
Phys. Plasmas 27, 030901 (2020); https://doi.org/10.1063/1.5136237 27, 030901

© 2020 Author(s).

Mechanisms of energetic-particle transport
in magnetically confined plasmas
Cite as: Phys. Plasmas 27, 030901 (2020); https://doi.org/10.1063/1.5136237
Submitted: 11 November 2019 • Accepted: 01 January 2020 • Published Online: 02 March 2020

 W. W. Heidbrink and  R. B. White

COLLECTIONS

Paper published as part of the special topic on Papers from the 61st Annual Meeting of the APS Division of Plasma

Physics

ARTICLES YOU MAY BE INTERESTED IN

A new explanation of the sawtooth phenomena in tokamaks
Physics of Plasmas 27, 032509 (2020); https://doi.org/10.1063/1.5140968

Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas
Physics of Plasmas 15, 055501 (2008); https://doi.org/10.1063/1.2838239

Perspectives, frontiers, and new horizons for plasma-based space electric propulsion
Physics of Plasmas 27, 020601 (2020); https://doi.org/10.1063/1.5109141

https://images.scitation.org/redirect.spark?MID=176720&plid=1936366&setID=377252&channelID=0&CID=710611&banID=520831033&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=36f01fe119ecb554a2d600bf7fe46ac68d789fb8&location=
https://doi.org/10.1063/1.5136237
https://doi.org/10.1063/1.5136237
https://orcid.org/0000-0002-6942-8043
https://aip.scitation.org/author/Heidbrink%2C+W+W
https://orcid.org/0000-0002-4239-2685
https://aip.scitation.org/author/White%2C+R+B
/topic/special-collections/dpp61?SeriesKey=php
/topic/special-collections/dpp61?SeriesKey=php
https://doi.org/10.1063/1.5136237
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5136237
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5136237&domain=aip.scitation.org&date_stamp=2020-03-02
https://aip.scitation.org/doi/10.1063/1.5140968
https://doi.org/10.1063/1.5140968
https://aip.scitation.org/doi/10.1063/1.2838239
https://doi.org/10.1063/1.2838239
https://aip.scitation.org/doi/10.1063/1.5109141
https://doi.org/10.1063/1.5109141


Mechanisms of energetic-particle transport in
magnetically confined plasmas

Cite as: Phys. Plasmas 27, 030901 (2020); doi: 10.1063/1.5136237
Submitted: 11 November 2019 . Accepted: 1 January 2020 .
Published Online: 2 March 2020

W. W. Heidbrink1,a),b) and R. B. White2

AFFILIATIONS
1University of California, Irvine, California 92697, USA
2Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

Note: This paper is part of the Special Collection: Papers from the 61st Annual Meeting of the APS Division of Plasma Physics.
Note: Paper UT3 1, Bull. Am. Phys. Soc. 64 (2019).
a)Invited speaker.
b)Author to whom correspondence should be addressed: Bill.Heidbrink@uci.edu

ABSTRACT

Super-thermal ions and electrons occur in both space and fusion plasmas. Because these energetic particles (EP) have large velocities, EP
orbits necessarily deviate substantially from magnetic surfaces. Orbits are described by conserved constants of motion that define topological
boundaries for different orbit types. Electric and magnetic field perturbations produced by instabilities can disrupt particle orbits, causing the
constants of motion to change. The statistics of the “kicks” associated with these perturbations determines the resulting cross field transport.
A unifying theme of this tutorial is the importance of the perturbation’s phase at the particle’s position H ¼ k � r� xt, where k and x are
the wavevector and frequency of the perturbation, r is the EP position, and t is the time. A distinction is made between field perturbations
that resonate with an aspect of the orbital motion and those that do not. Resonance occurs when the wave phase returns to its initial value in
an integer multiple of an orbital period. Convective transport occurs when resonant particles experience an unvarying wave phase.
Alternatively, multiple wave-particle resonances usually decorrelate the phase, resulting in diffusive transport. Large orbits increase the num-
ber of important resonances and can cause chaotic orbits even for relatively small amplitude waves. In contrast, in the case of non-resonant
perturbations, orbital phase averaging reduces transport. Large field perturbations introduce additional effects, including nonlinear resonan-
ces at fractional values of the orbital motion. In summary, large orbits are a blessing and a curse: For non-resonant modes, orbit-averaging
reduces transport but, for resonant transport, large orbits facilitate jumps across topological boundaries and enhance the number of impor-
tant resonances.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5136237

I. INTRODUCTION

Superthermal particles occur frequently in both natural and labo-
ratory plasmas. Although all plasma particles are energetic by ordinary
standards, in this tutorial, an “energetic particle” (EP) has two proper-
ties: (1) the energy is substantially greater than the bulk plasma tem-
perature and (2) Coulomb collisions cause negligible deflections on
the timescale of a single orbit in the confining magnetic field. In
nature, EPs are produced when a rapidly drifting plasma merges with
a colder plasma, for example, when the solar wind collides with the
magnetosphere. Instabilities that accelerate ions or electrons to high
energies are another common source in natural plasmas. In fusion
plasmas, there are four common sources. Because Coulomb drag
decreases with energy, a DC electric field that is parallel to the mag-
netic field can create “runaway” electrons that continuously gain

energy if the electric field acceleration exceeds Coulomb drag. For
ions, injection of energetic neutral beams is one important source.
Acceleration by radio frequency waves at the fundamental ion cyclo-
tron frequency or its harmonics is a second important source of fast
ions. Charged fusion reaction products, such as the 4He alpha particles
created by deuterium–tritium reactions, are the third important source
of fast ions in fusion plasmas.

All of these EPs share common properties that distinguish them
from thermal plasma. The distribution function of a thermal species is
described by a Maxwellian, possibly a drifting Maxwellian or a
Maxwellian with small distortions. As a result, fluid equations derived
by taking velocity moments of the underlying kinetic equations are a
sensible starting point for transport theory. This is not the case for
EPs. Because the energies are high and EP densities are generally low,
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inter-species EP collisions are rare. Consequently, EP distribution
functions have complicated dependencies on energy and direction.
Because different EP velocities behave quite differently, a single-
particle picture is the appropriate starting point for EP transport
theory.

The purpose of this review is to introduce the key ideas of single-
particle transport theory for EPs. Many of these mechanisms also apply
to thermal particles but they are particularly important for EPs. The
review is tutorial in nature, not comprehensive. No attempt is made to
cite the first or most seminal work on a particular topic, or to reference
every relevant paper. Rather, examples are selected for their clarity.

Detailed discussion of the instabilities that cause transport is
beyond the scope of this review. From the perspective adopted here,
DC electromagnetic fields E0 and B0 govern the unperturbed equilib-
rium EP orbits. An instability produces electric and magnetic fields E1

and B1 that perturb the orbits. Static perturbations associated with
field errors or an additional field coil can also be considered a perturb-
ing field. The perturbing fields have different frequency, spatial struc-
ture, and polarization but, regardless of origin, they may cause EP
transport.

The perturbing fields cause transport in both velocity space and
configuration space. For magnetic fusion, cross field spatial transport
is of paramount concern but, for this review, motion in any phase-
space direction is considered “transport.”

Calculation of the EP distribution function is also outside the
scope. The focus here is on processes that alter EP orbits on a rela-
tively short timescale. On a longer timescale, the distribution function
is shaped by sources, sinks, collisions, and the wave-particle interac-
tions considered here. A Fokker–Planck equation is often used to
describe these processes. Well-known examples of fast-ion distribu-
tion functions derived from Fokker-Planck equations can be found in
Ref. 1 for neutral-beam injection and in Ref. 2 for EP tails created by
RF acceleration. Although Coulomb and other collisions play impor-
tant roles in shaping the distribution function, they are only briefly
discussed here (Sec. III B). Another barely discussed topic is calcula-
tion of “prompt losses” (losses that occur in the first full orbit of an
EP in a confinement device). More details on all of these topics appear
in Secs. 3 and 4.1 of Ref. 3.

The important topic of diagnostic techniques that enable mea-
surements of EP transport is also omitted.

The review begins with a discussion of equilibrium orbits, partic-
ularly their description using constants-of-motion and the importance

of topological boundaries (Sec. II). Section III introduces the general
framework for considering the effect of field perturbations, including
the distinction between reversible and irreversible motion. Criteria for
modification of a constant-of-motion are given. Section IV is about
the wave-particle phase and the distinction between resonant and
non-resonant perturbations. For non-resonant particles, orbit averag-
ing dramatically reduces cross field transport (Sec. V). Section VI dis-
cusses the convective transport that occurs when a resonant particle
stays in phase with the perturbing field. Multiple resonances cause sto-
chastic diffusive transport (Sec. VII). Large perturbations introduce
new effects, including fractional resonances (Sec. VIII).

II. EQUILIBRIUM ORBITS

We assume the existence of equilibrium electromagnetic fields
that (in the absence of perturbations and collisions) confine EPs in
much of phase space. The confining fields may be electric, magnetic,
or both, for simplicity, consider magnetic confinement. The magnetic
configuration could have open field lines (as in a solenoid), or be a
toroidal system where the field lines trace out two-dimensional flux
surfaces (as in an axisymmetric tokamak), or be a fully three dimen-
sional toroidal system with regions without well-defined flux surfaces
(as in a stellarator). The orbital motion consists of relatively fast gyro-
motion superimposed upon a drifting guiding center. Gyromotion is
described by the magnitude of the perpendicular velocity v? and the
rapidly varying gyroangle; the velocity vector of the drift orbit is
described by vk (the component of the velocity parallel to B0) and the
perpendicular drift vd . The “pitch” of the orbit is vk=v.

Because of the perpendicular drifts, to confine particles, magnetic
field lines in toroidal geometries must twist toroidally as they advance
poloidally, a property called “rotational transform.”4

Different timescales describe different aspects of the orbital
motion. In all magnetic configurations, the gyromotion sets the fastest
timescale, occurring at the gyrofrequency xc. In toroidal systems, two
other frequencies describe periodicities of the drift orbit. One of these
describes the frequency of motion in the toroidal direction x/; the
other describes the frequency of motion in the poloidal direction xh.
Normally the ratio of these periods is irrational, so the orbit covers a
two dimensional drift surface; it is not periodic. A prototypical orbit is
the orbit of a charged particle in a dipole field, representative of orbits
in the radiation belts (Fig. 1). For this orbit, the fastest motion is the
gyromotion at xc, followed by the north–south motion at bounce

FIG. 1. Energetic orbit in a dipole field (dashed line). (a) Projection onto the (r, z) plane. The transverse gyromotion, vertical bounce motion, and poloidal angle h are indicated.
(b) View of the orbit from above the North pole, showing the slower azimuthal precessional drift in the toroidal / direction. In both projections, a rainbow color scale (from red
through violet) indicates advancing time.
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frequency xh, followed by the east–west precession around the earth
at frequency x/.

In all systems, EPs deviate farther from field lines than thermal
particles. This occurs for two reasons. First, since the gyroradius is pro-
portional to v?, the EP gyroradius is larger than the gyroradius of ther-
mal particles of the same species. The difference is also great for the
drift orbit. The gradient-B drift is (Sec. 3.1 of Ref. 5)

vrB ¼
W?
q

B�rB
B3

; (1)

where W? ¼ 1
2mv2? is the perpendicular energy and q is the charge.

The curvature drift is (Sec. 3.2 of Ref. 5)

vcurv ¼
2Wk
qB2

Rc � B
R2
c

; (2)

where Wk ¼ 1
2mv2k and Rc is the radius of field-line curvature.

Evidently, both these cross field drifts are proportional to energy.
Consequently, the deviation of an EP guiding-center orbit from a flux
surface is often an order of magnitude larger than for thermal
particles.

The large deviations have two important consequences. First,
unlike for thermal particles, an orbit cannot be meaningfully linked to
one particular field line or flux surface in the plasma. As a result,
EP orbits are most efficiently described by their constants-of-motion
(Sec. IIA).

The second consequence concerns orbit classification. Orbit clas-
sification is also useful for thermal particles. Perhaps the most familiar
example is a magnetic mirror. In a mirror device, particles with suffi-
ciently large v?=v reflect off the high-field region in the mirror throat
and remain confined but particles with low values of v?=v escape

[Fig. 2(a)]. In ðvk; v?Þ velocity space, there is a boundary that separates
the “loss cone” from the confinement region [Fig. 2(b)]. In a tokamak,
a similar ðvk; v?Þ boundary separates “passing” particles that circulate
in a single direction toroidally around the device from “trapped” (also
called “banana”) orbits that reverse toroidal direction due to mirror
trapping in regions of high magnetic field. Similar topological bound-
aries occur for EPs but, for them, the large drifts create new orbit types
that do not exist for thermal particles. Orbit classification and topolog-
ical boundaries are discussed in Sec. II B.

A. Constants of motion

A complete description of any orbit is given by its position r and
velocity v as a function of time. Although accurate, this description
requires six coordinates, three for velocity space and three for configura-
tion space. Identification of invariants of the motion reduces the number
of coordinates needed for unique designation of a particular orbit. These
invariants are of two types: exact invariants and adiabatic invariants.

Because collisions are negligible on the timescale of an orbit, the
energy is an exact invariant of the equilibrium orbit. If a cross field
electric potential U exists, the conserved energy is the sum of the
kinetic energy and the electrostatic potential energy. Since the poten-
tial energy is often much smaller than the kinetic energy for EPs, often
the kinetic energy alone can be considered the conserved quantity. If
there is a component of the electric field parallel to B0, the particle will
accelerate and change energy. This happens, for example, with run-
away electrons in a tokamak but typically the energy gained in a single
orbit is Oð10�6Þ of the kinetic energy; so parallel acceleration can be
neglected in the orbital description.

Energy conservation is associated with reversibility in time.
Using Noether’s theorem, other symmetries also have associated exact
invariants. For example, in a solenoid or symmetric mirror machine,
the canonical azimuthal angular momentum is an exact invariant; in
an axisymmetric toroidal device like an ideal tokamak or field-reversed
configuration (FRC), the canonical toroidal angular momentum is an
exact invariant of the motion. This invariant is P/ ¼ mrv/ þ qrA/,
where m and q are the mass and charge of the EP, r is the radius, / is
the azimuthal or toroidal angle, and A/ is the azimuthal or toroidal
component of the magnetic vector potential. In a toroidal device, P/ is
often written as

P/ ¼ mrv/ þ qWp; (3)

where Wp ¼ rA/ is the poloidal flux.
In classical mechanics, adiabatic invariants are associated with

the quantity known as the “action,” Ji ¼
Þ
Pi dQi, where Pi is a canoni-

cal momentum, Qi is a generalized coordinate, and the integral is over
a periodic motion. The theory of adiabatic invariants asserts that the
action is a constant of the motion when certain conditions that are
described in Sec. IIIC are satisfied, even if the system is gradually
changing. For charged particle motion in a magnetic field, the fastest
periodic motion is the gyromotion. The associated adiabatic invariant
is designated as the first adiabatic invariant l, where

l ¼W?
B
: (4)

The first adiabatic invariant is denoted by l because it is proportional
to the diamagnetic magnetic moment of the charged particle as it

FIG. 2. (a) Examples of lost (blue) and confined (red) orbits in a simple magnetic
mirror of mirror ratio Bmax=Bmin ¼ 5. Dashed lines represent magnetic field lines.
(b) Topological map in velocity space at the center of the mirror, indicating the
boundary between confined and lost particles. The location of the confined orbit in
the upper figure is indicated by the red asterisk; the blue diamond indicates the
location of the illustrated loss orbit.
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orbits in the magnetic field. In configurations where the magnetic field
strength varies across the gyroradius or the particle drifts in an electric
field, additional terms appear in the definition of l.6,7 The relativistic
adiabatic invariant that corresponds to l is given in Eq. (2) of Ref. 8.

The first adiabatic invariant is associated with perpendicular
gyromotion. The second adiabatic invariant is associated with motion
parallel to the field and is given by

J2 ¼
þ

vkds; (5)

where the integral is over periodic motion along a field line. For exam-
ple, for a particle in the earth’s dipole field, J2 is associated with the ver-
tical bounce motion illustrated in Fig. 1(a).

The third adiabatic invariant is associated with cross field drifts
such as the precession around the earth illustrated in Fig. 1(b). The full
expression for J3 includes a contribution from the mechanical momen-
tum but it is often the case that vd is sufficiently small that the mag-
netic contribution to the canonical momentum dominates. In that
case, J3 is proportional to the magnetic flux enclosed by the precessing
orbit.

Exact and adiabatic invariants are not necessarily independent.
For example, in an axisymmetric torus, the toroidal canonical angular
momentum P/ is related to the third adiabatic invariant J3.

Once an invariant of the motion has been identified (whether
exact or adiabatic), it can be used to reduce the dimensionality of the
system. For example, the constancy of l implies that the gyrophase
does not impact the trajectory of the orbit. Neglecting the gyrophase
reduces the six coordinates needed to describe arbitrary motion to five
coordinates. Axisymmetry in a mirror device implies that the azi-
muthal angle is an ignorable coordinate that does not influence the
orbital trajectory.

For example, in an axisymmetric tokamak, three quantities are
constant: energy, magnetic moment, and toroidal canonical angular
momentum. These three quantities are often used to enumerate the
possible orbits. An advantage of these coordinates is that, in the pres-
ence of perturbations, a relationship often holds between changes in
energy and changes in momentum; see Sec. IV. On the other hand, for
numerical work, other coordinates are more convenient. (The toroidal
canonical angular momentum is multi-valued depending on the sign
of v/ so a fourth coordinate is needed.) One convenient set of coordi-
nates is the energy, the maximum major radius of the orbit, and the
value of vk=v at the maximum radius.

In other configurations, other coordinates are favored. However,
in all configurations, it is advisable to utilize constants-of-motion to
reduce the dimensionality of the system.

B. Orbit classification and topological boundaries

The existence of two different orbit types and the corresponding
topological map that separates them has already been illustrated for a
simple magnetic mirror (Fig. 2). Other configurations have their own
orbit types and topological maps. Figure 3 shows examples for tokamak
and FRC geometry. Owing to the large drifts, EP orbits exist that have
no counterpart for thermal particles. Consider the tokamak. For low-
energy thermal particles, there are three orbit types: co-passing, trapped,
and counter-passing. (Here, co- and counter-passing refer to the toroi-
dal direction of the circulating particles with respect to the plasma

current.) These also exist for EPs but there are also new orbit types
[Figs. 3(a) and 3(b)]. One of these is a “loss” orbit that collides with the
wall. Another is a “stagnation” orbit. A stagnation orbit circulates toroi-
dally around the torus while scarcely moving poloidally. The phenome-
non occurs because, for an EP, the poloidal component of parallel
motion along the field line can be canceled by the vertical grad-B and
curvature drifts. (This cancelation can also occur for a thermal particle
but only in a negligibly small portion of phase space.) Additional non-
standard orbits exist for EPs as well (Sec. 3.3 of Refs. 9 and 10).

Important orbit types in an FRC are “drift,” “figure-8,” and
“betatron” orbits [Fig. 3(c)]. Figure-8 and betatron orbits exist because
the large orbit sample regions of quite different magnetic field. The
corresponding topological map is shown in Fig. 3(d). More details of
FRC orbits can be found in Refs. 11 and 12.

Three dimensional stellarator configurations support even more
orbit types for both thermal and energetic particles. One important
example is a “super-banana” that becomes helically trapped between
regions of high magnetic-field strength; this prevents the particle from
precessing around the torus. This phenomenon also occurs in realistic
tokamaks because the finite number of toroidal field coils causes
“ripple” in the toroidal field that breaks the toroidal symmetry. In
describing stellarator orbits and topology, convenient variables are
energy, l, and J�, the latter being a generalized version of the second
adiabatic invariant.13

The existence of topological boundaries has important implica-
tions for EP transport. If a Coulomb collision or field perturbation
causes an EP to cross a topological boundary, the particle can take a
large transport step. An example is shown for a tokamak in Fig. 3(a).
The difference in velocity between the illustrated “counter-passing” orbit
and the “lost” orbit is very slight (Dvk=v < 0:3%) but one orbit is well
confined and the other hits the wall. Measurements with loss detectors
often measure loss orbits near a topological boundary (Fig. 4). In this
example, measurements of the velocity vector of the lost particles at the
detector enable the experimenters to follow the lost orbit backward in
time in the equilibrium fields. The observed losses correspond to an
orbit that is at the boundary between counter-passing and lost orbits.

The equilibrium orbits shown in Fig. 3(a) illustrate a general fea-
ture of orbits in magnetic configurations: Orbits that circulate parallel
to the plasma current are better confined than orbits that circulate
opposite to the plasma current. In Fig. 3(a), for all three illustrated
orbits, there is a location along the orbit where the vertical grad-B and
curvature drifts nearly cancel the vertical component of the parallel
drift vh. For the stagnation orbit, this cancelation occurs outside of the
magnetic axis; for the counter-passing and lost orbits, this near-
cancelation occurs inside of the magnetic axis. The two points of exact
cancelation are very different, however.15 For the stagnation orbit, the
exact cancelation occurs at an “O-point” in orbit topology space, so
nearby orbits satisfy an elliptic equation and are well confined. For the
counter-passing and lost orbits, the exact cancellation occurs at an “X-
point” in orbit topology space, so nearby orbits satisfy a hyperbolic
equation and deviate rapidly from the equilibrium point. (“O-points”
and “X-points” in orbit phase space are illustrated in Sec. IVB.)
Similar phenomena occur in other magnetic configurations. Modeling
of a cylindrical astrophysical current-carrying jet shows that co-
current orbits satisfy elliptic equations, while countercurrent orbits sat-
isfy hyperbolic equations and are poorly confined.16 Even in stellara-
tors where the current is carried by external conductors, beam ions
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injected in the co-current direction are better confined than beam ions
injected in the countercurrent direction.

C. Stochasticity

In analyzing magnetic field topology and particle orbits, one
often draws phase-space maps called Poincare (or puncture) plots.

These are made by plotting positions in phase space at regular inter-
vals. For example, in tracing a magnetic field line in toroidal geometry,
one can plot the (r, z) position of the field line every time it passes a
particular toroidal angle. Figure 5 shows an example for two configu-
rations in the W7-X stellarator.

In Poincare plots, a distinction is made between quasi-periodic
and chaotic trajectories. In Fig. 5, field lines in the plasma interior

FIG. 3. Examples of different orbit types in (a) a tokamak and in (c) an FRC. The tokamak orbits have been projected onto the (r, z) plane and the FRC orbits are projected onto
the ðr ;/Þ plane. Corresponding topological map for (b) tokamak and (d) FRC orbits. In both cases, the energy is fixed, the abscissa is proportional to the canonical toroidal angular
momentum, and the three orbits shown in the left panels are marked by colored squares. In (b), the ordinate is proportional to the magnetic moment; in (d), the ordinate is the toroidal
velocity component v/=v at the midplane. The tokamak example uses a DIII-D equilibrium; the FRC example uses an analytical FRC equilibrium, the Hill’s vortex.11
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always remain on the same two-dimensional surface and are on quasi-
periodic trajectories. (If the Poincare plot is tracing field lines, these
are the flux surfaces.) In contrast, under some conditions, traced field
lines with nearly identical initial conditions diverge exponentially,
even though the underlying B-field equations are deterministic. The
field lines in the upper region of the plasma in Fig. 5 are stochastic.
(Except near the edge, stochastic field lines are an undesirable property
in a magnetic confinement device.) When a stochastic orbit is traced
in a Poincare plot, it wanders ergodically throughout the stochastic
region. Regions with stochastic trajectories are often limited by
Kolmogorov–Arnold–Moser (KAM)18 surfaces of quasi-periodic
orbits that prevent a stochastic field line from wandering through all
of phase space.

Poincare plots play an important role in the analysis of EP orbits
(Sec. IVE).

Although in common parlance “chaotic” and “stochastic” orbits
are often used interchangeably, there is a technical distinction between
“chaos” and “stochasticity.” Strictly speaking, stochastic motion is ran-
dom at all times and distances, while chaotic motion is predictable on
a short timescale but appears random for longer periods. Since colli-
sionless orbits are deterministic, when they diverge exponentially, they
are properly termed chaotic.

D. On the calculation of orbits

Orbit calculations are foundational for an understanding of EP
transport. Although the focus of this tutorial review is on the physics of
EP transport, not diagnostic or computational techniques, a few brief
remarks are appropriate here. One type of orbit calculation involves
solving the Lorentz force law; these are called “full-orbit” or “particle”
calculations. The disadvantage of full-orbit codes is that resolving the
gyromotion usually increases the computational expense and numerical

error. In systems without high frequency perturbations where the mag-
netic moment is an adiabatic invariant, one can average over the cyclo-
tron motion and maintain only the average particle motion in space.
The elimination of the rapid cyclotron motion is computationally
efficient. A code that follows the guiding center is a “guiding-center” code.

For example, consider a toroidal device with toroidal angle /
and poloidal angle h. It is convenient to use coordinates defined by
the equilibrium magnetic field, which must consist of nested toroi-
dal surfaces, as in the core of the stellarator of Fig. 5. Let 2pw
denote the toroidal flux contained in a flux surface with label w. In
the guiding center approximation, the particle Hamiltonian
reduces from H ¼ mv2=2þ Uð~xÞ to

H ¼ mv2k=2þ lBðw; hÞ þ Uðw; h;/Þ: (6)

The equations of motion in Hamiltonian form are9,19

_h ¼ @H
@Ph

_Ph ¼ �
@H
@h

_/ ¼ @H
@P/

_P/ ¼ �
@H
@/

;

(7)

where the canonical momenta are expressed in magnetic coordinates
[rather than the cylindrical coordinates of Eq. (3)],

P/ ¼ gqk �Wp; Ph ¼ wþ qkI; (8)

and Wp is the poloidal flux, with dw=dWp ¼ qðWpÞ, the field line hel-
icity. The variable qk ¼ vk=B is the normalized parallel velocity and

FIG. 4. Projection of three guiding center orbits for 1 MeV tritons in the TFTR toka-
mak. The dashed line represents the edge of the plasma and the loss detector is at
the bottom of the tokamak. Orbit B is a measured orbit with large magnetic moment
that is far from the loss boundary. Orbit A is the measured loss orbit that is at the
loss boundary. It has the same energy and l as the confined counter-passing orbit C.
If orbit C diffuses outward slightly, it crosses the loss boundary and is detected.
Adapted with permission from Zweben et al., Nucl. Fusion 31, 2219 (1991).14

Copyright 1991 International Atomic Energy Agency.
FIG. 5. Poincare plot of the equilibrium field in low-beta (lower half) and high-beta
(upper half) conditions in the W7-X stellarator. The flux surfaces are the well-
defined, kidney-bean shaped curves. In the high-beta configuration, the field is
stochastic in the upper portion of the plasma; this is evident by the appearance of
randomly scattered points. Adapted with permission from Helander et al., Plasma
Phys. Controlled Fusion 54, 124009 (2012).17 Copyright 2012 Institute of Physics
Publishing.
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the functions gðWpÞ and IðWpÞ are the toroidal and poloidal compo-
nents of the magnetic field in a covariant representation,4,9

B ¼ gr/þ Irh. Toroidal symmetry implies that P/ is a constant of
motion, and, in this case, the three constants, energy W, magnetic
moment l, and P/ (plus the sign of vk) completely define an orbit in
the axisymmetric system.

In addition to computational speed, a Hamiltonian formalism
has a further advantage. In all orbit calculations, it is important to
minimize numerical errors that cause constants-of-motion to diverge
from their true values. A Hamiltonian formalism has favorable conser-
vation properties.7 In that regard, it is also important to select a favor-
able numerical method, such as 4th order Runge–Kutta or an accurate
symplectic integrator such as Boris integration.20

An advantage of EP calculations is that the dilute EPs do not
interact among themselves. Consequently, efficient orbit-following
codes utilize parallel processing.

III. IRREVERSIBLE TRANSPORT

This section establishes the general framework for the discussion
of EP transport. Transport occurs when perturbations cause changes
in the constants of motion. Section IIIA explains when constants-of-
motion are conserved and when they are broken. Section III B explains
why collisions cause minimal transport. Section IIIC discusses the dis-
tinction between reversible and irreversible transport and the relation-
ship between microcsopic kicks imparted by perturbations and
macroscopic transport.

A. Criteria for preservation of adiabatic invariants

The theory of adiabatic invariants is well established within clas-
sical mechanics. Within plasma physics, the monograph written by
Northrop over 50 years ago21 still provides a useful introduction and
the textbook by Bellan uses pendulum motion to illustrate the key
ideas.22 To summarize, three criteria must be satisfied for an adiabatic
invariant to be conserved.

(1) The orbit must experience gradual variations on the timescale
of the periodic motion.

(2) The perturbations cannot resonate with a periodicity of the
motion.

(3) The perturbation must be small.

These criteria are explained in more detail below.
The criterion for gradual variation is most easily explained for

gyromotion. The first adiabatic invariant l is the constant-of-motion
associated with this periodicity of the orbit. The magnetic field may be
changing in time, may have a gradient in space, or both. The gyrating
particle “feels” these changes along its actual trajectory. The meaning
of “gradual” change in time is that B changes slowly compared to a
cyclotron period, i.e., ð@B=@tÞ=ðxcBÞ � 1. The meaning of gradual
change in space is that the particle experiences small changes in B as it
traverses its gyro-orbit, i.e., qcrB=B� 1, where qc is the Larmor
radius. When both these conditions are satisfied, l is conserved. In
practice, in many actual calculations, these inequalities do not need to
be particularly small for l conservation to hold. (For example, 25%
variations are often tolerable.)

Analogous criteria hold for the second and third adiabatic
invariants.

The second general criterion is that the perturbations cannot res-
onate with a periodicity of the motion. This concept is easily grasped.
Imagine pushing a child on a swing. If small pushes are synchronized
with the natural frequency of the swing, the child gains energy.
Randomly timed small pushes only yield an exasperated child!
Resonance is discussed in detail in Sec. IV.

The third general criterion could be viewed as a corollary of the
first but it is convenient to state it separately. Even if a perturbation is
stationary in time and has a small gradient, if the amplitude is suffi-
ciently large, it may “kick” the particle onto an entirely new orbit by
displacing it into a region of altered equilibrium field.

Although there is a theoretical distinction between exact and adi-
abatic invariants, the distinction is unimportant in practice. For exam-
ple, the toroidal canonical angular momentum is an exact invariant in
an ideal tokamak but real tokamaks invariably have field errors that
cause deviations from perfect axisymmetry. In practice, one still needs
to know when P/ is a good constant of motion and when it is not. The
general criteria listed above are useful for this purpose.

As an example, consider the effect of toroidal field ripple on fast-
ion confinement in a tokamak. In a real tokamak, the toroidal field is
corrugated because of the finite number of toroidal field coils. From
the standpoint adopted here, the toroidal field ripple is a periodic B1

perturbation of zero frequency. If B1 is sufficiently large, the invariant
P/ is broken.

The effect is most pronounced for trapped particles. SincerB1 is
small on the scale of the gyromotion, l is conserved. At the turning
point of a trapped ion, the parallel velocity vanishes and
l ¼W?=B ¼W=B. Since the energy of the particle W is another
constant of the motion in static magnetic fields, small changes in the
magnitude of B associated with field ripple cause perturbations in the
position of the turning point. Two effects on the orbit are distin-
guished. The one discussed here is called “ripple trapping;” the other is
called “stochastic ripple diffusion.”23 Both are explained together with
many experimental examples in Sec. 4.2 of Ref. 3. An additional theo-
retical explanation appears in Sec. 8.7 of Ref. 9.

In ripple trapping, the toroidal field ripple creates a secondary
magnetic well. An ion trapped in the secondary well executes an
orbit known as a “super-banana” and begins to drift vertically
because the rB drift is no longer compensated by rotational trans-
form. Since EPs are collisionless, they keep drifting vertically until
they are lost. Figure 6 shows an example of a lost super-banana
orbit. Two tokamaks have performed experiments where the num-
ber of energized toroidal field coils was intentionally halved,
thereby increasing the toroidal field ripple an order of magnitude.
In both cases, large reductions in the number of confined EPs on
trapped orbits were observed.24,25

Minimization of the number of super-bananas is a key aspect of
stellarator design. A number of optimization strategies have been
developed that reduce transport associated with ripple trapping.27,28

Equilibria with superior confinement have EP orbits with large poloi-
dal drifts but small radial drifts. Large poloidal drift velocities promote
the formation of poloidally closed contours of the second adiabatic
invariant J2, resulting in better trapped-particle confinement.29

B. Collisions

Collisions are a key topic in the discussion of thermal trans-
port. Coulomb collisions cause “classical” transport in a uniform
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magnetic field.30 In magnetic confinement geometries, a finite
drift-orbit width and transitions between different orbit types
cause increased transport relative to classical levels; this is called
“neoclassical” transport.31 In some configurations, neoclassical
transport is the dominant thermal transport mechanism, exceed-
ing transport caused by unstable waves.

This is not the case for EPs. Because of their large velocities, colli-
sions are rare. Appreciable transport occurs almost exclusively near
topological boundaries. Near a boundary, the slight change in velocity
vector associated with pitch-angle scattering can kick the EP onto an
entirely different orbit, resulting in a large spatial step or even particle
loss. Figures 2, 3(a), 3(b), and 4 show examples of loss orbits that differ
only slightly from a confined orbit.

Figure 7 shows a concrete example for the ITER tokamak.32 In
the calculation, an orbit-following code that includes Coulomb colli-
sions and realistic ITER fields follows alpha particles until they are lost
or thermalized. Particles born in a loss region escape on their first full
orbit. Particles born in a region where stochastic ripple diffusion and
ripple transport are operative are lost after �10 orbits. Away from
these regions, losses are very slight; for example, over 50% of particles
with a pitch within 0.1 of a boundary remain confined for thousands
of orbits. Most particles are thermalized before they are scattered into
a loss channel, which is why the fraction of particles lost decreases rap-
idly as one moves away from the loss channels. As another example,
quantitatively, the neoclassical diffusion coefficient of beam ions in
contemporary tokamaks is D< 0.1 m2/s, which implies minimal spa-
tial transport in a slowing-down time. Accordingly, collisionless trans-
port is the focus of this review.

The previous discussion concerns the dominant collisional pro-
cess in fully ionized plasma, small-angle Coulomb scattering. In special
circumstances, other collisional processes can be important. When
measuring EPs at a pitch far from their birth pitch, large-angle nuclear
scattering33 can make the dominant contribution to the signal. For
runaway electrons, the pitch-angle scattering rate is modified by syn-
chrotron losses;34 also, the conventional Coulomb scattering rate is
modified for collisions with impurities that retain bound electrons.35

For fast ions, charge-exchange reactions5,36 with injected or edge neu-
trals can play an important role in evolution of the distribution
function.

C. Microscopic motion and macroscopic transport

Not all waves cause macroscopic transport. Consider a small
amplitude, oscillating azimuthal electric field Eh in a solenoid with
uniform axial magnetic field B ¼ B0ẑ . The electric field causes radial
E� B drifts of the particles. However, if the wave amplitude gradually
increases to a maximum then gradually decreases, after the perturba-
tion has past, the particles will all return to their initial position. No
radial transport has occurred.

Our EPs are nearly collisionless. This implies that, on a short
timescale, their motion is completely reversible. One could watch a
video of the motion over a few wave periods without being able to dis-
cern if the video was running forward in time or in reverse.

FIG. 6. Projection onto the (r, z) plane of an EP guiding center orbit in a circular
cross section tokamak with �3% toroidal field ripple. The EP initially is on an ordi-
nary trapped-particle orbit. The small variations in the radius of the turning point are
caused by small toroidal variations in B. At one helical ripple well, the orbit
becomes trapped and drifts vertically to the vacuum vessel wall. Based on an
experiment in the TFR tokamak. Adapted with permission from R. J. Goldston and
H. H. Towner, J. Plasma Phys. 26, 283 (1981).26 Copyright 1981 Cambridge
University Press; Authors licensed under a CCC #4716151511365.

FIG. 7. Calculated loss time of 3.5 MeV alphas in an ITER plasma with toroidal field
ripple. The yellow orbits that are confined <100 ls are prompt losses. The green
orbits that are confined between 0.1 and 1.0 ms are losses caused by toroidal field
ripple. The purple losses are caused by Coulomb collisions. The thick (thin) black
lines show where 90% (10%) of launched particles are lost. No losses are found in
white regions. The coordinates are the pitch and normalized minor radius at the
largest major radius of the initial orbit. The dotted red lines are the nominal trapped/
passing boundary. Reproduced with permission from K. S€arkim€aki, Nucl. Fusion 60,
036002 (2020).32 Copyright 2019 the International Atomic Energy Agency.
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In contrast, imagine watching a video of a group of similar par-
ticles on a longer timescale. Now one could easily tell the direction of
time: if the particles spread radially as the video advances, time is in
the forward direction. If the particles begin at different positions and
cluster together at nearly identical positions, the video has run in
reverse. Irreversible motion appears when one considers groups of
particles on an intermediate timescale. In this context, “intermediate”
means longer than several wave periods but shorter than the collisional
timescale on which the entire distribution function evolves. If dt is the
timescale of the reversible motion, Dt is the intermediate timescale,
and t is time in a Fokker–Planck equation, our ordering is dt � Dt � t
(Fig. 8). The statistics of the microscopic kicks determines the type
of macroscopic transport that occurs on the intermediate timescale.
Similarly, the statistics of intermediate-timescale transport deter-
mines the evolution of the distribution function on the long colli-
sional timescale.

To achieve irreversibility, something is needed to disrupt the
reversibility of the microscopic motion. There are several possibilities.
One possibility is multiple uncorrelated perturbations, such as those
that occur when there is a turbulent spectrum of waves. Another possi-
bility occurs in deterministic chaos (Sec. II C). A third possibility is the
almost negligible collisions we usually neglect.

Without specifying its precise origin, assume that a mechanism
exists that randomizes the effect of the microscopic (reversible) perturba-
tions. Under these circumstances, a relationship exists between the
microscopic kicks given to the particles and the consequent transport. A
famous example is the randomwalk of a drunk. The drunk takes steps of
uniform length to the right or left dx ¼ 6‘ with equal probability every
dt second. A collection of drunks beginning at the same bar will spread
out irreversibly in time. As time advances, owing to the equal probability
of left/right steps, the average position of the drunks will remain at the
origin (the bar) but their distribution will spread according to

hðDxÞ2i ¼ 2DDt; (9)

where the diffusion coefficientD is related to the microscopic motion by

D ¼ ðdxÞ
2

2dt
: (10)

Here, brackets h…i represent an average over the distribution of par-
ticles. Equation (9) describes diffusive spreading. The mean square dis-
placement increases with time as tc, where c¼ 1.

More realistic distributions of microscopic kicks can also produce
diffusive behavior. Assume a normal distribution of kicks with
probability

pðxÞdx ¼ 1ffiffiffiffiffi
2p
p

dx
exp
�0:5x2

ðdxÞ2
(11)

that occur every dt seconds. A collection of particles that begin at the
origin will expand diffusively with the same equations as for the
drunken random walk.

Different distributions of microscopic kicks produce different mac-
roscopic spreading. In general, the relationship between the microscopic
probabilities and the macroscopic behavior is governed by a “master”
equation that relates the probability that the system is found in a given
state to the transition (microscopic kick) probabilities.37 Several simple
limits exist, however. If the microscopic kicks are all of comparable mag-
nitude in the same direction, the mean position of the macroscopic dis-
tribution grows as hDxi ¼ ðdx=dtÞt. Motion of this type is called
“convective.” Examples of convective transport for EPs appear in Sec. IV.
If the kicks have a distribution of sizes but a preferred direction, a
combination of convective and diffusive transport can occur.

Even in the absence of convection, the spreading need not be dif-
fusive. A well-known example is the distribution of kick sizes adopted
by many foraging animals. They often take many small steps while
feeding at a particular plant, and then take a long step to a different
part of the landscape. These produce a distribution of microscopic
steps that is a type of “L�evy flight” distribution. The resulting spread-
ing deviates from diffusive scaling [Eq. (9)]; instead, the population
spreads as tc with c > 1. When c > 1, the spreading is called “super-
diffusive.” When c < 1, the spreading is called “sub-diffusive.” Sub-
diffusive transport occurs when large-amplitude kicks are rarer than in
the normal distribution of Eq. (11). Figure 9 illustrates the relationship
between microscopic kick probabilities and macroscopic transport for
several simple cases that are relevant for EP transport.

Sub-diffusive, diffusive, and super-diffusive spreading are all
observed for EPs and analyzed theoretically.39 A particularly clear exam-
ple was measured on the TORPEX toroidal device. Beams of energetic
lithium ions with different energies were launched through transient tur-
bulent electrostatic fluctuations called “blobs” and their mean square dis-
placement was measured at various distances from the source (Fig. 10).38

Simulations explained the different behavior that was observed.40 On
occasion, the blobs imparted a large E� B kick to lower-energy fast
ions. The resulting distribution of kicks resembling L�evy flights produced
super-diffusive transport with c > 1; this is like the case illustrated in
Figs. 9(e) and 9(f). In contrast, for higher energies, the increased grad-B
drift caused the fast ions to drift vertically through the electrostatic struc-
tures so rapidly that the radial displacement was reduced, causing a trun-
cated kick distribution like the one illustrated in Fig. 9(g); the resulting
macroscopic transport was sub-diffusive [Fig. 9(h)].

FIG. 8. Illustration of the different time-
scales governing EP transport. The dt
timescale is limited to a few wave periods;
the kick received by the particle is deter-
ministic and reversible. The Dt timescale
involves many wave periods and multiple
kicks; irreversibility of a population of par-
ticles appears on this time scale. On the t
timescale, the entire distribution function
evolves due to the combined action of
irreversible transport, collisions, and pro-
cesses that create and destroy EPs.
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The concept of random, irreversible kicks is widely employed in
theories of EP transport. For example, in cyclotron heating, owing to
the resonant interaction described in Sec. IV, particles receive a kick in
energy when their orbits traverse locations where x ¼ xc, causing dif-
fusion in velocity space.2 Random kicks are readily incorporated into
codes that use Monte Carlo markers to represent energetic particles.
For example, randomly applied kicks in different portions of phase
space successfully model EP interactions with Alfv�en waves.41

IV. RESONANCE

This section begins by explaining the fundamental conditions for
wave-particle resonance, Eq. (13). Next (Sec. IVB), the relationship
between the amplitude of the perturbing field and the width of the

resonance is explained. Section IVC explains why collisionless wave-
particle trapping becomes irreversible. The relationship between wave-
particle trapping and mode stability is briefly discussed in Sec. IVD.
Section IVE describes the emergence of chaotic orbits caused by parti-
cle trapping in wave-particle resonances. Finally, Sec. IVF summarizes
the main points of this section.

A. Conditions for resonance

Whether a particle is resonant or non-resonant depends upon
the phase H between the particle and the wave. Consider the simple
case of an ion gyrating in a uniform magnetic field in the presence of
an electric field of frequency x that is spatially uniform and linearly

FIG. 9. Sketches illustrating the relation-
ship between (left column) microscopic
kicks dx and (right column) the resulting
macroscopic transport Dx. (a) Drunk ran-
dom walk probabilities (thick bars) and a
Gaussian distribution (line) produce (b)
diffusive spreading hðDxÞ2i that increases
linearly with time but the mean position
hDxi is zero. (c) When the kicks have a
preferred direction (d) convective transport
occurs: The mean position hDxi
increases linearly with time. (e) The L�evy
flights of foraging animals and transport
by plasma “blobs” produce (f) super-
diffusive transport that spreads faster than
t1. (g) If large kicks are suppressed (h)
sub-diffusive transport that spreads more
slowly than t1 occurs. Dotted lines in panels
e-f represent diffusive behavior.
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polarized. If the wave frequency matches the cyclotron frequency, the
ion always sees an electric field that points in the direction of its hori-
zontal motion [Fig. 11(a)]. The ion is continuously accelerated and its
perpendicular energy steadily increases [Fig. 11(e)]; consequently, the
first adiabatic invariant l ¼W?=B is not conserved. The perturbation
has violated the second criterion for conservation of an adiabatic
invariant (Sec. IIIA).

Note that whether the ion gains or loses energy depends upon its
initial phase with respect to the wave. If the initial phase is flipped
180�, the ion continuously loses energy rather than gains energy.
Nevertheless,W? has changed and l is not conserved.

Now consider a wave where x 6¼ xc. Now the ion gains energy
for a while but subsequently loses any gained energy when the ion sees
E of opposite phase [Fig. 11(d)]. If the electric field is sufficiently small,
the time-averaged change in W? is zero and the time-averaged mag-
netic moment l is conserved.

Note that, for resonance to occur, the electric field need not accel-
erate the ion on the entire orbit. Imagine that the electric field of Fig.
11(a) only existed in the upper half of the orbit. If x ¼ xc, the ion
would still gain energy on every orbit; if x 6¼ xc, the ion would still
gain energy for a few cycles, and then lose an equal amount of energy
on subsequent cycles. One can imagine an even more complicated spa-
tial structure, where the ion gains energy on 2/3 of the orbit but loses
energy on 1/3. If x ¼ xc; W? would still change every cycle and l
would not be conserved.

The instantaneous power a particle of charge q gains from the
wave is dW=dt ¼ qE � v. The energy gained in an orbit is DW ¼Þ
ðdW=dtÞdt or

DW ¼
þ
qE � v dt ¼ q

þ
E � dl; (12)

where the integral is over the orbit. Evidently, as long as
Þ
E � dl is

nonzero, a resonant ion exchanges energy with the wave.
It is not essential that the ion completes its orbit in a single cycle

of the wave; the wave can oscillate multiple times in a cyclotron period
and still exchange an increment of energy every orbital period. This
occurs, for example, in high harmonic cyclotron heating, where finite
values of k?qc yield non-zero values of

Þ
E � dl after a cyclotron orbit.

(k? is the perpendicular component of the wavevector.) As long as
DW is non-zero and remains the same every orbital period, resonance
still occurs. In other words, the resonance condition is x ¼ lxc, where
l is an integer.

Although we have only considered the gyromotion, all of these
principles are readily generalized to include other aspects of the orbital
motion. Considering orbits with the three periodicities xc, x/, and
xh, the generalized resonance condition is

x ¼ lxc þmxh þ nx/; (13)

where l, m, and n are integers. Equation (13) states that resonance
occurs when the phase of the perturbation changes by a multiple of 2p
after the particle has completed a cycle of its periodic motion.

The orbital frequencies in Eq. (13) are averaged over the relevant
orbital motion. For example, in a tokamak, the cyclotron frequency xc

is a function of major radius and therefore varies along the drift orbit;
when considering a resonance involving the poloidal orbit, xc in Eq.
(13) represents the orbit-averaged cyclotron frequency.

In practice, it is often the case that one or more of the integers in
Eq. (13) is zero. For example, if the cyclotron frequency xc is much
larger than the other orbital frequencies, the resonant interaction can
take place locally on a portion of the orbit. This occurs in cyclotron
heating, where the particles receive a velocity kick in a localized
“resonance layer.” In this case, the effect of the drift-orbit motion is to
introduce a Doppler shift into the local cyclotron resonance condition,

x� k � vGC ¼ lxc; (14)

where k is the wavenumber of the perturbation and vGC is the
guiding-center velocity consisting of vk and vd .

FIG. 10. (a) Measurements (symbols) and simulations (shaded curves) of the
spreading of a super-thermal lithium beam in the small toroidal device TORPEX in
the presence of transient electrostatic turbulent “blobs.” The electron temperature is
a few eV and the ions are even colder, so both the 30 eV and 70 eV ions are super-
thermal. The visible reversible oscillations of the beam width are caused by the
gyromotion. Since the velocity and pitch of the EPs are approximately constant, the
toroidal distance is proportional to time. (b) Inferred scaling of the beam spreading
rR vs time. Owing to the initial velocity spread of the beam, the initial spreading is
ballistic, i.e., hðDxÞ2i / t2. For ions of 30 eV, the transport is then super-diffusive
with a transport exponent c ’ 1:2 during approximately four gyromotions and
finally close to a diffusive process, c ’ 1. For ions of 70 eV, the transport is sub-
diffusive with c ’ 0:51. Time is normalized to the ion gyroperiod. Reproduced with
permission from Bovet et al., Phys. Rev. E 91, 041101(R) (2015).38 Copyright 2015
American Physical Society.
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When the frequency of the perturbation is small compared to the
cyclotron frequency, l is conserved and the cyclotron term in the reso-
nance condition [Eq. (13)] is omitted, x ¼ mxh þ nx/. Naively, for
a perturbation with toroidal mode number n0 and poloidal mode
numberm0, one might expect that the strongest resonance (i.e., the one
with the largest value of

Þ
E � dl) would occur for n ¼ n0 and m ¼ m0

but, because of the large EP orbits, that is not generally the case. To
take this effect into account, some authors define a “kinetic reso-
nance”42 or perform “orbit-based resonance analysis”43 that explic-
itly distinguishes the helicity of the strongest resonance from the
helicity of the perturbing mode. In an axisymmetric device, reso-
nance does require that n ¼ n0 but energy exchange can be apprecia-
ble for multiple values of m. For example, for passing particles in a
toroidal device, the orbit shift due to drift is primarily m¼ 1, a shift
outward of a co-moving particle and a shift inward of a counter-
moving particle. This shift coupled with the m0 value of the pertur-
bation often leads to strong resonances at m ¼ m061. In a stellara-
tor, appreciable energy change can also occur for n ¼ n0 þ �N ,44

where � is an integer and N is the number of periods of the helically
symmetric stellarator coils. In general, multiple values of l, m, and n
can contribute important resonances.

Examples of multiple important resonances for a low-frequency
tokamak perturbation appear in Fig. 12. The orbital frequencies

x/ and xh are functions of the constants of motion, so orbits that sat-
isfy the resonance condition appear in different parts of phase space.
For the examples of Fig. 12, l¼ 0 and n is equal to the toroidal mode
number of the Alfv�en wave n0, so the multiple resonances occur at har-
monics of the poloidal bounce frequency xh.

It is instructive to examine why the example shown in Fig. 12(b)
has so many important resonances. Numerous thermal-particle orbits
could satisfy Eq. (13) for different values of l, m, and n but relatively
few of these would exchange appreciable energy with the wave. The
complexity of EP orbits accounts for the difference. The example of
Fig. 12 is for a tokamak condition with EP orbits that deviate far from
flux surfaces. For this condition, the energy-exchange term depends
upon

Þ
E � vd , where vd is the drift velocity.47 Imagine rewriting the

integral in terms of an integral over the poloidal angle h; to do so, one
would decompose vd in terms of a Fourier series,

vd ¼
X
m

Ame
imh;

where the Am are Fourier coefficients. For a thermal particle, only
a few coefficients are appreciable but many Fourier coefficients are
required to describe a complex EP orbit. It is this orbital complex-
ity that makes the energy exchange large for many values of m in
Fig. 12(b).

FIG. 11. (a) A gyrating ion in resonance with a linearly polarized electric field with the same frequency as the ion cyclotron frequency. Four times on the orbit are marked. Time
evolution of (b) horizontal velocity vx, (c) horizontal electric field at the particle location Ex, (d) instantaneous power transfer F � v, and (e) net energy change

Ð
F � v dt for a res-

onant wave with x ¼ xc (red) and a non-resonant wave with x ¼ xc=1:7 (blue).

Physics of Plasmas TUTORIAL scitation.org/journal/php

Phys. Plasmas 27, 030901 (2020); doi: 10.1063/1.5136237 27, 030901-12

Published under license by AIP Publishing

https://scitation.org/journal/php


In practice, evaluation of the resonance condition [Eq. (13)] is
readily performed, as only the equilibrium orbits and mode frequency
are needed for the calculation. However, to tell if a resonance is impor-
tant, one needs detailed measurements or modeling of the perturba-
tion in order to evaluate

Þ
E � dl for each resonance. Figure 12(a) is an

example of the simpler evaluation, while Fig. 12(b) is an example of a
calculation of actual energy exchange.

Our discussion to this point has emphasized the energy exchangeÞ
E � dl. However, the resonance condition [Eq. (13)] applies even for

a static magnetic perturbation with x ¼ 0 and E ¼ 0. Since F � v ¼
qðv � BÞ � v is identically zero for static magnetic fields, they never
alter the EP energy; nevertheless, resonance with a static magnetic field
can alter the EP momentum, causing a constant-of-motion to change.
In this case, rather than the energy exchange considered in the deriva-
tion of Eq. (12), one considers the impulse delivered by the perturba-
tion each cycle,

DP ¼
þ
F dt ¼ q

þ
v � B dt; (15)

where DP is the corresponding change in momentum. As with energy
exchange, for a non-resonant EP orbit, the particle receives random
small kicks each cycle; these kicks average to zero without altering a
constant-of-motion. On the other hand, for a resonant EP orbit, the
momentum kicks add secularly and a constant-of-motion is broken.
When a static perturbation and EP orbit satisfy 0 ¼ mxh þ nx/ [a
special case of Eq. (13)], momentum-altering resonance can occur.

An example of breaking of the toroidal canonical angular momentum
P/ through resonant interaction with a static magnetic field perturba-
tion appears in Sec. VIII.

A simple demonstration of cyclotron resonance was performed
for EPs in a long solenoidal machine, the Large Plasma Device
(LAPD). Alfv�en waves that produced azimuthal electric fields were
launched at one end of the device and a beam of lithium ions on heli-
cal orbits orbited through the wave field. When the Doppler shifted
wave frequency x� kkvk matched the EP cyclotron frequency xc,
large spreading of the beam was observed. A secondary peak with
reduced spreading was also observed when

Þ
E � dl accelerated the

ions in one direction for 2/3 of a cycle and in the opposite direction
for 1/3 of the cycle.48,49

B. Resonance width

In general, the orbital frequencies xc, xh, and x/ are compli-
cated functions of phase-space coordinates so the resonance condition
[Eq. (13)] is only satisfied on a narrow curve in phase space, as in Fig.
12(a). In reality, however, resonances are broadened to span a region
in phase space. [This broadening is apparent in Fig. 12(b).] Particles
with a slight mismatch between their orbital frequencies and the wave
frequency get trapped in the wave, as in nonlinear Landau damping.
This section examines the relationship between the resonance width
and mode amplitude, showing that the broadening of the resonance is
typically proportional to the square root of the perturbation amplitude
[Eq. (19)].

FIG. 12. Examples of resonance calculations. (a) Multiple resonances in the JET tokamak. High energy protons accelerated by ion cyclotron heating resonate with an n¼ 3
Alfv�en eigenmode. The plotted trapped particles have their turning points at the major radius where the RF wave resonates with xc, so the elevation of the turning point and
the particle energy suffice to enumerate the orbits. The curves indicate different possible resonances that satisfy x ¼ pxh. Reproduced with permission from Pinches et al.,
Nucl. Fusion 46, S904 (2006).45 Copyright 2006 International Atomic Energy Agency. (b) Calculated energy exchange of 25 keV deuterium beam ions with a 90 kHz, n¼ 2,
m0 ¼ 9 Alfv�enic perturbation in the DIII-D tokamak. Each resonance has adjacent regions of energy loss and gain; each red/green pair is caused by a different resonance.
The numbers beside many of the pairs indicate the value of m in the x ¼ nx/ þ mxh resonance condition. The dashed line indicates where the m¼ 5 resonance is satisfied
exactly. The solid lines demarcate different topological regions. The ordinate is the normalized magnetic moment and the abscissa is the normalized toroidal canonical angular
momentum. Adapted with permission from White et al., Plasma Phys. Controlled Fusion 52, 045012 (2010).46 Copyright 2010 Institute of Physics Publishing.
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As a simple example, consider the resonance of an EP with a
low-frequency wave in a tokamak. Because l is conserved, the
equilibrium orbit is governed by the guiding center Hamiltonian of
Eq. (6). A simple helical wave-particle resonance of form HI

¼ �V cos ðn/�mh� xtÞ perturbs the Hamiltonian. Here, V is a
constant. From dW=dt ¼ @H=@t and dP/=dt ¼ �@H=@/, we find
that ndW=dt þ xdP/=dt ¼ 0, so

nW þ xP/ ¼ constant: (16)

Consequently, a perturbation consisting of a single toroidal mode
number and frequency can only change P/ and W along a line in the
ðW;P/Þ plane; the changes in the two variables are not independent.

Equation (16) can also be obtained from a quantum-mechanical
perspective. The wave and particle exchange both energy and momen-
tum. The exchanged energy is DW ¼ �hx and the exchanged momen-
tum is DP/ ¼ r�hk/. Since the toroidal wavenumber is k/ ¼ n=r, it
follows that xDP/ ¼ nDW.

To find the nature of these changes, we examine a Poincare sec-
tion (Sec. IIC) produced by this Hamiltonian. To produce the
Poincare points, set n/� xt ¼ 2pk and record the values of P/ and
mh each time n/� xt advances by 2p. Replace v2k in the equilibrium
Hamiltonian by the expression for P/ in Eq. (8), and then expand the
Hamiltonian around the value of P/ for which the resonance holds,
P0.

50 The Hamiltonian is approximately

H ’ c
2
ðP/ � P0Þ2 � V cos ðmhÞ; (17)

where c is a constant. Let Q ¼ mh, a convenient spatial coordinate. To
find the Poincare surfaces, setH equal to a constant, C ¼ �V cos ðQ0Þ,
giving

c
2
ðP/ � P0Þ2 ¼ V cos ðQÞ � cos ðQ0Þ½ 	: (18)

Figure 13 shows the resulting Poincare surfaces of particle trajectories
in the plane of P/ and Q ¼ mh, where we take P0 ¼ 0 for simplicity.
Note that the Hamiltonian is time dependent, so W is not conserved
and, in fact, through Eq. (16), the trajectories in the energy variable
have the same form as those in P/.

Expanding near Q¼ 0, we have c
2P

2
/ ¼ Vð1�Q2=2� cos ðQ0ÞÞ.

This is the equation for an ellipse so the O-point at Q0 ¼ 0 is an ellip-
tic point. Expanding about Q¼ p with dQ¼ p�Q, we find
c
2P

2
/ ¼ V ½�1þQ2=2� cos ðQ0Þ	, an equation for a hyperbola. This

hyperbolic point, an X-point, is at cos ðQ0Þ ¼ �1: The “separatrix”
that separates particles that are trapped by the finite-amplitude wave
from those that are not is given by curves that pass through the
X-points. The region within the separatrix in Fig. 13 is called an island.
In terms of P/, the full width of the island is

dP/ ¼ 4
ffiffiffiffiffiffiffiffi
V=c

p
: (19)

All particles within the separatrix are trapped in the resonance and cir-
culate around the elliptic point. As they do this, both the energy and
the canonical momentum P/ change periodically. Particles outside the
separatrix are not resonant, but they still experience changes of P/ and
W that are periodic and adiabatic.

For this Hamiltonian, an EP whose motion in h and / is related
by the ratio n/m satisfies the resonance condition, Eq. (13). Particles

that satisfy the resonance condition exactly are at the elliptic or hyper-
bolic point of the resonance.

C. Irreversibility for particles trapped in a resonance

The motion of particles that are trapped in a wave-particle reso-
nance becomes ergodic.51 Eventually, on average, all particles trapped
by the wave adopt the constants-of-motion of the exact resonance.
This section explores the origin of irreversibility for the example of
Fig. 13.

To find the rate of rotation about the O-point, differentiate Eq.
(17) with respect to time, giving

cðP/ � P0Þ _P/ ¼ V sinðQÞ _Q: (20)

However, _P/ ¼ �@/H ¼ nV sinðQÞ, giving

_Q ’ n
ffiffiffiffiffiffiffiffi
V=c

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ðQÞ � cos ðQ0Þ

p
; (21)

with Q0 the initial point of the trajectory. The time to complete an
orbit around the elliptic point is T ¼ 4

ÐQ0

0 dQ= _Q, giving

T ¼ 4

n
ffiffiffiffiffiffiffiffi
V=c

p
ðQ0

0

dQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ðQÞ � cos ðQ0Þ

p : (22)

For small Q0, this is T ¼ 4= n
ffiffiffiffiffiffiffiffiffiffiffi
2V=c

p� �
, and for Q0 ¼ p, the integral

diverges. The frequency about the elliptic point is proportional to the
island width, or the square root of the perturbation amplitude, and it
goes to zero as the separatrix is approached.

FIG. 13. Poincare surfaces of a resonance in an axisymmetric device produced by
a low-frequency mode that depends upon n/� mh� xt. The elliptic “O-point”
and hyperbolic “X-point” that are the exact solutions of the resonance condition are
marked. Particles are trapped within the separatrix that passes through the X-point.
The width of the resonance is marked.
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In Fig. 14 is shown an actual Poincare plot of a 50 kHz mode res-
onating with 25 keV particles in a tokamak. The circulation of particles
around the hyperbolic point is shown at the right, with snapshots at
increasing time intervals. The rotation is most rapid near the elliptic
point, and goes to zero at the separatrix. Because of the variation of the
rotation rate with the distance from the elliptic point, with increasing
time, the mixing of different energies and values of P/ occurs at
smaller and smaller distances, until it finally reaches interparticle
scales. At this point, even an infinitesimal collision rate is sufficient to
guarantee irreversibility and the average value of energy and P/ of the
entire trapped population is the same as that of the elliptic point.

D. Relationship between particle trapping, mode
growth, and mode amplitude

Equation (19) states that the resonance width in phase space is
proportional to the square root of the perturbation amplitude. From
the perspective adopted in the majority of this review, the perturbation
amplitude is an independent parameter that will determine the conse-
quent EP transport. It could be experimentally measured. It could be
externally controlled by coils or antennas. It could be the result of an
instability whose amplitude is governed by interaction with the ther-
mal plasma, such as an MHD instability. Or it could be an EP-driven
instability. In the latter case, there is an interplay between the wave-
particle trapping, the properties of the EP distribution function, and
the mode amplitude that is briefly explored here.

As discussed in Sec. IVC, all EPs that are trapped in the reso-
nance eventually adopt the constants-of-motion of the exact reso-
nance. As in Landau damping, whether these nonlinearly trapped
particles deliver or extract energy from the wave depends upon the
slope of the distribution function f in the vicinity of the resonance. In
Landau damping, the relevant slope is @f =@vk; more generally, the rel-
evant slope is across the resonance in constants-of-motion space and
involves terms such as @f =@W and @f =@P/. If more particles gain

energy than lose energy, the wave damps. If the energy gained by the
wave exceeds any intrinsic damping, the wave grows.

If there is an imbalance between wave growth and damping,
the amplitude of the perturbation changes. There are many possi-
ble scenarios for the subsequent evolution of the mode. One possi-
bility is that a balance is achieved between energy extracted from
the distribution function and replenishment of the driving gra-
dients; an example of a possible steady-state scenario appears in
Ref. 52. If mode growth depletes driving gradients, a burst of tran-
sient growth followed by decay can occur. If the flattening of local
phase-space gradients causes steepening of neighboring gradients,
the mode may chirp in frequency dx=dt, so that the nonlinear
trapping region sweeps through new portions of phase space as
the mode evolves. In the Berk-Breizman model (reviewed in
Refs. 53 and 54), the relative values of linear drive, mode damping,
trapping frequency, and scattering rates determine which of
these scenarios occur. A comprehensive discussion of the many
possibilities including the role of the mode structure appears
in Ref. 55.

E. Orbit stochasticity and island overlap

In the presence of multiple resonances, islands may overlap.
When they do, orbits are usually chaotic.

An example appears in Fig. 15(a) for the case of an ion that
streams along a magnetic field in the ẑ direction in the presence of an
electrostatic wave that propagates obliquely to the field. The plot
shows where ions with three different initial conditions lie in ðz; vzÞ
space at regular intervals. These three ions satisfy the Doppler-shifted
resonance condition [Eq. (14)] x� kzvz ¼ ‘xc with ‘ ¼ �1; 0; 1. For
the case shown in Fig. 15(a), the amplitude of the wave is small, so the
three orbits lie on well-defined curves.

Figure 15(b) shows an example of chaotic orbits that appear
when the perturbing electrostatic wave is large. Often some orbits

FIG. 14. Circulation of particles within a resonance. At left is shown the Poincare plot given by very many toroidal transits, and at right snapshots taken at fixed time intervals
of the particles initially at h ¼ �0:2, showing the variation of the rotation rate as a function of distance from the O-point.
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remain periodic even when most orbits are chaotic. The solid curves in
Fig. 15(b) are examples of regular orbits that persist even when most
of phase space is stochastic.

Experts in nonlinear dynamics have extensively analyzed the con-
ditions that result in stochasticity. One helpful concept is the Chirikov
or “island overlap” criterion. The labels w�1, w0, and w1 in Fig. 15
mark the widths of the three different islands. As discussed in Sec.
IVB, the widths grow in size when the amplitude of the perturbation
increases. The Chirikov criterion states that when the widths of the
islands exceed the distance between islands, stochasticity ensues.
Although this criterion is not quantitatively accurate in most situa-
tions, it is a useful qualitative guide to ascertain conditions that disrupt
confinement.

Stochasticity leads to increased transport, but the nature of the
transport varies in different circumstances, including subdiffusive, dif-
fusive, and superdiffusive transport.39

F. Summary of resonance conditions and properties

(1) Resonance occurs when the particle and the wave return to the
same initial phase after a multiple of an orbital period.

(2) The initial phase determines whether the particle loses or gains
energy but has no impact on whether resonance occurs.

(3) The energy exchange is determined by
Þ
E � dl integrated over

the orbit. If this quantity is zero, even if the resonance condition
[Eq. (13)] is satisfied, there is no energy exchange. Important
resonances have non-zero values of DW ¼ q

Þ
E � dl or

DP ¼
Þ
F dt.

(4) Particles that do not satisfy the resonance condition [Eq. (13)]
are weakly affected by the wave.

(5) For a finite amplitude wave, the particle need not match the res-
onance condition exactly. Nonlinear trapping captures particles
that are slightly out of resonance. The width of this resonance-
broadened region increases with the square root of the ampli-
tude of the perturbation [Eq. (19)].

(6) Nonlinearly trapped particles ultimately adopt the constants-of-
motion of the exactly resonant particles.

(7) When resonances overlap, orbits become chaotic and transport
becomes large.

V. ORBIT AVERAGING OFTEN REDUCES TRANSPORT

When EPs are non-resonant, the large EP orbits often reduce
transport below the level experienced by thermal particles. This reduc-
tion occurs whenever the spatial structure of the perturbations is com-
parable to or smaller than the orbit size. The mechanism responsible
for this reduction is called “phase averaging.”

Consider the simple example illustrated in Fig. 16(a). An EP exe-
cutes a helical orbit in a solenoid filled with plasma. The plasma con-
tains a low-frequency (x� xc) electrostatic wave with very long
parallel wavelength (kk ’ 0), so the situation is essentially two-
dimensional. The electrostatic potential fluctuations are described by
U ¼ U0 cos kyy, where ky is the vertical wavenumber. The electric field
associated with this potential causes horizontal E� B displacement of
the EP orbit. If the Larmor radius is much smaller than the spatial
structure of the electrostatic wave (kyqc � 1), the electric field is
upward throughout the entire orbit, so the particle always drifts to the
right. However, if the Larmor radius is large, the orbit samples regions
of both upward and downward electric field. The particle drifts to the
right on some of its orbit and to the left on others. Consequently, the
net drift is reduced. Mathematically,

Þ
E � dl ’ 2EDy for the small

gyroradius but
Þ
E � dl ’

Ð
E cos ðkyyÞ dy < 2EDy for the large gyro-

radius. The usual E� B drift is reduced by phase averaging by a factor
of J0ðkyqcÞ.57 (J0 is the Bessel function of the first kind.)

An experiment very similar to the simple example of Fig. 16(a)
was conducted in the Large Plasma Device (LAPD).58 A rectangular
obstacle placed in the plasma created a sharp density gradient that
generated electrostatic fluctuations on the scale of the thermal ion
Larmor radius. A beam of energetic lithium ions of variable gyroradius
passed through the fluctuations and the spreading of the beam was
measured. As expected, beam spreading decreased monotonically with
increasing gyroradius [Fig. 16(b)].

In a related experiment on the LAPD,59,60 the EP gyroradius was
held fixed while the scale length of the electrostatic fluctuations was
varied. As expected, beam spreading was smallest for small-scale,

FIG. 15. Poincare plots showing examples of (a) regular and (b) chaotic orbits for
an ion in a uniform magnetic field in the presence of a perturbing obliquely propa-
gating electrostatic wave. In the wave frame, resonance occurs when x ¼ lxc ; in
the lab frame, resonance occurs when the wave phase velocity x=kz matches the
parallel particle speed vz and when ðx6xcÞ=kz ¼ vz . The illustrated orbits in (a)
are near the separatrices that separate orbits that are trapped in the wave from
ones that are not. The wave amplitude is four times larger in (b) than in (a).
Adapted with permission from G. R. Smith and A. N. Kaufmann, Phys. Fluids 21,
2230 (1978).56 Copyright 1978 AIP Publishing.
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highly coherent fluctuations where phase averaging is particularly
effective. When the scale of the fluctuations was larger or the collection
of small-scale fluctuations was more turbulent, the EP transport was
increased. A similar example from the TORPEX device was already
presented in Fig. 10. Owing to orbit averaging, the highest energy ions
suffer far less transport than lower energy EPs.

This is a general result observed in many experiments: when EPs
are non-resonant, they generally have much better confinement than
thermal particles. As long as the scale length of the perturbation is
smaller than characteristic EP orbit sizes, the transport associated with
any type of perturbation is reduced.

As an example of reduced transport by electromagnetic perturba-
tions, consider the transport of runaway electrons in a tokamak that
contains stochastic fields associated with electromagnetic turbulence.
Since electrons travel rapidly along magnetic field lines, wandering
field lines contribute to diffusive electron transport. The situation for
thermal electrons was analyzed using random-walk arguments in a
famous paper by Rechester and Rosenbluth.61 Assume the field lines
diffuse radially by an amount dr each transit L of the torus so, by Eq.
(10), Df ’ ðdrÞ2=ð2LÞ. Rare collisions provide sufficient decorrelation
so that an electron takes a step every toroidal transit; hence,
dt ¼ L=vk. The resulting particle diffusion coefficient De is

De � Df vk; (23)

where vk is the electron velocity parallel to B. According to Eq. (23),
because faster electrons travel farther, the electron diffusion increases
with vk. As predicted, the experimentally measured confinement time
of low energy runaways (0.4–1.0MeV) is 10%–30% of the thermal
electron confinement time.62 However, as the energy increases further,
another effect becomes important: The curvature drift increases and

the orbital deviations become larger than the scale length of the elec-
tromagnetic fluctuations.63 Phase averaging occurs. As a result, after
an initial decrease, the electron confinement time for MeV runaway
electrons increases with increasing energy, becoming an order of mag-
nitude larger than the thermal electron confinement time for runaways
of 8–22MeV (Refs. 63 and 64) (Fig. 17).

A similar reduction in radial transport by fluctuating electromag-
netic fields was observed in the MST reversed field pinch, where, due
to orbit averaging, energetic beam ions were much better confined
than thermal ions.65

The TFTR experiment of Fig. 4 provides yet another example. In
that experiment, the rate at which counter-passing fusion products
crossed a loss boundary was measured. The diffusion coefficient
inferred from the data was D< 0.1 m2/s, much less than typical ther-
mal coefficients of D � 1 m2/s.14

It can also occur that small perturbations lead to long term com-
plex traps for particles, with the associated L�evy flights producing
either subdiffusion or superdiffusion. Subdiffusion is regularly
observed in the stochastic field of RFX.39

As a final example, consider the transient fields produced in a
tokamak when a “sawtooth” internal reconnection event occurs. A
sawtooth event generally is initiated by a growing n¼ 1,m¼ 1 internal
kink mode that triggers the n¼ 0 “sawtooth crash.” (Here, n is the
toroidal mode number of the perturbation andm is the poloidal mode
number.) Normally, the electron density and temperature profiles flat-
ten at a sawtooth crash, as the scrambled magnetic field lines associ-
ated with the reconnection event enable rapid parallel electron
transport. This is not necessarily the case for energetic ions, however.
In a theory by Kolesnichenko,66,67 only lower energy ions of a given
orbit type experience significant radial transport; due to orbit averag-
ing, higher energy ions are only weakly affected. Additionally, because

FIG. 16. (a) Phase of fluctuations in ion saturation current measured by a pair of Langmuir probes. The fluctuations were created by a rectangular obstacle placed in the
LAPD plasma. The magnetic field is out of the page. The gyroradii of the four measured EP orbits are overlaid. Also overlaid is the gyroradius of a low energy ion that “sees” a
constant horizontal E� B drift. (b) Measured spreading of the EP beam caused by the potential fluctuations vs EP energy. The parallel velocity was held constant throughout
the scan. The calculated gyro-averaged density fluctuation decreases by a factor of two between 400 and 1000 eV.58 Adapted with the permission from Zhou et al., Phys.
Plasmas 19, 055904 (2012).59 Copyright 2012 AIP Publishing.
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their orbit widths are larger, trapped particles of a given energy are less
affected than passing particles. The qualitative features of this predic-
tion have been confirmed by many experiments.68–73

Although this section has emphasized non-resonant interactions,
phase averaging can also reduce the impact of a resonant perturbation.
The key requirement for phase averaging is that the orbital size
exceeds the scale length of the perturbations, making

Þ
E � dl small.

VI. CONVECTIVE RESONANT TRANSPORT

Under some circumstances, an EP always receives a kick in the
same direction, resulting in strong convective transport [Figs. 9(c) and
9(d)]. A famous example of this type of transport is the “fishbone”
instability observed in tokamaks. This is a large global mode with an
n¼ 1 toroidal structure. The wave produces a poloidal electric field
that pushes the particles radially through the E� B drift in the strong
toroidal equilibrium magnetic field. For reasons discussed below, the
resonant fast ions preserve their wave-particle phase on every wave
cycle. After 4–6 kicks outward, the EP is lost [Fig. 18(a)].

Diagnostics that are sensitive to edge losses measure a burst of
signal each time the instability rotates past the detector [Fig. 18(b)].
Like a rotating lighthouse searchlight, these periodic bursts pass the
observer once each cycle. As expected, the burst has a definite phase
with respect to the instability [Fig. 18(b)], namely, the phase where the
E� B drift pushes the EP outward. (For the opposite initial phase, an
EP is pushed inward, becoming better confined.) In Ref. 75, seven

different edge diagnostics each measured a definite phase with respect
to the mode, depending on their toroidal locations.

The fishbone is a low-frequency mode with a single toroidal mode
number n. Because the wave frequency is much lower than the cyclo-
tron frequency, the first adiabatic invariant l is conserved. Although the
energyW and toroidal canonical angular momentum are not conserved,
the quantity nW � xP/ is [Eq. (16)], so the relationship between the
energy change in the resonant interaction and the change in P/ is

nDW ¼ xDP/: (24)

Because the toroidal canonical angular momentum contains a depen-
dence on plasma position through its dependence on the poloidal flux
[Eq. (3)], Eq. (24) implies a definite relationship between the energy
change of the resonant particle and its spatial transport.

FIG. 17. Improved runaway electron confinement due to drift-orbit averaging in sev-
eral tokamaks. The ordinate is the ratio of the parallel distance traveled by a run-
away before it is lost, normalized to the parallel length traveled by thermal electrons
inferred from the thermal electron confinement time. The abscissa is the runaway
drift orbit displacement associated with the curvature drift normalized by the
assumed scale length of the microturbulence, the thermal ion gyroradius. The curve
is a theoretical prediction of the expected dependence. Adapted with permission
from H. E. Mynick and J. D. Strachan, Phys. Fluids 24, 695 (1981).63 Copyright
1981 AIP Publishing.

FIG. 18. (a) Projection of a guiding center orbit that experiences convective trans-
port until it is lost to the wall. The calculation is for the “fishbone” instability in the
PDX tokamak. Adapted with permission from White et al., Phys. Fluids 26, 2958
(1983).74 Copyright 1983 AIP Publishing. (b) Magnetic fluctuation dB/dt and loss-
detector signals during an “off-axis fishbone” in the DIII-D tokamak. After a delay,
the losses occur with nearly the same phase relative to the mode on every cycle.
Reproduced with permission from Heidbrink et al., Plasma Phys. Controlled Fusion
53, 085028 (2011).75 Copyright 2011 Institute of Physics Publishing.
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FIG. 19. (a) Magnetic field amplitude dB and (b) fast-ion flux Ci at an energetic-particle mode burst on the CHS stellarator. The red line shows the incoherent loss signal. (c)
The coherent loss signal scales linearly with the mode amplitude, while (d) the incoherent loss signal scales as dB2. Adapted with permission from Nagaoka et al., Phys. Rev.
Lett. 100, 065005 (2008).79 Copyright 2008 American Physical Society.

FIG. 20. (a) Projection of a guiding center orbit that passes through an n¼ 3 RSAE on the DIII-D tokamak. The unperturbed trapped-particle orbit (black) is kicked onto a loss
orbit (red) by the RSAE; the mode’s poloidal phase is indicated by the color bar. (b) Calculated energy loss in the transit through the mode. (c) Mode amplitude (dash-dot line)
and wave phase (solid) experienced by the particle. The particle sees nearly constant phase when it traverses the eigenmode. This causes a large radial displacement at the
mode frequency. Reproduced with permission from Zhang et al., Nucl. Fusion 55, 122002 (2015).81 Copyright 2015 International Atomic Energy Agency.
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Equation (24) has important implications for the stability of low-
frequency modes that are driven unstable by an EP population. To
drive instability, the EPs must impart energy to the wave, so DW must
be negative for the majority of resonant particles that become trapped
by the wave. Under some circumstances, the instability can adapt its
frequency to preserve resonance with this clump of resonant particles
as they are radially transported. [The wave frequency must change
because, in general, xc, x/, and xh in Eq. (13) are functions of posi-
tion.] A wave that obeys a dispersion relation associated with an EP
population (rather than the dispersion relation of a normal mode of
the background plasma) is called an “energetic particle mode”
(EPM).76 Because it preserves the wave-particle phase, an EPM is par-
ticularly effective in causing convective resonant transport. A sophisti-
cated discussion of conditions that support an EPM appears in Sec. 4
of Ref. 55.

The predicted reduction in energy is observed experimentally. In
the example of Fig. 18(a), the neutral beams were injected at 45 keV
but the largest and most coherent loss signal was at �35 keV.77 A
change of energy of DW ’ �10 keV is expected for beam ions that
transport from the plasma center to the edge in a wave of the observed
frequency and mode number.

A common feature of EP losses caused by convective resonant
transport is a linear dependence on the mode amplitude. This is read-
ily understood: The E� B drift is linearly proportional to the ampli-
tude of the electric field E. Examples abound. The losses caused by
fishbones scaled linearly with mode amplitude.78 A probe that directly
measured the mode amplitude and EP losses was inserted into the
CHS stellarator.79 During an energetic particle mode, the portion of
the signal that oscillated at the mode frequency (also called the coher-
ent signal) scaled linearly with the mode amplitude, while the incoher-
ent signal scaled quadratically with mode amplitude (Fig. 19). (The
latter dependence is often observed for the diffusive resonant transport
discussed in Sec. VII) Similarly, coherent losses measured at the
edge of the ASDEX-Upgrade tokamak scaled linearly with the ampli-
tude of a type of Alfv�en wave known as a toroidal Alfv�en eigenmode
(TAE) but the incoherent losses scaled with the square of the mode
amplitude.80

Under some circumstances, losses caused by convective transport
can occur even when an EP does not satisfy the usual resonance condi-
tion of Eq. (13). Convective losses of this type were caused by an
Alfv�en wave called a “reversed shear Alfv�en eigenmode” (RSAE) on
the DIII-D tokamak.82 The experiment was designed to detect the EP
orbit after it made a single transit through a spatially localized RSAE
[Fig. 20(a)]. When the wave-particle phase [Fig. 20(c)] stays nearly
constant during the transit through the mode, a large E� B drift
occurs. Coherent losses are observed with inferred orbital displace-
ments as large as 10 cm.82,83 This occurs despite the fact that the reso-
nance condition [Eq. (13)] is not satisfied by the measured orbit.
Presumably, if the particle remained confined, it would regain the lost
energy on subsequent transits through the mode but, because it crosses
a loss boundary, the interaction is irreversible. This is an example of a
constant-of-motion being broken by a large kick, the third criterion
listed in Sec. IIIA.

VII. DIFFUSIVE AND STIFF RESONANT TRANSPORT

In a finite amplitude wave, the resonance condition is broadened
(Sec. IVB). However, if the perturbation is small the broadening is

modest, so only a small portion of phase space is affected. As a con-
crete example, the effect of a single EP resonance with an Alfv�en wave
of amplitude dB=B ¼ 10�4 is essentially undetectable with available
tokamak diagnostics. To achieve appreciable transport, multiple reso-
nances must interact. From the perspective of Sec. III, the additional
resonances provide randomizing elements that promote irreversible
transport. Multiple resonances can occur because multiple waves cause
different resonances, because large EP orbits produce multiple reso-
nant harmonics with a single wave (as in Fig. 12), or both.

When multiple resonances intersect in phase space, diffusive
transport often occurs. The associated losses often scale with the

FIG. 21. Simulation results for a DIII-D experiment on the effect of Alfv�en eigenmo-
des on EP transport. Particle trajectories in the phase space of normalized major
radius and energy are shown for a typical value of l for co-passing ions. Only the
particles trapped by a wave are plotted. The colors represent Alfv�en eigenmodes
with different toroidal mode numbers: n¼ 1 (blue), n¼ 2 (purple), n¼ 3 (green),
n¼ 4 (orange), and n¼ 5 (red). (a) Condition with weak Alfv�en activity. Because
the modes are weak, the resonances are narrow. Experimentally, in this condition
with few intersecting resonances, EP transport is undetectable. (c) Condition with
many unstable Alfv�en waves of larger amplitude. The resonances are broader and
many intersect. Experimentally, EP transport is strong for these conditions.
Reproduced with permission from Todo et al., Nucl. Fusion 56, 112008 (2016).85

Copyright 2016 International Atomic Energy Agency.
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square of the perturbation amplitude. This amplitude dependence of
the transport is readily explained.84 As previously mentioned, for con-
vective transport or losses of particles besides a loss boundary, linear
scaling with amplitude is predicted84 and observed, as in Fig. 19(a).
For multiple resonances, each interaction imparts energy and momen-
tum kicks [Eq. (24)]. If the kicks are random and small amplitude,
hðDP/Þ2i ¼ 2Dt [Eq. (9)], with a diffusion coefficient D that is pro-
portional to the square of the size of the kick [Eq. (10)]. Since the kick
sizes are proportional to the wave amplitudes, D scales quadratically
with mode amplitude. If, in addition, the transport follows Fick’s law
(C ¼ �Drn), then the flux C is proportional to (amplitude)2. (Here,
rn is the EP density gradient in phase space.) Measured incoherent
losses with quadratic scaling already appeared in Fig. 19(b). Another
excellent example appears in Ref. 80.

Although diffusive transport is one possible response to multiple
interacting resonances, another possibility is “stiff” transport. In stiff
transport, transport is negligible up to a threshold in mode amplitude,
then increases rapidly when the system is driven past the threshold. A
condition with stiff resonant transport from multiple small-amplitude
waves and multiple resonances per mode has been studied extensively
in the DIII-D tokamak. In that experiment, neutral beam ions are the
EPs and Alfv�en eigenmodes of different types and mode numbers pro-
vide the small amplitude perturbing waves. Analysis of the EP orbits
using measured mode structures and amplitudes shows the existence
of multiple resonances that intersect in phase space (Fig. 21). Below a
threshold in the number of modes and their amplitudes, negligible
transport is measured but, above this threshold, the phase-space flux
of EPs rises rapidly (Fig. 22). Note that, owing to the modest mode
amplitude, the width of each resonance is modest. Nevertheless, the
overlapping resonances produce appreciable transport. Experimental
measurements show that, because the resonances differ in different
parts of phase space, the threshold for stochastic transport differs in
different parts of phase space.89 The threshold correlates with the
destruction of KAM surfaces (Fig. 22); in other words, EP transport

becomes large when the orbits become chaotic. Further discussion of
these examples appears in Sec. 5 of Todo’s review paper.54

A single mode of sufficiently large amplitude can also produce
stochastic transport. A relatively simple example was analyzed by
Konovalov and Putvinskii91 and Mynick.90 Consider circulating EPs
with vk ’ v in a tokamak that also contains a large helical perturbation
with toroidal mode number n¼ 1 and poloidal mode number m¼ 2.
(Perturbations of this type are produced by tearing modes.). The circu-
lating EPs experience a large curvature drift. The curvature drift can

FIG. 22. Stiff beam-ion transport in the presence of multiple Alfv�en eigenmodes in
the DIII-D tokamak. The abscissa is the injected beam power that drives the insta-
bilities; both the number of modes and their amplitude increases with beam
power.86 The ordinate is the divergence of EP flux from the measured phase-space
volume,87 inferred from a neutral-particle signal. The blue squares represent the
fraction of orbits with broken KAM surfaces in the measured phase-space volume.
The observed transport threshold occurs when the overlap of multiple resonances
causes the destruction of quasi-periodic orbits. Reproduced with permission from
Collins et al., Phys. Rev. Lett. 116, 095001 (2016).88 Copyright 2016 American
Physical Society.

FIG. 23. (a) Poincare plot of magnetic field lines. The axisymmetric field lines are
perturbed by an m¼ 2, n¼ 1 perturbation. (b) Poincare plot for a co-passing EP in
the same field as (a). The curvature drift creates an additional m¼ 3, n¼ 1 island
chain. When the m¼ 2 and m¼ 3 island chains overlap, the orbit becomes cha-
otic. Reproduced with permission from Mynick, Phys. Fluids B 5, 1471 (1993).90

Copyright 2007 AIP Publishing.
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be thought of as adding an n¼ 0,m¼ 1 perturbation to a particle orbit
that would otherwise follow the field lines. When one plots the
Poincare map for the orbit, an n¼ 1, m ¼ 2þ 1 ¼ 3 island appears
associated with beating between the tearing mode and the curvature
drift (Fig. 23). If the mode amplitude and EP energy are modest, the
effect on the orbit is negligible. However, when the mode amplitude
and EP energy are sufficiently large that the m¼ 2 and m¼ 3 islands
begin to overlap, stochasticity ensues. For the example shown in
Fig. 23, this occurs when the mode amplitude is doubled.

As predicted, experimental measurements show EP confinement
is degraded for large amplitude tearing modes.3,92–94 The degradation
agrees qualitatively with the island overlap theory and quantitatively
with numerical calculations.95 Recent calculations show that the effect
on trapped particles is even stronger than the effect on the passing par-
ticles of Fig. 23.96,97 This is not surprising, as trapped particle displace-
ments in tokamaks are even larger than passing-particle orbit shifts.

In the previous examples, the temporal variation of the mode
amplitude was gradual; however, in practice, the perturbing fields may
rapidly cross a stochastic threshold. When this occurs, a domino effect
may occur that causes a sandpile-like avalanche of EP transport, as the
overlap of closely spaced modes or the growth of previously stable

modes occurs.98 In these situations, the connection between mode sta-
bility and fast-ion gradients causes a complicated interplay between
mode amplitude and fast-ion transport that is best treated theoretically
by a comprehensive simulation such as the one in Ref. 99.
Nevertheless, from the standpoint of EP transport alone, the phenom-
enon can be understood as another example of enhanced transport
when a stochastic threshold is crossed.

Figure 24 shows examples from the spherical tokamak NSTX
and the conventional tokamak JT-60U. In both cases, neutral
beams inject circulating ions with speeds greater than the Alfv�en
speed that drive Alfv�en eigenmodes unstable. A sequence of repeti-
tive bursts of moderate amplitude ensues [Figs. 24(a) and 24(b)].
At some point, amplitudes grow larger and trigger a major event
that involves more toroidal mode numbers at larger amplitudes,
called an “avalanche” at NSTX and an “abrupt large-amplitude
event” (ALE) at JT-60U. For both devices, in both simulation99,100

and experiment,101,102 the avalanches cause EP transport that is an
order of magnitude larger than the smaller preceding events [Figs.
24(c)–24(e)]. At an avalanche in NSTX, the pitch of lost fast ions
spans a much wider range of values than normal, a signature of
chaotic orbits.103

FIG. 24. Examples of avalanche activity in the (left) NSTX and (right) JT-60U tokamaks. (a) Spectrum of magnetic probe signal. An avalanche occurs at 282 ms. (b) Magnetic
signal and spectrum. The smaller bursts are “frequency sweeping” events; the event labeled “ALE” is an avalanche. (c) Fast-ion profile inferred from fast-ion D-alpha data
before and after an avalanche event. (d) and (e) EP beta before and after an “ALE” as calculated by the hybrid kinetic-MHD code MEGA. NSTX figures reproduced with per-
mission from Podest�a et al., Phys. Plasmas 16, 056104 (2009).101 Copyright 2009 AIP Publishing. JT-60U spectra reproduced with permission from Bierwage et al., Nucl.
Fusion 57, 016036 (2017).104 Copyright 2017 International Atomic Energy Agency. JT-60U profile reproduced with permission from Bierwage et al., Nat. Commun. 9, 3282
(2018).99 Copyright 2018 Authors, under a Creative Commons CC BY license.
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VIII. NONLINEAR EFFECTS

If the perturbation becomes sufficiently large, new resonances are
created. These resonances are sometimes called “fractional reso-
nances” because the “integers” in the resonance condition of Eq. (13)
now assume rational values such as 1/2 or 1/3. These fractional values
occur when the phase of the perturbation is the same after the particle
has completed two, three, or more transits of its orbit.54

The mathematical origin of these new resonances is easily seen.
The nonlinear production of additional resonances was studied by
Fibonacci (1170–1250A.D.) centuries ago. Consider two perturbations
of equal amplitude a but different toroidal and poloidal mode num-
bers m/n and m0=n0. Simply multiplying the terms aeiðmh�n/Þ and
aeiðm

0h�n0/Þ gives a2eiðmþm
0Þh�iðnþn0Þ/. In addition to the original reso-

nances at m/n and m0=n0, a higher-order fraction ðmþm0Þ=ðnþ n0Þ
has been created. Note that the higher order fraction is always
bounded by the parent fractions. By continuing to multiply perturba-
tions thus produced there results an infinite number of islands pro-
duced by any pair. Nevertheless, the KAM18 theorem guarantees that
if the original perturbations are sufficiently small, the sum of all these
island widths remains small, so that there are domains in which the
original KAM surfaces are distorted but retain their original topology.

The physical origin of these new resonances is also easy to under-
stand. The EP “sees” a wave phase H ¼ k � r� xt. If the wave ampli-
tude is sufficiently large to deflect the equilibrium orbit a distance dr,
the wave phase is modified by an amount k � dr. This change modifies
the original wave-particle resonant interaction and creates additional
resonances. The experiment illustrated in Fig. 20 provides a readily
understood example. In some cases, the EP orbit passes through two
unstable Alfv�en eigenmodes of appreciable amplitude. The modes are
at different positions in the plasma but the orbit traverses both of
them. When that happens, each mode gives the orbit a kick that modi-
fies the phase at the other location. When the phase factor H is
expanded and the orbital displacement is calculated, in addition to
oscillating displacements at the primary mode frequencies x1 and x2,
displacements also occur at the sum and difference frequencies x1 þ
x2 and jx1 � x2j. As expected, when the mode amplitudes are appre-
ciable, losses at the sum and difference frequencies are observed
experimentally.105,106

A general theory of nonlinear resonances was recently published.107

In generalized phase-space coordinates X, the equivalent of k � r is
dX � rX . Integration over the unperturbed orbit results in an expansion
in Bessel functions whose argument is the phase change. A nonlinear
resonance becomes important whenever a phase change isO(1).

A tokamak instability called the energetic-particle-induced geo-
desic acoustic mode (EGAM) provides an example of this phenome-
non. The EGAM is a low-frequency, global electrostatic perturbation
of n¼ 0, m¼ 1 structure that can assume large amplitudes under
some conditions. For this instability, the resonance condition reduces
to x ¼ mxh. An orbit-following code analyzed the effect on the orbits
as a function of mode amplitude. At low amplitude, energy exchange
occurred at the usual integer values of m [Fig. 25(a)] but, as the mode
amplitude increased, appreciable energy exchange appeared at m¼ 1/
2 [Fig. 25(c)]. Experimental evidence in support of the phenomenon
was found in a loss-detector signal that observed coherent losses at
x=2 in a plasma with a large-amplitude EGAM.108

The ASDEX-Upgrade tokamak provides a second example. In
this experiment, three-dimensional static field perturbations are

superimposed upon the usual axisymmetric tokamak fields. Neutral
beams are the source of EPs. Since the perturbing fields are static
(x ¼ 0) and l is conserved, the linear resonance condition [Eq. (13)]
is nx/ ¼ mxh for these conditions. For all mode amplitudes, changes
in canonical angular momentum P/ are observed at the linear reso-
nances but, at higher amplitude, P/ also changes at fractional resonan-
ces (Fig. 26). Measurements with fast-ion loss detectors are consistent
with the calculations.109

IX. CONCLUSION

For fast ions in magnetic fusion devices, small EP transport is
desirable. In the present devices, neutral beams or ion-cyclotron
heated ions are used to heat the plasma or provide momentum and
current. In a reactor, charged fusion products must transfer their
energy to the bulk plasma before escaping; moreover, concentrated
losses threaten the integrity of the walls. From the standpoint of fast
ions, the large EP orbits are both a benefit and a curse. For non-
resonant perturbations, orbit averaging significantly reduces transport
to levels well below that of thermal ions. However, the large orbits

FIG. 25. Minimum and maximum particle energy excursion as a function of the ini-
tial poloidal transit frequency xh=ð2pÞ for various values of the electrical potential
of an EGAM of frequency 15 kHz. The numbers beside the peaks represent x=xh.
(a) At low EGAM amplitude, only linear resonances appear. (b) When the EGAM
amplitude is 100 times larger, trapping in the fundamental x ¼ xh resonance
causes substantial resonance broadening and a fractional resonance at x=xh

¼ 1=2 becomes apparent. (c) Increasing the amplitude further causes further
broadening and the appearance of additional fractional resonances. Conditions
taken from a DIII-D experiment. Reproduced with permission from Kramer et al.,
Phys. Rev. Lett. 109, 035003 (2012).108 Copyright 2012 American Physical Society.
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increase the number of important resonances, enhancing the probabil-
ity that fast-ion driven instabilities will cause appreciable transport.

For runaway electrons, the situation is reversed: poor confine-
ment is desirable in order to minimize acceleration to high energies
and the creation of additional runaways through an avalanche process.
Non-resonant orbit averaging inhibits the ability of external perturba-
tions to degrade runaway confinement. On the other hand, resonant
interactions with internally excited or externally launched waves might
prove useful in minimizing runaway damage.

Although the basic mechanisms of EP transport are known,
much remains to be understood. We have treated the perturbations as
given when, in truth, EP transport and mode stability are often tightly
coupled in a feedback loop (Sec. IVD). For an EP-driven instability,
the growth or damping of the wave amplitude depends upon EP gra-
dients, which depend upon the EP transport caused by the mode,
which depends upon the mode amplitude. Much remains to be under-
stood and experimentally confirmed about this coupled system.
Another artificial aspect of the material presented here is that each per-
turbation is treated independently when, in practice, different types of
perturbations often act concurrently and synergistically on the EP
population. The fundamentals presented here are the building blocks
of a comprehensive understanding of the EP distribution function.
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