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Structure of TalkStructure of Talk

• What is frequency sweeping?

– Experimental evidence

– Theoretical understanding

• Numerical modelling

– Description of the HAGIS code

– Simulations of frequency sweeping

• Summary
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Experimental ObservationsExperimental Observations

• Frequency sweeping in MAST #5568

80
70 7264 6866

Time [ms]

140

120

100

Fr
eq

ue
nc

y 
[k

H
z]

Chirping modes
exhibits

simultaneous
upwards and
downwards
frequency
sweeping

More
experimental
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this afternoon

Frequency sweep
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JET ObservationsJET Observations

Frequency
sweep

δω/ω0~ 5%

• Shear
optimised D-T
pulse

• TAE modes
during current
ramp phase
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Frequency SweepingFrequency Sweeping

• Universality in nonlinear response of resonant

particles to low amplitude wave

[Berk, Breizman, Pekker (1997)]

• Particle distribution satisfies a 1-dimensional

equation (two phase-space coordinates)

• Constants of motion for wave

E(r,t) = C(t) E(r,θ,nφ - ω0t)

– Magnetic moment, µ (if ω0 « ωc and Lω > ρi)

– Energy in rotating frame, H’ = H - (ω0/n) Pζ (if 1/C dC/dt « ω0)
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Wave-Particle InteractionWave-Particle Interaction
Define:

As      changes due to interaction at fixed

Equations of particle motion for fixed

Hence,

“Pendulum equation”
Trapping frequency,

F is a phase
space dependent

form factor

-         sinξ
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Nonlinear Trapping in TAENonlinear Trapping in TAE

• Trapping frequency is related to TAE amplitude

• Frequency sweep is related to trapping
frequency [Berk et al., (1997)]

• Amplitude related to frequency sweep

Analytic estimates give
correct order of

magnitude.  Numerical
simulation required for

more accurate estimate.
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AimAim

• Use experimentally observed rate of frequency
sweeping to determine wave amplitude

• In general, numerical modelling is needed to
establish the form factor that relates δω and δB

• Validate HAGIS for model case

• Employ HAGIS to establish δB in general case

– General geometry (including tight-aspect ratio)

– Mode structure: global mode analysis
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The HAGIS CodeThe HAGIS Code

[Pinches, Thesis (1996)]
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Code OverviewCode Overview

• Straight field-line equilibrium
– Boozer coordinates

• Hamiltonian description of particle
motion [White & Chance 1984]

• Fast ion distribution function
– δf method

• Evolution of waves
– Wave eigenfunctions computed by CASTOR
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Equilibrium RepresentationEquilibrium Representation
• Coordinates             chosen to

produce straight field lines

General toroidal
geometry
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Particle DescriptionParticle Description

Exact particle Lagrangian,
is gyro-averaged and written in the form,

with

leading to 4        equations Guiding centre
trajectory

Magnetic
field line

Particle trajectory

[White & Chance 1984]
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Fast Particle OrbitsFast Particle Orbits

• ICRH ions in JET
deep shear reversal
– On axis heating†:
Λ = µB0/E = 1

– E = 500 keV

• Produces
predominately
potato orbits

R [m]

z 
[m

]

†J. Hedin, Thesis 1999
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Distribution FunctionDistribution Function
• Represented by a finite number of markers
• Markers represent deviation from initial

distribution function - so-called δf method
– Dramatically reduces numerical noise

where
Parker & Lee, 1993

Denton & Kotschenreuther 1995
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Additional mode
damping rate, γd

Wave EquationsWave Equations
• Linear eigenstructure assumed invariant
• Introduce slowly varying amplitude and phase:

• Gives wave equations as:

• where
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HAGIS Code PerformanceHAGIS Code Performance

• HAGIS code parallelises very well
– relatively low level of inter-processor communication traffic
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Self-Consistent FrequencySelf-Consistent Frequency
SweepingSweeping

• Equilibrium:
– a/R0 = 0.3
– q0 = 1.1
– E0 = 3.5 MeV

n=3 TAE
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Slowing down
distribution

Radially
peaked fast
ion profile
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Linear GrowthrateLinear Growthrate

• γd/ω0 = 0, 〈βf〉 = 3×10-4

γd/ω0=2.7%

Mode
saturates at
δB/B~10-3

np = 52,500
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…with additional damping…with additional damping

• γd/ω0 = 2%, 〈βf〉 = 3×10-4 Mode saturates
at much lower

level, δB/B~10-4

np = 210,000
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Frequency SweepingFrequency Sweeping

• Fourier spectrum of evolving mode

ω0

Frequency sweep
δω/ω0~ 10%
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Linear GrowthrateLinear Growthrate

• γd/ω0 = 0, 〈βf〉 = 7.5×10-5

γd/ω0=0.45%

Mode
saturates at
δB/B~4×10-5

np = 52,500
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…with additional damping…with additional damping

• γd/ω0 = 0.4%, 〈βf〉 = 7.5×10-5

Mode saturates
at much lower

level,
δB/B~3×10-6

np = 210,000
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Frequency SweepingFrequency Sweeping

• Fourier spectrum of evolving mode

ω0

Frequency sweep
δω/ω0~ 2%
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Fast Ion RedistributionFast Ion Redistribution

Resonant energy
changes as

mode sweeps in
frequency
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MAST #5568MAST #5568

• Obtain factor relating ωb and δB

Global
n=1 TAE

Monotonic
q-profile

Eb = 40 keV
a/R0 = 0.7
B0 = 0.5 T
R0 = 0.77 m
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Particle Trapping in MASTParticle Trapping in MAST

• Particles
trapped in TAE
wave
– All particles have

same
H’ = E - ω/n Pζ
    = 20 keV

– TAE amplitude:
δB/B = 10-3
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Scaling of Scaling of Nonlinear BounceNonlinear Bounce
FrequencyFrequency

• Monotonic q
profile

• H’ = 20 keV

MAST #5568
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Scaling of Scaling of Nonlinear BounceNonlinear Bounce
FrequencyFrequency

• Reversed
shear

• H’ = 20 keV

MAST #5568
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Mode AmplitudesMode Amplitudes

• For monotonic q-profiles we now know:

                              where

• For a single resonance,

where

• Therefore,
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TAE Amplitude in MASTTAE Amplitude in MAST
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dt = 0.8 ms
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ConclusionsConclusions

• Frequency sweeping has been
modelled using the HAGIS code

– Benchmarked against analytic theory

• The amplitude of a frequency
sweeping mode in MAST has been
calculated to be δB/B = 4×10-4
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