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Mutual attraction.

'1.6 GRADIENT. V

Suppose that ¢(x, y,2) is a scalar point function, that is, a function whose
value depends on the values of the coordinates (x, ¥, z). As a scalar, it must have
the same value at a given fixed point in space, independent of the rotation of
our coordinate system, or

@ (x7, x5, X3) = ©(x1, X3, X3). (1.51)
By differentiating with respect to x; we obtain

a(P’(x’ls x,25 X%) —_ a(p(xl > x2, x3)
ax; ox;

(1.52)
B 0% _ Za--i(e
~ 0x; 0x; Y ox;

J
by the rules of partial differentiation and Eg. 1.16. But comparison with Eq.
1.17, the vector transformation law, now shows that we have constructed a
vector with components d¢/dx;. This vector we label the gradient of ¢.

A convenient symbolism is

2y K22 (1.53)

or

d a 0
V=i—+j- =

Yox + Jay .+ 8z
Vo (or del @) is our gradient of the scalar ¢, whereas V (del) itself is a vector
differential operator (available to operate on or to differentiate a scalar ¢). It

should be emphasized that this operator is a hybrid creature that must satisfy
both the laws for handling vectors and the laws of partial differentiation.

(1.54)

EXAMPLE 1.6.1 The Gradient of a Function of 7.

Let us calculate the gradient of f(r) = f(v/x* + y* + z°).

_ O L 9f() | 90)
Vi =i ox +l dy +k dz '

Now #(r) depends on x through the dependence of r on x. Therefore!

1This iz a apecial case of the chain rule of partial differentiation:

&fr.0,0) _3for 880 , Of Dp
ax rdx  d0d8x dpax

Here 3f{30 = 8fje = 0, 3fjor — df/dr.
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of(r) _ dfir) or

ox  dr ax
From r as a function of x, y, z
?_’: _ a(xz + yz + 2.2)1,'2 _ x x

dx dx T
Therefore '

o) _d) x
éx dar r’

Permuting coordinates (x — p, y -z, z — x) to obtain the y and z derivatives,
we get '

Vir)=(0x+jy+ kz)ldlr
rdr
_rd
rdr
-/
=Ty

Here rj is a unit vector (r/r) in the posirive radial direction. The gradient of a
function of » is a vector in the (positive or negative) radial direction. In Section
2.5 r, is seen as cne of the three orthonormal unit vectors of spherical polar

- coordinates: -

A GEOMETRICAL INTERPRETATION

One immediate applicatton of Vi is to dot it into an increment of langth

dr = idx + jdy + kdz. : (1.55)
Thus we obtain
Vo) dr = Pax 1 994, 1 924, ' (1.56)
éx oy 0z
= do,

the change in the scalar function ¢ corresponding to a change in position dr.
Now consider P and @ to be two points on a surface ¢(x, y,z) = C, a constant.
These points are chosen so that @ is a distance dr from P. Then moving from
P o Q, the change in ¢(x,y,2) = Cis given by

do = (Vo) -dr

1.57
N (157)

since we stay on the surface ¢(x, y,z) = C. This shows that V¢ is perpendicular
to 4r. Since dr may have any direction from P as long as it stays in the surface
@, point ¢ being restricted to the surface, but having arbitrary direction, Vg is
seen as normal to the surface ¢ = constant (Fig. 1.16).
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x
FIG. 1.16 The length increment dr is required to stay on the surface ¢ = C.

If we now permit dr to take us from one surface ¢ = C, to an adjacent
surface ¢ = C, (Fig. 1.17a), _ .

dp=C, — C; = AC

e e (1.58)

For a given do, |dr| is a2 minimum when it is chosen parallel to Vo (cos8 = 1);
or, for a given |dr}, the change in the scalar function ¢ is maximized by choosing
dr parallel to Vo. This identifies Vo as a vector having the direction of the
maximum space rate of change of @, an identification that will be useful in
Chapter 2 when we consider noncartesian coordinate systems.

‘This identification of V¢ may also be developed by using the calculus of
variations subject to a constraint, Exercise 17.6.9.

EXAMFLE 1.6.2

As a specific example of the foregoing, and as an extension of Example 1.6.1,
we consider the surfaces consisting of concentric spherical shells, Fig. 1.175.
We have ' '

on 0 =2+ + )P =r=C
where 7, is the radius equal to C;, our constant. AC' = Ag = Ar;, the distance
between two shells. From Example 1.6.1
do(r) _

Vo(r) =1, ar =TIp.
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X

" FIG. 1.17a  Gradient.

FIG. 1.176 Gradient for o(x, y,z) =
(x* + y® + 252, spherical shells:
PP+ =r, =0,
x+y+) P =r=C

The gradient is in the radial direction and is normal to the spherical surface
¢ =C.

The gradient of a scalar is of extreme importance in physics in expressing
the relation between a force field and a potential field.

force = —V (potential). (1.59)

This is illustrated hy hoth gravitational and electrostatic fields. among others.
Readers should note that the minus sign in Eq. 1.59 resuits in water flowing
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downhill rather than uphill! We reconsider Eq 1.59 in a broader context in
Section 1.13.

EXEHRCISES

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

I£S(x,7,2) = (x + y* + 22)"%, find

{(a)} V& at the point (1,2,3);

{(b) the magnitude of the gradient of S, |VS| at (1,2, 3);
and

{c) the direction cosines of V5 at (1,2, 3).

(a) Find a unit vector perpendicular to the surface
x* 4y +zt=3
at the point (1,1,1). e
(b) Derive the equation of the plane tangent to thc surface at (l 1 1)

ANS. (@) (+i+R/4/3.
(b) x+y+z=3

Given a vector ¥, , = i{x, — x,) + iy, — »2) + k(z; ~ z,), show that Viirg 2 (gra--
dient with respect to x,, y,, and z,; of the magnitude r, 2) is & unit vector in the
direction of ry,.

If a vector function F depends on both space coordmatcs (x,y,z)and time ¢, show
that

dF = (dr-V)F + %F—dt

Show that V{uv) = tVu + tVu, where 1 and v are differentiable scalar functions

of x, y,and z.

(a) Show that a necessary and sufficient condition that u(x,y,z} and v(x,y,z)
are related by some function f(x, v) = 0 is that (Vu) x (¥0) =0.

{b) If u= u(x,y)and v = v(x, y), show that the condition (Vu} x (Vv) = 0 leads
to the two-dimensional Jacobian

du 2u

J(M)= & .
xy/ (& &
dx oy

The functions u and v are assumed differentiable.

Differentiating a vector function is a simple extension of differentiating
scalar quantities. Suppose r(z) describes the position of a satelhtc at some time
t. Then, for differentiation with respect to time,

dr() .. r(t+ A —1()
dr b At

=v, linear velocity.
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‘ im  Ar
Ar Ao Ar

r(t)

r(t 4+ Ar)

FI1G. 1.18 Differentiation of a vector

Graphically, we again have the slope of a curve, orbit, or trajectory, as shown
in Fig. 1.18. :

If we resolve r(z) into its cartesian components dr/dt always reduces directly
to a vector sum of not more than three (for three-dimensional space) scalar
derivatives. In other coordinate systems (Chapter 2) the situation is a little
more complicated, for the unit vectors are no longer constant in direction.
Differentiation with respect to the space ‘coordinates is handled in the same
way as differentiation with respect to time, as seen in the following paragraphs.

In Section 1.6 V was defined as a vector operator. Now, paying careful
attention to both its vector and its differential properties, we let it operate on
a vector. First, as a vector we dot it into a second vector to obtain

ov, oV, av,
=t e T e

known as the divergence of V. This is a scalar, as discussed in Section 1.3.

(1.60)

EXAMPLE 1.7.1

Calculate V-r.

0 .

o = kz
V'r (a +]6 +ka)(lx+1y+ )
_ox_ oy & |

dx  ady 8z’
or :
V'l‘-—f-3.
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EXAMPLE 1.7.2

Generalizing Example 1.7.1,

Vorf) = L [0) + S0A0] + 0]

_ xdf ydf 2df
_3f(r)+rdr+rdr+rdr
— 3y + Y.

dr

The manipulation of the partial derivatives leading to the second equation in
Example 1.7.2 is discussed in Example 1.6.1.
In particular, if f(r) = ", e T

Vorrm = Ver,r”

=34 -rt (L60a)
=(n+2)r" L
This divergence vanishes for n = —2, an important fact in Section 1.14.

A PHYSICAL INTERPRETATION : -

To develop a feeling for the physical significance of the divergence, consider
V-(pv) with v(x,y,z), the velocity of a compressible fluid and p(x, y, z), its
density at point (x, y, z). If we consider a small volume dxdydz (Fig. 1.19), the
fluid flowing into this volume per unit time (positive x-direction) through the
face EFGH is (rate of flow in)grer = PPx|x=o @y dz. The components of the flow
pv, and pu, tangential to this face contribute nothing to the flow through this
face. The rate of flow out (still positive x-direction) through face ABCD is
2V, |y= 4 dy dz. To compare these flows and to find the net flow out, we expand
this last result in a Maclaurin series!, Section 5.6. This yields

(rate of flow out) 4zcp = Pty |x=axdy 42

0
= | pv, + —(pv,) dx dydz.
ax =0 .
Here the derivative term is a first correction term allowing for the possibility
of nonuniform density or velocity or both®. The zero-order term pv, Le=o
(corresponding to uniform flow) cancels out.

1 A Maclaurin expansion for a single variable is given by Eq. 5.88, Section 3.6.
Here we have the increment x of Eq. 5.88 replaced by dx. We show a partial
derivative with respect t¢ x since pv, may aiso depend on y and z.

2Strictly speaking, p, is averaged over face EFGH and the expression
pv, + (8/8x)(pu,)dx is similarly averaged over face ABCD. Using an arbi-
trarily small differential volume, we find that the averages reduce to the vatues
employed here.
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z

FIG. 1.19 Differential rectangular parallelepiped (in first or positive octant)

Net rate of flow out |, = a%(pux) dx dydz.

Equivalently, we can arrive at this result by

g P(Ax0,0) — pu(0,0,0) _ 8[pu(x,3.2)]
D oAx=o Ax dx -

0,0,0 .
_ Now the x-axis is not entitled to any preferred treatment. The preceding result '

‘for the two faces perpendicular to the x-axis must hold for the two faces
" perpendicular to the y-axis, with x replaced by y and the corresponding changes

for y and z: y — z, z — x. This is a cyclic permutation of the coordinates. A
.- further cyclic permutation yields the result for the remaining two faces of our
parallelepiped. Adding the net rate of flow out for all three pairs of surfaces of
our volume element, we have -

net flow out 5 5 P
(per unit t1@e) = [a—x(pvx) + é}(pvy) + 6—z(pvz)] dxdydz  (1.61)
=V (pv)dxdyd:z.

Therefore the net flow of our compressible fluid out of the volume element
dx dy dz per unit volume per unit time is V - (ov). Hence the name divergence. A
direct application is in the continuity equation

%+ v-(om =0, (1.62)

which simply states that a net flow out of the volume results in a decreased
density inside the volume. Note that in Eq. 1.62 p is considered to be a possible
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* function of time as well as of space: p(x,y,z,1). The divergence appears ina
wide variety of physical problems, ranging from a probability current density
in quantum mechanics to neutron leakage in a nuclear reactor.
~ The combination V- ( £V), in which f is a scalar function and V a vector
function, may be written :

vy 2 K g
V() = LUV + 5 () + 5 )

ax Oz
=(Vf)-V+fV:V,

_ which is just what we would expect for the derivative of a product. Notice that
V as a differential operator differentiates both fand V; as a vector it is dotted -
into V (in each term).

" If we have the special case of the divergence of a vector vanishing,

. V-B=0, - (1.63)

the vector B is said to be solenoidal, the term coming from the example in

~.which B is the magnetic induction and Eq. 1.63 appears as one of Maxwell’s
equations. When a vector is solenoidal it may be written as the curl of another
vector known as the vector potential. In Section 1.13 we shall caleulate such a
vector potential. ' - -

V av.
_Uy +f§§+§‘;—:1’; +f5;y+ain +f%l—;E (1.62a)

EXERCISES

1.7.1 For a particle moving in a circular orbit r = ircoswt + jrsinwi,
(a) evalmater x I :
(b) Show that ¥ + w?r=0.
The radius r and the angular velocity w are constant. . .
ANS. (@) kor.
Note. i = dr/dr, ¥ == d?rjdt>.

1.7.2 Vector A satisfies the vector transformation law, Eq. 1.15. Show directly that its
time derivative dA/dr also satisfies Eq. 1.15 and is therefore a vector.

1.7.3 Show, by differentiating components, that

A dA 4B
Z(AB) = —- L2
(@) dr( B) dt B+ A dr’
d dA AB
v LaxB=%2xB 4B
) ZAxB="rxB+raAxy

just like the derivative of the product of two algebraic functioh_s.

1.7.4 In Chapter 2 it will be seen that the unir veciors in noncartesian coordinate systems
are usually functions of the coordinate variables, e; = elg,,q;.qs) but |ei‘ =L
Show that either de,[dg; = 0 or Je;/dq is orthogonal to e;.

1.7.56 ProveV-(axhbh)=b-Vxa—a-Vxb
Hint. Treat as a triple scalar product.
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1.7.6 The electrostatic field of a point charge g is

E=-L .0

dpe, r

Calculate the divergence of E. What happens at the origin?

1.8 CURL, VX

Another possible operation with the vector operator V is to cross it into a
vector. We obtain

9., @ 0., @ 9. 8
=. — —_ . jl — V———
vy ‘(asz 621/;)+J(62K ax )“‘(a 6ny)
Lok (1.64)
_|é ¢ &
éx dy oz
v. v, W

which is called the curl of V. In expanding this determinant form or in any
operation with V, we must consider the derivative nature of V. Specifically,
V x V is defined only as an operator, another vector differential operator. 1t is
certainly not equal, in general, to —V x V.! In the case of Eq. 1.64 the deter-
minant must be expanded from the top down so that we get the derivatives as
shown in the middle portion of Eq. 1.64. If V is crossed into the product of a
scalar and a vector, we can show

Vx (V)= E’;(m - ;%(J‘Vy)]

: (Ve Oy N0y,
_,( T ,faz, oz ) ___(1'6.5)
—fV X V= (V) x V] |

If we permute the coordinates x — , ¥ — z, z — x to pick up the y-component
and then permute them a second time to pick up the z-component,

Vx (fV)=/V x V+ (V) x V, (1.66)

which is the vector product analog of Eq. 1.624. Again, as a differential operator
V differentiates both fand V. As a vector it is crossed into V (in each term).

EXAMPLE 1.8.1

Calculate V x rf(r)
By Eq. 1.66

1In this same spirit, if A is a differential operator, it is not necessarily true
that A x A = 0. Specifically, for the quantum mechanical angular momentum
operator, L = —i{r x V), we find that L. x L = /L.
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V x tf(ry=f(n)V x r+ [Vf(n] xr. (1.67)

First,
i j k
e 0 0
Vxr= é} 5 o (1.68}
x y oz

Second, using V/(r) = r,(df/dr) (Example 1.6.1), we obtain

Vxreflny= %ﬂro xr=0. (1.69)

The vector product vanishes, since r == ror and Iy X Iy = 0.
To develop a better feeling for the physical significance of the curl, we

consider the citciilation of fluid around a differentiai*_"'loUp“"in"‘the' xy-plane;

Fig. 1.20.

Although the circulation is technically given.]by a vector line integral {v-di
(Section 1.10), we can set up the equivalent scalar integrals here. Let us take
the circulation to be - ' ‘ e

circulation, 3, = J V. (x,y)dA,

1

V.(x,y) di, + f

2

e (1.70) -

+ j V)i +J Vyx,y) iy
3 4 :
The numbers 1, 2, 3, and 4 refer to the numbered line segments in Fig. 1.20.
‘In the first integral di, = +dx but in the third integral di, = -dx because
the third line segment is traversed in the negative x-direction. Similarly, di, =
+dy for the second integral, —dy for the fourth. Next, the integrands are
referred to the point (x4, ¥,) with a Taylor expansion? taking into account the

y"‘ X0, yo + dy 3 xg+dx, yo + dy

Xo, Yo 1. (xo + dx, yo)

- X

FIG. 1.20 Circulation around a differential loop

ov,
2V (xg + dx, o) = ¥ylxo, Jo) + (E_xy) x4

. *oVo
The higher-order terms will drop out in the limit as dx — 0. A correction term
for the variation of ¥, with y is canceled by the corresponding term in the
fourth integral (see Section 5.6).
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displacement of line segment 3 from 1 and 2 from 4. For our differential line
segments this leads to

| v,
circulationy 34 = Vi(Xo.¥o) dx + [V;(xo, Yo) + a—x”dx:l dy

+ [Vx(x(hyo) + %I}/;dJ’] (—dx)+ V;(xoaJJo)(—dy) (1.71)

_ (% _ 0V
_(6x )dxdy.

dy
Dividing by dx dy, we have
circulation per unit area =V x V|,. (1.72)

The circulation® about our differential area in the xy-plane is given by the
z-cothponent of V x V. In principle, the curl, V x V at (xg,¥,), could be
determined by inserting a (differential) paddle wheel into the moving fluid at
point (x,, ¥). The rotation of the little paddle wheel would be a measure of the
curl.
We shall use the result, Eq. 1.71, in Section 1.13 to derive Stokes’s theorem.
Whenever the curl of a vector V vanishes, '

VxV=0 - (1.73)

V ig labeled irrotational. The most important physical examplé's of irrotational
vectors are the gravitational and electrostatic forces. In each case P

Sv=Cl=Ch 0w

where C is a constant and r, is the unit vector in the outward radial diréction.
For the gravitational case we have C = —Gm,m,, given by Newton’s law of
universal gravitation. If. C = g,g,/4nz,, we have Coulomb’s law of electro-
statics (mks units), The force V givenin Eq. 1.74 may be shown to be irrotational
by direct expansion into cartesian components as we did in Example 1.8.1.
Another approdch is developed in Chapter 2, in which we express V %, the
curl, in terms of spherical polar coordinates. In Section 1.13 we shall see that
whenever a vector is irrotational, the vector may be written as the (negative)
gradient of a scalar potential. In Section 1.15 we shall prove that a vector may
be resolved into an irrotational part and a solenoidal part (subject to conditions
at infinity). In terms of the electromagnetic field this corresponds to the resolu-
tion into an irrotational electric field and a solenoidal magnetic field.

For waves in an elastic medium, if the displacement u is irrotational,
V x u = 0, planes waves (or spherical waves at large distances) become longitu-
dinal. If u is solenoidal, V -u = 0, then the waves become transverse. A seismic
disturbance will produce a displacement that may be resolved into a solenoidal

3In fluid dynamics ¥ x V is called the “vorticity.”
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part and an irrotational part (compare Section 1.15). The irrotational part
yields the longitudinal P (primary) earthquake waves. The solencidal part
gives rise to the slower transverse S (secondary) waves, Exercise 3.6.8.

Using the gradient, divergence, and curl, and of course the B4 C-CAB rule,
we may construct or verify a large number of useful vector identities. For
verification, complete expansion into cartesian components is alwaysa possibil-
- ity, Sometmes if wo use insight instead of rontine shuffiing of cartesian compo- .
nents, the verification process can be shortened drastically.

Remember that V is a vector operator, a hybrid creature satisfying two sets
of rules:

1. vector rules, and :
2. partial differentiation rules— including differentia-
tion of a product.

EXAMPLE 1.8.2. Gradient of a Dot Product

Verify that
V(A-B)=(B-V)A + (A-V)B+ B x (VxA)+ Ax (V.' x B) (1.75)

_ This particular example hinges on the recognition tbat V(A -B) is the type of
term that appears in the BAC-CAB expansion of a triple vector product, Eqg.
'1.50. For instance,

A x (V x B) —V(A-B)— (A-V)B,

with the V differentiating only B, not A. From the commutativity of factors in
a scalar product we may interchauge A and B and write

B x (V x A) =V(A-B) — (B-V)A,

now with V differentiating only A, not B. Adding these two equations, we
obtain V differentiating the product A-B and the identity, Eq. (1.75).

This identity is used frequently in advanced electromagnetic theory. Exercise
1.8.15 is one simple illustration. '

EXERCISES

1.8.1  Show, by rotating the coordinates, that the components of the curi of a vector
transform as a vector. .
Hint. The direction cosine identities of Eq. 1.41 are available as needed.

1.8.2 Show that u x v is solencidal if u and v are each irrotational.
1.8.3 If A is irrotational, show that A X ris solenoidal.

1.8.4 A rigid body is rotating with constant angular velocity ©. Show that the linear
velocity v is solenoidal.

1.8.5 A vector function f(x, y,z) is not irrotational but the product of f and a scalar
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1.8.6

1.8.7

1.8.8

189

1.8.10

1.8.11
- 1.8.12
1.813

1.8.14

function g(x, y, z) is irrotational. Show that
f-Vxf=40.

If () V=iV.(x,)) +jV,{x,3) and (b) VXV =0, prove that Vx V is per-
pendicular to V.

Classically, angular momentum is given by L =r x.p, where p is the linear
momenturn. To go from classical mechanics to quantum mechanics, replace p
by the operator —{'¥ (Section 15.6). Show that the quantum mechanical angular
momentum operator has cartesian components

f 0 d
Lx—"(ya 25;)

L,= i zi - xi
ox oz
' 8 é
L. =—ilx——¥—
: !( &y yﬁX)
{(in units of #).
Using the angular momenturm operators previously given, show that they satisfy
commutation relations of the form :
[Lx, Ly] = LxLy - Lny =il,
and hence
L x L=IL.

" These commutation relations will be taken later as the defining relations as an

angular momentum operator—Exercise 4.2.15 and the foliowing one and Section
127, ’ : :

Wlth the commutator bracket motation [L,,L,] = L.L;, — L,L,, the angular

tmomentum vector L satisfies [ Ly, L,] = iL., ctc. and so on, or L x L= iL.
Two other vectors a and b commute with each other and with L, that is, [a,b] =

[a,L] = [b,L] = 0. Show that

© 7 [ELbL] = dax by L.

For A = i4,(x,y,2) and B=iB,{x,},2) evaluate each term in the vector identity
V(A'B)={(B-V)A+(A-V)B+Bx (VxA) +AX (¥ x B)

and verify that the identity is satisfied.

Verify the vector identity _

Vx(AxB)=(B-V)A—{A-V)B—B(V-A)+ A(V-B).

As an alternative to the vector identity of Example 1.8.2 show that
VA'-B)=(Ax V) x B+ (BxV)xA+A(V-B) + B(V-A).

Verify the identity '

' A x (V x A)=1V(4?) — (A-V)A.

If A and B are constant vectors, show that
ViA-Bxrn=AxB



1.8.15

1.8.16

1.8.17

1.8.18

1.8.19

SUCCESSIVE APPLICATIONS OF V47
A distribution of electric currents creates a constant magnetic moment m. The
force on m in an external magnetic induction B is given by
F=V x (Bxm)
Show that
F = V(m-B).

Note. Assuming no time dependence of the fields, Maxwell’s equations yield
VxB=0 AlsoV-B=0.

An electric dipole of moment p is located at the origin. The dipole creates an
electric potential at r given by :

() =

_ dneqr®”
Fingd the electric field, E = — Vi atr.

The vector potential A of a magnetic dipole, dipole moment m, is given by
A(r) = (po/4m) (m x rjr®). Show that the magnetic induction B =V x A is given
by ‘ -
; B =0 3ry(ry-m)—m
=t 80—

4n r

Note. The limiting process leading to point dipoles is discussed in Section 12.1
for electric dipoles, Section 12.5 for magnetic dipoles. - : :

The velocity of a two-dimensional flow of liquid is given by -
V = ju(x, y) — jolx, ).
If the liquid is incompressible and the flow is irrotational show that
ou  dv B

ZEoand — = ——.
ox  dy &y . Ox
These are the Cauchy—-Riemann conditions of Section 6.2.

The evaluation in this section of the four integrals for the circulation omitted
Taylor series terms such as 8V, jox, 8V,/8y and all second derivatives. Show that
av.fox, aV, /2y cancel out when the four integrals are added and that the second
derivative terms drop out in the limit as dx — 0, dy —0.

Hinr. Calculate the circulation per unit area and then take the limit dx — 0,
dy— 0. :

1.9 SUCCESSIVE _HPPLICHTIONS Orv

We have now defined gradient, divergence, and cutl to obtain vector,
scalar, and vector quantities, respectively. Letting V operate on each of these
quantities, we obtain

(a) V-Vop by Vx Vg (c) VV-¥
(d) V-V =V () Vx(VxV).

all five expressions involving second derivatives and all five appearing in the
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second-order differential equations of mathematical physics, particularly in

electromagnetic theory.
The first expression, V- Ve, the divergence of the gradient, is named the

Laplacian of ¢. We have

. 8,0, 0\.(100, 0, o
V:-Vp= ( +Ja +k ) (16x+,3y+k6_z) ;
(1.76a)

_ 9% 62 cp
—G T ottt e
When ¢ is the electrostatic potentlal, we have
V-V =0. . (1.76b)

which is Laplace’s equation of electrostatics. Often the combination V-V is
written V2,

EXAMPLE 1.9.1

Calculate V- Vg(r).
Referring to Examples 1.6.1 and 1.7.2,

d
V-Vg(r) =v-rOFf

_2dg  dyg 2

T rar t az’r2 ’
replacmg f(r)in Example 1.7.2 by 1/r-dgjdr. If g(r) = " , this reduces to
' V-V =n(n+ 1)r2,

This vanishes for n = 0 [g{(r) = constant] and for n = —1; that is, g(r) = I/r
is a solution of Laplace’s equation, V>g(r) = 0. This 1s for r + 0. At r=0a
- - Dirac delta function is involved (see Eq. 1.173 and Section 8.7).

Expression (b) may be written

i i k
¢ a 0
VXV!;O—E)—C 5; -a-;
29 0 oo
ox dy oz

By expanding the determinant, we obtain

e ¢ (0% B¢ e 8%
VxVe= ‘(ayaz 6zay) +](628x axaz) T ¥\axoy “ayox
=0, :

assuming that the order of partial differentiation may be interchanged. This is
true as long as these second partial derivatives of ¢ are continuous functions.

(L.7TDH
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Then, from Eq. 1.77, the curl of a gradient is identically zero. All gradients,
therefore, are irrotational. Note carefully that the zero in Eq. 1.77 comes as a
mathematical identity, independent of any physics. The zero in Eq. 1.76b is a
consequence of physics.

Expression (d) is a triple scalar product which may be written

6 9 9
ox Oy oz
|l @ &
v, v, %

Again, assuming continuity so that the order of differentiation is immaterial,
we obtain - - - - oo - e L
V-Vx V=0 (1.79)

" The divergence of a curl vanishes or all curls are solenoidal. In Section 1.15 we

 shall see that vectors may be resolved into solenoidal and irrotational parts by
Helmholtz’s theorem. _
The two remaining expressions satisfy a relation

VX (VxV)=VV-V—-V:VV, (1.80)

This follows immediately from Eq. 1.50, the BAC-CAB rule, which we rewrite
so that C appears at the extreme right of each term. The term V-VV was not
_-included in our list, but it may be defined by Eq. 1.80. If V is expanded in
cartesian coordinates so that the unit vectors are constant in direction as well
as in magnitude, V+ VV, a vector Laplacian, reduces to

V-VV =iV-VV, +jV-VV, + kV-VV,,
a vector sum of ordinary scalar Laplacians. By expanding in cartesian coor-
dinates, we may verify Eq. 1.80 as a vector identity. -

EXAMPLE 1.9.2 Electromagnetic Wave Equation

One important application of this vector relation (Eq. 1.80) is in the deriva-
tion of the electromagnetic wave equation. In vacuum Maxwell’s equations
become '

V:-B=0, ' (1.81a)
V-E =0, (1.815)
V x B = e, oL, ' (1.81¢)
ot
OB
VxE= -2 | | (1.81d)

Here E is the electric field, B the magnetic induction, g, the electric permittivity,
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and p, the magnetic permeability (mks or SI units). Suppose we climinate B
from Eqgs. 1.81c and 1.81d. We may do this by taking the curl of both sides of
Eq. 1.814 and the time derivative of both sides of Eq. 1.81¢. Since the space
and time derivatives commute, .

d B

il v = z= .82) -
GIVXB' ant’ _ (1.82)
and we obtain
' 2
Vx({(VxE)= '—ﬁoﬂo%tTE- (1.83)

Application of Egs. 1.80 and of 1.81& yields

2

92K S .
V-VE=soflo 57 » | (1.84)

the electromagnetic vector wave equation. Again, if E is expressed in cartesian
coordinates, Eq. 1.84 separates into three scalar wave equations, each involving
a scalar Laplacian.

EXERCISES

1.9.1  Verify Eq. 1.80 _
Vx{(VxV)=VV.-V-V.VV
by direct expansion in cartesian coordinates.
1.9.2  Show that the identity
Vx(VxV)=VV.-V-V.VV

. follows from the BAC-CAB rule for a triple vector product. Justify any alteration
of the order of factors in the BAC and CAB terms. '

1.9.3 Provethat ¥ x (pVp) =0

1.9.4 You are given that the curl of F equals the curl of G. Show that F and G may
differ by (a) a constant and (b) a gradient of a scalar function.

1.9.5 The Navier-Stokes equation of hydrodynamics contains a nonﬁncar term
(v V)v. Show that the curl of this term may be written —Vx[vx(¥x9n]

1.9.6 From the Navier—Stokes equation for the steady flow of an incompressible
viscous fluid we have the term

V x [vx (Vx¥v]
where v is the fluid velocity. Show that this term vanishes for the special case
v = vy, z).

1.9.7 Prove that (Vi) x (V) is solenoidal where u and v are differentiable scalar
functions. '



