have the property that f(0,7)
increases without limit as 7 — 0. Show that $77'A[(z/7) — 1] + 37 'A[(z/7) + 1]
is an equivalent sequence which, however, possesses a limit of zero, as r — 0, for
all z. Show that f(0,7), far from needing to approach « as 7 — 0, may indeed
approach —w,

25 Show that
f(z) 8”(z) = f(0) §”(z) — f'(0) &'() + f"(0) é(z)
and that in general
f(z) 8™(2) = f(0) §™(z) — f(0)6" "(z) + . . .
=f"7(0) & (2) + f(0) 8(z)-

26 What can be said about the associativity of convolution in the case of

H(z) « §(z) « H(—2z)?



Chapter 6 The basic theorems

A small number of theorems play a basic role in thinking with Fourier
transforms. Most of them are familiar in one form or another, but here
we collect them as simple mathematical properties of the Fourier trans-
formation. Most of their derivations are quite simple, and their appli-
cability to impulsive functions can readily be verified by consideration of
sequences of rectangular or other suitable pulses. As a matter of interest,
proofs based on the algebra of generalized functions as given in Chapter 5
are gathered for illustration at the end of this chapter.

The emphasis in this chapter, however, is on illustrating the meaning
of the theorems and gaining familiarity with them. For this purpose a
stock-in-trade of particular transform pairs is first provided so that the
meaning of each theorem may be shown as it is encountered.

A few transforms for illustiration

Six transform pairs for reference are listed below. They are all well
known, and the integrals are evaluated in Chapter 7; we content ourselves
at this point with asserting that the following integrals may be verified.

fﬂ e-TFg—itrar Jp — p—we? and f”m e~ gtitriz dg = g—vr
- =

f_: sinc z e~*** dz = II(s) and [_.w II(s)et?=*= ds = sinc z

I

f _-. sinc? z e~2*= dx = A(s) and f _: A(s)eti?mz ds = sine? z

Thus the transform of the Gaussian function is the same Gaussian func-
tion, the transform of the sinc function is the unit rectangle function, and
98
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the transform of the sinc? function is the triangle function of unit height
and area.

These formulas are illustrated as the first three transform pairs in Fig.
6.1. Note that item (2) of the figure, which says that II(s) is the trans-
form of sine z, could be supplemented by a second figure, with left and
right graphs interchanged, which would say that sine s is the transform of
II(z). A consequence of the reciprocal property of the Fourier trans-
formation, this extra figure would appear redundant. However, the
statement

I(s) = f _.“ sinc x e~¥** d
has quite a different character from
sine ¢ = f _: I(z)e—i27= dx.

The first statement tells us that the integral of the product of certain
rather ordinary functions is equal to unity for absolute values of the
constant ¢ less than 4. Whether s is equal to say 0.8 or 0.85, the value of
the integral is unchanged. However, if |s| exceeds ¥, the situation
changes abruptly, because the integral now comes to nothing and con-
tinues to do so, regardless of the precise value of s. Thus

= sinwz i |1 ls] < %
/. g 0%, Tug . jo B

This rather curious behavior is typical of many situations where the
Fourier integral connects ordinary, continuous, and differentiable fune-
tions, on the one hand, with awkward, abrupt functions requiring piece-
wise definition, on the other. The second statement may be rewritten

sin s
s

= fl g—itrze Jop
=

Here an elementary definite integral of the exponential function is equal
to an ordinary function of the parameter s. Thus the direct and inverse
transforms express different things. Two separate and distinct physical
meanings will later be seen to be associated with each transform pair.

Three further transforms required for illustrating the basic theorems are
transform pairs in the limiting sense discussed earlier.

Taking the result for the Gaussian function, and making a simple
substitution of variables, we have!

f‘ g—r(u]'e—i‘!n: dr = |ﬂ|_18_'("r“]!.
—w

! In this formula the absolute value of a is used in order to counteract the sign reversal
associated with the interchange of the limits of integration when a is negative.
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Fig. 6.1 Some Fourier transform pairs for reference.
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As a— 0, the right-hand side represents a defining sequence for 3(s):
the left-hand side is the Fourier transform of what in the limit is unity.
It follows that

1 is the Fourier transform in the limit of (s).
The remaining two examples come from the verifiable relation

o
f—' eiug—(n:)'g—i!nz dz = |a|—13-—[(l—vl)f0]"
whence

¢'** is the Fourier transform in the limit of é(s — §);

or, splitting the left-hand side into real and imaginary parts and the right-
hand side into even and odd parts, cos 7z is the Fourier transform in the

limit of
$o(s + %) + 3é(s — §) = n(s)

and 1 sin 7z is the minus-z Fourier transform in the limit of

—4is + %) + 3 — B = —N().
Summarizing the examples,

e-fl’ : e—l’l‘
sinc z O II(s)
sine? z © A(s)
12 d(s)
cosmz D 1(s) = ¥é(s + §) + 3é(s — )
sinwz D i(s) = ols + %) — $is(s — %)

L(z) o isinmws.

All the transform pairs chosen for illustration have physical interpreta-
tions, which will be brought out later. Many properties appear among
the transform pairs chosen for reference, including discontinuity, impul-
siveness, limited extent, nonnegativeness, and oddness. The only
examples exhibiting complex or nonsymmetrical properties are

e D §(s — ¥)
and iz — ) o e,

Similarity theorem

If f(x) has the Fourier transform F(s), then f(ax) has the Fourier transform
|a|='F(s/a).
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Derivation:

f:- f(az)g—ihﬂ dz = |—ii f:'- f{az)g—ﬂr(u)(ﬂa) d(ax)

1
=—F (‘-’)
fa] " \a
This theorem is well known in its application to waveforms and spectra,

where compression of the time scale corresponds to expansion of the fre-
quency scale. However, as one member of the transform pair expands

a=Y

Fig. 6.2 The effect of changes in the scale of abscissas as described by the similarily

theorem. The shaded area remains constani.
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A LV

Fig. 6.3 Expansion of a cosinusoid and corresponding shifts in its spectrum.

horif'.ontally, the other not only contracts horizontally but also grows
vertically in such a way as to keep constant the area beneath it, as shown
in Fig. 6.2.

A special case of interest arises with periodic functions and impulses.
fis Fig. 6.8 shows, expansion of a cosinusoid leads simply to shifts of the
impulses constituting the transform. This is not simply a compression of
the scale of s, for that would entail a reduction in strength of the impulses.

In a more symmetrical version of this theorem,

If f(z) has the Fourier transform F(s) then |a|'f(az) has the Fourier trans-
form |b|'F (bs), where b = a1,

Thefl, as each function expands or contracts it also shrinks or grows
:vertlcally (see Fig. 6.4) to compensate (in such a way that the integral of
its square is maintained constant, as will be seen later from the power
theorem).
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Fig. 6.4 A symmetrical version of the similarity theorem.

Addition theorem

If f(z) and g(z) have the Fourier transforms F(s) and G(s), respectively, then
f(z) + g(z) has the Fourier transform F(s) + G(s).

Derivation:
f_: (f(z) + g(@))eizr= dz = f_: f(z)e—2r= dz + f—: g(z)e=ir= dzx
= F(s) + G(s).

This theorem, which is illustrated by an example _in Ejig. 6.5, reflects
the suitability of the Fourier transform for dealing with lmt_aar problems.
A corollary is that af(z) has the transform aF(s), where a is a constant.

Shift theorem

If f(x) has the Fourier transform F(s), then f(z — a) has the Fourier trans-
form e~ F (3),

Derivation:

f:' f(z 2. a')e—izrn dx = f_w‘ f(z - a)e-iir(x—a)lg—ﬂrwd(x — (I)
= rreif(s).
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If a given function is shifted in the positive direction by an amount a,
no Fourier component changes in amplitude; it is therefore to be expected
that the changes in its Fourier transform will be confined to phase changes.
According to the theorem, each component is delayed in phase by an
amount proportional to s; that is, the higher the frequency, the greater
the change in phase angle. This occurs because the absolute shift a
occupies a greater fraction of the period s~! of a harmonic component
in proportion to its frequency. Hence the phase delay is a/s~! cycles or
2ras radians. The constant of proportionality describing the linear
change of phase with s is 2ra, the rate of change of phase with frequency
being greater as the shift a is greater.

The shift theorem is one of those which are self-evident in a chosen
physical embodiment. Consider parallel light falling normally on an
aperture. To shift the diffracted beam through a small angle, one changes
the angle of incidence by that amount. But this is simply a way of
causing the phase of the illumination to change linearly across the aper-

e
e
h s/

Fig. 6.5 The addition theorem f + g D F + G.
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ture; another way is to insert a prism. These well-understood procedures
for shifting the direction of a light beam are shown in Chapter 13 to
exemplify the shift theorem.

In the example of Fig. 6.6, a function f(z) is shown whose transform
F(s) isreal. A shifted function f(z — 1) has a transform which is deriva-
ble by subjecting F(s) to a uniform twist of #/2 per unit of s. The figure
attempts to show that the plane containing F(s) has been deformed into a
helicoid. The practical difficulties of representing a complex function of
s in a three-dimensional plot are overcome by showing the modulus and
phase of F(s) separately; however, the three-dimensional diagram often
gives a better insight.

The second example (see Fig. 6.7) shows familiar results for the cosine
and sine functions and for the intermediate cases which arise as the cosine
slides along the axis of z. In this case the helicoidal surface is not shown.
An alternative representation in terms of real and imaginary parts is
given, incorporating the convention introduced earlier of showing the
imaginary part by a broken line. A small shift evidently leaves the real

Twnaginary Imaginary

Imaginary Imaginary

LY s

‘e,
Slope m/2 /

Fig. 6.6 Shifting f(x) by one quarter unit of z subjects F(s) to a uniform twist of
90 deg per unit of s.
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flz) = cosx Imaginary

ANN <]
VIV

cos (x =€)
(small shift)

VIRV "
cos (x — Yomr)
(90" shift)
)
1
]
\ | :
1
1
\J
180" shift Imaginary

AA
A

Fig. 6.7 The effect of shifting a cosinusoid.

part of the transform almost intact but introduces an odd imaginary part.
With further shift the imaginary part increases until at a shift of =/2
there is no real part left. Then the real part reappears with opposite sign
urlltil at a shift of = both components have undergone a full reversal of
phase,



108 THE FOURIER TRANSFORM AND ITS APPLICATIONS

Modulation theorem

If f(x) has the Fourier transform F(s), then f(z) cos wx has the Fourier trans-
form 3F (s — w/2r) + 3F (s + «/2r).

Derivation:
f N _ f(z) cos wz et dz = § f_-_, P
+3 jj.. flz)e—iuzg=itrze da
=} ] T fl@)eimeennz dg
+3 [ s@eeren da
= 3F(s — w/2) + 3F(s + w/2m).

The new transform will be recognized as the convolution of F(s) with
}5(s + w/2r) + ¥b(s — w/2r) = (r/w)N(rs/w). This is a special case
of the convolution theorem, but it is important enough to merit special
mention. It is well known in radio and television, where a harmonie
carrier wave is modulated by an envelope. The spectrum of the envelope
is separated into two parts, each of half the original strength. These two
replicas of the original are then shifted along the s axis by amounts
+ w/%r, as shown in Fig. 6.8.

Convolution theorem

As stated earlier, the convolution of two functions f and g is another fune-
tion h defined by the integral

ha) = [ fuge — w) du.

A great deal is implied by this expression. For instance, h(z) is a linear
functional of f(z); that is, h(z)) is a linear sum of values of f(z), duly
weighted as described by g(z). However, it is not the most general linear
functional; it is the particular kind for which any other value k(zs) is given
by a linear combination of values of f(z) weighted in the same way.
Another way of conveying this special property of convolution is to say
that a shift of f(z) along the z axis results simply in an equal shift of
h(z); that is, if k(z) = f(z) * g(z), then

fz — a) * g(x) = h(z — a).

Suppose that a train is slowly crossing a bridge. The load at the point
zis f(z), and the deflection at z is h(z). Since the structural members are
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Fig. 6.8 An envelope function f(z) multiplied by cosinusoids of various frequencies,

with the corresponding specira.
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not being pushed beyond the regime where stress is proportional to strain,
it follows that the deflection at z, is a duly weighted linear combination
of values of the load distribution f(z). But as the train moves on, the
deflection pattern does not move on with it unchanged; it is not expressible
as a convolution integral. All that can be said in this case is that k(z) is a
linear functional of f(z); that is,

h(z) = f_: fw)g(z,u) du.

It is the property of linearity combined with z-shift invariance which
makes Fourier analysis so useful; as shown in Chapter 9, this is the condi-
tion that simple harmonic inputs produce simple harmonic outputs with
frequency unaltered.

If the well-known and widespread advantages of Fourier analysis are
concomitant with the incidence of convolution, one may expect in the
transform domain a simple counterpart of convolution in the function
domain. This counterpart is expressed in the following theorem.

If f(x) has the Fourier transform F(s) and g(z) has the Fourier transform
G(s), then f(z) * g(x) has the Fourier transform F(s)G(s); that is, convol ution
of two functions means multiplication of their transforms.

Derivation:

f-.. [f_‘., f(a)g(xz — =) dz’] e—itres d
o= f_: f(z [f_: glz — z")e = dz] dz’
= [ 2 f@)em6is) da
= F(3)G(s).

Using bars to denote Fourier transforms, we can give compact state-
ments of the theorem and its converse. Thus

frg=1Ji
fog=7=3.
Equivalent statements are
fa="r=*g
f*3="fa
We have stated earlier that
frag=9xf (commutative)
fr(g*h)=(f*g)*h (associative)

fe(g+h)=f+g+f+h (distributive).
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Further formulas are
f*g+h = foh,
F*(gh) = f@=h.
This powerful theorem and its converse play an important role in

transforming a function which can be recognized as the convolution of
two others or as the product of two others.

The following are statements in words of some of the above equations.
1. The transform of a convolution is the product of the transforms.
2. The transform of a product is the convolution of the transforms.

8. Th? convolution of two functions is the transform of the product of
their transforms.

5 Thef product of two functions is the transform of the convolution of
their transforms.

Three valuable properties often used for checking are the following.

1. The area under a convolution is equal to the product of the areas
under the “factors”; that is,

[2 09 da=[[" s dz][ [ o as],
for f [ [ 1G9 — w) du]dz = [ fu) [[ oz — v da ] du

= [/ o au] [ [ o) az]

2. The abscissas of the centers of gravity add; that is,
(z)!w = (z); + (2,
° zh(z) da
(@h = f—'——g: :
[ h@) da

8. The second moments add if (z); or {z), = 0; in general,
(@) te0 = (2%)s + (%9 + Az){T),,

[ . ) dz

J7. k@) da

It follows that the variances must add (p. 142).
We have enunciated the convolution theorem in the form

f(x) * g(x) has the Fourier transform F(s)G(s),
which, written in full, becomes either

where

where (z%h =

f_-a flu)g(z — u) du = f_: F(8)G(s)eirr= ds
or F(s)G(s) = f-': f:n fw)g(z — w)eizv= du dz.
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There are no fewer than 20 versions in which the convolution theorem is
constantly needed, when we allow for complex conjugates and sign
reversals of the variables. The 10 abbreviated forms are
f*g D FG
fg9(=) DFG(-)
f(—=) *g(=) 2 F(—)G(-)
f*g*(—) > FG*
f*g* D FG*(-)
f(=) *g*(=) 2 F(—)G*
f(=) *g* 2 F(—)G*(—)
f*(=) »g*(=) 2 F*G*
fX(=) xg* 2 F*G*(—)
J* *g* 2 F¥(—)G*(-)
The self-convolution formulas are
fxfoF*
J(=) = f(=) 2 [F(—)
FH=) «f*(=) =2 [F*]?
fraf* o [F*(-)P
and for autocorrelation we have
f*f> FF(-)
(=) *f(=) 2 FF(-)
f*(=) > f*(=) 2 F*F*(-)
f**f* 2 F*F*(-)

Rayleigh’s theorem

The integral of the squared modulus of a function is equal to the integral of
the squared modulus of is spectrum; that 1s,

f @) da = f = F )2 ds.

Derivation:
f_.: f(-"cjf*(af) dxr = f_o,. f(g_:)f*(z)rl'zfll' dz §=0
= F(s') « F*(—¢) § =0
= [CF@Fe )i o =

= [T F@&F*G) ds.

This theorem, which corresponds to Parseval’s theorem for FOuFier
series, was first used by Rayleigh! in his study of black-body radiation
1 Lord Rayleigh, On the Character of the Complete Radiation at a Given Temperature,

Phil. Mag., series 5, vol. 27, 1889; “Scientific Papers,” Cambridge University Press, Cam-
bridge, England, 1902, and Dover Publications, New York, 1964, vol. 8, p. 278,
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flx) F(s)

If ()2 IF(s)®

Fig. 6.9 Rayleigh’s theorem: the shaded areas are equal.

In this, as in many other connections, each integral represents the
amount of energy in a system, one integral being taken over all values of a
coordinate, the other over all spectral components (see Fig. 6.9).

The theorem is sometimes referred to in mathematical circles as
Plancherel’s theorem,? after M. Plancherel, who in 1910 established con-
ditions under which the theorem is true. The theorem is true if both the
integrals exist. More recently, it has been shown by Carleman (see
Bibliography, Chapter 2) that the theorem is true if one of the integrals

exists. Rayleigh simply assumed in his derivation that the integrals
existed.

Power theorem
[ . 1@e* @ az = [ F&)6*(s) ds.

Derivation: The proof is as for Rayleigh’s theorem when f* is replaced
by ¢* and F* by G*. The following version illustrates a compact nota-
tion which is useful in its place.

ffg"‘dr=1?|0=5’*?

In many physical interpretations, each side of this equation represents
energy or power (see Fig. 6.10), two different approaches being used to
evaluate the energy or power. In one approach the instantaneous or
local power or energy is evaluated as the product of a pair of canonically
conjugate variables (electric and magnetic fields, voltage and current,
force and velocity) integrated over time or space. In the second approach

, = F+6%(-)| = [ Fo*as.

*E. C. Titchmarsh, A Contribution to the Theory of Fourier Transforms, Proc. Lond.
Math. Soc., vol. 28, p. 279, 1924.
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the temporal or spatial spectral components are multiplied and integrated
over the whole spectrum.

It very often happens that both f and g are real quantities, as in the
three examples cited. Then F and G may be complex, and

FG* = (Re F 4+ i Im F)(Re G — 1 Im (7)
= (Re F)(Re G) 4+ (Im F)(Im G) + odd terms.

Inspection shows that the final terms are odd, for F and G are hermitian;
that is, their real parts are even and imaginary parts odd. The odd terms
do not contribute to the infinite integral. Hence for real f and ¢

[ . fedz= [ FG*as = 7. (Re F)(Re 6) + (Im F)(Im 6)) ds.

This situation is illustrated in Fig. 6.11.

Exercise Show that, provided f and g are real, an alternative version of
the power theorem is

f _”_, f(@)g(—1x) dx = f T F#)6(s) ds.

By putting g(z) = f(z) we obtain Rayleigh’s theorem, which is thus
appropriate to physical systems where, f/g and F/G (often interpretable as
impedance in its general sense) being constant, energy or power may be

Fig. 6.10 The power theorem: the shaded areas are equal. In this example f and
g are real and even.

r(“e F)(Re G)

Fig. 6.11 The power theorem for f and g real, F and G complez. The shaded area
on the left equals the sum of the shaded areas on the right.

The basic theorems 115

expressed as the square of one variable alone. The theorem does not have
a distinctive name of its own; some authors refer to it as Parseval’s
theorem, which is the well-established name of a theorem in the theory of
Fourier series (Chapter 10).

Autocorrelation theorem

If f(z) has the Fourier transform F(s), then its autocorrelation funetion
f _J*@) f(ut=) du has the Fourier transform |F(s)|2.

Derivation:
f =, IF(s)|2em=r ds = f T F@F*(s)err= ds
= f(z) * f*(—z)
@ = 2) du

2. s+ 2) du.

A special case of the convolution theorem, the autocorrelation theorem
is familiar in communications in the form that the autocorrelation
function of a signal is the Fourier transform of its power spectrum.?
It is illustrated in Fig. 6.12. The unique feature of this theorem, as
contrasted with a theorem that could be stated for the self-convolution,
is that information about the phase of F(s) is entirely missing from
|F(s)|2. The autocorrelation function correspondingly contains no
information about the phase of the Fourier components of f(z), being
unchanged if phases are allowed to alter, as was shown on p. 45.

Exercise Show that the normalized autocorrelation function y(z), for
which y(0) = 1 (see p. 41), has as its Fourier transform the normalized
power spectrum |®(s)|> whose infinite integral is unity, and which is
defined by
()2 = _‘.m.
[ P ds

A statement may also be added about the function C(z), which was
defined in Chapter 3 by the sequence of autocorrelation functions
vx(z) generated from the functions f(z)II(z/X) as X — . If yx(z)
approached a limit, then the limit was called C(z). Corresponding to
the sequence of normalized autocorrelation functions, yx(z) is the
sequence of normalized power spectra |®x(s)|2. If yx(z) approaches a
limit as the segment length X increases, then the normalized power

*The corresponding theorem for signals that do not tend to zero as time advances is

sometimes referred to as Wiener’s theorem (see N, Wiener, “‘Extrapolation, Interpolation,
and Smoothing of Stationary Time Series,” John Wiley and Sons, New York, 1949).
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(x) sinc &
1 |
F 3 - S 5
sinc? s
=1
n—— \I ALl

Fig. 6.12 The autocorrelation theorem: autocorrelating a function corresponds to
squaring (the modulus of) its transform.

spectrum settles down to a limiting form |®.(s)|2 In these circum-
stances the autocorrelation theorem takes the form

C(z) o |®.(s)|?

and one generally says, as before, that the autocorrelation is the Fourier
transform of the power spectrum, suiting the definitions to the needs
of the case.

Clearly it may happen that the sequence of transforms of yx(z) does
not approach limits for all s but is of a character describable with impulse
symbols 8(s). Therefore situations may be entertained where the
transform of C(z) is a generalized function. For example, an ideal line
spectrum such as is possessed by a signal carrying finite power at a
single frequency is such a case. We know that if f(z) = cos ax, then
C(z) = cosaz. The Fourier transform of C(z) is thus a generalized
function %6(s + «/2r) + 36(s — «/2x), and if necessary we could work
out the sequence of transforms of yx(z) that define it. The interesting
point here, however, is that the power spectrum as a generalized function
is not deducible from the autocorrelation theorem, for no interpretation
has been given for products such as [8(z)]%.

Exercise Give an interpretation for [6(x)]* by attempting to apply the
autocorrelation theorem to f(z) = cos ar and test it on some other simple
example such as f(z) = 1.

Exercise Show that the situation cannot arise where the sequence yx(z)
calls for the use of 4(z) in representing C(x).

Exercise We wish to discuss the ideal situation of a power spectrum
which is flat and extends to infinite frequency. Determine C(z) and
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its transform. Show that the nonnormalized autocorrelation function
lends itself to this requirement, and that a good version of the auto-
correlation theorem can be devised in which the power spectrum is
normalized so as to be equal to unity at its origin. What does this form
of the theorem say when f(z) = cos az?

Derivative theorem

If f(z) has the Fourier transform F(s) then f'(z) has the Fourier transform
12wk (s).

Derivation:

[ p@eemds = [ timIEFD ZF@) gy

-® Az
= lim f:”f——-—(z Z—zAz) e~ g — lim f_”‘-@ e—itrze y

Az
ei2f d:lF[s') = F(S‘)

= lim As

= 12rsF(s).

Since taking the derivative of a function multiplies its transform by
i2rs, we can say that differentiation enhances the higher frequencies,
attenuates the lower frequencies, and suppresses any zero-frequency
component. Examples are given in Figs. 6.13 and 6.14.

exp (—7x2) exp (—ms?)

=& Function

i2ms exp (—ms?)

-
d 7N
Iz &P (-med) / ~

=t Derivative /

Fig. 6.13 Differentiation of a function incurs multiplication of the transform by
12ms.
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Fig. 6.1} Successive applications of the derivative theorem.

It happens quite frequently that the multiplication by 1:21'.8 causes ’the
integral of |i2rsF(s)| to diverge. Correspondingly, the derivative f'(x)
will exhibit infinite discontinuities. Such situations are accommodated
by the impulse symbol and its derivatives.

Derivative of a convolution integral

From the derivative theorem taken in conjunction with the convolution
theorem, it follows that if
h=fxg,
then K =7f =g,
and also B =f=xg.
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Derivation:

% [£(2) » 9(2)] > i2rsF(s)G(s)]

J'(@) » g() > [i2rsF (8)]G(s)
f(z) = g'(z) > F(s)[12nsG(s)].

These conclusions may be stated in a different form as follows:

The derivative of a convolution is the convolution of either of the functions with
the derivative of the other.

Thus

(feg) =frg=fsg,
and again f‘y"f’*f:ﬂd’-'

=f”*ffxgdxd:r:

Exercise Investigate the question of what lower limits are appropriate
for the integrals. Investigate the formula f'*g = f*g by integration
by parts.

In terms of the derivative of the impulse symbol we may write

h=26&xh.
Therefore k' =& sh =8 sfsg=(sf)xg=F»g
' =fe(¥*g) =f=»g,
frg=08sfeg=(*H)sfsg=(5+f)«(Hsyg).

The formulas quoted here are applicable to the evaluation of particular
convolution integrals analytically or numerically but are principally of
theoretical value (for example, in the deduction of the uncertainty rela-
tion and in deriving the formulas for the response of a filter in terms of its
impulse and step responses).

The convenient algebra permitted by the  notation in conjunction with
the associative and other properties of convolution enables rapid genera-
tion of relations which may be needed for some problem under study.
Many interesting possibilities arise. For example, starting from

% (f+9) > i2rsFG
we may factor the right-hand side to get

] )
dix (f*g) = g;’: . g—j D (i2rs)F (i2rs)iG.
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The transform of a generalized function

Let p(z) be a generalized function defined as in Chapter 5 by the sequence
p.(2). Let the Fourier transforms of members of the defining sequence be

P,(s), where
P.(s) = f_u pe(x)e—2**= dz,

Perhaps this new sequence P,(s) defines a generalized function. We know
that the members of the sequence are particularly well-behaved; we test
the sequence for regularity by means of an arbitrary particularly well-
behaved function F(z) whose Fourier transform is F(s). From the energy
theorem

I

[ PP ds = [~ p.@F(—2) de

it follows that
lim [ = P,(s)F(s) ds
0

]

lim [ " p(@F(—2) dz,
—0

and we know the latter limit exists. Hence P,(s) defines a generalized
function, to which we give the symbol P(s) and the meaning “Fourier
transform of the generalized function p(z).”

The following statement can be made about p(z) and P(s),

[ P()F(s) ds = [, p@F(~2) ds,

where F(z) is any particulariy well-behaved function and F(s) is its
Fourier transform.

Let ¢(x) be a function, such as a polynomial, that has derivatives of all
orders at all points but whose behavior as |z| — « is not so stringently
controlled as that of particularly well-behaved functions. We allow ¢(z)
to go infinite as |z|¥ where N is finite. Functions such as exp « and log z
would be excluded. Then products of ¢(z) and any particularly well-
behaved function will eventually be overwhelmed by the latter as [z| — =,
since the particularly well-behaved factor dies out faster than |z|-¥.
Furthermore, since the product has all derivatives at all points, the prod-
uct itself is particularly well-behaved.

Consider a sequence

é(2)p: ().
It is particularly well-behaved, and

lim [ (6@)p.(@)F @) dz = lim [~ p/@)[6@F@) da,
—07 T —0

which exists since p,(z) is a regular sequence and [¢(z)F (z)] is particularly
well-behaved. The generalized function so defined we write as

¢(z)p(x).
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In practice we use this notation with functions ¢(z) that bave a
sufficient number of derivatives and include exponentially increasing
functions when, as is the case with the pulse sequence 7~ 'I(z/7), the
behavior at infinity is inessential.

Nothing is introduced which could be called the product of two gen-
eralized functions; the product of two defining sequences is not necessarily
a regular sequence and consequently does not in general define a general-
ized function.

Proofs of theorems

The numerous theorems of Fourier theory, which have proved so fruitful
in the preceding sections, have shown themselves perfectly adaptable to
the insertion of the impulse symbol §(z), the shah symbol III(z), the
duplicating symbol 11(z), and other familiar nonfunctions. In the course
of standard proofs of the theorems it is found necessary to eliminate these
cases, and in the outcome we have conditions for the applicability of the
theorems which we have found in practice need not be observed. This
situation was dealt with by introducing the idea of a transform in the
limit, and special ad hoc interpretations as limits were placed on expres-
sions containing impulse symbols.

Havingestablished the algebra for generalized functions, we can also give
systematic proofs of the various theorems, free from the awkward condi-
tions that arise when attention is confined to ordinary functions possessing
regular transforms. The difficulties associated with functions that do not
have derivatives disappear, for generalized functions possess derivatives
of all orders. And more intolerable circumstances, such as the lack of a
regular spectrum for direct current, also vanish.

Addition theorem The proof of this theorem can be supplied by the
reader.

Similarity and shift theorems We prove these theorems simultane-

ously. Let p(z) be a generalized function with Fourier transform P(s).
Then

plax + b) > |%| gitxbalap (E)-

a
Proof: Since

lim [~ paz + DF@) dz = @ lim [ p,()F (-" = “) dz

exists, we have a meaning for p(az + b). Now

.l. i2xbe/a A
p.lax + b) D Ta] gitvbe/ap (Q)
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by substitution of variables. Hence the two theorems follow.

Derivative theorem The Fourier transform of p,(z) is i2weP.(s).
Hence the Fourier transform of p’(z) is 12rsP(s).

Power theorem Since no meaning has been assigned to the product of
two generalized functions, the best theorem that can be proved is

[ PF@) ds = [ p@F(-2) da.

where F(z) is a particularly well-behaved function and p(z) is a general-
ized function. The theorem follows from the fact that

lim [Z. PP (s ds = tim [~ [ 7. F@p@)esme dz ds

4 lirré f_: p,(2)F(—z) dz.

Summary of theorems

The theorems discussed in the preceding pages are collected for reference
in Table 6.1.

Table 6.1 Theorems for the Fourier transform

Theorem f(=) F(s)
Similarity f(az) 1y (—")
lal  \a
Addition f(x) + g(=x) F(s) + G(s)
Shift f(z — a) e~imaf(s)
Modulation f(z) cos wzx sF (s - g;) + 3F (s + Q%r)
Convolution f(z) * g(z) F(3)G(s)
Autocorrelation fz) * f*(—2) [F(s)[?
Derivative f'(z) 12rsF (s)

Derivative of convolution dix[f(:t) * g(z)] = f'(z) * g(x) = flz) *g'(x)

Rayleigh [ @i = [ IF@Rds
Power f_.: f(x)g*(z) dx = f_: F(s)G*(s) ds
(f and g real) [ @a(-a) dz = f " F(5)G(s) ds
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Problems

1 Using the transform pairs given for reference, deduce the further pairs listed
below by application of the appropriate theorem. Assume that 4 and ¢ are
positive.

oy wll(mrs) (sm x)t = wA(rs)
z z
SinAz:,I]'[(E sinA:c‘:_rﬁ s
Az A A Az A A
e D e 3(az) > ~

|a|
e—4z' D (i')! Pl S(az + b) D |__1_|ei:tb|!¢

a

r

e~='%" O (2r)ige—2='e" €* D § (a - l)

2 Show that the following transform pairs follow from the addition theorem,
and make graphs.

14 cosmz D &(s) + 11(s)
1 4 sinrz D §(s) + iIy(s)
sinc x + # sinc? 4z O II(s) + A(2s)
A—i‘—-vz‘m -+ A;e—raz‘ - e-—ﬂ'-'a -+ e—nu'
bcos?mr + 4cos?dxrzr — 8D S(s+3) + 8 — 3) + 88 + 26z — 1)
+ 3é(s + 1).

3 Deduce the following transform pairs, using the shift theorem.

COs T

;(T"_*—%) O —eim(s)
SEZ o e
w(z — 1)

A(z — 1) D et 5ipe? g
O(x — §) 2 e sinc ¢
II(z) sgn 2 © —i sin s sinc s

z — %a
I ( ai ) D |ale~i*e* sine as.

4 U;se the tlzonvolution theorem to find and graph the transforms of the following
functions: sinc z sine 2z, (sinc r cos 10z)2.

5 ) Let f(z) be a periodic function with period a, that is, f(z + a) = f(z) fonall z
Since the Fourier transform of f(z + a) is, by the shift theorem, equal to exp

(1%mas)F(s), v?hieh must be equal to F(s), what can be deduced about the trans-
form of a periodic function?
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6 Graph the transform of f(z) sin wz for large and small values of w, and explain
graphically how, for small values of w, the transform of f(z) sin wz is proportional
to the derivative of the transform of f(z).

7 Graph the transform of exp (—z)H(z) cos wz. Isit an even function of s?

8 Show that a pulse signal described by II(z/X) cos 2rfz has a spectrum
#X{sinc [X (s + f)] + sinc [X (s — f)]

9 Show that a modulated pulse deseribed by II(z/X)(1 + M cos 2xFz) cos 2rfz

has a spectrum

X (sinc [X (s + f)] + sinc [X(s — f)]} + TMX{sinc [X(s + f + F)]
+ sine [X(s + f — F)] + sinc [X(s — f + F)] + sinc [X(s — f — F)]|.

Graph the spectrum to a suitably exaggerated scale for a case where there are
100 modulation cycles and 100,000 radio-frequency cycles in one pulse and the
modulation coefficient M is 0.6, Show by dimensioning how the factors 100,
100,000, and 0.6 enter into the shape of the spectrum,.

10 A function f(z) is defined by

0 |z| > 2

flx) =12 — || 1 <lzf <2

1 lz] <1

show that
f(z) =24 (:) — A@) = A(@) * (@) + 3(@)]
and hence that
F(s) = 4 sinc? 2s — sinc? 3 = sine? s(1 + 2 cos 2ms).

11 Prove that f * g * & D FGH and hence that f*» D Fn,

12 The notation f** meaning f(z) convolved with itself n — 1 times, where
n =28, 4, ..., suggests the idea of fractional-order self-convolution. Show
that such a generalization of convolution is readily made and that, for example,
one reasonable expression for f(z) convolved with itself half a time would be

Y = feirmas] [gmidmuf(y) du]“ ds.
13 Prove that
(F*g)(h*j) = (FG) * (HJ)
and that
(f+¢)*(h+3) 2 FH + FJ + GH + GJ.

14 Use the convolution theorem to obtain an expression for

e-a:’ * s—bx'.
15 Prove that

[ 5@t — w) du D FH(=5)G*(—s).
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16 Prove that
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f_-” f_-o S*(w)g*(u — z)emitr= dude = F*(—s)G*(s).

17 Show by Rayleigh’s theorem that

[_: sine?zdxr =1
[_.: sinct z dx = j_'“ [A(@)])2dx = 3
[ U@tz = «
/ ® Doudlie s w
—= (1 + z?)? g

18 Complete the following schemata for reference, including thumbnail sketches
of the functions,

l

function >  transform II(z)

autocorrelation | power spectrum

f*f |3 [F(2)[*

A(z) 8(z)

sine z II(z) cos 2xfz

19: Show the fallacy in the following reasoning. ‘“The Fourier transform of
f . f(z) dz must be F(s)/i2rs because the derivative of f i Sf(z) dz is f(z), and

hence by the derivative theorem the transform of f(z) would be F(s), which is
true.”

20 Establish an integral theorem for the Fourier transform of the indefinite
integral of a function.

21 Use the derivative theorem to find the Fourier transform of ze—*='.
22 Show that 2rzII(z) > 1 sinc’ s.
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23 The following brief derivation appears to show that the area under a deriva-
tive is zero. Thus

f_.- f(@) &z =@ | = ignF () |[| e

Confirm that this is so, or find the error in reasoning.
24 Show that

1 ~i2rbala E
f(ar—b):me “F(a)

25 Show from the energy theorem that

- - 3
f e~ cos Urazx dz = e 7%
-

26 Show from the energy theorem that
f‘ sinc? z cos 7z dzr = 3.
-

97 Show that the function whose Fourier transform is |sinc s| has a triangular
autocorrelation function.

28 As a rule, the autocorrelation function tends to be more spread out than the
function it comes from. But show that

zay
1.2 5.
T wr

Show that (rz)~! must have a flat energy spectrum, and f}'om that deduce and
investigate other functions whose autocorrelation is impulsive.

29 The Maclaurin series for F(s) is

F(0) + sF'(0) + ;—:F”(O) + ..

Consider the case of F(s) = exp (—ms?), where the series is known to converge
and to converge to F(s). Thus, in this particular case,

F) = ) S F™(0).

n=0""

It F(s) is the transform of f(z), then transforming this equation we obtain
- " b I:
f@) = 8@) f_: f(@) dz — ¥(z) f ° ) dz + 8'(@) f S f@dt

How do you explain this result?

Chapter 7 Doing transforms

(B B (B P ' )

A number of transforms were introduced earlier to illustrate the basic
theorems of the Fourier transformation. Of course, one need not neces-
sarily be aware of any particular Fourier transform pairs to appreciate the
meaning of the theorems. Many of the chains of argument in which the
Fourier transformation is important are independent of any knowledge of
particular examples. Even so, carrying out a general argument with a
special case in mind often serves as insurance against surprises.

The examples of Fourier transform pairs chosen for illustration were all
introduced without derivation and asserted to be verifiable by evaluation
of the Fourier integral. Obviously this does not help when it is necessary
to generate new pairs. We therefore consider various ways of carrying
out the Fourier transformation. Numerical methods based on the dis-
crete Fourier transform and allowing for use of the fast Fourier transform
algorithm are discussed in Chapter 18,

Starting from the given funétion f(z) whose Fourier transform is to be
deduced, one may first contemplate the integral

f _"" f(z)e—i2r= dg,

If this integral can be evaluated for all s, the problem is solved.

A number of different approaches from the standpoint of integration are
discussed separately in subsequent sections.

In addition to this direct approach we have a powerful resource in the
basic theorems which have now been established. Many of the theorems
take the form “If f and F are a transform pair then g and G are also.”
Thus, if one knows a transform pair to begin with, others may be gen-
erated. It is indeed possible to build up an extensive dictionary of
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transforms by means of the theorems, starting from the beginnings
already laid down. It may be surmised that some classes of function will
never be stumbled on in this way; on the other hand, a variety of physi-
cally feasible functions prove to be accessible. Generation from theorems
is taken up later with examples. Finally, there is the possibility of
extracting a desired transform from tables.

Integration in closed form

It is a propitious circumstance if f(z) is zero over some range of z and if in
addition its behavior is simple where it is nonzero. Thus if

f(@) = I(z),
then f—ww f(x)e—ﬂrz- dx = [_!} g—iirze o
= fj; cos 2rxs dz

sin 78
8
= sine $.

If f(x) is nonzero on several segments of the abscissa and constant within
each segment, the integration in closed form can likewise be done. Thus
if we let

z—b

flz) = al'I( p )

fb+ fe ae— = dx
b—ic

a] o i ub)s gy
—je

then F(s)

Il

. e
ae—irrh f 1o €08 2rus du
- 4c

= aee"?™ sinc cs.

S an (a: - b,.)’

n

It follows that if
f(z)

then F(s)

Z @ncCne27* sine cas.
n

Functions built up segmentally of rectangle functions include staircase
functions and functions suitable for discussing Morse code, teleprinter
signals, and on/off servomechanisms. They not only occur frequently in
engineering but can also simulate, as closely as may be desired, any kind
of variation.

An even simpler case arises if f(z) is zero almost everywhere; for exam-
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le, suppose that i i i i
Ealuesl:;;; s f(z) is a set of impulses of various strengths at various

f@) = ¥ an 5(z — b,).

Then onl'y !;he values of @, exp (—1i2rzs) at the points z = b
By the sifting theorem for the impulse symbol,

F(s) = f M E n 5(z — by)e—itr=t dz

_ bt T bat
fbl_ ay 6(x — by)e—*= dx + fh_ az 8(z — by)e—itr=s g 4
- ale—iﬂrh,l + Gg&‘_‘.gﬂ" + e

n Can matter,

If f(z) has some special functional form,
form the integration,
examples follow.

1. Let f(z) = sinc #. Then

it may prove possible to per-
but no general rules can be given. Some simple

F(s) = f " sinc z gt dz

i f = sin vz cos 2rzs
= —— "z
= T
_ [= |sin (zz + 2wzs) | sin (rz — 2rzs)
f — [ Qrz + erx J dz
“ (142 1—2

= J_. 3 sinc [(1 + 2¢)z] + 3 ? sinc [(1 — 2.9}.1.']} dz
1+ 2s + 1 — 25

21 + 2s] " 2[1 — 24

II(s).

Il

We have used the result that

= P l
sinc ar dr = —-
& o
2. Let f(z) = e7l*l. Then
F(-S') = f_:' e lzlg—i2rzs o
=2 fo“ € cos Yrxs dz
2 Re fo e—zgitrze dp
2 Re fo" glitra—Dz go.
el _
12rs — 1

-2
dr?s? + 1

I
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8. Let f(z) = e-**'. Then

F(s) = fﬁ e—relg—itaz do

—=
= f- g—wlattitze) dp
)
= e—r-"f‘ a-—r(:-Hl}’dz
—=
— 8‘"’[ “ 8—:(:+il)'d(x + i&)
—u

= g,

In this example we have used the known result that the inﬁ{lite integral of
exp (—wx?) is unity. The next case illustrates a contour .m.tegral.

4. Let f(z) = ~'. The infinite discontinuity at _the origin causes the
standard Fourier integral to diverge; hence we consider instead

iy (2504 )

g--i‘_'ru
[slawiy
c z

where the contour C is a semicircle of radius R in the complex planfa of z,
whose diameter lies along the real axis and has a small indentation of
radius € at the origin. The contour integral is zero since no poles are
enclosed. Thus

[ dr + [ ezt an 4 [

Now consider

e—iﬂr.z

dz + f T je-iaRe? dp — ().
1]

I

As R— =, the fourth integral vanishes and the second equals +ir

according to the sign of s, so that we have

]im(f_h:r‘:mdz+f:)+i1rsgns = 0.

«—0

Hence the desired transform pair in the limit is
1 .
— D — imsgns.
x

5. Let f(z) = sgn 2. This is the previous example in reverse, and it is
seen that in this case the Fourier integral fails to exist in the standard
sense because the function does not possess an absolutely converga?nt
integral. Therefore consider a sequence of transformable functions which
approach sgn z as a limit, for example, the sequence exp (—7|z|) sgn z as
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r— 0. The transform will be

f _1 e"l*lsgn x e-itr= dyp = f _D‘ —elr—itrnz go L jo" e—(rtitr) o

1 1
T— 128 7 + 1278

= —

As 7 — 0 this expression has a limit 1/irs. Hence we have the Fourier
transform pair in the limit,

1
sgnzr o —-
g w8

Numerical Fourier transformation

If the values of a function have been obtained by physical measurement
and it is necessary to find its Fourier transform, various possibilities exist.

First of all, certain limitations of physical data will influence the result,
and we shall begin with this aspect of numerical transformation.

The data will be given at discrete values of the independent variable z.
The interval Az may be so fine that there is no concern about interpolating
intermediate values, but in any case we can take the view that the data
can hardly contain significant information about Fourier components
with periods less than 2 Az. Therefore it is not necessary to take the
computations to frequencies higher than about (2 Az)-1,

In addition, observational data are given for a finite range of z, let us
say for —X <z < X. By a corresponding argument, the Fourier
transform need not be calculated for values of s more closely spaced than
(2X)~1. If there were any significant fine detail in F (s) that required a
finer tabulation interval than (2X)~! for its description, then measure-
ments of f(z) would have to be extended beyond z = X to reveal it.

These simple but important facts for the computer programmer may
be summarized by saying that the function f(z) tabulated at interval Az
over a range 2X possesses 2X/Az degrees of freedom, and this should be
comparable with the number of data computed for the transform. In
Chapters 10 and 18 the underlying thought is explored in detail.

A further property of physical data is to contain errors. There is
therefore a limit to the precision that is warranted in calculating values of
the Fourier transform. This limit is expressed concisely by the power
spectrum of the error component (or, what is equivalent, the autocorrela-
tion function of the error component). Sometimes only the magnitude
of the errors is available, and not their spectrum; and sometimes the
magnitude is not known either. Nevertheless, the errors set a limit to

the number of physically significant decimal places in a computed value
of the transform.
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Let f(z) be represented by values at = n, where the integer n ranges
from —N to N. Before the Fourier transform of f(z) can be computed, it
is necessary to have information about f(z) over the whole infinite range
of #. Therefore we call on our physical knowledge and make some
assumption about the behavior outside the range of measurement. In
this case suppose that f(z) is zero where |z| > N. Then the sum

N
A f(n)eirem

will be an approximation to F(s). In practice one computes the real and
imaginary parts separately, forming the sums

N N
);_f{n) cos 2wsn and E"f(n) sin 2rsn.

This summation, over 2N + 1 terms, must be done for each chosen value
of 5. For this reason it is convenient in using a desk calculator to possess
tables of cosine and sine prepared for suitable values of s; instead of being
limited to one quadrant they should run on and on, showing negative
values as they occur.

Generation of transforms by theorems

A wide variety of functions, especially those occurring in theoretical work,
can be transformed if some property can be found that permits a simplify-
ing application of a theorem. For example, consider a polygonal fune-
tion, as in Fig. 7.1. If we perceive that it can be expressed as the con-
volution of the triangle function and set of impulses, then we can handle

[ I

Fig. 7.1 A polygonal function (above) that can be regarded as the convolution of a
set of impulses and a triangle function (below).

x z
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(a)

H (b)

Fig. 7.2 Technique of reduction to impulses by continued differentiation.

the impulses as described above and multiply their transform by the
transform of the triangle function. Thus

Alz) * 2 A4, 8(z — a,) O sinc? s E Apeitmans,
n n

As an example take the trapezoidal pulse A(z) n(z). Evidently
A(z) * 11(z) D sinec? s cos 7s.

In pr_actice the_ convolution theorem is frequently applicable for the
generation of derived transforms, and many examples of the use of the

convolution theorem and other theorems will be given in the problems for
this chapter.

Application of the derivative theorem to segmented
functions

There isa §peci§l application of the derivative theorem that has wide use
'n connection with switching waveforms. Consider a segmentally linear
function such as that of Fig. 7.2a. The first derivative, shown in b,
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contains an impulse. Since the transform of the impulse is known, we

remove the impulse and differentiate again. This til.:ne ?here ren.mu:ls
only a set of impulses 2C, 8(z — ca). If the first derivative contained,

instead of a single impulse as in the exampl?, a sFt of impulses ZB, §(z —)-
b.), and if the original function f(z) contained impulses ZA, é(z — aa),
then evidently the transform F(s) is given by

(i2r35)?F (s) = (12ws) S Ane " + 12rsE B et st 4 ZC et 17et,
Clearly this technique extends immediately to functions composed of

segments of polynomials, in which case further f:ontinued diﬂerell:ltmh;m
is required. As a simple example let us consider the parabolic pulse

(1 — z?)M(z/2). Here
(1 — 290 (g) > F(s).

Differentiating twice, we have
— 22Tl (i;) > i2rsF(s)

ez + 1) — 200 (g) + 25(x — 1) D (i2rs)%F(9).

Now the left-hand side has a known transform 4 cos 2rs — 4 sinc 2s.

Hence the desired transform F(s) is given by

F(s) = 4 cos 2rs — 4 sinc 2s + K.b(s) + Kod' (o),
(127s)*

where K, and K, are integration constants arisin‘g from th.e fact t}l;mt a

constant K; may be added to the original parabolic pulse without chang-

ing its first derivative, and similarly e

gration of the given pulse shows that no additive const

is present, so in this case K, = K, = 0and

ant or linear ramp

’ cos 2rs |, sin 278
F@) = = st 2ris®

for the second derivative. Inte--

Chapter 8 The two domains

We may think of functions and their transforms as occupying two
domains, sometimes referred to' as the upper and the lower, as if functions
circulated at ground level and their transforms in the underworld.
There is a certain convenience in picturing a function as accompanied by
a counterpart in another domain, a kind of shadow which is associated
uniquely with the function through the Fourier transformation, and which
changes as the function changes. In the illustrations given here the
uniform practice is to keep the functions on the left and the transforms on
the right.

The theorems given earlier can be regarded as a list of pairs of corre-
sponding simultaneous operations, one in the function domain and the
other in the transform domain. For example, compression of the
abscissas in the function domain means expansion of the abscissas plus
contraction of the ordinates in the transform domain; translation in the
function domain involves a certain kind of twisting in the transform
domain; and convolution in the function domain involves multiplication
in the transform domain.

By applying these theorems to everyday problems we are able at will to
cross from one domain to the other and to carry out required operations
in whichever domain is more advantageous. We may find on reaching
the conclusion to a line of argument that we are in the wrong domain; our
conclusion is a statement about the transform of the function we are
interested in.

We therefore now consider pairs of corresponding properties; the area
under a function and the central ordinate of its transform are such a pair.

! For example, see G. Doetsch, “Theory and Application of the Laplace Transformation,”
Dover Publications, New York, 1048,

135
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longer duration than the input waveform but that the amount of stretching, as
measured by equivalent width, is short compared with the duration of the
impulse response.

5 The (complex) electrical length of a uniform transmission line is . Show
that the transfer factor relating the output voltage to the input voltage is given
by T(f) = sech § when no load impedance is connected.

6 A filter consists of a tee-section whose series impedances are Z, and Z, and
the shunt impedance is Zs. Show that the voltage transfer function is given by

Zy

s i

7 In the tee-section of the previous problem, let Z; = 0 and Z; = R. The
element Z, is an open-circuited length of loss-free transmission line of charac-
teristic impedance R, so that we may write Z, = —iR cot 2rTf, where T is a
constant. Show that the output voltage response to an input voltage step is a
rectangle function of time, and hence that in general the output voltage is the
finite difference of the input voltage.

8 A very large number of identical passive two-port networks are cascaded,
and a voltage impulse is applied to the input, causing a disturbance to propagate
down the chain. The disturbance at a distant point is expressible by repeated
self-convolution of the impulse response of a single network. Does the disturb-
ance approach Gaussian form?

9 Show that a linear system can be imagined whose response to a modulated
signal (1 + M cos wt) cos {2t is proportional to the audio signal M cos wt.

Chapter 10 Sampling and series

ARAARRRRARR

Suppose that we are presented with a function whose values were chosen
arbitrarily, and suppose that no connection exists between the neighbor-
ing values chosen for the dependent variable. Thus if the independent
variable were time, we would have to expect jumps of arbitrary magnitude
and sign from one instant to the next.

In nature such a function would never be observed. Because of limita-
tions of the measuring instrument, or for other reasons, there is always a
limit to the rate of change. One might thus surmise that there is at least
a little interdependence between waveform values at neighboring instants,
and consequently that it might be possible to predict from past values
over a certain brief time interval. This suggests that it might be possible
to dispense with the values of a function for intervals of the same order
and yet preserve essentially all the information by noting a set of values
spaced at fine, but not infinitesimal, intervals. From this set of samples
it would seem reasonable that the intervening values could be recovered.
if only to some degree of approximation.

Sampling theorem

The sampling theorem states that, under a certain condition, it is in fact
possible to recover the intervening values with full accuracy; in other
words, the sample set can be fully equivalent to the complete set of func-
tion values. The condition is that the function should be ‘“band-
limited”; that is, its Fourier transform is nonzero over a finite range of

the transform variable.
Clearly, the interval between samples is crucial in deciding the utility
of the theorem; if the samples had to be very close together, not much
189



190 THE FOURIER TRANSFORM AND ITS APPLICATIONS

would be gained. As an illustration of the fineness of sampling we take
a simple band-limited function, namely sinc , whose spectrum is flat up
to a cutoff value s = 4. The sampling interval, deduced as explained
below, is 1. Figure 10.l1a shows the sample values that define sinc z,
and it will be seen that the interval is extremely coarse in comparison,
for example, with the interval that would be chosen for numerical integra-
tion. The sampling intervals indicated by this theorem often seem, at
first, to be surprisingly wide. Also shown in Fig. 10.1b are a set of samples
for sinc? 4z, a function whose spectrum cuts off at the same point (s = %)
as that of sinc z. Figures 10.1¢ and 10.1d provide some samples for
experiment.

With any given waveform, there is always a frequency beyond which
spectral contributions are negligible for some purposes. However, on
the other hand, the transform probably never cuts off absolutely; con-
sequently, in applications of the sampling theorem, the error incurred by
taking a given waveform to be band-limited must always be estimated.

/ sine x

(d) . L
Cad v v <z
—_—— / S

(E,) _--—'—9-=

Y : X I =T

(d) Q ? ? n o

T

Fig. 10.1 Two functions and their samples, and two sets of samples for practice.
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F(s)

i

.+TT1I TTTT&.

()

(&)

Fig. 10.2 (a) A band-limited
Sfunction f(x) with a cutoff spectrum
(b). The samples (c) suffice to
reconstitute f(z) accurately in full
detail and are equivalent in con
tent to the train of impulses (d).

Consider a function f(z), whose Fourier transform F(s) is zero where
|s] > s. (see Fig. 10.2). Evidently f(z) is a band-limited function; in this
case the band to which the Fourier components are limited is centered on
the origin of s. Such a function is representative of a wide class of physi-
cal distributions which have been observed with equipment of limited
resolving power. We shall refer to such transforms as “cutoff transforms”
and describe them as being cut off beyond the “cutoff frequency”” s..

In general a cutoff transform is of the form II(s/2s.)G(s), where G(s) is
arbitrary, and therefore the general form of functions whose transforms
are cut off is

sine 2s.z * g(z),

where g(z) is arbitrary.

Of course, if the original function is cut off, then it is the transform
which is band-limited.

With the exception noted below, band-limited functions have the
peculiar property that they are fully specified by values spaced at equal
intervals not exceeding 4s.~' (see Fig. 10.2¢).

In the derivation that follows, the introduction of the shak symbol
proves convenient, because multiplication by III(z) is equivalent to
sampling, in the sense that information is retained at the sampling points
and abandoned in between.

As an additional bonus, the shak symbol, as a result of its replicating
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property under convolution, enables us to express compactly the kind
of repetitive spectrum that arises in sampling theory.
In the course of the argument we use the relation

[II(z) o III(s),

which is discussed at greater length at the end of this chapter.
Consider the function

1(z)IIT (‘”‘) = ¥ f(ar) 8(z — no)

shown in Fig. 10.2¢c.

f(x)

Information about f(z) is conserved only at the

F(s)

e (E]}

() TILTs) "‘*’ ~
sc
x
HI(F)f(x) T111(7s) » F(s)
st
| TI(2s.2)f(x)

LL

Vas,-! ﬂ f*‘

|||l||

(25,)7'111(53) » F(s)
e

1I|l

||l|

%

Fig. 10.3 Demonstrating the sampling theorem.
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TIII(rs) » F(s)

&

Fig. 10.4 Critical sampling.

sampling points where z is an integral multiple of the sampling interval 7,
The intermediate values of f(z) are lost. Therefore, if f() can be
reconstructed from f(z)III(z/r), the theorem is proved. The transform
of III(x/r) is 7T1I1(rs), Fig. 10.8b, which is a row of impulses at spacing r—!.

Therefore
fiziIlI(z?r) = 7111(z8) * F(s),

and we see that multiplication of the ori ginal function by III(z/7) has the
effect of replicating the spectrum F(s) at intervals r—! (see Fig. 10.3¢).
We can reconstruct f(z) if we can recover F(s), and this can evidently
be done, in the case illustrated in Fig. 10.8¢, by multiplying rIII(rs) * F (s)
b‘y I1(s/2s.). Except for cases of singular behavior at s = s, (to be con-
sidered below), this is sufficient to demonstrate the sampling theorem.

At the same time a condition for sufficiently close sampling becomes
apparent, for recovery will be impossible if the replicated islands overlap
as shown in Fig. 10.3¢, and this will happen if the spacing of the islands r—
becomes less than the width of an island 2s,. Hence the sampling interval
7 must not exceed 4s,~!, the semiperiod of a sinusoid of frequency s., and
for critical sampling we shall have the islands just touching, asin Fig. 10.3d.

A small refinement must now be considered before the sampling theorem
can be enunciated with strictness. In the illustration F(s.) is shown equal
t? zero. If F(s.) is not zero, the islands have cliffs which, under condi-
tlons. of sampling at precisely the critical interval, make butt contact.
In ?‘13..10.4(; this is on the point of happening, but careful examination,
t,ak.n ng into account also the imaginary part of F(s), reveals that multipli-
cation by TI(s/2s.) permits exact recovery of F(s). However, if F(s)
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behaves impulsively at s = s., that is, if f(z) contains a harmonic com-
ponent of frequency s, then there is more to be said.

In Fig. 10.4b, which shows such a case, consider first that F(s) is even;
that is, ignore the odd imaginary part shown dotted. Then as the
sampling interval approaches the critical value, the impulses 4 and A’
tend to fuse at s = s, into a single impulse of double strength, and
multiplication by II(s/2s.) taken equal to § at s = s, restores the impulse
to its proper value, thus permitting exact recovery of F(s). The impulses
A represent, of course, an even, or cosinusoidal, harmonic component:
24 cos 2rs.z. Now consider the impulses contained in the odd part of
F(s). Under critical sampling, B and B’ fuse and cancel. Any odd har-
monic component proportional to sin 2rs.z therefore disappears in the
sampling process.

Exercise The harmonic function cos (wt — ¢) is sampled at its critical
interval (the semiperiod w/«). Split the function into its even and odd
parts and note that the sample values are precisely those of the even part
alone. Note that the odd part is sampled at its zeros.

The sampling theorem can now be enunciated for reference:

A function whose Fourier transform is zero for |s| > s. is fully specified by
values spaced at equal intervals not exceeding %s.' save for any harmonic
term with zeros at the sampling points.

In this statement of the sampling theorem there is no indication of how
the function is to be reconstituted from its samples, but from the argu-
ment given in support of the theorem it is clear that it is possible to recon-
struct the function from the train of impulses equivalent to the set of
samples, using some process of filtration. This procedure, which is
envisaged as filtering in the transform domain, evidently amounts in the
function domain to interpolation.

Interpolation

The numerical process of calculating intermediate points from samples
does not of course depend on caleulating Fourier transforms. Since the
process of recovery was to multiply a transform by II(s/2s.), the equiva-
lent operation in the function domain, namely, convolution with 2s. sinc
23z, will yield f(z) directly from III(z/7)f(z). Convolution with a
function consisting of a row of impulses is an attractive operation numeri-
cally because the convolution integral reduces exactly to a summation
(serial product).

For midpoint interpolation we can permanently record a table (see
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Table 10.1 Midpoint interpolation

|lz|  sincz -l sinc z |z| sinc z || sinc z
¥  0.6366 95 —0.0385 185  0.0172 273 —0.0116
17 —0.2122 105  0.0308 195 —0.0163 283  0.0112
2  0.1278 113 —0.0277 203  0.0155 293 —0.0108
83 —0.0909 123 0.0255 213 —0.0148 803  0.0104
47 0.0707 183 —0.0286 221 0.0141 813 —0.0101
55 —0.0579 143 0.0220 233 —0.0185 823  0.0098
63  0.0490 155 —0.0205 245 0.0180 833 —0.0095
73 —0.0424 163 0.0198 253 —0.0125 8437 0.0092
85  0.0874 173 —0.0182 265 0.0120 855 —0.0090

Table 10.1) of suitably spaced values of sinc z, and it proves practical
when further interpolation is required to repeat the midpoint process,
using the same array.

Rectangular filtering

Suppose that it is required to remove from a function spectral components
whose frequencies exceed a certain limit, that is, to multiply the transform
by a rectangle function, which we shall take to be II(s). We are assuming
that s. = 4 and that the critical sampling interval is 1. This is just the
operation which has already been carried out for the purpose of interpola-
tion. However, in general the function to be filtered will not consist solely
of impulses, and the convolution integral giving one filtered value does
not reduce exactly to a summation. However, when it is evaluated
numerically it will have to be approximated by a summation,

2= f(x)» [III (E) sine z]

and we may ask how coarse the tabulation interval may be and still
sufficiently approximate the desired integral

f(z) * sinc z.

Beginning with 7 = 1, we find Z, = f(z); that is, no filtering at all has
resulted. Now trying r = 4, we have

Z; = f(=z) = III(2z) sinc z
and 2y = F(8)[311I(3s) = I1(s)],
since 2, = F(s)[rI11(rs) » T1(s)].
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Hence Z; consists of a central part F(s)II(s) plus remoter parts. For
many purposes this simple operation would suffice (for example, when the
components to be rejected lie chiefly just beyond the central region).

Adopting an idea from the method of interpolation, where we economize
on interpolating arrays by repeated use of the one midpoint interpolation
array, we now consider the effect of repeated approximate filtering of
the one kind. By using the same filtering array at r = 1 we have the
filter characteristic }III(s/4) *II(s/2), which when multiplied by
§III(s/2) *TI(s) gives the bottom line of Fig. 10.5. In other words,
repeated application of the process has pushed down more of the outer
islands of response. The same result is obtained by taking r = %
mitially.

To summarize, approximate rectangular filtering with a cutoff at s, is
carried out by reading off f(x) at half the critical sampling interval (that
is, at intervals of }s.~') and taking the convolution (more precisely, the
scrial product) with 2s; sinc 2s.z, where 2s.2 assumes all half-integral
values, including 0. This filtering array (see Table 10.2) contains
precisely the values tabulated for interpolation plus interleaved zeros and
a central value of unity.

(z;)
-~ :
f;;r(n) * n(—zisz)
111 [1]
le—— 7-1 ——>|

() + 1)

1M1t
() » o)
%Hl(%) * H(;Ta) Fig. 10.5 Numerical procedure
| _| 1‘='¢L for achieving the desired filter
characteristic TI(s).
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Table 10.2 Array for approximate rectangular filtering

—0.09809
0.1278
—0.2122
0.6366
—1.0000
0.6366
—0.2122

0.1278

—0.0909

Undersampling

Suppose that f(z) (see Fig. 10.6a) is read off at intervals corresponding to
a desired cutoff for rectangular filtering. Then the band-limited function
9(z) (see Fig. 10.6c) defined by this set of values (see Fig. 10.6b) has a
cutoff spectrum of the desired extent and may at first sight appear to be a
product of rectangular filtering. But the process is not the same as
rectangular filtering, since the result depends on high-frequency compo-
nents in f(z); for example, one of the sample values may fall at the peak of
a narrow spike; furthermore, the phase of the coarse sampling points will
clearly affect the result. However, the effect may often be a good
approximation to rectangular filtering.

By examining the process in terms of Fourier transforms, we see that
the band-limited function g(z) derived from too-coarse sampling contains
contributions from high-frequency components of f(x), impersonating low
frequencies in a way described by reflection of the high-frequency part in
the line s = s.. The effect has been referred to as “aliasing.” If this
high-frequency tail is not too important, then the coarse sampling pro-
cedure gives a fair result.
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Fig. 10.6 A band-limited function g(z) derived from f(x) by undersampling; high-
frequency components of f(z) shift down inside the band limits. Shaded areas
indicate high frequencies masquerading as low.

While the effect of undersampling is to reinforce the even part of the

spectrum, Fig. 10.6d shows that the odd part is diminished. It follows
that g(z) will be evener than f(z), which is, of course, to be expected, for
the sampling procedure discriminates against the (necessarily odd)
components with zeros at the sampling points.

Ordinate and slope sampling

Let f(z) be a band-limited function that is fully specified by ordinates at a
spacing of 0.5; but suppose that only IIIf is given; that is, only every
second ordinate is given. Then from the overlapping islands (see Fig.
10.7) composing IIIf, it would not be possible to recover F(s) or, conse-
quently, f(z). But if further partial information were given, it might
become possible.

If the slope is given, in addition to the ordinate, recovery proves to be
possible. Thus, given IIIf and IIIf’, one can express f(z) as a combina-
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tion of linear functionals of ITIf and IIIf":

f(@) = a(z) = (IIIf) + b(z) = (IIIf"),

where a(z) and b(z) are solving functions that have to be found. Just as
the sinc function, which is the solving function for ordinary sampling,
must be zero at all its sample points save the origin, where it must be
unity, so must a(z). And b(z) must be zero at all sample points but have
unit slope at the origin.

To find a(z) and b(z), note that in the interval —1 < s € 1

ITf = F(s + 1) + F(s) + F(s — 1)
and that TIIf' = i2r(s + 1)F(s + 1) + i2rsF(s)
+ @r(s — )F(s — 1).

These two equations can be solved for F(s), for although there appear to
be three unknowns, namely, F(s + 1), F(s), F(s — 1), in fact, for any
value of s, one of them is always known to be zero. Thus for positive s
we have F(s + 1) = 0, and on eliminating F(s — 1) we have

i2rF(s) = T — i2r(s — 1)IIIJ,
and for negative s we have

—12rF (s) = IIIf" — 12x(s + DIIIJ.

(=)
F(s)
! I l/ /—\
= -1 0 1 s
If m
/"\\
f,‘ii \ F(s +1) F6) Fls=1)
/ ""\
Iy =~ N
// A~
i : |
x -1 0 1 s

Fig. 10,7 Ordinate sampling at half the rate necessary for full definition,
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f(=)

(b)

Fig. 10.8 (a) The ordinate-dependent constituents f(n)a(z — n); (b) The slope-
dependent constituents f'(n)b(z — n).

For all s, both positive and negative, we have concisely
F(s) = % A ($)TITf + A(s)IITS.

Hence f(z) = sine? z » (IIIf) + = sine? « * (IIIf").

The solving functions are

a(z) = sinc? x
b(z) = = sinc? z,

and the convolution integrals reduce to a sum of spaced a's and b’s of
suitable amplitudes,

I

@ = 3 fma@@ — m) + 3 f(mbz — n)

S f(n) sinct (z — ) + 3, £(w)(z — ) sinc? (@ — n).

We see that each a(z — n) is zero at all sampling points (integra! value‘s of
z) save where £ = n, and that each has zero slope at all sampl%ng po!nts
(see Fig. 10.8a). Each b(z — n) has zero ordinate at all sampling points
and likewise zero slope, save where z = n (see Fig. 10.8b).

Sampling and series 201

Interlaced sampling

As in the previous example, let ITIf represent every second ordinate of the
set that is necessary to specify f(z), and let a supplementary set ITI(z —
a) f(x), interlaced with the first as illustrated in Fig. 10.9, also be available.
Will it be possible to reconstitute f(z)? It is known that equispaced
samples, separated by just more than the critical interval, do not suffice,
and in the case of interlaced sampling every second jump exceeds this
critical interval. On the other hand, it has been shown that ordinate-
and-slope sampling suffices, and this is clearl ¥ equivalent to extreme inter-
lacing as a approaches zero,

If there is a solution, it should be in the form of a sum of two linear
functionals of IIIf and IIL,f, where III, = III(z — a):

fl@) = a(z) * (I1If) + b(z) * (IIL.f).

The solving function a(z) must be equal to unity at z = 0, and zero at all

other sampling points, and b(z) must be the mirror image of a(z); that is,
b(z) = a(—1a).
In the interval —1 < s < 1,

I = F(s + 1) + F(s) + F(s — 1)

and ILf = &F(s + 1) + F(s) + e~2vF(s — 1).
For positive s we have F(s + 1) = 0, and on eliminating F(s — 1) we have
e—iire 1
F@) = = v I + {— = 1L,

and for negative s we have

8\'2:-6

1

— pgilra

F(s) = —

Iy + 4

T —¢im IIL.f.

Fig. 10.9 Interlaced samples.
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For all s we have

F(s) = A(IIIS + A*(HITLT,
b it DR R
1 — e—ilTa
where A@s) = ( euml EPTIn
1 — 8;2:-
0 ls| > 1
B . ,
= - t arA’(s).
31 (2) + ¥ico -
Hence a(z) = sinc 2z — (7 cot am)z sinc® z,

in Fig. 10.9.} ;

- I%;rfxi)ah: (ielet:n sfrange that the equidistant samples may b.e regroupe(fl b:ln
pairs, even to the extreme of close spacing. However, it is alsq possible
to bunch the samples in groups of any size separated by such. wide mtel;'-
vals as maintain the original average spacing. The l?unchlngdmfa;.y e
indefinitely close; see Linden for a proof that the ordmate.s an Hirstt-n
derivatives, at points spaced by n + 1 tim.es‘the usual spacing, su ﬁce.t o
specify a band-limited function. In the limit, as n approaches.m nity,
the formula for reconstituting the function begom_es the l}iaclaurm series.
This introduces doubt of the practical applicability oi: h:ghfzr-order sam-
pling theorems, for it is well known that the Maclaurin series

SO + 2O+ 57O + -+ 5 SO0

does not usually converge to f(z). (Consider the functions 11 (az), which
ve the same Maclaurin series.) )

a“Ikrllalz’rza,ctice, higher-order sampling breaks down at some pomt: l;leca:se
small amounts of noise drastically affect the determination of_hig -order
derivatives or finite differences. In the total absence of noise, tTOPil?le'
would still be expected to set in at some stage because_of t'he 1m?osmb1r|t3
of ensuring perfectly band-limited behavior. In a}::ph.catwns o samp' “};g
theorems, the claim of a given function to be ban_d-hmlted must always be
scrutinized, and any error resulting must be estimated.

: : : i
! For a discussion of sampling theorems see D. A. Linden, A Discussion of Sampling

Theorems, Proc. IRE., vol. 47, p. 1219, July, 1959. In this paper the solving function

a(z) is given in the form

cos (2xx — ax) — cos ar

a(a).= 2rz sin ax

The numerator is a cosine wave so displaced that it has zeros at z =n an.d T ==hﬂ -tv:l.
but the zero at = = 0 is counteracted by the vanishing of the denominator in such a Way
that a(0) = 1.
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Sampling in the presence of noise

Suppose that the samples f(n) of a certain function f(z) cannot be obtained
without some error being made; that is, the observable quantity is

f(n) + error.

Then when an attempt is made to reconstruct f(z) from the observed
samples by applying the same procedure used for true samples, the recon-
structed values will differ from the true values of f(z).

Consider the case of midpoint interpolation, supposing that samples
have been taken at ¢ = +4, +14, +24, . . .. Then

f(0) = 0.6366(1(3) + f(—4)] — 0.2122[f(13) + f(—13))
+ 0.1278(f(23) + f(—-28)] — .. ..

The errors affecting f(}) and f(—4%) will have the greatest effect on f(0);
each error is reduced by 0.6366, and the resulting net error at z = 0, due
to the errors at the nearest two sampling points, could be anywhere from
zero, if the two errors happened to cancel, up to 1.27 times either error.
Clearly, the error involved in using the sampling theorem to interpolate
will be of the same order of magnitude as the errors affecting the data.
More than this could not be expected, and so it may be concluded that the
interpolating procedure is tolerant to the presence of noise.

It is not the purpose here to go into statistical matters, but a simple
result should be pointed out that arises when the errors are of such a
nature that they are independent from one sample to the next, and all
come from a population with zero mean value and a certain variance o2.
Then the variance of the error contributed at z = 0 by the erroratx = 4

is (0.6366) %, and the variance of the total error at z = 0 due to the errors
at all the sampling points is

[« .. 4 (0.1278)2 + (0.2122) + (0.6366)* + (0.6366)2 + (0.2122)?
+ (0.1278) + . . ]o2.
Now the terms of the series within the brackets are values of sinc? z at
unit intervals of £ and hence add up to unity. Therefore, in this simple
error situation, the interpolated value is subject to precisely the same
error as the data.
Now we apply the same reasoning to interlaced sampling, especially to
the extreme situation where the narrow interval is small compared with
the wide one, that is, where a < 1. At the pointz = }a + 4, whichisin

the middle of the wide interval, the four nearest sample values enter with
coefficients

a(fa + §), b(—4a + 3), a(da — 3), b(—4a — }).
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The first and last of these are positive and the others negative, and the
presence of the factor cot ar in the formula for a(z) shows that the numeri-
cal values may be large. Thus the interpolated value may result from the
cancellation of large terms, and the total error may be large.

In another way of looking at this, a pair of terms

f(0)a(z) + f(a)b(z — a)

may be reexpressed in the form

0@ + b — ) [LOHLD | 4 2e == %) (1(a) ~ f(O))

Here the first term represents the mean of a sample pair multiplied by a
certain coefficient, and the second represents the difference between two
close-spaced samples multiplied by a certain other coefficient. In the
limit as @ — 0, the solving functions for the ordinate-and-slope sampling
theorem would result. Now the coefficient of the difference term can be
large; for example, when a < 0.2, the value adopted in the illustration of
interlaced sampling, the coefficient exceeds unity. Thus errors in the
difference term may be amplified.

It thus appears that interlaced sampling, where the sample spacing is
alternately narrow and wide, is not tolerant to errors, and therefore the
magnitude of the errors would have to be estimated carefully in an appli-
cation. In a full study it would be essential to take account of any
correlation between the errors in successive samples since it is clear that
the error in f(a) — f(0) would be reduced if both f(a) and f(0) were subject
to about the same error.

Fourier series

It is well known that a periodic waveform, such as the acoustical wave-
form associated with a sustained note of a musical instrument, is com-
posed of a fundamental and harmonics. Exploration of such an acoustical
field by means of tunable resonators reveals that the energy is concen-
trated at frequencies which are integral multiples of the fundamental
frequency. There is nothing here that should exclude this case from
treatment by the Fourier transform methods so far used. However,
insistence on strict periodicity, a physically impossible thing, will clearly
lead to an impulsive spectrum and to the refined considerations that are
needed in connection with impulses. We now proceed to do this, using
the shah symbol for convenient handling of the sets of impulses that arise,
in connection both with the replication inherent in periodicity and with
the sampling associated with harmonic spectra.
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e Th-e Fourier series will be exhibited as an extreme situation of the
s"E:ozn'mr trunsf?rm, ;v;n though the opposite procedure, taking the Fourier
ries as a point of departure f i i i
TR p: or developing the Fourier transform, is
F.or .rel'erem?e let it be slta.ted that the Fourier series associated with the
periodic function g(z), with frequency f and period T, is

ay + ; (@ cos 2rnfr + b, sin rnfz),
1 rir
where a; = T _”..9'(3) dzr

2 [ir
=7 f_u,g(:c) cos 2rnfr dx

2 rir i
b. = o g(z) sin 2rfz dz.

It is necessary for g(z) to have been ch

i osen so that the i ist;
otherwise g(z) is arbitrary. A
beThe purpose of a good t?eal of theory dealing with the Fourier series has
k (;n tto sf]::w that the series associated with a periodic function g(x) does
in fact often converge, and furthermore, that when i i
e , " en it converges, it often

3oz + 0) + g(z — 0)].

;I‘he ri.gorous development of this topic was initiated by Dirichlet in 1829
ollow:mg a con_troversml period dating back to D. Bernoulli’s success in’
1753 in expressing the form of a vibrating string as a series

y = Aisin z cos at + A, sin 2 cos 2at + . . . .

Euler, who hfld been working on this problem and had just obtained the
g.eneral solution in terms of traveling waves, said that if Bernoulli w
rtght,. an arl?itrary function could be expanded as a sine series Th?ss
h.e said, was impossible. In 1807, when Fourier made this same ::laim ir;
!ns paper presented to the Paris Academy, Lagrange rose and said it was
'unposs:ble. This exciting subject led to many important developments
In pure mathematics, including the invention of the Riemann integral
It must be re.membered that the expressions for the Fourier constan tira .
@, b were given long before modern analysis developed. i
For the present purpose let us take T = 1 and note that the complex

constant a, — b, is related to the -peri
oteratdin. i one-period segment g(z)II(z) by the

a, — ibu

2 f—ii g(x)g—i!rng dz
2 [:. 9'(1‘)“(:;)3“""' dz.
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f(=) F(s)
= ]
p(x) = 1L » f ‘ P(s) = IIF
\ | ‘
..H”n n“h‘L

Fig. 10.10 The transform in the limit of a periodic function.

]
x

Fig. 10.11 The convergence factor 7 applied to a periodic _.funct'ion .p(:r);enie‘::
its infinite integral convergent while the convolvent T' removes infinite discontinuity

from a line spectrum P(s).

i ideri form of a
We now recover this result by considering the Fourer trans

iodic function. i
l‘)ml...et f(z) be a function that possesses a regular Fourier transform F(s)

(see Fig. 10.10). Then its convolution with the replicating symbol III(z)
will be the periodic function p(z), defined by

p(z) = III(z) * f(z) = i f(x — n) n integral.

The convergence of the summation is guaranteed by the abs:olute int;:gra-
bility of f(), which was requisite for the possession of a Fourier transform.

The period of p(x) is unity; that is,
p(z + 1) = p(2)

for all z.
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There will be no regular Fourier transform for p(z) because

/=, 1) =
cannot converge, save in the trivial case where p(2) is identically zero.
Hence we multiply p(z) by a factor y(z) that dies out to zero for large
values of z, both positive and negative. In effect we are bringing the
strictly periodic function p(z) back to the realm of the physically possible,
but only barely so (see Fig. 10.11). Let

v(z) = e
then the Fourier transform I'(s) of y(z) will be given by

r{s) EX = Ie—la’ir"

The function y(z)p(x) will possess a Fourier transform,

Y@p@) = v@ 3 fz = )

D T(s) * i e~i2vmaf(g)

I

5 Fe)T(s — ).

In shah-symbol notation,

3! F(r)T(s — n) = I(s) * [II(s)F(s)].
Now let P P(s) = IIL(s)F(s).

This entity P(s) is a whole set of equidistant impulses of various strengths,
as given by samples of F(s) at integral values of ¢, and has the property
that

yp2 TP,

By the convolution theorem we see that P is a suitable symbol to assign
as the Fourier transform of p(z), and indeed as r — 0 and yp runs through
a sequence of functions having p as limit, the sequence T' + P defines an
entity P of such a type that, as agreed, we may call p(z) and P(s) a
Fourier transform pair in the limit.

Taking f(z) to be the one-period segment g(«)II(x), we see that the
spectrum of a periodic function is a set of impulses whose strengths are
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given by equidistant samples of F(s), the Fourier transform of the one-
period segment. Now

fn+0 F(S)G‘Hzﬂ: ds

n=0

[ @ Ferin ds

F(ﬂ)e+i2rn:

3
)

©

F(0) + 2 [F(n)e*i*™»= 4+ conjugate]
1

F(0) + 22 (Re F cos 2rnz — Im F sin 2mnr)
1

w

= ay + Z (a, cos 2rnz + by sin 2rnx)
1

it @y — b, = 2F(n). And this is precisely the value that was quoted
ier for the complex coefficient a, — b,.

eagllfe f;ct.tthat riggrous deliberations on Fourier.seﬁes gener:‘a.lly are 1!1cﬁ‘et
complex than those encountered with the Fourier l‘ntegral 1sAessentlla. _\f
connected with the infinite energy of periodic functions (the integrals o

which are not absolutely convergent). It is th.e-refore very natt;.lrsj
physically to regard a periodic function as somethmg to b_e appro::lcr e

through functions having finite energy, and to consldef line spectra as’
something to be approached via continuous spectra V'Vlth ﬁmtef energ_zi
density. The strange thing is that the physically possﬂ)le fuqctlons-t:)lll

spectra are often presented as elaborations of the physically 1mpois,| l:e.
Some people cannot see how a line spectrum, no.matter how close )Tth.e‘
lines are packed, can ultimately become a continuous spectrum. . thls
order of presentation is inherited from the hlStOl‘lCE.ll preceden?e t;r -)e
theory of trigonometric series, and runs as follows (in our termfm}lc‘s ogy)-
The periodic function III »f has a line spectrum IIIF (set o o;n:;:r
coefficients). If the repetition period is lengthened tor, the lines o te
spectrum are packed r times more closely'and are 7 tufms weater (nf) :;
compensating change in ordinate scale in Fig. 10.12). Now let the perio !
become infinite, so that the pulse f does not recur. Then the t.ngono
metric sum which represented its periodic predec?ssors passes into fa;ln
infinite integral, and the finite integral which specified tht? series coeffi-
cients does likewise. These two integrals are the plus-i and minus-i
‘ourier integrals. ) '

l‘ognethe vigew described here line spectra and periodic functions lzli'rs
regarded as included in the theory of Fourier transforms, to be handle

Sampling and series 209

I « f

ey e ab FRIRE S

x ¥

%1{1(_1’5.) »f mI(rs)F

Tl
o M Jay M.ﬂmﬁ 1TV

F

N — [ T~

Fig. 10.12 Deriving the Fourier integral from the Fourier series.

exactly as other transforms by means of the III symbology, and with
the same caution accorded to other transforms in the limit.

Gibbs phenomenon One of the classical topics of the theory of
Fourier series may be studied profitably from the point of view that we
have developed. In situations where periodic phenomena are analyzed
to determine the coefficients of a Fourier series, which is then used to
predict, it is a matter of practical importance to know how many terms
of the series to retain. Various considerations enter into this, but one of
them is the phenomenon of overshoot associated with discontinuities, or
sharp changes, in the periodic function to be represented.

It is quite clear that by omitting terms beyond a certain limiting fre-
quency we are subjecting the periodic function p(z) to low-pass filtering.
Thus, if the fundamental frequency is s, and frequencies up to ns, are
retained, it is as though the spectrum had been multiplied by a rectangle
functionII(s/2s,), where s, is a cutoff frequency between nsoand (n + 1)so.
It makes no difference precisely where s, is taken; for convenience it may
be taken at (n + 4)%0. Multiplication of the spectrum by I[s/(2n +
1)s0] corresponds to convolution of the original periodic function p(z) with
(2n + 1)so sine [(2n + 1)sex]. Therefore, when the series is summed for
terms up to frequencies ns, only, the sum will be

P(z) * (2n + 1)s0 sinc [(2n + 1)s0z).

The convolving function has unit area, so in places where p(z) is slowly
varying, the result will be in close agreement with p(x).



210 THE FOURIER TRANSFORM AND ITS APPLICATIONS

We now wish to study what happens at a discontinuity, a_nd SO we
choose a periodic function which is equal to sgn z for a good‘dlstance t'.o
each side of = 0 (see Fig. 10.13). What it does outside this range will
not matter, as long as it is periodic, because we are going to focus a?tten-
tion on what happens near z = 0. Near « = 0 the result will be
approximately

(2n + 1)s, sine [(2n + 1)sex] * sgn z.
We know that

sincz *sgnz = 2 f; sinc ¢ dt,
a function closely related to the sine integral Si(z). In fact
z . 2.
2 f sine t dt = = Si(rz).
0 T

This function oscillates about — 1 for large negative values of z, oscillates
with increasing amplitude as the origin is approached, passes through zero
at z = 0, shoots up to a maximum value of 1.18, and then settles down to
decaying oscillations about a value of +1. If we change the scale factors
of the sinc function, compressing it by a factor N = (2n + 1)so, and

A
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Fig. 10.13 (a) A periodic function p(z); (b) an enlargement of area A.
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strengthening it by a factor N, so as to retain its unit area, then convolu-
tion with sgn z will result in oscillations about —1 and then about +1
that are faster but have the same amplitude, that is,

N sine Nz xsgn z = ; Si (N7z).

The overshoot, amounting to 9 per cent of the amount of the discon-
tinuity, remains at 9 per cent, but the maximum is reached nearer to the
discontinuity. The same applies to the minimum that occurs on the
negative side.

Now we see precisely what happens when a Fourier series is truncated.
There is overshoot on both sides of any discontinuity, amounting to about
9 per cent, regardless of the inclusion of more and more terms. At any
given point to one side of the discontinuity the oscillations decrease
indefinitely in amplitude as N increases, so that in the limit the sum of the
series approaches the value of the function of which it is the Fourier
series (and at the point of discontinuity, the sum of the series approaches
the midpoint of the jump). In spite of this, the maximum departure of
the sum of the series from the function remains different from zero, and as
the maximum moves in close to the step, it approaches the precise value
of 9 per cent that was derived for sgn z, because the parts of the function
away from the discontinuity have indeed become irrelevant.

This behavior is reminiscent of that of z §(z), which is zero for all z,

even though sequences defining it have nonvanishing maxima and
minima.

Finite Fourier transforms In problems where the range of the inde-
pendent variable is not from — = to «, advantages accrue from the intro-
duction of finite transforms; for example,

F(s,a,b) = f:_f(x)e—ﬂm d.

With such a definition one can work out an inversion formula, a convolu-
tion theorem, theorems for the finite transform of derivatives of functions,
and so on. As a particular example of an inversion formula we have

F.(s,03) = foi f(z) sin 2rxs dz,

f@) = 4 E F,(s,0,%) sin 2rzs.
a=1
The right-hand side of the last equation will be recognized as the Fourier

series for a periodic function of which the segment in the interval (0,}) is
identical with f(x).
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It will be evident that the theory of finite transforms will be the same as
the theory of Fourier series and that the principal advantage of their use
will lie in the approach. We have seen the convenience of embracing
Fourier series within the scope of Fourier transforms through the concept
of transforms in the limit, and we shall therefore also include finite
transforms. Thus we may write the foregoing example in terms of ordi-
nary sine transforms as follows:

fa’ f(@) sin 2rzs dz = 2 [, B f(2)] sin 2rzs da

and in the general case

fbf(x)e-ieuc dz = f N [l’[ (E:ﬂf_“)) f(x):l e—itrzs .
¢ £ b—a

In other words, we substitute for integration over a finite range infinite
integration of a function which is zero outside the old integration limits.

All the special properties of finite transforms then drop out. For
example, the derivative of a function will (in general) be impulsive at the
points a and b where it cuts off, and therefore the Fourier transform of the
derivative will contain two special terms proportional to the jumps at a
and b. It is not necessary to make explicit mention of this property of
the transformation when stating the theorem that the Fourier transform
of the derivative of a function is 12rs times the transform of the function;
for example, the Fourier transform of II'(z) is i2rs.sinc § = 2i sin =s.
However, the derivative theorem for finite transforms contains these
additive terms explicitly. Thus

[2 5/ (@)emitree de = dgmsP(s,0,0) + fl@)ei = fB)em.

Fourier coefficients If we consider the usual formula for the series
coefficients a, and b, for a periodic function p(z) of unit period, namely,

an — iby = 2 [, pl@)eitree da,

we note that the integral has the form of a finite Fourier transform. Thus
in spite of the fact that p(z) is a function of a continuous variable z,
whereas the Fourier series coefficients depend on a variable n which can
assume only integral values, Fourier transforms as we have been studying
them enter directly into the determination of series coefficients. The
finite transform can, we know, be expressed as a standard transform of a
slightly different function Il(z)p(x) as follows:

f_: I(z)p(x)e*"* de.
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Fig. 10.14 Obtaining Fourier series coefficients.

Our ability to handle transforms can thus be freely applied to the
determination of Fourier series coefficients.

As an example consider a periodic train of narrow triangular pulses
shown in Fig. 10.14a,

Y Alo(z — n)).

n=—a=x

With the aid of the shah notation this train can also be expressed in the
form

A(102) * ITI(z),
whose transform is

1—10 sine? = TII(s).

We note that the 45 sinc? (s/10) part of this expression came from
f _n: A(10z) 7= dg,

which, in terms of the periodic train A(10z) * I1I(z), is the same as

f_: I(2)[A(10z) * III(z)]e"*"*= da.
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Thus by taking the Fourier transform of a single pulse of the train we
obtain precisely the expression which arose in connection with the series.
It is true that s is a continuous variable while n is not, but

J g s

e 3.

70 ¥ 15 111(s)

is zero everywhere save at discrete values of s, and at these values the

strength of the impulse is equal to the corresponding series coefficient.
In the general case of a function

(z) * lT 111 (%)

of any period T, the transform
F(s)III(Ts)

shows that the coefficients are obtained by reading off the same F(s) at
different intervals s = T—!. This is illustrated in Fig. 10.14b.

The shah symbol is its own Fourier transform
The shah symbol III(z) is defined by

I(z) = i 5(z — n)

and therefore, in accordance with the approach being adopted here, is to
be considered in terms of defining sequences. If, as asserted, its Fourier
transform proves to be III(s), then it too will be considered in terms of
sequences.

We proceed therefore to construct a sequence of regular Fourier trans-
form pairs of ordinary functions such that one sequence is suitable for
defining III(2), and we then see whether the other sequence defines ITI(s).

Consider the function

_f(:) = r—lg—7ria? z g Ma—n)?
For a given small value of 7 (which we shall later allow to vary to generate
a sequence), the function f(z) represents a row of narrow Gaussian spikes
of width 7, the whole multiplied by a broad Gaussian envelope of width
7! (see Fig. 10.15). Asr — 0, each spike narrows in on an integral value
of z and increases in height. For any value of « not equal to an integer,
we can show that f(z) — 0 as r — 0 and, in addition, the area under each
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f(x) F(s)

/Gaussian locus of maxima

—

Gaussian envelope

Fig. 10.156 A transform pair for discussing the shah symbol.

spike approaches unity. The sequence is therefore a suitable one for
defining a set of equal unit impulses situated at integral values of z.

The function f(z) possesses a regular Fourier transform, since |f(z)| is
integrable, and there are no discontinuities. The Fourier transform F(s)
is given by

-
F(s) = 71 Z a—-n'mze—rr'i(l—m)xl

m= —®

One way of establishing this is to note that the factor

L -]
1 E g7 z—n)?

n=—=

is periodie, with unit period, and hence may be expressed as a Fourier
series. The theory of Fourier series is a well-established branch of mathe-
matics that we are entitled to draw upon here, as long as we do not attempt
to make the self-transforming property of the shah symbol a basis for
reestablishing the theory of Fourier series. The Fourier series is

Z e~ cos 2rma.

Therefore f(z)

e"Tim e T 0o Urma
m= — =
w0

e n“m'e— rt':‘ehimx

By applying the shift theorem term by term, we obtain F(s) in the form
quoted above.

The function F(s) is a row of Gaussian spikes of width 7 with maxima
lying on a broad Gaussian curve of width r—!. As before, it may be veri-
fied that as r — 0 a suitable defining sequence for the shak symbol results.



216 THE FOURIER TRANSFORM AND ITS APPLICATIONS

Problems

I Show that a periodic function p(z) with unit period can always be expressed
in the form III(z) * f(z) in infinitely many ways, and relate this to the fact that
infinitely many different functions can share the same infinite set of equidistant
samples.

2 Express the periodic pulse train

i I[10(z — n)]

n=—oum

in the form III(z) * f(z) in three distinct ways.

3 Determine the Fourier series coefficients for the functions of period equal to
unity which, in the interval —4 < z < 3, are defined as follows:

a. cos mx, A(@z), [1(2z) — 3,

b. A(8z — 1), (1 — 4z)H(z),

e. e7™= 1 — 422, e b=l e2H(x).

t The following sample set defines a band-limited function:
. . 0, 10, 80, 50, 50, —40, —85, —10, =5, 0, . . .

All samples omitted are zero. Establish the form of the function'by numerical
interpolation. What is the minimum value assumed by the function?

5 A certain function is approximately band-limited, that is, a small fraction [
of its power spectrum in fact lies beyond the nominal cutoff frequency. It is
sampled at the nominal sampling interval and reconstituted by the usual rules.
Use the inequality

f@) < [ IFG)lds

to examine how great the discrepancy between the original and reconstituted
functions can become.

6 The approximately band-limited function mentioned above is subjected to
ordinate-and-slope sampling. Use the inequality

r@ <o 5 IsF )l ds

to show that the discrepancy between the original and reconstituted functions
can be serious, even when p is small.

7 A little noise is added to a band-limited function. Before sampling, one
subjects the noisy function to filtering that eliminates the noise' compor.lents
beyond the original cutoff. However, the function is still contaminated with a
lit;:le band-limited noise. Examine the relative susceptibilities of ordinate-.nnd-
slope sampling and of ordinary ordinate sampling to the presence of the noise.
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8 A finite sequence of equispaced impulses of finite strength
adE) +mdz—1)+ ... +a.6(x—n)
is convolved with itself many times, and the result is another sequence of impulses
Za; 6(x — 1).

Combine the central-limit theorem with the sampling theorem to show that a
graph of «; against ¢ will approach a normal distribution. State the simple
condition that the coefficients ao, a;, . . . , a, must satisfy.

9 In the previous problem, practice with simple cases that violate the condition,
and develop the theory that suggests itself.

10 Show that the overshoot quoted as around 9 per cent in the discussion of the
Gibbs phenomenon is given exactly by

- .
- fl sine z dz.

I1 A carrier telephony channel extends from a low-frequency limit f; = 95 kilo-
cycles per second to a high-frequency limit f4 = 105 kilocycles per second. The
signal is sampled at a rate of 21 kilocycles per second, and a new waveform is
generated consisting of very brief pulses at the sampling instants with strength
proportional to the sample values. Make a graph showing the spectral bands
occupied by the new waveform, and verify that the original waveform could be
reconstructed. Show that in general the critical sampling rate is f, divided by
the largest integer not exceeding fi/(f» — f1).

12 In the previous problem, show that 2(fi — fi) is in general too slow a sam-
pling rate to suffice to reconstitute a carrier signal. Show that by suitably

interlacing two trains of equispaced samples the average sampling rate can, how-
ever, be brought down to twice the bandwidth.

13 A band-limited signal X (t) passes through a filter whose impulse response

is I(£). The input and output signals X (t) and ¥ () can be represented by sample
values X; and ¥;. Show that

(Y} = {L} = {X}
and explain how to derive the sequence {I.}.

14 In the previous problem the input signal samples are {X;} = {1 2 3 45
.. .}, and the sequence {I.} describing the filter is {1 2 1}. Show that the
output sequence {¥;} is {1 4 8 12 . . .} and that it is possible to work back
from the known output and determine the input by evaiuating

{1 —28 —45...}«{14812...].

15 In the previous problem, verify numerically that a particular output signal
sample can be expressed in terms of the history of the output plus a knowledge
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of the most recent input signal sample, that is,

Y.' = Cny{-t +G2Y;_z + Wl + B;Y.‘.
Show that the coefficients «, as, . . . and 8 are given in terms of the reciprocal
sequence
{Ko Ky K. . . .} = {L]™
1
b}' imagaa...i=——:-IK1K2K3...}
K,
1
and B=—
K,

16 The input signal to a filter ceases, but the output continues, with each new
sample deducible from the previous ones by the relation

Yi=aVig+a¥ia4+ ...
Show that

F@t) =[a16(t = 1) +aa bt = 2)+ . . ] F(2).
In a particular case, there are only two nonzero coefficients:
Y,' = 165 Y"_| — 0.9}’,_1.

The first two output samples immediately after the input ceased were each 100;
calculate and graph enough subsequent output values to determine the general char-
acter of the behavior. Show that a damped oscillation V' ({) = e cos [w(t — a)]
satisfies the convolution relation given above when

a; = 277 cos w
and ay = —e %

Is this band-limited behavior?

17 In the previous problem, show that the series for ¥; contains only a finite
number of terms if the filter is constructed of a finite number of inductors,
capacitors, and resistors. Hence show that the output due to any input signal
is deducible, for a filter whose internal construction is unknown, after a certain
number of consecutive sample measurements have been made at its terminals.
How would you know that enough samples had been taken?

18 The input voltage X (t), and output voltage Y (f) of an electrical system are
sampled simultaneously at regular intervals with the followingresults.

X(t) 15 10 6 2
Yit) 15° 18 7

Calculate the missing values of ¥(f), and also calculate what the output would
be if, after some time had elapsed, X (f) began to rise linearly.

Chapter 11 The Laplace
transform

Hitherto we have taken the variables z and s to be real variables. Now,
however, let ¢ be a real variable and p a complex one, and consider the
integral

|2, fwer .

This is known as the (two-sided) Laplace transform of f(f) and will be

seen to differ from the Fourier transform merely in notation. When the

real part of p is zero, the identity with the Fourier transform (as inter-

preted with noncomplex variables) is complete. In spite of this, however,

there is a profound difference in application between the two transforms.
Alternative definitions of the Laplace transform include

oy SOV dt,
which may be referred to as the one-sided Laplace transform, and

p [ fye at,

which may be referred to as the p-multiplied form.

The one-sided transform arises in the analysis of transients, where f(f)
comes into existence following the throwing of a switch at { = 0. How-
ever, if we deem that f(f) = 0 for t < 0, such cases are seen to be included
in the two-sided definition. It is not always stressed that the lower limit
of the integral defining the one-sided Laplace transform is 0+; indeed in
practice it is normally written as 0. One must remember that

foo f(d)er dt usually means 11_1-’1{1! fl:; f(t)e dt.
219



Chapter 18 The discrete Fourier
transform

TR T T TP TR TR TR LT

[f one wishes to obtain the Fourier transform of a given function, it may
happen that the function is defined in terms of a continuous independent
variable, as is most often the case in books, especially in lists of tr:tnsfor}‘rl
pairs.  But it may also happen that function values are given only at dis-
crete values of the independent variable, as with physical measurements
made at regular time intervals. Regardless of the form of the given
function, if the transform is evaluated by numerical computing, the
values of the transform will be available only at discrete intervals. We
often think of this as though an underlying funection of a continuous vari-
iable really exists and we are approximating it. From an operational
viewpoint, however, it is irrelevant to talk about the existence of values
other than those given and those computed (the input and output).
Therefore, it is desirable to have a mathematical theory of the actual
quantities manipulated.

The discerete transform formula

Questions of discreteness also arise in connection with periodic functions.
A periodic function is describable by a sequence of coefficients at (%iscrete
intervals (of frequency), but this situation may be viewed as a special case
of continuous frequency. The transform is then regarded as a string of
equally spaced delta functions (Fig. 18.1) of strengths given by the
coefficients.  What if this transform were itself periodic? Then 1:he
original function would also reduce to a string of delta functions. “"-llh
both funection and transform now being periodic, all the information
about both would be limited to two finite sets of coefficients: the strengths
of the delta functions.
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Fig. 18.1 (a) A periodic function p(t) has a transform P(f) which is a string of
equispaced delta functions; (b) a periodic function q(t), which is a string of equi-

spaced delta functions, has a transform Q(f) whick is also a string of equispaced
delta functions and the string is periodic.

Thus the practical situation where a finite set of values is given and «
finite set is computed does actually lie within the continuous theory.
However, it pays to start afresh rather than to force the theory of the
discrete Fourier transform into the continuous framework. The reason
is that the discrete notation is concise and reasonably standardized.

To retain some physical ties, let us think in terms of signal that is a
function of time; but to recognize the discreteness of the independent vari-
able, let us use the symbol , which we agree can assume only a finite
number N of consecutive integral values. Furthermore, we agree that 7
cannot be negative. Thus, before entering into the realm of the discrete
Fourier transform, we first make, if necessary, a change of scale and a
change of origin. For example, suppose that a voltage waveform v(?) is
half a period of a cosinusoid of period 1 second (Fig. 18.2):

o(t) = cos 2xt —0.25 <t <0.25
0 otherwise

and that samples are tuken at intervals of 100 milliseconds. Table 18.1
shows signal values as a function of ¢ but Table 18.2 shows how it is to
be converted into a function f(r) of discrete time 7 before proceeding.
This is illustrated in Fig. 18.2. 1In general, if the sampling interval is T
and the first sample of interest occurs at t = ¢y, then

J(@) = o(to + 7T), r=0,1,2 ...,N =1,
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vl fir)
1 1

f T : SR
—0.25 0.25 . ORI e

Fig. 18.2 A function of the continuous variable t and one way of representing it
by eight sample values.

In what follows, f(r) forms the point of departure. It will be noticed
that no provision is made for cases where there is no starting point, as
with « function such as exp (—t2). This is in keeping with the practical
character of the discrete transform, which does not contemplate data
trains dating back to the indefinitely remote past. A second feature to
note is that the finishing point must occur after a finite time. However,
it need not come at r = 5 as in Table 18.2; one might choose to let 7 run
on to 15 and assign values of zero to the extra samples. This is a con-
scious choice that must always be made. It may be important; for
example, Table 18.2 does not convey the information given in the equa-
tion preceding it—that following the half-period cosine, the voltage
remains zero. The table remains silent on that point, and if it is impor-
tant, the necessary number of zeros would need to be appended.

By definition, f(r) possesses a discrete Fourier transform F(v) given by

N-1

F(y) = N1 ZO f(r)e-iamtNr, (1)

The quantity »/N is analogous to frequency measured in cycles per sam-
pling interval. The correspondence of symbols may be summarized as
follows:

Time Frequency

Continuous case t f
Discrete case T v/N

The symbol » has been chosen in the discrete case, instead of f, to
emphasize that the frequency integer v is related to frequency but is not
the same as frequency f. For example, if the sampling interval is 1 second
and there are eight samples (N = 8), then the component of frequency J
will be found at » = 8f; conversely, the frequency represented by a fre-
quency integer » = 1 will be § hertz.
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Table 18.1 Table 18.2
£
(milliseconds) o(t) T flr)
—250 0 0 0
-150 0.588 1 0.588
—50 0.951 2 0.951
50 0.951 3 0.951
150 0.588 4 0.588
250 0 5 0

Given the discrete transform F(»), one may recover the time series f(r)
with the aid of the inverse relationship

N-1
fe) = E F(v)ei=0INr, (?)
pe=i
To see that this is so, we first verify the fact that
N-1 i e
2 e—i2r (v IN) =) — { N Ui
o 0 otherwise.

One wuy is to picture the summation as a closed polygon on the complex
plane, except when 7 = 7/, in which case the polygon becomes a straight
line composed of N unit vectors end to end. (The variable 7' is taken to
assume values 0, 1, . . ., N — 1; if larger values were allowed, for
example if + — 7/ could become equal to N, 2N, . . ., the summation
would equal N for = 7 mod N.) Another way to think of this is by
analogy with the orthogonality relation of sinusoids of different fre-
quencies, a viewpoint that is aided by rewriting it

Nal N pe=ipf

e—l“Zr(rfNJreﬂt(i'h\"]f P I
r=0

0 otherwise.
To establish the inverse discrete transform, introduce a dummy vari-
able 7’ for convenience, and substitute (1) into the right-hand side of (2):

N-1 N-1 N-1
Z F(y)e2romr = E N-1 2 f(r)emitmOINrgitaCain)r
y=0 v=0 =0

N -1 N-=1

-1 Z fr) E e-12r(IN) (r=17)
r=0 y=0

- \'_]-\r’z—lf() x{.\' T=17
. = % 0 T ;'51"

= f@').
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From the inverse transform we see that only N integral values of the
frequeney integer v are needed and that they range from 0 to N — 1 just
as with the diserete time 7. It certainly sounds reasonable that a fune-
tion defined by N measurements should be representable after transforma-
tion by just N parameters. Even when the values of f are real, the
values of F are in general complex and, as will be seen below, one must be
careful how to count complex numbers. The fact that » ranges over
integral values, whereas the frequency »/N is fractional, is the reason for
introducing the integer v; mathematical convenience takes priority over
physical significance.

In order to regain our physical feeling for numerical orders of magni-
tude, let us consider a record consisting of 1,024 samples separated by
I-second intervals. We expect this to be representable by a Fourier
series consisting of 4 constant term and multiples of a certain fundamental
frequency. The fundamental period should be 1,024 seconds, corre-
sponding to a fundamental frequency 1/1,024 hertz. The highest fre-
quency needed will be 0.5 hertz, which has two samples per period.  This
will be the 512th harmonie.  The reason that » assumes 1,024 values,
whereas the number of frequencies is only 512, is as follows.  If the
values of f(r) are real, as is usual in records of physical quantitics, there
are 1,024 real data values. Now the transform F(») has 1,024 complex
values which would require 2,048 real numbers to specify except that
F(0) and F(.V/2) have no imaginary part [see (Eq. 1)] and half the re-
maining values of F(») are complex conjugates of the other half. This is
because f(r) is real (Chapter 2). If f(r) were complex, there would be

2,048 real data values and F(») would require 2,048 real numbers for its
specification.

Since the highest frequency reached is 0.5 hertz, it is apparent that.

v/N, which reaches a maximum value of 1,023/1,024, is not a strict
analogue of frequency. For instance, where v = 724, »/.N' = 0.707 hertz
and, as we have seen, frequencies above 0.5 hertz are neither required
nor can be represented by samples at 1-second intervals. Rather,
v = 724 corresponds to a negative frequency —300/1,024 hertz.

This anomaly is a distinct impediment to the visualization of the con-
nection between the Fourier transform and the discrete Fourier trans-
form. One way to bring the two into harmony would be to redefine the
discrete transform in terms of summation over negative and positive
values, although it might be objected that negative subscripts are per-
mitted only in some computer languages (for example, ALGOL). On
the other hand, some widely used languages do not even allow indexing
to start at zero, and so an index shift is required anyhow. Another objec-
tion asserts the desirability of making N an even number.  Figure 18.3b
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Fig. 18.8. (a) A function and its Fourier transform; (b) and (¢) two way of
representing the function by N samples and the corresponding discrete Fourier trans-
forms, shown by modulus (dots) and phas: (small dots).

shows hc{W a signal v(¢) and its transform S(f) might be made to corre-
spond with f(r) and its discrete transform F(v). Alternatively, as in

Fig. 18.8¢, it could be arranged that r = 0 corresponds to ¢ = tg; this

would not prevent the smull negative values of frequency labeled A from
corresponding to large positive values of » labeled B.

Finally, another way of looking at this, which is customary, is to lift
.the restriction of = and » to values from 0 to N — 1 and to allow all
integral values, including negative values. The function values assigned

are on the basis that f(r) and F(y), in their extended sense, are periodic,
with period N. Thus

f@) = f(

+N)=fr+eN)=..
F) =F@ +

N) = F(v + 2N) =
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This plan will be adopted here. Under this plan, the basie transform
and its inverse may be written

(1/2)N -1
F(») = N-! E fr)e—izr N (8)
r=—(1/2)N
(1/2)N -1
f@) = F(»)eetidr 4)
ym=(1/2)N

and v/N may be identified with frequency measured in cycles per sam-
pling interval over the range — 3V < » < EN.  If the sampling interval
is T, the frequency measured in hertz is »/NT.

In Fig. 18.4 we see a way of visualizing f(r) and F(») as having cyclic
dependence on 7 and v. The upper type of diagram is helpful in making
w connection with our previous experience [e.g., to tuke the autocorrela-
tion of a sequence, we imagine f(r) to be rotated, in the top left-hand
diagram, relative to itself]. Multiplication of corresponding values fol-
lowed by summation gives a value of the autocorrelation and we can see
how the result ties in with our previous knowledge that the autocorrela-
tion of a rectangle function is a triangle function. This illuminates the
lower diagrams where the original form of indexing, starting from
zero, obscures the simple shapes.

Cyclic convolution

If we convolve two sequences, one having m elements and the other n,
then the convolution sum, or serial product, will have m + n — 1 ele-

ments (p. 32). In particular, if we deal with sequences having N ele-.

ments, then the convolution of two such sequences will not itself be con-
tainable in an V-element sequence. Figure 18.4 (top center) coped with
the desire to exhibit the triangular autocorrelation of two rectangles by
packing the sequence expressing the rectangle with extra zeros. Three-
fourths of the elements shown at the top left are zeros, and at the top
center there are still plenty of zeros left to witness to the isolated nature
of the triangular island.

Suppose now that N is kept constant while the number of nonzero
clements at the top left is increased. When the rectangle extends more
than halfway around the circle, the outer ends of the triangle overlap.
The result will be a flat, nonzero segment in the region of overlap.
Clearly, the result is wrong if we are looking for the triangular auto-
correlation. However, the operation exists in its own right, and may be
defined as eyelic convoluticn.

The eyelic convolution integral h(8) of two periodic functions f(-) and
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Function

Autocorrelation

Discrete
transform

|

vaN-—1
Fig. 18.4 Cyclic (above) and standard (below) representations of a sampled
rectangle function, its triangular autocorrelation, and its transform.

g() with period 2x is defined as

ho) = [ @190 - 0) s

The cyclic convolution sum A(r) of two N-element sequences f(r) and
g(r) is defined as

N=1

k) = Y fG)lr — 7 + NHG — 1)),

=0
where H(-) is the Heaviside unit step function. Becnuse r — r may
range from —(N — 1) to N — 1 as 7 and +' range from 0 to N — 1, a
term N must be added to r — #' when 7' > 7 to bring 7 — ' into the
range [0, N — 1]. This is the effect of the term NH(r' — 1), which will
be explicitly required in computations. However, interpreting g(r) in

its extended or cyclic sense allows us to omit the term NH (7' — 7) from
the written expressions.
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Examples of discrete Fourier transforms’

Certain short, discrete transform pairs are often needed, and a small
stock of transform pairs can be helpful for checking. Here is a reference
list.

N =2 {1 0}=%f1 1}
(11} > %2 0}
011> 4{1 —1}

{1 —1}> %10 2]

N =4 f1o00}>1{1111}
{0100}24(1 —7 —1 1}
{(0010}2%1 —11 —1}
{0ooo01}o11i -1 —i}
f1100}jo2%{21—-1701+7}
0011}242 —1+i0 —1—1}
{1111}>1{4000]

{110 —1}o%{11 -2 11+ 2}
{too1l}js4{214+¢0 14}
V=8 1

(11111111}
(10000000} %11 1 _
{0 1 0000 0} = %ll 8—' x /B e—:h(i.‘m e—uh[ﬂ.fs)

—1 girr(s/®) e—-:‘zs(m’s} e—mﬂ.rali

{00100000}>%(1 —¢ —1 41 —i —1 i}.

Reciprocal property

Just as the Fourier transformation applied twice in succession, with alter-
nating sign of 7, gives back the original function, so there isln correspond-
ing property for the discrete Fourier transform. But owing to the use
of a scaling factor N to make the index » integral, the c?:screte transform
is not strictly reciprocal, even allowing for the sign of 7. Thus

N-1

N-1 [ E _\'—1NZ_1 f(rf)e—-izr{r;a\?]v’] e OINT = N=1f(r).
a0

»=0
If the DFT is applied twice in succession without changing the sign

! As there is little risk of confusion, we may use the sign O to_ stand for “has DF[']T.
Thus Eq. (1) could be written f(r) @ F(») and Eq. (2) could be written F(») € f(r), where
C means “has inverse DFT.”
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of 7, we will get N=!f(—r) on the right-hand side. Expressing this dif-
ferently, if

f@) 2 F(v),
then F(v) o N-f(—1).

This property and others about to be mentioned and several theorems
will not be derived. Instead, emphasis will be placed on interpreting and
illustrating them and presenting them in a form suitable for reference.

Oddness and evenness
By definition, f(r) is even if
f(=r)

f(@)
and odd if
J(=7) = —f(@).

Figure 18.5 illustrates the following odd and even sequences of 16 ele-
ments, where = runs from 0 to 15.

Even. {5432 1000 0000 123 4}.
Odd: (0876 5482 0 -2 -3 —4 -5 —6 —7 —8}.

In these examples, the elements have been grouped in fours to help display

the nature of the symmetry. Even and odd sequences of four elements
are as follows:

Even: {a b ¢ b}.
Odd: {0 b 0 —b}.

Clearly the rules for extending the range of r to negative integers are
required here, in particular the special case

J(=1) = f(¥ — ).

r=15

r=0

Even Odd
Fig. 18.5 Even and odd sequences shown cyclically.
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A similar relation holds for F(v),

F(—v) = F(N = v).

Examples with special symmeiry

Symmetry rules with respect to oddness and evenness assume the same
form for the discrete transform as given in Chapter 2 for the continuous
transform.

real 2@ hermitian
imaginary D antihermitian
real and even D real and even
real and odd D imaginary and odd
imaginary and even D imaginary and even
imaginary and odd 2 real and odd
cven 2 cven
odd 2 odd.

The following examples illustrate these rules, which are of major im-
portance in practical computing

2342110 —2+2 -2 —2— 2}
234 2L{10i —2—2 —2 2— 2}
000231111}
0 —1}31{0 —2i 0 2i)
212 >51il9 31 3
0 —1}>1{020 —2]

(1445 20 i 26} 23149 148 141 1+ 3
014470 —1—i}okj0 2 -2 0 —2— 2.

Complex conjugates

The discrete transform of the conjugate is the conjugate of the transform,
re\«'(_‘rsed'.

1) 2 F*(—»).

By “reversal,” we mean changing the sign of the independent variable.

Reversal property

If the sign of r is changed, that is, if f(r) is reflected in the line r = 0,
the sign of » is changed:

f(=1) 2 F(=v).
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It is worth noting that this operation on f(r) is also produced by reflection
in the line r = ¥\

Addition theorem

Ji(r) + fa(r) D Fi(v) + Fa(v).

Ezample:

1f {2000} > %{2 2 2 2}

and {0100}2%{1 —7 —1 1},
then {2100}>%i82—11 2+ i}.

Shift theorem

f(r — T) D e TGINE(}),

Example:
{1000} %{111 1}
{0100} %1 —i (=) (1)
{0010}> %1 (=) (=) (=2)°%
0001} 231 (=9)° (=) (=2)°}.

Sometimes a shift in the frequency domain is required; one version of
what could be called the inverse shift theorem is

e (n/Nif(2) D F(v — o).

Convolution theorem

The eyclic convolution of two sequences {fi(r)} and {f:(r)} was defined
by

N-1
filr) * falr) = ZO JEfalr — 7).

Remember that fo(-) has to be understood in its extended cyclic sense.
To emphasize the distinction between this discrete operation and the
convolution integral, we may use the term convolution sum, but where
there is no risk of confusion, it may be called simply the convolution of
the sequences {f,} and {f.}. The theorem is

fl(f) tfg('r) =2 .\'Fl(V}Fz(P}.
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Example:

Let {1:1..0.0}:2 k121 — 27 0alisal. : :

Then {1100} *{1100}=¢{1210}>4{4 —2;021}. .
Also, (1100}+{0022 ={2024)>1(84i0 4}.

Product theorem

The inverse of the convolution theorem, which applies to products in the
+ domain, or convolution in the » domain, is
N=1

ﬁ&m®='zJWﬂhU—um

Ezxample: ‘
fi=fa=fife=1{11 00}j2%{2 1—170 1+

Cross-correlation

N=-1

S L + 1) D NF()Fa(—v).
1 =)

Autocorrelation
N=1
Y AENE + 1) 3 NIF)
' =0
Ezample:
1100 %1100} =1{2101}]
>L{4 20 2}

Sum of sequence

N=1

20 f(r) = NF(0).

Example:

(1050215 —115 —1}.
We see that Zf = 6, F(0) = 1.5, N = 4, and NF(0) = 6. If we follow
the practice of writing N=! as a first factor of F(v), the theorem means

that the sum of the sequence is equal to the first term after the opening
brace on the right-hand side.
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First value

This is the inverse of the preceding:
N-=1
fO = X F)
Example:
fO)=1 and ZF =15—-1415—-1=1.

We see that the sum of a sequence cquals N times the first value of its

DFT, but conversely the sum of the DFT exactly equals the first value
of the sequence.

—>sum equals a
-} = N-aq - - }

S
I—»ﬁrst value equals sum —4

Generalized Parseval-Rayleigh theorem
N-1 N-1
2 @ =N T [Fo).
r=0 v=0
Ezample:
(1100}54(21-i0 143}
We see that Zf? = 2 and that NZF? = 4 x 0.5 = 2.

Packing theorem

The packing operator Packx packs a given N-member sequence f(r) with
trailing zeros so as to increase the number of elements to KN

Packk {f(r)} = {g(x)},

i _ | f) 0<r<N-1
where glr) = [0 N<r<EN—1.
Thus Pack, {128 4} = (1234000 0}.

The theorem is
Packx {f(r)} 2 G(»),

where  G(y) = F(E”) v=0,K,2K,...,KN —K.

x|
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The intermediate values of G(v), not given by this relation, can be deter-
mined by sinc-function interpolation between the known values [e.g.,
by midpoint interpolation (p. 195) when K = 2], but for a better method,
see Problem 18.8.

Similarity theorem

To have an analogy with expansion or contraction of the scale of con-
tinuous time, we must supply sufficient zero elements, either at the end,
as with packing, so that the sequence may expand, or between elements,
so that there is room for contraction. The operation of inserting zeros
between elements so as to increase the total number of elements by a
factor K will be denoted by the stretch operator Stretchg.

Stretchg [f(r)} = [g(7)],

: _|fa/K)y 1=0,K2K,...,(N=-DK
Yhere g = {0 otherwise.

Ezxample:
Stretch, {1234} = {1020 30 4 0].
The theorem is, if {g} 2 {G},
—I:F(v) v=0,...,N-=1
K
1= . . .
¢y = | gFO=N) »= Nl 8N =1

(K-—1N,...,KN -1

1 -
‘IEF(vﬁK—l.\') v

Thus, stretching by a factor K in the r domuin results in K-fold repetition
of F(v) in the » domain; the frequency scale is not compressed by a factor

K.

The fast Fourier transform

In 1965 a method of computing discrete Fourier transforms suddenly
became widely known (J. W. Cooley and J. W. Tukey, Math. Comput.,
vol. 19, April 1965, pp. 207-301), which revolutionized many fields where
onerous computing was an impediment to progress. A good source of
detailed information is a set of papers published in the IEEE Transac-
tions on Audio and Electroacoustics, vol. AU-2, June 1967. Another
source is G. D. Bergland, Spectrum, vol. 6, July 1969, pp. 41-52.
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There are various ways of understanding this fast Fourier transform
(FFT). One way, which will appeal to certain people, is in terms of
factorization of the transform matrix. From the definition, we can
write the DFT relation (for N = 8) in the form of a matrix product,

(F@] 11 1 1 1 1 1 1 T [ro)]

F(1) 1 W W Ws W¢ W We W7 f(1)

F(2) 1 W2 We We s W e P f@)

F3) | _ |1 W Wwe We W W s e 2 f(8) M

F(4) 1 Ws Ws W e o e s f@

F(5) 1 Ws W s e s e s 1(5)

1.‘(6) 1 Wﬁ WI.! Whl W?4 W3I'l WJS W'i'l f(ﬁ)

_.F(?)_. _1 W7T Wit W2 s s s Wﬂ_ _f(7)_
where W = exp (—12x/N). The quantity W is an Nth root of unity,

since WV = exp (—i2r) = 1. It may be thought of as a complex num-
ber whose modulus is unity and whose phase is —(1/N) turns.

#m [100000007] [11 00 00 00 7]
F(1) 00001000 1Wo0 00 00
F(2) 00100000 00 11 00 00
F@)| _|ooo00010 Do 1THW 00 00
F(4) “lo1000000|%|0o0o 00 11 0o
F(5) 00000100 00 00 1W'o00
F(s) 00010000 00 00 00 11
| F(7)] |oooooooi1 [00 00 00 1 W]
101 0 000 0 ] 10001 0 0 0 [ f0)7]
010 WXo00 © 01000 W o0 0 f(1)
10 W0 o000 0 00100 0 Wro f(?)
1o WEooo o 00010 0 0 W f(8)
£ ooo o 101 0 X 1000 Wio o o0 X f4) I )
000 0 010 W2 01000 Wio 0 f(5)
000 0 10 W 00100 0 W*o £(8)
\_ﬂ 00 0 010 W] 00010 0 0 N7 | ()]

This factorization leaves only two nonzero elements in each row. In
(1) there are N2 multiplications but there are only 2N multiplications
per factor if we use (2), and the number of factors M is given by 2V = N
if we do not count the first factor, which merely represents a rearrange-
ment. Thus the multiplications total 2N log: N. Examination of the
factors shows that many of the multiplications are trivial, and therefore
to calculate the precise time saving will require careful attention to
details. Nevertheless, we are better off by a factor of the order of
N/log: N, which becomes very important for the large values of N which
arise with very long data trains or with digitized two-dimensional images
such as photographs, for example.
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Here is another method of understanding the fast Fourier transform.
A sequence of N clements may be divided into two shorter sequences of
N /2 elements cach by placing the even-numbered elements into the first
sequence and the odd-numbered ones into the second. For example,
187654321} can be split into {8 6 4 2} and {7 5 3 1}. Each
of these possesses 1« DFT. From these two DFT’s how could one obtain
the DFT of the longer sequence? The answer is obtained by writing

87654821, =(80604020}+({0705030T1]}.

We see that the desired DFT can be obtained by using the stretehing and
shift theorems. From the stretehing theorem we know that if

186 42214 B C D},
then 1806040202 {AdABCDABCDY, (3)

a phenomenon that may be familiar from Fourier series coeflicients for
periodic functions.
Likewise, if

5312 {P Q R S},
then 1T0503010j2(PQ RSP QRS

Now we apply the shift theorem to find that
10705030 1}>{P WQ WR W3S WP WQ WER W'S|. (4)

Multiplication by W means rotation by one Nth of a revolution in the
complex plane, so the effect of the shift is to apply a phase delay that
increases progressively ulong the sequence of elements {P @ R S
P Q R S}. Adding (3) and (4) gives the DFT of the long sequence.
Thus the transformation with N = 8 has been broken down into two

T fir) v Flv)

1} 3 4l 0 A+P

1 DET 1 B+W@Q

2 v 2 C+WeR
3 3 D+ W3
4 4 A+Wip
5 ’-f_:"/ \ 5 B+ WsQ
6 .-"34:,-’-"1’-- B &  C+W°R
7 e 1S4 W __ 0, 7 D+ WS

Fig. 18.6 Reduction of eight-element DFT to two four-element DFTs.
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Fig. 18.7 Reduction to four two-element DFTs.

transformations with N = 4, which potentially represents a 50 per cent
time saving, since the number of multiplications in a DFT performmed
according to (1) goes us N2, To sce how this breaking down can be
taken even further, we refer to Fig. 18.6. Starting with the given se-
quence on the left, we rearrange it into the two short sequences |8 6 4 2]
and {7 5 3 1} that form the inputs to two transformers with N = 4
whose outputs are {4 B C D} and {P Q@ R S}, respectively. The
unbroken flow lines show that A, B, (', and D are transferred to the out-
put nodes to deliver {A B (' D .4 B (" Dj. The broken flow lines
are tagged with factors that cause the delivery of P, W@, W2R, cte., as in
(4) to the same output nodes, where addition takes place.  Figure 18.7
now shows a further reduction of cach four-clement transformer to two
two-element transformers, and Fig. 18.8 shows the full reduction to
multiplications and additions.

Fig. 18.8 Reduction of eight-element DFT to 8 X 16 multiplications and 3 X &
additions. In the foregoing three figures, multiplication by unity is shown by a
full line and (he broken lines are associated with the factors shown. [Adapted
from W. T. Cochran et al., IEEE Trans., AU-15 (1967), p. 45.]
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Finally, the steps may be summarized as follows. First, we rearrange
the given sequence into {8 4 6 2 7 3 5 1}, an operation corresponding
exactly to multiplication by the first square matrix of (2) and sometimes
loosely referred to as bit reversal. Then eight new numbers are caleu-
lated as linear combinations of various pairs of the rearranged data,
exactly as indicated by the second square matrix of (2). These numbers
are the outputs from the left-hand column of adders in Fig. 18.8. There
are two more similar stages, making a total of three such operations in all
(or M, in general, where 2" = N). Of course, not all the 48 multiplica-
tions are significant. There are 32 multiplications by unity and 7 mul-
tiplications by IW* which is simply a sign reversal. In addition, W?
and W8 are rather simple to handle.

We thus see that Fig. 18.8 is an intimate representuation of the four
matrix multiplications of (2), and the considerations leading to the con-
struction of Fig. 18.8 could be the busis of a step-by-step discovery of
the factors that were presented in (2) without derivation.

If the number of clements cannot be halved indefinitely (i.e., N is not
expressible as 2Y), a fast algorithm may still be tailormade to suit. The
final reduction might then incorporate three-element transformers if, for
example, NV was divisible by 3. Such algorithms are not quite as fast.

Practical considerations

Many practical considerations have been incorporated into the programs
available for performing the fast Fourier transform. For some applica-
tions, speed is an overriding consideration; for others, convenience. If
NV is not a power of 2, convenience says pack the data with zeros; speed
says choose a modified program taking advantage of such factors as N
possesses. Some users never require complex output; others do, but not
in the form of real and imaginary parts. Some require two and three
dimensions. Some normally have to segment their data because N
exceeds the capacity of their computer. Questions of this kind, though
important, can be studied through the literature using the sources given
above or by examination of existing programs. Examination of docu-
mentation can be particularly important, because some software packages
do not implement the DFT at all but rather some modification possessing
more or less convenience.

Here we shall look into the very common situation where a data string
of, say, 60 elements is to be transformed by a general-purpose program
which allows a choice of 64, 128, or other power of 2 for N. Adding four
zeros will fit the data to the program. Will it make a difference whether
the zeros trail, precede, or are placed in twos at start and finish? From
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Fig. 18.4 and remembering the shift theorem, we see that [F(»)| will be
unaffected but that the effective shifts of origin will introduce phase dif-
ferences. If phase is important, as it might be if the data string has a
natural origin, the shift theorem will supply the appropriate phase cor-
rection factor.

Will it make a difference if 68 trailing zeros are added and the N' = 128
program is used? Surprisingly to some, the answer can be yes. To
understand this, consider the extended sense in which f(r) and F(v) are
regarded as periodic with period N.

Let v(t) be a function of the continuous variable ¢, which at integral
values of ¢ in the range just embracing 0 to N — 1 agrees with f(r) and is
zero outside, as in Fig. 18.9a. Then, v(t)ITI(t) is a string of impulses
(Fig. 18.9b) that contains precisely the same information as f(r) but does
not have the property of repeating with period N. Periodic character
is, however, exhibited by the expression

p() = [2@)IIL(1)] «» N-UIL({/N),

which is in strict analogy with f(r). Because of the convention of repre-
senting impulses by arrows with length equal to the strength of the
impulse, Fig. 18.9¢ would become a precise representation of f(r) if the
abscissa label were changed to ¢ and the arrowheads were changed to
blobs.

il all

Fig. 18.9 A function (a) and its discrete representation (b) on a cyclic basis.
Parts (¢) and (d) show two pulse waveforms, as functions of continuous time, that
are equivalent to the discrete representation.
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If the Fourier transform of #(f) is S(f), then we may use the convolution
theorem and knowledge that the shak function T11() transforms into
itself to obtain

P(f) = [S(f) » II(NIITNS).

This expression has the same exact correspondence with the DFT F(v)
that p(t) has with f(r), provided that we use the relation f=v/Nto
translate between f and ». The factor N~ in (3) is accounted for. Thus
the rather simple algebra developed in Chapter 10 includes as a special
case discrete situations that appear at first to be outside the scope of the
integral transform.

If we now replicate the same data string o(f)ILL(#) with a period 2N,
we have [o(O)IIL(1)] * (2N)~'TII(¢/2N) and the transform becomes

[S(f) = TIT(HITL(2NY).

The only difference is that the same expression S(f) = ITI(f) is sampled
twice as closely in frequency. How, then, could an apparently improved
sampling be perceived as different? The answer is that S(f) may be
oscillatory and indeed normally will be, unless f(z) is free from large jumps
such as those that often occur at the beginning and end of data strings.
Of course, because of the eyvelic character of f(r), a large initial value
£(0) will not count as a large jump if the final value f(N — 1) is approxi-
mately equal.  But if such a data string of 64 elements were extended to
128 elements by the addition of trailing zeros, there would be jumps.
Rough structure would then appear in F(v). Likewise, if four consecu-
tive elements of the relatively smooth 64-element string were put to zero,
oscillations would appear in F(»). This suggests that adding zeros might
not always be the best way to pack a data string out to 64 elements.
A result more in keeping with expectation might result from packing
with dummy values having more plausibility as data than zeros would
hil\'f,‘.

Is the discrete Fourier transform correct?

While the theory of the DET is precise and self-consistent and exactly
describes the manipulations performed on actual data samples when a
Fourier transform is to be computed, the question remains to what degree
the DFT approximates the Fourier transform of the function underlying
the data samples. Clearly, the DFT can be only an approximation,
since it provides only for a finite set of discrete frequencies. But will
these discrete values themselves be correct? It is easy to show simple
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cases where they are not.  Discussion of the question can be based on the
sampling theorem and the phenomenon of aliasing.  If the initial saumples
are not sufficiently closely spaced to represent high-frequency components
present in the underlying function, then both the DFT values and a
smooth curve passing through them will be falsified by aliasing. If the
underlying function is known, then the error associated with a given
choice of saumpling interval is calculable. If one tukes the operational
viewpoint that the measured data samples may be the only knowledge
we have, then avoidance of error will depend on experimental factors such
as prior knowledge or experience. For example, a run with twice the
number of saumples in the same time could confirm the presence or absence
of higher frequencies.

A further important source of error in the DFT lies in the truncation
of data strings. It is, of course, unavoidable that truncation of a func-
tion will result in an erroneous Fourier transform (the result obtained
will be the convolution of the truc Fourier transform with a certain sine
function), and so trunecation error is not specific to the DFT. However,
the error committed will be different.  To sce this, imagine a case where
the sampling interval is quite fine enough to cope with the highest fre-
quencies present in the data, so that there is no aliasing error. Now
truncate the data. The effect on the DFT will be to convolve it with
samples of the sinc function corresponding to the width of the rectangle-
function factor describing the truncation. But this time we are con-
volving with an entity such as Q(f) in Fig. 18.1. In addition to the
smoothing out we now have the prospect of the left and right islands of
Q(f) leaking into the central island. The truncation effect thus com-
prises both smoothing error, or reduction of fine detail in the DFT, and
leakage error.  Leakage error may be reduced, at the expense of increased
smoothing error, by use of a tapered truncation factor in place of the
rectangle-function factor. The best compromise must depend on the
case; lenkage error tends to falsify the “higher” frequencies (v in the
neighborhood of N /2), whereas smoothing error is distributed differently.

Applications of the FFT

In some subjects, such as X-ray diffraction and radio interferometry, the
observational data require Fourier transformation in order to be pre-
sented in customary ways, such as a molecular shape, a erystal structure,
or a brightness distribution map of a celestial source. In these fields
the introduction of the FFT merely speeds up what was already practiced.

In other applications, one takes the Fourier transform in order to per-
form some operation on it and then retransforms. For example, if we



378 THE FOURIER TRANSFORM AND ITS APPLICATIONS

had a photographic enlargement that was particularly grainy (i.c., finely
speckled becanse of the grain structure within the photographic emulsion)
we might subject the photograph to two-dimensional low-pass filtering.
First we would digitize it into a two-dimensional array of numbers,
although it might already be in digitized form (e.g., if it had been received
by radio telemetry from a space probe). Then we would take the two-
dimensional DFT and remove or reduce the higher spatial frequencies
by multiplication with a suitable low-pass transfer function. Finally,
we would invert the DFT. Of course this would be equivalent to con-
volving the digitized photograph with the appropriate point-source
response (inverse DFT of the transfer function). For desk calculation
one convolution may be more attractive than two DFT's and one set of
multiplieations.  But with the large quantities of data that a photo-
graph normally contains, a larger computer would be required, and it
would then be found that the DFT route is quicker if the FFT is used.
The reason is that, if there are N clements in the array of data, the num-
ber of multiplications required is of the order of N?, whereas us we have
seen, the FFT requires far fewer if N is large.

Thus convolution in general, including cross correlation and auto-
correlation, is now best performed by taking the two DFT s, multiplying,
and inverting the DFT. Some speeial considerations arise.  Consider
first & case where (Fig. 18.10) the two inputs f and g to be convolved
have the same number of elements, as happens with autocorrelation,
The output function will have twice as many elements as the input
functions.  So if one simply multiplies F and G term by term and retrans-
forms, the output will be only half the correct length.  The result of this
procedure can be visualized in terms of cyvelic convolution as in the
example of autocorrelation shown in Fig. 18.4. What will happen is
that the output sequence will close nround the circle and overlap itself.
Clearly this can be avoided, as in the figure, by packing the given func-
tions with zeros: enough to double the length of the given sequences will
suffice.  Figure 18.11 brings out these practical points in a way that is
glossed over in Fig. 18.9,

o DF‘I‘"}—QI*;’

g o——— DFT

Fig. 18.10 Flow diagram for convolving.
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Fig. 18.11 Convolution of two four-element sequences performed by using the DFT.

Two-dimensional data

Let us compare the standard form of the two-dimensional Fourier
transform

F(up) = f i f  f@y)eirasw dz dy

with the two-dimensional discrete Fourier transform

M-1N-1

F(u,p) = M-IN-! z E f(o,r)e-izrwolstoriN),
e=0 r=0

The integers ¢ and 7 may be connected with the (z,y) plane as follows.
If the sampling intervals are X and ¥, and Znin and yuwia are the minimum
values of z and y to be considered, then

T — Tmin

g =T
X

I
Y
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Since M — 1 and N — 1 are the largest values reached by ¢ and 7,
respectively, it follows that

Tmax = Tmin + (J’I 31 1).1‘
Ymax = Ymin + (‘\' 2 l)Y.

The spatial frequency integers p and » are such that p/N and v/M are
spatial frequencies measured in cyeles per sampling interval of z and y
and u/NX and v/ NV are spatial frequencies measured in cycles per unit
of z and y. This discussion pictures f(s,7) as a function that possesses
values in between its discrete samples but presumes those values to be
unavailuble. That situation often arises, which is why a connection with
the integral transform has been established here. But we also under-
stand that it is not necessary to regard f(e,7) as other than a function of
integer pairs only and that g and » need not be regarded as frequencies.
In fact, as previously noted in one dimension, great care has to be taken
in interpreting u and » as frequencies.

Whereuas the integral transform covers positive and negative areas of
the (z,y) plane, the discrete transform does not require negative values
of ¢ and 7. Consequently, a simple objecet in the (z,y) plane as in Fig.
18.12a becomes carved up in a strange way on the (o,r) plane when the
shifts of origin are made. It is very helpful to have the topology of this
figure in mind when handling two-dimensional data. For example, the
idea of surrounding the object with a guard zone of zeros, shown cross-

™\
AN

(a)
v
2N -1
.
x
0
0 v M =1
ib)

Fig. 18.12 (a) When f(z,y) is forced into an M X N array with positive sub-
scripts starting from zero, it appears on the (o,7) plane dissected as shown; (b) a
surround of zeros in the (z,y) plane (shown shaded) is not entered as a surround
in the (o,7) plane.
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hatched, a trivial move in the (x,5) plane, not requiring reassignment of
existing data, calls for a rather tricky mancuver on the (o,7) matrix as
shown in Fig. 18.125.

If, by oversight or design, the ¢ and 7 axes are not taken to coincide
with the nominal axes x and y, then the transform obtained will be
affected.  For example, an object symmetrical with respect to the z and
y axes will have a real-valued transform, but complex values will result
if the ¢ and r axes are shifted. If, not realizing this, one reads out the
real transform values only, they will be wrong. However, if one reads
out the complex values they will differ only in a trivial way from the
nominal transform. The modulus will be correet and the phase will
advance linearly with ¢ and 7 in the way controlled by the shift theorem.

Power specira

In many situations where transform phase is unimportant or unknowable,
one could deal with |[F(»)[, but it is customary to deal with [F(»)[?, which
is equivalent, and to refer to [F(»)]? as the power spectrum.  Values of
[F(»)[* may indeed represent a number of watls in some applications,
but even where the physical significance is not power or where there is no
physical significance at all, the term **power spectrum’ is in common use.
The term is also used in connection with the Fourier transform S(f) of a
function of continuous time (pp. 113, 115) but there is a distinction.
A power spectrum [S(f)|* would be measured in units of watts per hertz
or something more complicated (such as ohm-watts per hertz as in
Rayleigh’s theorem on p. 183) but never in plain watts.

At first sight it might seem unnecessary to give special computational
attention to the power spectrum, which is, after all, included within the
larger concept of the (complex) Fourier transform.  But, in fact, a great
deal has been written under the heading of power spectra, where power
spectra per se have not actually been of the essence. The literature
referred to might equally well have been entitled spectra of random
functions of time. The reason for the terminology is that random fune-
tions or noise wuveforms present one of the important situations where
phase loses meaning and the power spectrum becomes the natural entity
to work with.

Although the power spectrum has a wider range of application than
just to random processes or to deterministic signals of random origin,
these applications are nevertheless important. The power spectrum of
a random process is quite often defined as the Fourier transform of the
autocovariance funetion of the process. (The autocovariance is what
results when any d-c¢ component is subtracted before autocorrelation is
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performed. But the distinetion in terminology is not universally ob-
served because it is commonly understood that any nonzero mean level
is to be subtracted before calculating the autocorrelation, since the cal-
culation is impossible otherwise.)

A definition of power spectrum in terms of autocorrelation (or auto-
covariance) seems indirect to many students but does permit the solution
of problems involving random processes that are specified in the time
domain by probabilities. When computation is required, however, one
is never dealing with a random process but with an actual data string,
possibly of random origin in some sense. (There may, in addition, be
random errors of measurement.)

The curious fact that makes computation of power speetra so inter-
esting is this. Suppose one tukes the DFT of a data string of N elements.
To be concrete, let the N data values be the height of the sea surface at a
certain point, taken at 10-second intervals. Naturally, the values of
Fyx(v) ought to show in what frequeney bands the wave power resides,
but the precision will be limited, as will the resolution, because N is only
finite. The values of pha Fy(v) will not be zero, but can hardly be
expected to contain anything of interest, and if they are abandoned,
[Fx(v)|? will constitute our measurement of the power spectrum of the
waves.  If the state of the sea were to change, as it is always doing, that
measurement would have to stand as the record of the sea spectrum at
that epoch. But because of the finite value of N, the measurements are
imperfect to a degree that is evidenced by irregular variation from one
value of » to the next. To make a better measurement next time we
might take data for four times as long, but how would we know that the
sea spectrum had not changed during the period of observation? The
only way to tell from the data would be to divide the string into segments
and make a judgment. Since this discussion has been cast in terms of
sea waves, it is apparent that discussion of limits as N — % would be
inappropriate, but so would it be in the case of almost all kinds of data.
One can conceive of exceptions such as determination of the power
spectrum of the data string constituted by the consecutive digits of the
decimal expansion of x, but in the physical world things change if an
observation takes too long. Yet experience might suggest that quad-
rupling N, thus staying far short of infinity, would double our precision
or nearly so (i.e., the irregular variation might be halved). The strange
thing is that the precision is not improved at all by increasing N. Thus,
even in theory, the idea of defining the power spectrum as a limit as
N — =, does not work for data of random origin.

One might suspect that the paradox disappears if the situation is
viewed in the right way. Here is an explanation. In any frequency
band, chosen in advance, the amount of power will indeed be measured
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with increased precision as N is increased.  If N is quadrupled the DET
will supply four values in a fixed frequency band that previously con-
tained only one. Even though these four values are no more precise
than the previous one, the sum of the four, which represents the new
measurement of the power in the band, will have greater precision.

This correct view illuminates the procedure followed for computing
power spectra of real data. The computed values of |Fy(#)|* will fall
above and below some general trend with », and the scatter may be
reduced by averaging several adjacent values. If high precision is sought
by averaging too many consecutive values, the precision is paid for by
loss of resolution in frequency, so a compromise must be arrived at by
judgment based on experience with the character of the data. No
unique advice can be offered by theory alone; that is why a variety of
prescriptions can be found in the literature. In any case, the outcome is
to smooth the sequence |F(»)|? by taking running means over a certain
number of values, that is, by discrete convolution in the power spectrumn
domain with some sequence of weights.

Naturally several smoothing sequences have been proposed, but which
is optimum? The answer to this depends on the purpose of the analysis
and on the character of the data. Although it is true that smoothing
increases precision, there are a number of accompanying effects that may
be undesirable. For example, if there is a narrow spectral feature that
is of interest, then extra smoothing will give an erroneous low value for
the central strength, an erroneous large value for the width and may
introduce lobe structure on each side. There are cases where absolute
strength measurement is important as in chemical spectral analysis per-
formed by Fourier transform spectroscopy, other cases where it is im-
portant to separate close spectral features, and others where there is a
heavy penalty for false detection of faint features. In the latter case
one may suppress lobes that might be counted as real and accept the
accompanying loss of resolution as represented by widening of the speetral
feature. In another case one might accept lobe structure in order to
get a better strength measurement at a frequency peak. Even when
such costs and benefits are balanced to the user’s satisfaction, the result
will not necessarily be optimum for a new batch of data. Tt is apparent
that selection of smoothing sequences goes bevond the realm of mathe-
matical analysis to involve experience and judgment.

In principle, smoothing in the power spectrum domain is achievable
by multiplying the autocorrelation function by a tapering factor. The
term lag window for such a factor applied to the autocorrelation function
was introduced by Blackmann and Tukey. (Spectral window is the
Fourier transform of the lag window.) However, when large amounts
of data are involved, it is convenient to compute the autocorrelation by



