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Inference of the Fast-ion Distribution Function
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Professor William W. Heidbrink, Chair

All the information about a plasma species is encoded in its distribution function. While it

would be helpful to measure the distribution function directly, it is only possible to measure

its moments. If the form of the distribution function is not known a priori, it can be difficult

to interpret diagnostic signals. This is particularly true in fast-ion physics, where diagnostics

that nominally view the same thing, the fast-ion distribution function, give seemingly dis-

cordant measurements. The process of going from a fast-ion distribution to a measurement

and the reverse process of going from a set of measurements to a fast-ion distribution are

the main topics of this thesis.

Chapters 2-3 concern the modeling of fast-ion diagnostics. Here we derive functions that

translate the information about a fast ion into measurable quantities, i.e. forward models.

This is done for three diagnostics: the neutral particle analyzer (NPA), fast ion D-α (FIDA)

spectroscopy, and neutron scintillators. Chapter 3 discusses the development of FIDASIM[17,

3, 18], the practical implementation of the forward models.

Chapter 4 deals with diagnostic velocity-space weight functions, an ansatz which is used

to aid in the interpretation of experimental measurements and as an approximate forward

model of the diagnostic. From the forward models discussed in Chapter 2, we derive weight

functions in a full 6D generalized coordinate system, from which we also derive the velocity-

xx



space weight functions. Using an action-angle formulation, orbit-space weight functions,

which can be used to exactly represent a diagnostic’s forward model in a linear form, are

derived.

Chapters 5-6 detail how to use weight functions to infer the fast-ion distribution function

from experimental measurements. Orbit weight functions, in particular, facilitate the infer-

ence of the entire distribution function, using any fast-ion diagnostic that views the plasma.

Benchmarks with synthetic data and a reconstruction of a classical distribution from ex-

perimental measurements, show that systematic errors and intrinsic biases in the inference

methods are the main impediments to accurately inferring the fast-ion distribution func-

tion. However, experimental studies of the redistribution of fast ions by sawtooth crashes

at ASDEX Upgrade demonstrate that the effects of systematic error and biases become less

important when only considering relative changes in the distribution function.
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Chapter 1

Introduction

Since the industrial revolution, our demand for energy has only increased. In the early part

of the last century, the only option for extracting usable energy has been by burning fossil

fuels, such as coal and natural gas. Unfortunately, the by-product of burning these fossil

fuels, carbon dioxide, is a greenhouse gas that traps heat. The ecological effects of this

increased store of energy in our atmosphere has already begun. Fortunately, we now have

better options than burning fossil fuels, although they are not without their problems.

1.1 Alternative Energy: The Past and Present

1.1.1 Hydroelectric Power

Hydropower is one of the oldest form of energy extraction, having been used in ancient

times to grind grains and do other tasks. In modern times, the first industrial plant to use

hydropower to produce electricity, Schoellkopf Power Station No. 1, was completed in 1881

near Niagara Falls[19]. Hydroelectric power generation is an attractive source of energy as
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it does not produce carbon dioxide although it has several other issues which limits its use.

The first issue is the limited locations where hydroelectric power can be effectively utilized.

Due to transmission losses, power plants should be placed near high population centers;

however, this is not always possible as the locations of possible plants are determined by the

flow of a river and the topology of the land. The second issue with hydroelectric power is

its ecological and archaeological impact. Hydropower extracts energy from a gravitational

potential difference. In the absence of a natural potential difference, such as a waterfall,

an artificial one in the form of a dam must be built. The consequent flooding of the area

preceding the dam causes the aforementioned ecological and archaeological problems. These

issues are not theoretical. Take for example the creation of Lake Powell in the American west.

Lake Powell was created by the flooding of Glen Canyon by the construction of Glen Canyon

Dam. Before the flooding, Glen Canyon contained over 80 side canyons, clear streams,

abundant wildlife, arches, natural bridges, and numerous Native American archaeological

sites. All that history and natural splendor was lost under the water.

1.1.2 Wind Power

Wind power is nearly as old—if not older—than hydropower, having been used by sailors

since time immemorial to push their ships across the water. The first electric generator to use

wind power was built in Scotland in 1887 by Professor James Blyth of Anderson’s College[20].

Although not as prolific as hydroelectric power is, wind power is still an attractive energy

source as it has no by-products and has minimal environmental impact if you discount the

effects on migratory patterns and on the views of rich people[21]. However, like hydroelectric

power, wind power is location limited as there are limited places where there is persistent

wind. Also, unlike hydroelectric power, the rate of power generation can be highly variable—

a consequence of the variability of wind strength. The volatility of wind power causes strain

on the electrical grid. The technological advances over the last few decades has blunted
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much of this volatility. However, even with recent improvements that has made wind more

viable, it doesn’t change the fact that if there is no wind, there is no power. A form of energy

that does not depend on the weather—which is itself becoming more volatile due to global

warming—is required.

1.1.3 Nuclear Fission Power

After the bombing of Hiroshima and Nagasaki and the subsequent end of World War II,

the use of nuclear fission for electricity generation was promoted as a peaceful use for the

technology that had only known bloodshed. The first nuclear reactor, Chicago Pile-1, was

developed during the Manhattan project in 1942. Chicago Pile-1 generated no electricity and

it wouldn’t be until 1951 that the EBR-I experimental reactor produced electricity[22]. It

would take another three years and a different country to build a reactor that connected to the

electrical grid—USSR’s Obninsk Nuclear Power Plant. In the following years, many nuclear

fission plants were built. However, the number of plants being built drastically decreased in

latter part of the 20th century. This was due to economic, regulatory, ecological, and public

perception issues.

Nuclear fission power has few flaws. Unfortunately, those flaws are of the fatal variety. Unlike

wind power, nuclear fission power can provide a steady flow of electricity for an extended

period of time. Additionally, unlike hydroelectric power, there are few technical limitations

on where a plant can be built. The problem that doomed nuclear fission power was the

uranium fuel it used and the subsequent long lasting radioactive waste it produced. There

is a limited amount of fissionable material available on Earth. The mining and subsequent

refining of the fuel greatly increases the cost. Additionally, the ability to use the fuel and

waste for a bomb, the health issues caused by radiation exposure, and the possibility of a

uncontrolled nuclear meltdown requires strong regulatory oversight. This oversight, while
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necessary, is a strong economic disincentive. Furthermore, while there are few technical

limitations on where a plant can be built, there are numerous societal limitations—no one

seems to want a nuclear fission reactor in their neighborhood. Combined with the difficulties

in storing the waste, both perceptual and practical, nuclear fission power has shown itself to

not be economically viable.

1.1.4 Solar Power

Solar power is perceived to be a relatively recent energy source. This impression probably

stems from the recent proliferation of the technology due to increases in efficiency—and

government subsidies—as well as decreases in manufacturing costs. Contrary to public per-

ception, solar power has a rich history dating back over a century. The photovoltaic effect

was first observed by Alexandre Edmond Becquerel in 1839 when he, at the age of 19, placed

silver chloride into an acidic solution connected to platinum electrodes. When illuminated, a

voltage and current were generated; creating the first photovoltaic cell.1 The first use of what

we would call solar panels was not until 44 years later when in 1883 Charles Fritts created an

array of selenium based solar cells and placed them atop a New York City rooftop[23]. The

efficiency of these first solar panels were about 1% and extremely expensive. In contrast,

today’s best silicon-based solar panels are over 40% efficient. Despite the experimental suc-

cesses, we did not understand the physics behind the photovoltaic effect—and the related

photoelectric effect—until Albert Einstein explained the effect using quantum theory in the

first of his “Annus Mirabilis” papers in 1905. It was this work that earned Einstein the

Nobel Prize in 1921.

Of all the previously discussed energy extraction technologies, solar has the fewest issues,

after all, its hard to complain about free energy raining from the sky—in fact, most of the

work since 1905 has been in designing the best bucket to capture it in. However, solar does

1The related photoelectric effect was first observed by Heinrich Hertz in 1887
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Figure 1.1: Energy production in California on October 22, 2016.[1] Total production is
lowest in the early hours of the morning and peaks in the evening. Solar production peaks
in the middle of the day.

have its foibles. Apart from solar’s obvious and most nefarious enemy, the cloud, much of

solar’s issues lie in its interface with the existing electrical grid and its relatively low energy

density. Since solar does not produce energy during the night, conventional fossil fuel plants

need to pick up the slack. In the presence of solar power, these base load providers see a

large dip in demand during the day (Fig. 1.1), the time where solar is providing a significant

portion of the electricity. Peak electricity usage ramps up in the late afternoon and peaks in

the evening hours, precisely when solar production is decreasing. This means the base load

providers have to quickly ramp up from a very low production level to a very high production

level. This is not always possible and this problem only gets worse with more solar panels

connected to the grid. Additionally, most base load providers are only economical if they

produce a certain amount of electricity 24/7. If solar provides more electricity than the grid

can handle, service managers would have to shutoff some of the panels to avoid damaging

the grid; wasting electricity. This problem is exacerbated by the highly distributed nature
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of solar—solar requires a large collection area and, since there are few large open fields near

major population centers, many smaller solar installations are installed. While most of these

issues could be resolved with a better designed electrical grid, the fact remains that solar

doesn’t work at night and fossil fuel burning base load providers have to be utilized. Solar

only solves the problem during the day. To solve the problem during the night, we have to

look towards a new technology.

1.2 Alternative Energy: Possible Future

A good alternative energy power plant should not subject to the whims of the weather, be

energy dense both in terms of the fuel and in terms of the power plant itself, location inde-

pendent, and produce no long lasting harmful by-products, e.g. carbon dioxide and nuclear

waste. These criteria precludes all of the previously discussed energy sources. Fortunately,

there is an energy source in development that meets most of the criteria: nuclear fusion.

Unlike nuclear fission, fusion fuel does not produce any long lasting radioactive waste nor

does it produce carbon dioxide. There is also no possibility of a meltdown and it uses less

fuel. It has all the benefits of fission without many of its problems.

1.2.1 Nuclear Fusion

In nuclear fission, larger nuclei are split, creating smaller nuclei. Fusion is the opposite

process where we take lighter nuclei and fuse them together to create heavier nuclei. In

either process, energy is released. To understand where this energy comes from we must

consider the nature of the nucleus, particularly how the protons and neutrons are held

together. There are two opposing forces at play in a nucleus: the strong force, which keeps

the nucleus together, and electromagnetic force, which wants to tear the nucleus apart.
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This dance of forces means that every nuclei has an internal energy level—a consequence

of quantum mechanics. We can represent this energy level using the binding energy of the

nucleus (Fig. 1.2). The binding energy is the work required to disassemble the nucleus. The

larger the binding energy, the lower the nucleus’s energy level. We can change the energy

level of a nucleus by adding or removing nucleons—protons or neutrons. If the change results

in an lower energy state, then the excess energy is released in the form of kinetic energy. The

amount of energy released is given by the difference in the binding energy of the starting

and ending nuclei. According to Figure 1.2, there is only two ways to release energy from

a nucleus: start with a heavy element and reduce its mass (fission) or start with a light

element and increase its mass (fusion).
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Figure 1.2: Binding energy of nuclei. A change in the binding energy releases kinetic energy.

As can be seen in Figure 1.2, fusion releases much more energy than fission per nucleon

added. So what lighter elements should we fuse? Before we answer that, there are a few

things we must consider: the energy needed to fuse, which we want to minimize; the output

energy, which we want to maximize; and the cross section or probability of the interaction,
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which we also want to maximize. With these three criteria in mind, there are three partic-

ularly attractive candidate fuels: Deuterium–Tritium (D-T), Deuterium–Deuterium(D-D),

and Deuterium–He3(D-He3). Table 1.1 shows the possible fuels and their properties. Figure

Table 1.1: Possible fusion fuels. Due to its relatively large cross section at expected burning
temperature and energy gain D-T fuel is the most achievable option. However, the Coulomb
scattering cross section is orders of magnitude larger than the fusion cross sections. Because
of this, the fuel is much more likely to just bounce off each other than fuse.

Fuel Exhaust Energy Gain Cross Section @ 15 keV

D + T α + n 17.6 MeV 1.48× 10−1 b

D + D
T + p (50%)

He3 + n (50%)
3.65 MeV 1.18× 10−3 b

D + He3 α + p 18.35 MeV 7.94× 10−6 b

1.3 shows the cross sections of the different fusion fuels as a function of energy. The D-T

fusion cross section is consistently larger than the other fuels and this, coupled with the large

energy gain, lends itself to be the fusion fuel of choice.

However, if fusion was just a matter of colliding the fuel together at high energy, we would

of achieved fusion decades ago; after all, CERN routinely collides particles together at TeV

energies—more than enough for fusion to occur. The issue is that the Coulomb scattering

cross section is orders of magnitude larger than the fusion cross sections (Fig 1.3). This

means that it’s much more likely that the fuel will bounce off each other than fuse. Its

rather like playing pool without the bumpers. The probability of getting a ball in a pocket is

rather small. It’s much more likely the ball will fall off the table and go out of play. However,

if we put the bumpers back on, the balls become confined and we have more opportunities

for getting a ball in a pocket. Likewise, if we contain the fuel, it will have more chances to

fuse. When contained and heated, the fuel becomes a plasma, a hot gas composed entirely

of ions and electrons. Unlike other materials whose dynamics of motion are determined by

forces between neighboring regions, the charge separation that exists in plasmas give rise to

electromagnetic fields, which results in complex collective phenomena.
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Figure 1.3: Fusion and Coulomb scattering cross sections.

Designing a reactor that can effectively contain the plasma at the required temperatures

is difficult and it is not yet clear that this can be done in a cost effective manner. Just

having materials that can withstand a fusion environment is still an open area of research.

Additionally, while the fuel itself does not produce any long lasting radioactive waste, it

does produce high energy neutrons, which can irradiate reactor materials and compromise

structural integrity. This leads to reactor components having a finite lifetime, after which the

irradiated material needs to be stored, similar to fission. Fortunately, the amount of waste

is considerably less than the amount produced by fission and has a shorter half-life. Fusion

reactors also have more flexibility in regards to the materials used than fission reactors.

This allows fusion reactors to use materials that are less susceptible to being irradiated. For

instance, Vanadium is much less susceptible to being irradiated than stainless steel. However,

research into the various Vanadium alloys for use in fusion reactors has been limited.

The fusion fuel may also be a problem. While Deuterium is abundant, there is only a small
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Figure 1.4: Graph of U.S government magnetic fusion research budget compared to 5 funding
scenarios from the 1976 Energy Research and Development Administration development
plan.[2]

amount of Tritium on earth. Tritium can be made by bombarding Lithium with high energy

neutrons, but there is not yet an infrastructure in place for large scale production. It has

been suggested that a Lithium breeder blanket can protect the outer materials from the

neutron flux, provide a way of extracting energy, and produce the Tritium needed, but the

feasibility of such a design has not yet been demonstrated.

The aforementioned issues are not insurmountable; however, progress towards solving them

is heavily dependent on the availability of funding. Unfortunately, fusion research has been

chronically underfunded for decades. Since its inception in 1955, the U.S. fusion program

has, adjusted for inflation, spent total of 42.6 billion2 dollars. To put this into perspective,

NASA’s 2018 budget was 20.7 billion dollars–just under half of the total amount spent on

the fusion program over its entire 63 year history. Some may argue that we have spent too

much on fusion research, but the reality is that we have spent too little. Figure 1.4 shows

2This figure includes both the budget for the magnetic and inertial confinement programs
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a graph of the budget for the U.S. Magnetic Fusion Energy program compared against five

funding scenarios[2]. At the current levels of funding, there is a very real possibility that

fusion energy will never exist—a hard truth that many young fusion scientists need to accept.

However, just because something is difficult doesn’t mean its not worth doing. The benefits

of fusion far outweigh its costs.

1.2.2 Tokamaks

Figure 1.5: Toroidal magnetic configuration of a tokamak. The toroidal field is provided by
a series of field coils and the poloidal field is primarily generated by an electric current with
a set of poloidal coils to assist with shaping. This fields give rise to a helical magnetic field
which is necessary to maintain pressure balance. Figure modified from original[3].

In the 60+ years of fusion research, there have many different confinement schemes that have

been tried. The most promising is the Tokamak.

Invented in the 1950’s by Soviet physicists, the tokamak uses magnetic fields in a toroidal
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configuration to confine the plasma (Fig. 1.5). The principal toroidal magnetic field is

provided by a series of field coils. In order to balance the plasma pressure, a current is run

through the plasma to generate a poloidal field—additional poloidal field coils are also used

for plasma shaping. The combination of the toroidal and poloidal field give rise to a helical

magnetic field.

After an initial false start of disseminating their results in 1965, by 1969 the Soviet physicists

had demonstrated that the tokamak outperformed all previous confinement schemes. A flood

of small tokamaks were built in the following few decades. However, research showed that

larger devices better contained the plasma and, as a result, many of the small tokamaks were

decommissioned in favor of larger tokamaks. In the following sections, we will briefly discuss

three of these larger tokamaks: DIII-D, ASDEX Upgrade, and NSTX-U.

DIII-D

Located at General Atomics in San Diego, CA, the DIII-D tokamak(Fig. 1.6) is currently

the largest operating tokamak in the United States[12]. Originating out of the Doublet III

experiment, the DIII-D tokamak began operations in 1986. DIII-D is known for it advanced

shaping capabilities, which allows it to achieve high plasma β3 with a lower magnetic field.

The plasma heated with 8 neutral beam injection (NBI) systems, which can provide up to

20 MW of heating. Additional heating is done via radio frequency (RF) injection in the

forms of ion cyclotron resonance heating (ICRH) and electron cyclotron resonance heating

(ECRH). DIII-D’s operating parameters are given in Table 1.2.

Table 1.2: DIII-D Operating Parameters[12].

Minor Radius Major Radius Magnetic Field Heating Current

0.67 m 1.67 m 2.2 T 23 MW 2 MA

3plasma β is the ratio of the plasma pressure to the magnetic pressure
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Figure 1.6: DIII-D Tokamak

Table 1.3: ASDEX Upgrade Operating Parameters

Minor Radius Major Radius Magnetic Field Heating Current

0.5 m 1.65 m 2.5 T 33 MW 1.4 MA

ASDEX Upgrade

Beginning operation in 1991, ASDEX Upgrade(Fig. 1.7) is the successor to the successful

Axially Symmetric Divertor Experiment (ASDEX) which discovered the High-confinement

operating mode (H-mode)[24]. It is currently the third largest fusion device in Europe,

behind the Wendelstein 7-X stellarator[25] and Joint European Torus (JET)[26]. It is com-

parable to the DIII-D tokamak. Up to 33 MW of heating power is provided by 4 NBI

systems, ICRH, and ECRH. ASDEX Upgrade’s operating parameters are given in Table 1.3.
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Figure 1.7: ASDEX Upgrade Tokamak[3]

NSTX & NSTX-U

Unlike the previous tokamaks, NSTX and its recent upgrade, NSTX-U, is a spherical toka-

mak. Spherical tokamaks have a much smaller aspect ratio: R/a ∼ 1 as opposed to

R/a ∼ 3 − 4 in conventional tokamaks. A small aspect ratio allows spherical tokamaks

to easily achieve high plasma β with a low magnetic field. This could lead to smaller and

more economical fusion reactors. NSTX began operation in 1999 and was upgraded in 2015.

It is heated by NBI and ICRH. NSTX-U’s operating parameters are given in Table 1.4.

Table 1.4: NSTX/NSTX-U Operating Parameters

Minor Radius Major Radius Magnetic Field Heating Current

0.68 m 0.85 m 0.3 T 11 MW 1.4 MA

1.2.3 The Lawson Criterion and Fast ion Confinement

In order to maintain steady-state operation in the aforementioned tokamaks, the power

going into the system must equal the power going out. There are several power sources in
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Figure 1.8: NSTX-U Spherical Tokamak

a tokamak. The power supplied by fusion, Pfusion, is broken up among its exhaust. For

D-T fuel only the power from the alpha particles, Pα, contributes to the power balance as

the neutrons, having no charge, do not interact with the magnetic field and their power

is deposited into the vessel wall or, in the case of a reactor, the blanket. Due to poor

confinement and radiative emission, there is also lost power, Plost. Additionally, if the power

supplied by the fusion products is insufficient to keep the plasma going, external power,

Pex, must be supplied—usually in the form of NBI, ICRH, and ECRH. The power balance

equation is then

dW

dt
= Pα + Pex − Plost = 0 (1.1)

where W is the energy density.
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From this equation, we can extract a few useful concepts. In steady-state, the time it takes

a plasma to dump all its energy, the energy confinement time, is given by

τE =
W

Plost
. (1.2)

From the power balance equation, we can also define the amplification factor, Q, which is the

ratio of the fusion power and the external power: Q = Pfusion/Pex. A Q > 1 is a minimum

requirement in a fusion reactor, otherwise, more energy is put in than is generated. Most

importantly, ignition—the point where the alpha heating is large enough to compensate for

any losses—occurs when Pα > Plost. If the plasma ignites, it becomes self sustaining and

external heating can be shut off—known as the burning plasma regime; a desirable quality

in a reactor. In order to ignite, the plasma has to be dense enough, hot enough, and confined

for a long enough time. These conditions are codified in the Lawson Criterion—also derived

from the energy balance equation—which can take the form of a triple product,

nTτE >
12

〈σv〉
T

Eα
> 3× 1021 m−3 keV s, for D− T fusion. (1.3)

There are many ways this criterion could be met, for example by having n = 1020 m−3,

T = 10 keV, and τE = 3 s.

To get into the burning plasma regime, one must first apply enough external heating to reach

the ignition point. This is usually done through a combination of neutral beam injection

and RF heating. This heating creates a small population of ions whose temperature is much

greater than the background plasma. These fast ions start out at a high energy (∼ 80 keV)

and through a series of collisions with the background plasma, thermalize. The process of

thermalization transfers energy to the background plasma, increasing its temperature. The

fast ions, while necessary to heat the plasma, bring with them a series of problems that need

to be overcome in order to achieve fusion.
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One of the main problems that fast ions bring is their ability to resonate with a class of

instabilities called Alfvén eigenmodes[27]. The fast ions that are resonant with the mode

can either take energy away from the mode, making the plasma more stable and enhanc-

ing confinement, or, more commonly, they drive the instability, making the plasma more

unstable and degrading confinement. In the presence of many Alfvén eigenmodes, fast ions

are redistributed into regions where they are lost, either to the wall or through charge ex-

change with edge cold neutrals that exist in the outer layers of the tokamak. As a result,

the fast ions transfer less energy to the thermal ions, which affects heating and also global

confinement.[28, 29]

The fast-ion resonances occur in very particular regions in phase-space. In order to under-

stand the wave-particle interactions, we need to know where the fast ions are relative to these

resonances. This information is encoded in the fast-ion distribution function. Knowing the

form of the fast-ion distribution function is the key to understanding not only wave-particle

interactions but all of fast-ion physics.

The goal of this thesis is to infer the fast-ion distribution function from experimental mea-

surements. The outline of the thesis is as follows. In Chapter 2, we go over a few of

the diagnostics that are sensitive to the fast ions. We discuss, in detail, how they encode

information about the fast-ion distribution and how this information is translated via the

diagnostics forward models into measurable quantities. In Chapter 3, we discuss the develop-

ment of FIDASIM[17, 3, 18], the practical implementation of the forward models discussed

in Chapter 2. In Chapter 4, we discuss and derive diagnostic velocity-space weight func-

tions, which are used to interpret diagnostic signals.[30, 31, 32, 33, 34, 35, 36, 37, 38] This

chapter also introduces orbit weight functions[39], which can be used to linearize diagnostic

forward models without loss of accuracy. In Chapter 5, we benchmark[40] inference methods

used in Velocity-space Tomography, a technique that uses the velocity-space weight func-

tions to infer a local approximation of the fast-ion distribution function from experimental
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measurements.[30, 31, 32, 33, 41, 42, 43, 44, 45, 46, 11] Chapter 6 introduces Orbit Tomogra-

phy, an extension of Velocity-space Tomography that uses orbit weight functions to infer the

entire fast-ion distribution function from experimental measurements. Orbit Tomography

is used to infer a classically described DIII-D discharge and to study the redistribution of

fast ions by a sawtooth crash in ASDEX Upgrade. Chapter 7 discusses future improvements

and a possible application of Orbit Tomography to infer the runaway electron distribution

function.
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Chapter 2

Fast-ion Diagnostics

There are basically two ways diagnostics can probe the fast-ion distribution. The first is to

directly collect samples from the distribution. Direct sampling of the distribution is difficult

because any probe inserted into the plasma would not survive due to the highly corrosive

environment of a fusion plasma. Because of this, samples can only be drawn from the very

edge of the plasma where the environment is more friendly to diagnostics. This effectively

limits the types of fast ions detected. Case in point, one of the few direct fast-ion diagnostics,

the fast-ion loss detector (FILD), only measures—as the name suggests—fast-ions that are

lost to the wall—a useful diagnostic but limited in the information gained about the fast-ion

distribution as a whole.

A different approach to fast-ion diagnostics is to measure the byproducts of their interactions

with the plasma. This approach allows for more information about the fast-ion distribution

to be gained. However, the increased information comes at a cost. Since the diagnostics

do not directly measure the fast ions, we must model what the detector would measure

for any given fast-ion—we call this the diagnostic’s forward model. Even though we have

more information about the fast-ion distribution, it is garbled by the diagnostic’s forward
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model. This makes the analysis of our data difficult. In experiment, we only ever see the

noisy output of the forward model. In order to validate a theoretical distribution function,

we have to run the distribution through the diagnostic’s forward model to get an apples to

apples comparison with data. This is not an ideal scenario. Fortunately, as we will see in

Chapters 5-6, it is possible to reverse this process to obtain the fast-ion distribution from

measurement alone. In order to do this, we need the forward model of our diagnostics.

In the following sections, we will discuss three different fast-ion diagnostics and their forward

models: Neutral Particle Analyzers (NPA), Fast-ion D-α spectroscopy (FIDA), and neutron

scintillators.

2.1 Neutral Particle Analyzers

Figure 2.1: Expanded view of NSTX-U’s solid state neutral particle analyzer array.[4]

Neutral particle analyzers detect fast ions that have undergone a charge exchange (CX)

reaction with a neutral population within the plasma, becoming a fast neutral. Since the

fast neutral is not confined by the magnetic field, information about the fast ions in the

center of the plasma can be attained. Neutral particle analyzers were one of the first fast-ion

diagnostics[47]. However, in recent years there has been a bit of a renaissance in their design.
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Compact solid state analyzers[48] allowed for more sightlines in a smaller space. This type

of design has recently been installed on NSTX-U (Fig. 2.1). Most recently, an Imaging NPA

that combines the best aspects of traditional analyzers and fast-ion loss detectors has been

deployed at DIII-D, showing excellent initial results[9].

2.1.1 Forward Model of the Neutral Particle Analyzer

As mentioned, neutral particle analyzers detect fast neutrals that are born of charge exchange

reactions with the neutral populations within the tokamak, in which there are several. Neu-

tral beam injection creates three distinct neutral populations due to the acceleration of

molecular hydrogen. During the neutralization phase of neutral beam injection, the molecu-

lar forms of hydrogen are eliminated and the gained energy is split evenly among the atoms.

The energy of each population is given by Ei = E1/i, where i is the number of hydrogen

atoms in each molecule. The velocity distribution of each species is tightly focused and can

be approximated by a Dirac delta function. A fourth population of neutrals forms when in-

jected neutrals charge exchange with thermal ions, creating a thermal “halo” with a shifted

Maxwellian velocity distribution. A fifth type of neutral occur when thermal ions reach the

cold edge of the plasma and neutralize. This creates a cold edge neutral population that has

a shifted Maxwellian velocity distribution. These cold edge neutrals are always present and

are independent of the neutral beam. Since certain signals are only present when the neu-

tral beam is on, we tend to separate the signals that come from CX with the beam (active

signals) and signals that originate from CX with the cold edge neutrals (passive signals),

although the following derivation of the forward model makes no such distinction.

Consider a beam of fast ions traveling through a cloud of neutral particles. The fast ions

can undergo the following charge exchange reaction to create a fast neutral,

H+
f +H(m)→ Hf (n) +H+ , (2.1)
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where H+
f is the fast ion, H(m) is the donor neutral in energy state m, Hf (n) is the fast

neutral in energy state n, and H+ is the newly created ion. The rate in which the fast ion,

when interacting with the k different neutral populations, produces a fast neutral in a given

energy level is given by

f(t = 0) =
∑
k

[∫
X(vf − v) · dk ||vf − v|| fk(v) dv

]
, (2.2)

where X [cm2] is a n × m matrix of the charge exchange cross sections, dk [cm−3] is the

densities vector of the m energy levels of the donor neutral, and fk is the velocity distribution

of the kth neutral population. This is called the neutral population flux. The neutral

population flux, f , evolves in time as it travels through the background plasma due to

collisions with the different plasma species, the most significant collisions being:

• excitation and/or ionization with electrons,

• excitation and/or ionization with ions,

• charge exchange with ions.

The effects of the different collisional processes on the population flux can be modeled by

the following matrix differential equation

df

dt
= C · f , (2.3)

where C is a matrix of the rate coefficients for the collisional and atomic transitions. The

full derivation of Equation 2.3 is given in Appendix A.

The solution of Equation 2.3 takes the form of a matrix exponential,

f(t) = eCt · f(t = 0) = S · eΛt · S−1 · f(0) , (2.4)
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where f(t) is a vector of the neutral population flux [1/s] at time t, S is the matrix of the

eigenvectors of C and Λ is a diagonal matrix containing the eigenvalues of C. Equation

2.3 depends on the local plasma parameters and is solved iteratively along the trajectory of

the neutral. Figure 2.2 shows the evolution of the neutral population fluxes for two initial

states: f1 = 1.0 and f3 = 1 with all other level populations set to zero. Despite the different

initial conditions, the population fluxes trend toward an equilibrium. The time it takes

to equilibrate depends on the initial states and the plasma parameters: the f1 = 1 case

equilibrates quickly and the f3 = 1 case slowly. In experiment, the f1 level is the most

populated; therefore, we expect the evolution of the population flux to be closer the f1 = 1

case.
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Figure 2.2: Evolution of the neutral population fluxes for two different initial conditions:
f1 = 1 (solid lines) and f3 = 1 (dashed lines). Plasma parameters are held constant over
time: ne = 6 × 1013 cm−3, Te = Ti = 2 keV , and Zeff = 1.5. At each time, the fluxes are
normalized such that

∑
i fi = 1.

Should the trajectory of the neutral particle enter the detector, the expected NPA signal for

a fast ion with coordinates, x, is given by

SNPA(x) = ε(E)
∑
n

f(tdet) , (2.5)
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where tdet is the travel time to the detector and ε(E) is an energy dependent detector

efficiency.

2.2 Fast-ion D-α Spectroscopy

Figure 2.3: DIII-D’s FIDA spectrometer[5]. Photons from the vessel travel through 33 optical
fibers, 8 of which enter the spectrometer via input slits. The number of lines-of-sight are
limited by the amount of available space on the CCD chip. To prevent saturation of the
camera, the cold D-α emission is attenuated by a filter. Figure courtesy of Cami Collins

Like the NPA diagnostic, charge exchange with a neutral population forms the basis for

the Fast-ion D-α (FIDA) diagnostic[49]. Where the NPA diagnostic measured neutrals,

the FIDA diagnostic measures photons. When the fast neutral is created, it can be born

in the excited n = 3 state. As the fast neutral travels through the plasma, it will relax

into the lower n = 2 state and emit a photon. The Doppler shift of the photon contains

information about the fast ion before it was neutralized. Unlike the NPA diagnostic, the

bulk of the FIDA diagnostic (the spectrometer, filters, and camera) is stored away from the
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machine. Figure 2.3 shows DIII-D’s FIDA diagnostic which is kept in a separate room from

the machine; fiber optic lines carry the emitted light from the vessel to the spectrometer.

In addition to detecting FIDA light, the diagnostic also detects thermal emission from the

cold edge neutrals, neutral beam emission, and Oxygen V/Carbon II impurity emission.

This complicates the design and analysis of the diagnostics. For instance, the line of sight

geometry must be designed to cleanly separate the FIDA signal from the contaminating

sources. Despite this complication, the FIDA diagnostic has become a standard fast-ion

diagnostic with implementations at most major tokamaks[50].

2.2.1 Forward Model of the Fast-ion D-α diagnostic

After a fast-ion charges exchanges with a neutral—the physics of which is identical to the

NPA diagnostic—the resultant fast neutral can be born in an excited state. As it travels,

the fast neutral will emit photons, the amount of which depends on the neutral population.

The neutral population after a time t, n(t), is found by integrating Equation 2.4,

n(t) = S · (Λ−1 · eΛt −Λ−1) · S−1 · f(0). (2.6)

If t represents the time spent inside a measurement volume, V , the Balmer-α photon flux is

given by

Φγ = n3(t)A3→2 (2.7)

where A3→2 is the spontaneous emission rate for the D-α transition. The photon radiance

can then be calculated by integrating the photon flux density per steradian over the line of

sight,

Lγ =
1

4πV

∫
LOS

Φγ dl. (2.8)
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In the presence of a magnetic field, the motion of an ion will induce an electric field, break-

ing the spherical symmetry of the atom. This allows for the existence of multiple stable

states that have the same principle quantum number n. This effect is called Motional Stark

splitting. In this case, it is simpler to use parabolic coordinates, |k1, k2,m〉, instead of the

usual |n, l,m〉 spherical coordinates to solve for the perturbed energy levels of the Hydro-

gen atom. The parabolic coordinates are related to the spherical coordinates through the

relation: n = k1 + k2 + |m| + 1. For hydrogenic atoms, the energy difference between the

different stark states is proportional to the electric field strength and is given by

∆E(n, k1, k2) =
3nE a0

2
(k1 − k2) [eV] , (2.9)

where a0 is the Bohr radius and E is the magnitude of the induced electric field[13]. Figure

2.4 shows the splitting and possible transitions for the n = 3→ 2 transition.

n=3

|2, 0, 0
〉

|1, 0, 1
〉

|1, 1, 0
〉
, |0, 0, 2

〉
|0, 1, 1

〉
|0, 2, 0

〉
n=2

|1, 0, 0
〉

|0, 0, 1
〉

|0, 1, 0
〉

Figure 2.4: Stark splitting of the n = 3 and n = 2 energy levels of hydrogen. Higher levels
indicate higher energy. States are labeled in parabolic coordinates |k1, k2, |m|〉. Possible
transitions between states are indicated by arrows: green for σ lines and orange for π lines.

As can be seen from Figure 2.4, there are 2n − 1 stark states for each principle quantum

number, leading to 15 distinct transitions from the n = 3 → 2 state. The wavelength shift

from the D-α line for the transition |k1, k2,m〉 → |k′1, k′2,m′〉 can be derived via the Taylor

expansion of the Rydberg equation and is given by

∆λ(|k1, k2,m〉 → |k′1, k′2,m′〉) =
3λ20 a0(3(k1 − k2)− 2(k′1 − k′2))

2hc
E [nm] , (2.10)

26



where λ0 is the unshifted wavelength (656.1 nm). Taking into account the Doppler shift due

to the line of sight geometry, the wavelength for each Stark line is,

λ(T ) = λ0(1 + ∆λ(T )/λ0 + (ω̂ · vf )/c) , (2.11)

where T = |k1, k2,m〉 → |k′1, k′2,m′〉 and ω̂ is a unit vector pointing toward the collection

optics. The net effect of the Doppler and Stark shifts are shown in Figure 2.5.
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Figure 2.5: Doppler shift and Stark splitting on the D-α line. Stark line intensities are given
in table 2.1.

The photon radiance (Eq. 2.8) is distributed among the Stark lines. The relative radiance

of each Stark line is given by

I(T ) = ε(T )A(T ) (1± (ω̂ · E)2) , (2.12)

where A(T ) is the probability of transition T and ε(T ) is the diagnostic efficiency of the

transition. The relative probabilities for each transition is given in Table 2.1. The expression

in the parenthesis of Equation 2.12 is the angular distribution of the emission, which depends

on the polarization of the transition: the plus sign for transitions that are linearly polarized

perpendicular to the electric field (σ lines) and the minus sign for transitions that are linearly

polarized parallel to the electric field (π lines). Combining equations 2.8, 2.11, and 2.12 gives
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the expected signal produced by a single fast ion with coordinates x,

SFIDA(λ; x) =
∑
T

Lγ
I(T )∑
T I(T )

δ(λ− λ(T )) . (2.13)

Table 2.1: Stark transitions and relative probabilities[13]. Transitions are given in parabolic
coordinates. Degenerate initial states double the relative probability.

Symbol Transition Arel

π−7 |2, 0, 0〉 → |0, 1, 0〉 1

σ−6 |2, 0, 0〉 → |0, 0,±1〉 18

σ−5 |1, 0,±1〉 → |0, 1, 0〉 2× 8

π−4 |2, 0, 0〉 → |1, 0, 0〉 1681

π−3 |1, 0,±1〉 → |0, 0,±1〉 2× 1152

π−2 |1, 1, 0〉 → |0, 1, 0〉 729

σ−1 |1, 0,±1〉 → |1, 0, 0〉 2× 968

σ0
|1, 1, 0〉 → |0, 0,±1〉

|0, 0,±2〉 → |0, 0,±1〉

882

2× 2304

σ1 |0, 1,±1〉 → |0, 1, 0〉 2× 968

π2 |1, 1, 0〉 → |1, 0, 0〉 729

π3 |0, 1,±1〉 → |0, 0,±1〉 2× 1152

π4 |0, 2, 0〉 → |0, 1, 0〉 1681

σ5 |0, 1,±1〉 → |1, 0, 0〉 2× 8

σ6 |0, 2, 0〉 → |0, 0,±1〉 18

π7 |0, 2, 0〉 → |1, 0, 0〉 1
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2.3 Neutron Scintillator

As the name suggests, neutron scintillators detect the neutrons produced by fusion reactions.

The name originates from the scintillating material at the heart of the detector. As a neutron

passes through a scintillating material, it will produce a flash of light that a photomultiplier

will turn into a electrical current—the greater the current, the greater the neutron flux.

Unlike other diagnostics that look at a particular point in the plasma, uncollimated neutron

scintillators, due to the highly non-interacting neutrons, detect neutrons from the whole

device. Because of this, the neutron signal is a useful measure of total fast-ion confinement.

2.3.1 Forward Model of a Neutron Scintillator

A neutron can be produced via the following fusion reactions:

D +D → He3 + n

D + T → α + n

(2.14)

The total cross section for a reaction is given by

σT (E) =
S(E)

E exp(BG/
√
E)

, (2.15)

where E is the energy in the center-of-mass frame in keV, and BG is the reactions Gamov

constant. S(E) is a Padé expansion of the astrophysical S-function, which takes the approx-

imate form[14, 15]

S(E) =
A1 + E(A2 + E(A3 + E(A4 + EA5)))

1 + E(B1 + E(B2 + E(B3 + EB4)))
, (2.16)
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where A and B are coefficients. The coefficients for Equation 2.16, as well as the Gamov

constants, are given in Table 2.2 and the cross sections are shown in Figure 1.3. There

are three sub-categories of fusion reactions that occur in a tokamak: thermonuclear fusion,

where the thermal ions are fusing; beam-beam fusion, where the fast ions are fusing with

themselves; and beam-plasma fusion, where the fast-ions are fusing with the thermal ions.

Here we will only consider the neutrons produced by beam-plasma fusion since it often

predominates.

Table 2.2: Bosch-Hale coefficients for several fusion reactions.[14, 15]

D(d,n)He3 D(d,p)T T(d,n)α He3(d,p)α

BG [keV] 31.3970 31.3970 34.3827 68.7508

A1 5.3701×104 5.5576×104 6.927×104 5.7501×106

A2 3.3027×102 2.1054×102 7.454×108 2.5226×103

A3 -1.2706×10−1 -3.2638×10−2 2.050×106 4.5566×101

A4 2.9327×10−5 1.4987×10−6 5.200 ×104 0.0
A5 -2.5151×10−9 1.8181×10−10 0.0 0.0

B1 0.0 0.0 6.380 ×101 -3.1995×10−3

B2 0.0 0.0 -9.950×10−1 -8.5530×10−6

B3 0.0 0.0 6.981 ×10−5 5.9014×10−8

B4 0.0 0.0 1.728 ×10−4 0.0

Valid Range [keV] 0.5<E<4900 0.5<E<5000 0.5<E<550 0.3<E<900

The beam-plasma neutron reactivity is given by

〈σv〉(vf ) =

∫
σT (

µ

2
||vf − vt||2) ||vf − vt|| f(vt) dvt , (2.17)

where µ is the reduced mass of the fast and thermal ion species, vf is the fast-ion velocity, vt

is the thermal-ion velocity and f is a shifted Maxwellian velocity distribution1. The expected

1The bulk plasma rotation shifts the Maxwellian distribution
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signal produced by a fast ion with coordinates x is then

Sneutron(x) = ε ni(x) 〈σv〉(x) , (2.18)

where ε is the detector efficiency2 and ni is the thermal ion density.

2The efficiency is usually spatially and energy dependent
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Chapter 3

FIDASIM: A Neutral Beam and

Fast-ion Diagnostic Modeling Suite

In applying the forward models discussed in the previous chapter, one discovers that the pro-

cess is more involved than simply evaluating the equations in the correct order. For instance,

the forward models require a fast-ion distribution function, which is obvious; however, the

form of the distribution function dictates the approach taken, e.g. the numerical approach

for calculating the diagnostic signal generated by fast-ion distribution function is very dif-

ferent from the approach taken when using a Monte Carlo distribution. Additionally, the

diagnostic’s forward model requires inputs that also need to be calculated, e.g. the neutral

beam densities. The design of a diagnostic simulation system that is accurate, flexible, and

computationally efficient was undertaken to address all the niggling implementation details.

FIDASIM is the result. FIDASIM is a modern Fortran code that handles all the complexi-

ties inherent in applying the forward models outside of the ivory towers in which they were

developed.
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3.1 Brief History

The development curve of FIDASIM is long and ongoing. The very first implementation

of FIDASIM was written by Yadong Luo and Bill Heidbrink in IDL while Yadong was

working on his thesis[51]. Subsequently, Deyong Liu added features to simulate NPA signals.

The IDL version of the code was distributed for public use and documented in a journal

publication[17].

The IDL version of FIDASIM was prohibitively slow—the average runtime for a single time

slice was approximately 24 hours. As a part of his thesis[3], Ben Geiger wrote the first version

of FIDASIM written in Fortran 90. This prototype version was parallelized using OpenMP

and was orders of magnitude faster, but it was not as easy to use as the IDL version and

was difficult to port to different devices.

The further development of FIDASIM since 2013 is documented in this chapter. The goals of

the new development were four-fold: to increase fidelity, to increase performance, to increase

usability, and to generalize to other fusion devices. In pursuit of these goals, FIDASIM

has been completely overhauled, bearing little resemblance to the version written by Ben

Geiger. The current version of FIDASIM does the following: supports OpenMP and MPI

parallelization, uses a faster FIDA and NPA algorithm, handles multiple types of fast-ion

distributions, simulates neutrons and passive signals, uses HDF5 files over the previous

custom binary files, is well documented, is used by multiple fusion devices, and more. In the

following sections we will discuss the current design of FIDASIM. More information about

FIDASIM can be found at the new documentation website: http://d3denergetic.github.

io/FIDASIM/.
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3.2 User Inputs

3.2.1 Simulation Grids

In physics simulations, the choice of simulation grid is a fork in the development roadmap.

After a choice is made, the types of problems the code can solve is limited. Shakespeare

once said, The sins of the father are to be laid upon the children.. A poor original design

choice tends to haunt the development until it is eventually rectified via an exorcism. For

instance, for many fusion codes it is common to tightly integrate the simulation grid with

the magnetic equilibrium in the form of a field aligned coordinate system. This choice has

several advantages; however, since the field aligned coordinate system is ill-defined outside

the separatrix, the codes are limited to simulating phenomena that are within the separatrix.

Attempts to rectify this original sin are cumbersome and complicated. At some point it is

easier to just start over. This problem cannot be completely avoided, but it can be mitigated

by careful design. When beginning development of a code, both the present and future use

cases must be considered. A good design is able to grow with the increased scope of the

code.

FIDASIM used two different simulation grids: the neutral beam grid, which holds the neutral

beam densities and the interpolation grid, where all the plasma parameters and electromag-

netic fields are defined.

Neutral Beam Grid

The neutral beam grid is an artifact from the original version of FIDASIM. In addition to its

primary purpose of storing the results of the neutral beam, direct charge exchange (DCX),

and thermal halo calculation, it was also the grid in which the electromagnetic fields, plasma

parameters, and fast-ion distribution were defined. This design choice eventually became a
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problem and had to be removed. In the current version of FIDASIM, the neutral beam grid

is relegated to storage duty although, like much of the code, it has been enhanced.

The neutral beam grid is a simple Cartesian grid where each of the three dimension is defined

by a minimum/maximum value and the number of elements. In Ben Geiger’s version of

FIDASIM, that was the extent of the neutral beam grid definition. However, it is often useful

to arbitrarily orient the grid—usually to align the grid with the neutral beam geometry. The

original IDL version of FIDASIM had this feature. In order to reimplement the feature, the

neutral beam grid definition was extended to include an origin and three Tait-Bryan rotation

angles: α, β, and γ. This allows the user to arbitrarily orient the neutral beam grid.

Some readers may be unfamiliar with Tait-Bryan rotation angles, which are also known as

yaw, pitch, and roll angles. The Tait-Bryan angles were chosen because they, once learned,

are more intuitive than the Euler angles taught in introductory classical mechanics courses.

Like Euler angles, Tait-Bryan angles have different rotation conventions. FIDASIM uses the

most common z− y′− x′′ convention where the α angle corresponds to rotation about the z

axis, the β angle corresponds to rotation about the y′ axis, and the γ angle corresponds to

rotation about the x′′ axis. This process is demonstrated in Figure 3.1.

The relationship between the unrotated machine coordinates and the rotated and shifted

beam grid coordinates is given by

uvw = R · xyz + origin , (3.1)

where R is the rotation matrix defined by the Tait-Bryan angles, uvw and xyz are the

position vectors in machine and beam grid coordinates, respectively. origin is the origin

vector of the beam grid coordinates defined in machine coordinates.

The Tait-Bryan angles that align the beam grid with the neutral beam given two points
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Figure 3.1: z−y′−x′′ rotation using Tait-Bryan angles. Figure modified from original image
created by Wikipedia user Juansempere.

along the beam centerline are given by

α = arctan(v2 − v1, u2 − u1)β = arcsin((w1 − w2)/D)γ = 0 (3.2)

with D being the distance between the points.

Interpolation Grid

As mentioned, the electromagnetic fields, plasma parameters, and the fast-ion distribution

function were originally mapped onto the neutral beam grid. This, however, created memory

problems when the simulation domain was large or when fine spatial resolution was required.

The main issue was with the mapping of the fast-ion distribution function. The mapped

distribution was stored as a dense array with dimensions (ne, np, nx, ny, nz). Increasing the

number of neutral beam grid cells could very quickly outgrow the available memory. This

situation was untenable as FIDASIM was starting to be used for the simulation of passive
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diagnostic signals from the cold edge neutrals, which fill up the entire vessel. In order to

simulate the passive signals, the beam grid had to be expanded to cover a large volume.

With the memory problems, resolution was sacrificed. To solve this problem, a 2D R−Z grid

was introduced. Instead of using an array look-up to determine the plasma parameters/fields

within a beam grid cell, we would determine the parameters by interpolating on the 2D R−Z

grid. The interpolation grid solved the memory issues by exploiting the toroidal symmetry of

a tokamak—more information with less space. However, with the switch to the interpolation

grid we lost the ability to handle non-toroidally symmetric plasmas like stellarators. The

option for 3D plasmas is currently being implemented into FIDASIM. This is being done by

adding a toroidal φ variable to the interpolation grid definition. If the user does not provide

φ, then toroidal symmetry is assumed.

3.2.2 Plasma Parameters

In FIDASIM the plasma parameters are mapped to the interpolation grid. This is somewhat

unusual. More commonly, the plasma parameters are represented as flux functions. This

is usually a good choice; however, there are a few scenarios where a flux function is not

the best choice. For example, in tokamak discharges with high torque the plasma tends

to move out toward the wall, a consequence of the plasma’s angular momentum. This can

cause a mismatch in the plasma densities at the high and low field sides of a flux function.

Additionally, the cold edge neutrals cannot be a flux function. There is also a matter of which

flux label to support—ψ or ρ—and how to deal with regions outside the separatrix. Mapping

onto the interpolation grid was the most general choice that fixed the aforementioned issues.

FIDASIM takes in 2D profiles of the following plasma parameters: the electron density

(ne cm−3), the ion and electron temperature (Ti/e keV), the plasma rotation (~v cm/s)

in cylindrical coordinates, the effective charge Zeff , and the cold edge neutral density

37



(ncold cm−3). Within FIDASIM the impurity and ion densities are calculated from the

user supplied inputs by manipulating the quasineutrality and Zeff formulas:

nimp =
Zeff − 1

Z (Z − 1)
ne,

ni = ne − Z nimp ,
(3.3)

where Z is the charge number of the main impurity species. One complication that arises by
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Figure 3.2: Electron Temperature mapped onto the interpolation grid. Outside the sepa-
ratrix (dashed red line) the plasma parameters are not set, i.e. the mask variable is set to
0.

not using flux functions is knowing when particles are outside the region where the plasma

parameters are defined. FIDASIM uses a Boolean mask to indicate these regions. If the
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plasma parameters are defined at a given (R,Z), then the mask is one, otherwise, it is set to

zero. Figure 3.2 demonstrates the masking. For this particular time-slice the profiles were

only provided up to the separatrix so the mask was set to one inside the separatrix and zero

outside.

3.2.3 Electromagnetic Fields

In tokamaks the electromagnetic fields are determined by solving the Grad-Shafranov equa-

tion

∆∗ψ = −µ0R
2 dp

dψ
− 1

2

dg2

dψ
, (3.4)

where ∆∗ is the elliptic operator, p(ψ) is the pressure, g(ψ) is the poloidal current, and

ψ(R,Z) is the poloidal flux function. The Grad-Shafranov equation is the equilibrium equa-

tion in ideal magnetohydrodynamics (MHD) for a two dimensional plasma. While FIDASIM

does not solve this equation, electing to simply map the magnetic and electric fields in cylin-

drical coordinates onto the interpolation grid, it is useful to know how to extract the various

fields from the poloidal flux so they can be used by FIDASIM.

The magnetic field, ~B, in cylindrical coordinates is given by

BR =
1

R

∂ψ

∂Z
,

BZ = − 1

R

∂ψ

∂R
,

Bφ =
g(ψ)

R
.

(3.5)
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The plasma current, ~J , in cylindrical coordinates is given by

JR = − 1

µ0R

∂g

∂ψ

∂ψ

∂Z
,

JZ =
1

µ0R

∂g

∂ψ

∂ψ

∂R
,

Jφ = −R ∂p
∂ψ
− g(ψ)

µ0R

∂g

∂ψ
.

(3.6)

The plasma current is not used by FIDASIM; however, it is useful to know the sign of the

dot product of the magnetic field and the plasma current, σ = sign(B̃ · J̃), known as the pitch

sign convention. This will become useful when we discuss the fast-ion distribution function.

To maintain force balance, a radial electric field, Er, is induced. The electric field in cylin-

drical coordinates is given by

ER = −R Bpol

|∇ψ|
∂Φ

∂ψ

∂ψ

∂R
,

EZ = −R Bpol

|∇ψ|
∂Φ

∂ψ

∂ψ

∂Z
,

Eφ = 0,

(3.7)

where Φ(ψ) is the electric potential, and the poloidal magnetic field is given by Bpol =√
B2
R +B2

Z .

3.2.4 Fast-ion Distribution

Simulating the signals generated by a theoretical fast-ion distribution is FIDASIM’s raison

d’être, its reason for being. It is therefore important that FIDASIM is able to support mul-

tiple types of distributions. Internally, FIDASIM can represent fast-ions using two different

6D coordinate systems. The most commonly used is the guiding center coordinates: the
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Figure 3.3: Projections of the guiding-center fast-ion distribution function for DIII-D dis-
charge #171469 at 1360 ms. Left: Velocity-space integrated fast-ion density. Right: Spa-
tially integrated fast-ion velocity-space distribution. Pitch is defined relative to the plasma
current.

kinetic energy, E, the pitch of the fast ion with respect to the magnetic field, p1, the major

radius, R, the elevation, Z, and the gyro and toroidal angles γ and φ. Less frequently used

is the cylindrical coordinate system: vr, vz, vφ, R, Z, and φ. The coordinate system that

FIDASIM uses depends on the type of the distribution that was supplied by the user; of

which there are two(formerly one): guiding-center distribution functions, F (E, p,R, Z), and

Monte Carlo particle distributions.

Guiding-center Fast-ion Distribution Function

Like the plasma parameters, the fast-ion distribution function is mapped onto the interpo-

lation grid (Fig. 3.3). It is assumed that the distribution is toroidally symmetric and the

gyro-angle is distributed uniformly, γ ∼ U(0, 2π). In this form, the total number of fast-ions

1There are two different definitions of pitch that are used: pitch with respect to the magnetic field,
p = ~v · ~B/(||~v|| || ~B||), and pitch with respect to the plasma current, p = ~v · ~J/(||~v|| || ~J ||). To convert between
the two conventions one only needs to multiply the pitch with the pitch sign convention, σ, discussed
previously.
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is given by

Nf = 2π

∫∫∫∫
F (E, p,R, Z)RdE dp dR dZ. (3.8)

The integration over the gyro-angle is included in the definition of F .

Monte Carlo Distributions

A Monte Carlo distribution is defined by a set of Np Monte Carlo (MC) particles each with a

set of attributes according to the coordinate system used. Guiding-center MC particles have

a kinetic energy, pitch, R, Z, and weight (w). The full-orbit MC particles have a velocity in

cylindrical coordinates, ~v = [vr, vz, vφ], R, Z, and weight. For both types of MC distributions

toroidal symmetry is assumed. For guiding-center MC distributions, it is assumed that the

gyro-angle is distributed uniformly. The weights of the particles are chosen such that the

total number of fast ions is given by

Nf =

Np∑
i

wi . (3.9)

Since the particle weights include an implicit integration over the entire toroidal range,

[0, 2π), for certain diagnostics, the weights are scaled by ∆φ/2π where ∆φ is the toroidal

range of the simulation determined by the intersection of the MC particle with the neutral

beam grid. This is done so φ can be efficiently sampled in a region where it is possible for

signal to be produced, i.e. where there are neutrals with which to charge exchange.

3.2.5 Atomic Tables

As a neutral particle travels through a plasma, it undergoes several different types of inter-

actions
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• charge exchange with Hydrogen and impurities

• excitation with electrons, Hydrogen, and impurities

• ionization with electrons, Hydrogen, and impurities

These cross sections, as well as Maxwellian averaged reaction rates, are pre-computed over

a range of logarithmically spaced collision energies and target temperatures. The sources

of all the cross sections are given in Appendix B. However, some of the atomic transitions

needed by FIDASIM are not available. In particular, FIDASIM needs the n/m-resolved

charge exchange cross sections. While certain transitions are available through ADAS[52]

and other sources, others are not, as such, certain approximations are needed to fill out the

table.

For instance, we use the equivalence principle (reversibility formula) to mirror the known

ADAS cross sections.

σ(nf → ni) =
Ei
Ef

n2
i

n2
f

σ(ni → nf ) (3.10)

However, this is insufficient to completely fill out the needed transitions. Fortunately, since

the total cross sections for a transition n → m are given by Janev[16], we can make the

assumption that the probability of a transition decreases exponentially with the difference in

energy between the levels. So long as we make sure the total cross section remains unchanged,

we can ”spread” the total cross section among the different unknown transitions. A summary

of the various approximations used in the charge exchange tables is given in Table 3.1.

In addition to the cross sections, we also need the beam-plasma reaction rates, which we can

readily calculate from the cross sections. With the assumption that the fast-ion density is

small compared to the thermal density (below %20), the beam-plasma reaction rate is given
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Table 3.1: Charge exchange cross section sources. Total cross sections for n > 4 are not
available so the n = 4 total cross sections are used. The m levels are normalized to the
Janev[16] tables for consistency. Spreading is done over the m values/rows

n/m 1 2 3 4 5 6 Total
1 ADAS ADAS ADAS ADAS Spread Spread Janev(n=1)
2 Equivalence ADAS ADAS Spread Spread Spread Janev(n=2)
3 Equivalence ADAS ADAS ADAS ADAS Spread ADAS/Janev(n=3)
4 Equivalence Equivalence Equivalence Spread Spread Spread Janev(n=4)
5 Spread Equivalence Equivalence Spread Spread Spread Janev(n=4)
6 Spread Equivalence Equivalence Spread Spread Spread Janev(n=4)

by an average over a Maxwellian,

〈σv〉 =

∫∫
σ(Erel)||v − v′||δ(v′ − vB)

[ mT

2πkT

] 3
2
e−

mT
2kT

(v·v)dv′ dv, (3.11)

where vB is the beam velocity, mT is the mass of the plasma/target species, and T is

the plasma temperature. Calculating the reaction rate requires integrating over a range of

velocities. This creates a slight inconvenience when tabulating the rates since the spread of

velocities would change depending on the temperature. To ameliorate this, a simplified form

of Equation 3.11 that uses normalized velocities, ur/z, is used to calculate the reaction rates.

The simplified reaction rate equation takes the form

〈σv〉 =
2√
π

√
2kT

mT

∫∫
σ(Erel)

√√√√u2r +

(
uz −

√
EBmT

mBkT

)2

e−(u
2
r+u

2
z)ur dur duz , (3.12)

where mB and EB is the mass and energy of the beam species respectively. In terms of the

normalized velocities, the relative energy of collision, Erel is given by

Erel = µ
kT

mT

u2r +

(
uz −

√
EBmT

mBkT

)2
 , (3.13)

where µ is the reduced mass of the species. To find the reaction rate, Equation 3.12 is

integrated from a normalized velocity of −4 to 4 in both the r and z directions. The full
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derivation of the reaction rate equation is given in Appendix C.

3.3 Simulation of Neutral Populations

The neutral densities are an important part of the fast-ion diagnostics forward models and

require careful modeling. There are four neutral populations that FIDASIM simulates: the

neutral beam which consists of full, half, and third energy components, the thermal halo,

fast neutrals, and the cold edge neutrals. With the exception of the cold edge neutrals, the

algorithm for simulating the different neutral populations are remarkably similar, differing

only in their initial conditions and possible trajectories through the plasma.

3.3.1 Neutral Particle Trajectories

The amount of neutrals produced by a source is distributed among the particle trajectories

produced by the source. The trajectories the neutral particles take is determined by the

local neutral velocity distribution, which is taken to be the ion distribution for neutrals born

of charge exchange. The number of trajectories used in the calculations, Nt, is a user input

and is typically set to be very large (∼ 106) to best represent the true distribution. The

more trajectories used, the more accurate the result.

The neutral particles trajectory through the neutral beam grid is used prolifically within

FIDASIM as the time spent in each cell is needed to solve the collisional radiative model

(COLRAD)(Eq. 2.3, 2.6), which determines how the neutrals are distributed along the cells

in the track. Summing the contributions of each trajectory determines the total spatial

profile of the neutrals. The tracking through the beam grid could be done at the same

time as COLRAD, but pre-computing the track allows us to be able to short-circuit certain

calculations; avoiding the computationally expensive COLRAD calculation. For instance, in
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the FIDA calculation, if a fast neutral doesn’t cross a line of sight, it can’t contribute signal;

therefore, there is no need for the full calculation.

The particle tracking algorithm is as follows. Each 3D cell in a grid is defined by 6 surfaces.

In the case of a Cartesian grid, the cell is defined by the intersection of 6 planes, for a

cylindrical grid a cell is defined by 4 planes and 2 cylinders. Given an initial starting point

and velocity, the time it takes to intersect each surface is calculated. The smallest non-

negative time, tmin>0, is the time spent in the cell. Information about the cell is collected

and the neutral particle’s position is advanced by tmin>0. This process repeats until the

neutral particle exits the grid.

3.3.2 Beam Neutrals

The geometry of a neutral beam is defined by a source position and an axis such that a point

along the beam centerline is defined as

~C(t) = ~s+ ~a · t , (3.14)

where ~C(t) is the position along the beam centerline parameterized by t, ~s is the source

position, and ~a is the axis. The ion source is defined by its shape (circular or rectangular), size

(half width and half height), vertical and horizontal focal lengths, and an energy dependent

divergence.

The trajectory of a beam neutral is determined by the following equations:

vx = 1

vy = vx

(
−ys
fy

+ tan(θy)

)
, θy ∼ N (0, β2

y) ,

yz = vx

(
−zs
fz

+ tan(θz)

)
, θz ∼ N (0, β2

z ) ,

(3.15)

46



where vx points towards the plasma, ys and zs are random positions on the source plate in

the horizontal and vertical directions respectively, fy/z are the focal lengths, and βy/z are

the divergences. Examples of the different trajectories generated by the above equations

are shown in Figure 3.4. Not shown in the above figure are the beam aperture(s), which

Figure 3.4: The effects of different beam divergences on beam particle trajectories. Focal
length (dashed vertical line) is fixed at 5.5 m.

collimate the neutral beam. Apertures are represented in FIDASIM by their shape (circular

or rectangular), size (half width and half height), offsets relative to the +x aligned beam

centerline, and their distance from the source grid. It is assumed that the plane of the

aperture(s) is parallel to the plane of the source grid.

With the neutral beam geometry, we are able to approximate the beam neutral velocity

distribution at a given point. The beam neutral velocity distribution, fb, in beam grid

coordinates is proportional to

fb(~v) ∝ cos2(θy) cos2(θz)

2βyβz
exp

(
−
(
θ2y

2β2
y

+
θ2z

2β2
z

))
I(~v, ys, zs) , (3.16)

where I(~v, ys, zs) is a function that indicates that the trajectory is possible and the angles

θy/z are found via Equation 3.15. Normalization aside, in vacuum, the above equation is
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exact; however, attenuation within the plasma weights each possible trajectory differently,

incurring a slight error. Although not done in FIDASIM, appending a trajectory dependent

attenuation factor to Equation 3.16 would correct for it.2

During the acceleration phase of neutral beam injection, multiple atomic and molecular

species are accelerated to the same kinetic energy,Einj. During the neutralization phase,

the molecular species are split apart, creating neutral populations with different energies:

Einj, Einj/2, and Einj/3. These different beam populations are called the Full, Half, and

Third energy components, respectively. Each beam component attenuates differently in the

plasma and needs to be treated separately. For a single beam trajectory, it is assumed that
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Figure 3.5: Attenuation of the different beam species for a DIII-D discharge. Density is
summed over the y and z directions.

the beam neutral for the ith energy component is in the ground (n = 1) state with initial

population flux given by

f1(t = 0)|i =
dn1

dt

∣∣∣∣
i

=
Ci
Nt

· dntot
dt

, (3.17)

2It should be noted that Equation 3.16 is only used in FIDASIM for the calculation of approximate
spectra. In the full calculation, attenuation is properly accounted for.
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where Ci is the components current fraction, Nt is the number of beam trajectories, and

dntot/dt is the total population flux of neutrals given by

dntot
dt

=
Pinj∑3

i CiEinj/i
, (3.18)

where the numerator, Pinj, is the total beam power and the denominator is the average beam

energy. The current fractions are a measured quantity that are specific to a neutral beam.

For DIII-D’s neutral beams, the current fractions are a function of the injection energy and

are given by

C1(Einj) = −0.109171 + 0.0144685Einj − 7.83224× 10−5E2
inj

C2(Einj) = 0.0841037 + 0.0025516Einj − 7.42683× 10−8E2
inj

C3(Einj) = 1− C1 − C2

(3.19)

As the neutral travels through the grid, it will be attenuated by the plasma and neutrals

will be deposited in each cell it crosses. Figure 3.5 shows the attenuation of the different

beam species as they travel through the plasma. To get the total beam density, the above

process is repeated for the Nt beam trajectories and the results summed. Figure 3.6a shows

the neutral beam profile.

3.3.3 Direct Charge Exchange and Halo Neutrals

Beam neutrals, Hb, can undergo charge exchange with thermal ions, H+
th, creating a new

neutral population. This population is called the direct charge exchange (DCX) neutrals.

The initial population flux for a DCX neutral born in a cell with beam density, di, is given
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Figure 3.6: Neutral profiles for the neutral beam (Column a), direct charge exchange (DCX)
(Column b), and thermal halo (Column c). Top row: 2D profiles in machine coordinates,
integrated over W . Bottom row: 2D profiles in beam grid coordinates, integrated over Y .
The beam grid axes are color coded: X axis (dashed cyan), Y axis (dashed red), and Z axis
(dashed green) The number of neutrals in each population is listed. The colormap on top
increases from left to right. The beam geometry is the 210RT neutral beam on DIII-D.

by

f(t = 0) =
Nth

Nt

3∑
i=1

[∫
X(vDCX − v) · di ||vDCX − v|| fi(v) dv

]
, (3.20)

where X [cm2] is a matrix of the charge exchange cross sections, fi is the velocity distribution

of the ith beam energy component, vDCX is the DCX neutral velocity, Nth is the number of

thermal ions in the cell, and Nt is the number of trajectories the DCX neutral could take.

The trajectories are determined from the local thermal ion velocity distribution that takes

the form of a shifted Maxwellian.

After the initial population flux is determined, the DCX neutral travels ballistically and
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deposits neutrals along its trajectory in accordance with the collisional radiative model. The

DCX density produced by a cell is determined by summing the contributions from each DCX

trajectory. The total DCX density is calculated by repeating the above process for every cell

that contains a beam neutral.

Likewise, the DCX neutrals can also undergo charge exchange with the thermal ions, creating

a new neutral population that will then also undergo charge exchange with the thermal ions.

The process of a neutral population charge-exchanging with the thermal ions can repeat

ad infinitum; each new generation producing fewer neutrals than the generation before it.

The overall effect is a thermal Halo of neutrals surrounding the neutral beam. The iterative

process is demonstrated in Equation 3.21.

DCX : H+
th0

+Hb → Hth0 +H+
b

Halo : H+
th1

+Hth0 → Hth1 +H+
th0

Halo : H+
th2

+Hth1 → Hth2 +H+
th1

...

Halo : H+
thk

+Hth(k−1)
→ Hthk +H+

th(k−1)

(3.21)

The process for calculating the Halo neutrals is similar to the DCX calculation, just repeated

until the amount of halo neutrals produced in a generation is 1% of the initial seed population,

which is the DCX neutrals. The other difference between the Halo and the DCX calculation

is how the initial population flux is set. The initial population flux for a kth generation Halo

neutral born in a cell with neutral density, dk−1, is given by

f(t = 0)|k =
Nth

Nt

[∫
X(vHalo − v) · dk−1 ||vHalo − v|| fk−1(v) dv

]
, (3.22)

where Nt is the number of neutral trajectories, vHalo is the Halo neutral velocity which is

drawn from a shifted Maxwellian, and fk−1 is the the neutral velocity distribution of the
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(k − 1) Halo generation, which is also a shifted Maxwellian. In both cases, the Maxwellians

are parameterized by the local ion temperature and rotation. The DCX and Halo neutral

density profiles are shown in Figures 3.6b-c.

3.3.4 Fast Neutrals

Fast neutrals are born of charge exchange reactions between the previously discussed neutral

populations and the fast ions. The initial population flux for a fast neutral is given by

f(t = 0) =
Nf

Nt

∑
k

[∫
X(vf − v) · dk ||vf − v|| fk(v) dv

]
, (3.23)

where X [cm2] is a matrix of the charge exchange cross sections, dk [cm−3] is the densities

vector of the m energy levels of the donor neutral, fk is the velocity distribution of the kth

neutral population, and lastly Nf and Nt are the number of fast ions in the cell and the

number of possible trajectories the fast ion can take, respectively. The trajectories a fast ion

can take are determined by the fast-ion distribution function. Combining the contributions

for each trajectory gives the local fast neutral profile. Summing over cells gives the total fast

neutral density profile.

In order to use a Monte Carlo distribution, the Nf/Nt factor in Equation 3.23 is replaced

with the fast ion’s weight, w. This can be justified by comparing Equation 3.23 to Equation

2.2 which is the initial population flux for a single fast ion. Upon inspection, it becomes

apparent that the factor Nf/Nt is the number of fast-ions on a specific trajectory, which is

equivalent to the Monte Carlo particle weight.

In contrast with the other neutral populations, the fast neutral population is only used in

the calculation of the FIDA and NPA signals. Therefore, only the fast neutral trajectories

that contribute signal are calculated. This significantly reduces the computational cost.
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3.3.5 Cold Edge Neutrals

As mentioned in the previous section, the cold edge neutrals is a user input. However, only

the n integrated density is supplied; n-resolved densities are required for the calculation of

passive signals. To determine the population of each energy level, it is initially assumed that

the cold edge neutrals are entirely in the ground state. Using the local plasma parameters

the cold edge neutrals are then time evolved by the collisional radiative model until it reaches

equilibrium. They are then distributed relative to the equilibrium population levels.

3.4 Simulation of Spectra
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Figure 3.7: Spectra calculated by FIDASIM. Line of sight is viewing DIII-D 210RT neutral
beam at an oblique angle in the core of the plasma.

3.4.1 Spectroscopic Geometry

Similar to the neutral beam geometry, each spectroscopic line of sight (LOS) is defined by

a lens source location, an optical axis, and an optional spot size. The intersection of the

LOS with the neutral beam cell is calculated using the neutral particle tracking algorithm
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described previously. In the original version of FIDASIM, the LOS intersections were stored

in a nx × ny × nz × nchan sized grid. This caused memory issues when a large number of

LOS were simulated, e.g. in a camera setup. This issue was resolved by using a sparse

representation of the LOS intersections.

3.4.2 Bremsstrahlung

The largest source of background emission is visible bremsstrahlung. The local bremsstrahlung

per unit wavelength is given by

dNB

dλ
= 7.57× 10−9g

n2
eZeff

λT
1/2
e

e−hc/λTe , (3.24)

where λ is the wavelength in angstroms, ne and Te is the electron density in cm−3 and

temperature in eV respectively. The gaunt factor, g, depends on Te and Zeff . It can be

approximated by

g = 5.542− (3.108− ln(Te/1000))(0.6905− 0.1323/Zeff ) . (3.25)

To calculate the total emission, the local emissivity is integrated over the line of sight.[53]

3.4.3 Emission From Neutrals

The emissions from neutrals are collected during the neutral density calculations. The photon

radiance produced by a cell can be derived from Equation 2.8 and is given by

Lγ =
1

4πVcell
LcellΦγ , (3.26)
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where Vcell and Lcell is the volume and LOS intersection of the cell respectively, and Φγ is

the photon flux given by Equation 2.7. The photon radiance is then distributed among the

stark components in accordance with Equations 2.11 and 2.12. Summing the spectra over

the LOS cells gives the total spectra.

Calculating the neutral beam spectra during the neutral density calculation is the preferred

method as it correctly models the neutral particle velocity distribution. However, in addition

to the cold edge neutrals, FIDASIM offers the ability to preload the beam, DCX and halo

neutral densities. In these cases, only the total photon radiance produced by a cell is known.

In order to calculate the spectrum, it is assumed that the photon radiance is equally split

between the neutral particles within the cell. A distribution of the neutral particle velocities

within the cell is also assumed. In the case of the beam neutrals, Equation 3.16 is used,

otherwise the local ion velocity distribution is used. The spectrum is then calculated by

drawing samples from the velocity distribution and averaging the resultant spectrum. The

total spectra is found by summing the spectra produced over the LOS. The quality of the

approximate spectrum depends on the accuracy of the underlying assumptions. Figure 3.8

compares the approximate spectra with the full simulation.

3.5 Simulation of Neutral Particle Analyzers

Neutral particle analyzers collect fast neutrals that escape the plasma. However, since most

fast-neutral trajectories miss, simulating the detectors require a ridiculous number of trajec-

tories to even have a chance of hitting the detector. Originally, FIDASIM could only use this

approach, which was practically useless because of the computational cost—a single NPA

simulation with good statistics could take more than a week. In the latest versions of FI-

DASIM, this issue has been rectified for guiding center distributions by a priori calculating

the range of trajectories that would hit the detector. This required improvements to the
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Figure 3.8: Comparisons of full neutral beam spectra calculation (colored lines) and approx-
imate method (black dashed overlay). The line of sight views the core region at an oblique
angle.

NPA geometry.

3.5.1 NPA Geometry

Figure 3.9: NPA geometry definition. An aperture/detector is defined by three points,
(u,v,w), which define a plane. As viewed from inside the vessel the three points are: the
center, the top edge, and the right edge. The shape of the aperture/detector can either be
rectangular or circular/ellipsoidal.
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The NPA geometry in the original FIDASIM was only defined by a location, axis, and

opening angle. If the entire neutral trajectory was within the cone defined by the opening

angle, the neutral particle was accepted. This original definition didn’t take into account

the finite detector/aperture shapes and assumed rotational symmetry around the detector

axis. In newer versions of FIDASIM, the NPA geometry was changed. In the new version,

the NPA detector is assumed to have an aperture and detector. Both the aperture and

the detector are defined by three points which define a bounded plane: the center of the

aperture/detector, the center of the top edge, and the center of the right edge. These points,

along with a shape indicator, define the size of the aperture/detector as well as define a

coordinate system with the +z axis normal to the plane. The apertures and detectors can

be arbitrarily oriented. Figure 3.9 summarizes the NPA geometry definition.

Figure 3.10: DIII-D’s imaging NPA. FIDASIM models the pinhole aperture and the strip-
ping foil as the detector. Curved trajectories to the phosphor plate are calculated in post-
processing. Image complement of Xiaodi Du.

The new NPA geometry is very flexible and can be used to describe novel NPA configurations.

For instance, DIII-D’s new imaging NPA (INPA)[9], shown in Figure 3.10, has a small

circular pinhole aperture and a long skinny rectangular stripping foil, which is modeled as
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the detector.[9]

3.5.2 NPA Calculation via Solid Angles

Instead of relying on Monte Carlo trajectories to determine which fast neutrals contribute to

the NPA signal, the geometric effects can be explicitly calculated[54]. The geometric factor,

fg, of a detector is proportional to its solid angle. The geometric factor is given by

fg =
1

4π

∫∫
S

r · n̂ dS

r3
, (3.27)

where S is the viewable detector area. For most cases, this equation cannot be solved

analytically hence the need for Monte Carlo methods.

NPA detectors with an aligned circular aperture and detector can be described by three

parameters: the aperture radius (Ra), the detector radius (Rd), and the separation between

the aperture and the detector (H). At some positions, the aperture cuts off portions of

the detector, reducing the detecting surface S and complicating the solid angle calculation.

Thomas et. al. [55] calculated the detecting surface S by projecting the “shadow” created

by the aperture onto the detector. This “aperture shadow” is parametrized by the angle of

incident flux θ. For an isotropic distribution of incident particles, the total geometric factor

of the detector is given by

fg = 2π

∫ θm

0

S(θ) sin(θ) cos(θ) dθ , (3.28)

where θm is the maximum angle of incidence. This expression—and others like it—have been

used in analyzing NPA detectors for decades.

When simulating NPA detectors, Equation 3.28 is of limited use since it does not parametrize

the aperture shadow S by position. We can do this by circumscribing the aperture onto the
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detector plane. Defining the detector to be on the z = 0 plane with the normal vector

co-linear with the z-axis, a source at point (xp, yp, zp) projects a circle onto the detecting

plane with radius and center given by

Rs =
Razp
zp −H

(3.29)

and

~rcenter =

(
Hxp
H − zp

,
Hyp
H − zp

, 0

)
, (3.30)

where zp > H. Integrating over the intersection of this circle and the detector circle gives

an analytic expression for the aperture shadow S(xp, yp, zp).
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Figure 3.11: Left: Trajectory of a neutral particle hitting a circular NPA detector with
Ra = Rd = 0.5 cm, and H = 25.4 cm. Right: Normalized aperture shadow along the
particle trajectory.

The two expressions for the aperture shadow (S(θ) and S(xp, yp, zp)) should be equivalent.

However, comparing the two expressions reveals a discrepancy. Figure 3.11 shows that at a

constant angle of incidence, the shadow area, S(xp, yp, zp) asymptotically approaches S(θ)

as the distance from the detector increases. The discrepancy arises because S(θ) implicitly

assumes that the particle source is far away from the detector (far-field assumption) and can

be parameterized by a single angle of incidence.
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To understand this, consider an isotropically emitting source. Far away from the detector

the choice of angle of incidence θ is trivial since they are approximately the same for every

trajectory that strikes the detector. When the source is near the detector, the choice of

angle of incidence is not as clear since there are many possible particle trajectories each

with a significantly different angle of incidence. As the particle source moves away from

the detector, the possible angles of incidence approach a single value. However, for NPA

detectors the particle source is relatively close to the detector aperture ( 0.5 m); violating

the requirements needed to use the θ parametrized geometric factor. Instead, a brute force

application of Equation 3.27 over the aperture shadow should be used.

As mentioned, the calculation of the solid angle can be challenging; however, there is an

alternative. The geometric factor can be thought of as the probability of a particle hitting

the detector from a point ~p above the detector. The problem of calculating the geometric

factor of the detector becomes an exercise of mapping the probability density function at the

source onto the detector plane z = 0. In general, the mapping from Y to X space is done

through the change in variable equation

prob(X) = prob(Y)×
∣∣∣∣∂Y

∂X

∣∣∣∣ , (3.31)

where the term on the far right is the Jacobian of the transformation.3

In the case of NPA detectors, the transformation is from {φ, θ}-space, where φ and θ are

the azimuthal and polar angle respectively, to {x, y}-space. For linear trajectories, the

3The transformation X = H(Y ) is subject to the constraint that H is bijective and differentiable. If H is
not bijective Eq. 3.31 can be extended to a summation over all the Y values that correspond to a given X.
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transformation is given by


x

y

0

 =


1 0 tan θ cos(φ)

0 1 tan θ sin(φ)

0 0 0



xp

yp

zp

 , (3.32)

where (xp, yp, zp) is the position of the particle source. The Jacobian for this transformation

is given by

∣∣∣∣∂(φ, θ)

∂(x, y)

∣∣∣∣ =
zp((x− xp)2 + (y − yp)2)−1/2

(x− xp)2 + (y − yp)2 + z2p
. (3.33)

For an isotropic source, the probability density function in {φ, θ}-space is given by

prob(φ, θ) =
1

4π
sin(θ) . (3.34)

Plugging equation 3.34 and 3.33 into the change of variable equation and integrating over

the aperture shadow S(xp, yp, zp) yields the geometric factor,

fg =
1

4π

∫∫
S

zp dS

((x− xp)2 + (y − yp)2 + z2p)
3/2

. (3.35)

For circular detectors, the detecting region can be found by using Equations 3.29-3.30; how-

ever, for arbitrarily oriented and shaped apertures/detectors the detecting region is deter-

mined by checking whether the trajectories from the source to a point on the detector passes

through the aperture. Figure 3.12 shows the geometric factors/probabilities of hitting one

of DIII-D’s solid state NPA detector. As can be seen, the probability is extremely small and

demonstrates why the traditional method of calculating NPA signal is inefficient.

With the probabilistic formulation, we are also able to find the average strike point on
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Figure 3.12: Geometric Factor/Probability of hitting DIII-D’s solid state NPA detector.
Probability evaluated on the y = 0 plane. Dashed lines are detecting limits.

the detector. Combined with the fast-neutral starting point, we are then able to calculate

the pitch, pt, of the fast neutral as well as a representative trajectory from the source to

the detector. With this information, we can establish the initial population flux of the

fast-neutral, which is the same as Equation 3.23 with the Nf/Nt term replaced with 2 ∗

F (E, pt, Rs, Zs)∗fg ∗Vcell ∗dE; the factor of two is needed to convert the fast-ion distribution

units from Nf/(dE dp dR dZ) to Nf/(dE dR dZ dΩ/4π), i.e. to use the same units as the

geometric factor. The collisional radiative model is then solved along the track and total

population flux is then stored. Figure 3.14 shows the fast-neutral energy flux incident on

the stripping foil for the DIII-D’s INPA diagnostic. Using this approach, the computational

time was drastically reduced from days to minutes.

3.5.3 NPA Calculation via Gyro Angles

While the previously discussed solid angle based NPA calculation is suitable for fast-ion

distribution functions, Monte Carlo distributions require a different approach. Instead of

calculating the solid angle, which is irrelevant for Monte Carlo distributions, we analytically
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find the range of gyro-angles that intersect the NPA detector for each MC particle.

If we assume that the magnetic field does not change substantially over a Larmor radius, we

can then take the gyro-radius to be constant, forming a ring around the particle. A neutral

particle is “fired” from this ring at a constant pitch, p. If we vary the gyro-angle, γ, the

surface of revolution formed by the neutral trajectory creates a ruled surface, specifically a

hyperboloid of one sheet (Fig. 3.13). This “gyro-surface” has an analytic parameterization

given by

x(γ, t) =
||v||

√
1− p2
ωc

(cos(γ)− t sin(γ))

y(γ, t) =
||v||

√
1− p2
ωc

(sin(γ) + t cos(γ))

z(γ, t) =
||v||
ωc

t ,

(3.36)

where p is the pitch, ||v|| is the speed of the neutral particle, ωc is the ion cyclotron frequency,

and the z axis is aligned with the magnetic field.

By circumscribing the edges of both the aperture and the detector, the intersection points

of the edges with the gyro-surface are found. With the intersection points the range of gyro-

angles, ∆γ, that both hit the detector and pass through the aperture can be calculated.

Figure 3.13 shows an example gyro-range for a small circular aperture and a larger circular

detector.

The initial population flux is the same as Equation 3.23 with the Nf/Nt term replaced with

wi∆γ/2π. Since the path length of the trajectories within the gyro-range are similar, the

collisional radiative model is only calculated for the middle trajectory. The neutral flux is

then equally distributed among the other trajectories in the range. This is done so that

the particles that hit the detector are not biased towards the center of the detector. This

approach also drastically sped up the NPA calculation and is now comparable to the FIDA
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Figure 3.13: Two views of a (exaggerated) Gyro-surface (light blue) created by fast-neutral
trajectories. The two black rings are the aperture (smaller circle) and the detector (larger
circle). The green circle is the gyro-ring. The red/blue lines shows the first/last trajectory
to pass through the aperture and hit the detector. The dashed orange line shows the repre-
sentative trajectory used for the collisional radiative model. The thin black lines shows the
trajectories over which the neutral flux is distributed.

calculation. It is also equivalent with the previously discussed method. Figure 3.14 compares

the solid angle approach with the gyro-angle approach. Both methods give the same neutral

flux.
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Figure 3.14: Incident energy flux for imaging NPA: Solid angle NPA calculation (blue) and
the Gyro Angle approach (red step). Both methods give the same energy flux.
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3.6 Simulation of Beam-Plasma Neutron Rates

A recent addition to FIDASIM is the ability to calculate volume-averaged beam-plasma

neutron rates. Because there are no geometric effects to consider, the calculation of the

neutron rate is straight forward and is given by

rate =

∫∫∫∫
F(E, p,R,Z)

∫ 2π

0

Sneutron(E, p,R,Z, γ) dγ dE dp dR dZ , (3.37)

where Sneutron is the forward model of the neutron detector specified in Equation 2.18 and

F (E, p,R, Z) is the guiding center fast-ion distribution function. If a guiding center Monte

Carlo distribution was used, the neutron rate would be given by

rate =

Np∑
i

(
wi

2π

∫ 2π

0

Sneutron(Ei, pi,Ri,Zi, γ) dγ

)
, (3.38)

where wi is the weight of the Monte Carlo particle such that the total number of fast ions is

given by
∑Np

i wi. If a full orbit Monte Carlo distribution is used, the neutron rate is given

simply by

rate =

Np∑
i

(
wiSneutron(vri, vφi, vzi,Ri,Zi, φi)

)
. (3.39)

From the above equations, it is plain to see that the neutron rate is just the sum of the

rates from the individual fast-ions. In the next chapter, we will see that all the discussed

diagnostics can be expressed in a similar manner.
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Chapter 4

Fast-ion Diagnostic Weight Functions

From a diagnostics standpoint, fast-ion physics is particularly difficult. Unlike bulk-ion

diagnostics that measure Maxwellian distributed velocities, fast-ion diagnostics measure a

velocity distribution that can be highly anisotropic due to neutral beam and RF heating.

The lack of a simple parametrization of the fast-ion velocity distribution makes it difficult

to draw correlations between experimental data and the relevant fast-ion physics. In an

effort to aid the modeling, interpretation, and experimental design of fast-ion diagnostics,

the following ansatz was proposed[30]

Stot =

∫∫
W (E, p)F (E, p) dEdp , (4.1)

where Stot is the total diagnostic signal, F (E, p) is the fast-ion energy-pitch distribution func-

tion, and W (E, p) is a diagnostic weighting function, colloquially known as the velocity-space

weight function. The weight function indicates the phase-space sensitivity of the diagnostic,

allowing for easier interpretation of the diagnostic data. As an aside, it is also common to

formulate the weight functions in terms of the velocities parallel and perpendicular to the

magnetic field, hence the name velocity-space weight functions. The transformation between
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the two coordinate systems is detailed in Appendix D.

In the following sections, we will discuss how velocity-space weight functions are used and

their limitations. We then show how to derive generalized diagnostic weight functions from

the full forward models. With this firm theoretical footing, we also show how the generalized

weight functions can be used to derive weight functions in guiding-center orbit space.

4.1 Velocity-space Weight Functions

Since their introduction, there has been a focused effort in calculating velocity-space weight

functions for fast-ion diagnostics[31, 56, 42, 57, 45]. Figure 4.1 shows velocity-space weight

functions, calculated by FIDASIM, for the neutron, NPA, and FIDA diagnostics. The

velocity-space weight functions are used primarily to interpret diagnostic signals. While

forward modeling can tell you what the expected diagnostic signal should be, it provides lit-

tle insight into the why. Velocity-space weight functions provide a way to inspect diagnostic

signals at a deeper level.

For instance, in an experiment at DIII-D, a modulated low power neutral beam was used

to create an oscillating fast-ion population. The shot (#157725) had minimal magneto-

hydrodynamic (MHD) instabilities and was intended to be a baseline for later discharges.

A radial array of FIDA chords—the oblique system in Fig. 4.12—was used to monitor the

oscillating fast-ion population. Figure 4.2 shows FIDA waveforms conditionally averaged

over four 54ms oscillation periods for the different radial positions. Figures 4.2(a) and 4.2(b)

show the waveforms for data integrated over small and large Doppler shifts respectively.

Despite looking at the same radial location, the waveforms for the small and large Doppler

shifts, which will henceforth be called the alpha and beta waveforms respectively, are dif-

ferent. In the core region (∼ 181 cm), the alpha waveform slowly increases in the first half
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Figure 4.1: Representative velocity-space weight functions for the DIII-D plasma and diag-
nostics. (a) The neutron scintillator is a global measurement of the neutron production rate.
Its weight function for beam-plasma neutron production is spatially averaged and shows a
strong energy dependence. The slight anisotropy in pitch is due to fast ions traveling with
(positive pitch) and against (negative pitch) the plasma rotation. (b) The Neutral Particle
Analyzer (NPA) diagnostic detects neutralized fast ions that escape the plasma. The colli-
mation of the detector only permits a small range of pitch values to hit the detector and,
because the detector is operated in current mode, the weight function is sensitive to many
different energies. (c-d) The Fast-ion Deuterium-α (FIDA) diagnostic measures spectra pro-
duced by neutralized fast ions. The weight function depends upon wavelength. These FIDA
weight functions are line-of-sight averaged at λ = (652, 660) ± 0.2 nm for a single oblique
(Fig. 4.12) viewing chord.

of the period, when the beam is on, and slowly decays in the second half, when the beam

is off. The beta waveform shows the opposite trend: growing quickly when the beam is on

and decaying quickly when it is turned off. Forward modeling alone is unable to explain

the different trends. Velocity-space weight functions, however, allows us to determine where

in velocity-space the signal is originating. Figure 4.3 compares the waveforms at R = 181

cm and shows the corresponding time evolution of the products of the velocity-space weight

functions and the local theoretical distribution, W (E, p)×F (E, p). The weight functions in

Figure 4.3 are sensitive to different regions in phase-space. The alpha weight function is only
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(a) (b)

Figure 4.2: FIDA waveforms for DIII-D shot #157725 for two different integration ranges: (a)
Small Doppler shift/alpha waveform: ∆λ = 651.8− 653.0 nm; (b) Large Doppler shift/beta
waveform: ∆λ = 650.8− 651.8 nm. FIDA data and error-bars averaged over four oscillation
periods are shown in red, the corresponding weight function calculated theoretical signals are
shown in blue. Errors in the theoretical signals derive from varying plasma profiles over the
different periods. The neutral beam is on during the first half of the period and off during
the second half.

sensitive to fast ions with energies greater than ∼40keV, while the beta weight function is

sensitive to lower energies, >20keV. If we take the weight functions to have a similar pattern

of sensitivity as Figure 4.1c, the reasons for the shape of the waveforms are apparent. For the

beta waveform, the fast-ions are born into a higher sensitivity region and move into regions

of zero sensitivity. Comparatively, for the alpha waveform the fast ions are born in a low

sensitivity region and move into higher sensitivity regions as they slow down. This results

in a quicker growth in the beta waveform and slower growth in the alpha waveform. When

the beam is turned off in the middle of the period, the alpha waveform decays slowly due to

a large fraction of the fast-ions still in the weight function’s sensitive region. For similar yet
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Figure 4.3: Weight function analysis: Top row: comparison of the FIDA waveforms for
small/alpha (red line) and large/beta (blue line) Doppler shifts at R = 181 cm. Colored
dashed lines are the data. Middle row: time evolution of the product of the large Doppler
shift velocity-space weight function and the local theoretical distribution function. Bottom
row: time evolution of the product of the small Doppler shift velocity-space weight function
and the distribution function. The color-maps increase linearly from light to dark. The
distribution function is calculated using the TRANSP/NUBEAM[6] code.

opposing reasons, the beta waveform decays more quickly when the beam is turned off.

In addition to enhancing our ability to analyze experimental data, velocity-space weight func-

tions provide a method of inferring the local fast-ion distribution function[43, 44]. Equation

4.1 can be discretized, creating a system of linear equations. When multiple diagnostics view

the same spatial location, the system of linear equations can be solved via various numerical

methods[40]. This application of weight functions will be discussed, in depth, in the next

chapter.

Velocity-space weight functions have enhanced our ability to understand diagnostic signals

and, through Velocity-space Tomography, the fast-ion distribution function itself. However,

velocity-space weight functions are hindered, both in their accuracy and in their practicality
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due to the implicit assumption that diagnostic signals are spatially localized. The flaws in

this assumption can be made plain by comparing the diagnostic signals calculated using

FIDASIM and Equation 4.1. In regions where the fast-ion distribution has large spatial vari-
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Figure 4.4: FIDA spectra calculated using velocity-space weight functions (Equation 4.1) for
the oblique viewing chords at (a) R = 1.8 and (b) R = 2.1 m. The spectra calculated by
FIDASIM are also shown. Disagreement between FIDASIM and Equation 4.1 is because the
latter uses a local fast-ion distribution to calculate the spectra. Differences between the local
distribution and the full distribution used by FIDASIM cause the two methods to disagree
to varying degrees.

ations, velocity-space weight functions perform poorly. Figure 4.4 shows spectra calculated

using spatially-averaged velocity-space weight functions. Near the magnetic axis (Fig. 4.4a),

the calculated spectrum agrees fairly well with FIDASIM, indicating that the velocity-space

weight function method is fairly accurate. However, off-axis (Fig. 4.4b), the spectrum calcu-

lated with velocity-space weight functions deviates significantly from FIDASIM. Comparisons

with simulations that use an uniform fast-ion distribution are not discrepant, showing that

spatial variations are responsible for the deviation. Generally speaking, velocity-space weight

functions agree with FIDASIM in the core, where spatial gradients are relatively smaller,

than in the periphery, where variations in the fast-ion density and other quantities tend to

be large. This trend is also seen in Figure 4.2.

Another mark against velocity-space weight functions is that velocity-space tomography

requires overlapping diagnostic views. In practice, due to limited port access, radial arrays
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from one or two ports are more common than multiple views of the same spatial volume

from different viewing locations. To resolve these crippling limitations, a generalization of

Equation 4.1 to include spatial dependencies needs to be derived.

4.2 Generalized Diagnostic Weight Functions

Velocity-space weight functions are typically derived using variations of probabilistic arguments[31,

56, 42, 57, 57]. When considering a fixed location within the plasma, a probabilistic approach

is often simpler. However, in order to properly account for the spatial dependencies of the

diagnostics, a different tack is needed.

Consider a fast ion with phase-space coordinates x = [p,q], where p and q are the generalized

momentum and position, respectively. As seen in Chapter 2, the forward models for many

fast-ion diagnostics can be expressed as a function, S(x), which gives the expected signal

produced by a fast ion with phase-space coordinates x. The total diagnostic signal is found

by summing the contributions of all the individual fast ions,

Stot =
N∑
k=1

S(xk), (4.2)

where N is the total number of fast ions in the plasma. This equation can be expressed in

terms of the frequency in which x occurs

Stot = N
∑

xk∈RX

S(xk)PX(xk), (4.3)

where PX(xk) is the frequency of xk occurring. In the continuum limit, the discrete sum in
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the above equation can be replaced by an integral and can be written in the form

Stot =

∫
S(x)N

∑
xk∈RX

PX(xk)δ(x− xk)dx =

∫
S(x)F (x)dx, (4.4)

where F (x) is the fast-ion distribution function. By inspection, it is clear that Equation 4.4

is the generalized version of Equation 4.1.

Upon comparing Equation 4.4 with how FIDASIM simulates the diagnostics, it is apparent

that they are equivalent as FIDASIM evaluates Equation 4.4 via Monte Carlo integration.

Stot ≈
1

Nt

Nt∑
i

S(xi) where xi ∼ F(x) , (4.5)

where Nt is the number of FIDASIM’s “trajectories”, which just correspond to samples,

xi, from the distribution function, F (x). In fact, FIDASIM’s neutral density calculations

can also put into the form of Equation 4.4 where, instead of the fast-ion distribution, the

distribution function is either the neutral beam distribution, for the beam density calculation,

or the thermal ion distribution, for the direct charge exchange and halo densities.

From the generalized form, we can also derive the velocity-space weight functions. Consider

the phase-space coordinate system x = {E, p, γ, R, Z, φ}, where E is the energy, p is the

pitch with respect to the plasma current (p = v‖/v), γ is the gyro-angle, R is the major

radius, Z is the elevation, and φ is the toroidal angle. The velocity-space weight function

in Equation 4.1 can be recovered by averaging over the phase-space variables R, Z, φ, and

γ.1 Since most velocity-space weight functions are gyro-averaged and spatially localized, the

following reduction of equation 4.4 reproduces the velocity-space weight function:

W (E, p) =
1

2π

∫∫∫∫
S(E, p, γ, R, z, φ)δ(R−R0)δ(z − z0)δ(φ− φ0) dγ dR dz dφ. (4.6)

1To remind readers, averaging over a variable in a function involves integrating over the product of the
function and the probability of the variable. For example, g(x) =

∫
f(x, y)p(y)dy is averaging f(x, y) over

y.
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At this point, we come to a clear understanding of what a velocity-space weight function

actually is: a velocity-space weight function is the average signal produced by a fast ion with

a given energy and pitch.

4.3 Orbit Weight Functions

A reduction of the phase-space, as done in Equation 4.6, greatly simplifies analysis and

facilitates tomographic reconstructions by reducing the number of unknown parameters.

However, since we are concerned about the motion of the fast ions, care must be taken to

ensure that no critical information is lost when averaging over variables. In other words, only

variables that do not appear in the Lagrangian (i.e. ignorable or cyclic coordinates) can be

averaged out without critical information loss. By this standard, the phase-space reduction

done in Equation 4.6 is inadequate since only the gyro and toroidal angle averaging was

permissible.

In order to reduce the phase-space as much as possible without sacrificing model fidelity,

it is advantageous to express the expected diagnostic signal, S, in canonical action-angle

coordinates, x = (J,Θ). Action-angle coordinates are a set of canonical coordinates with

the special property that the action variables, J, are invariants of the motion and the angle

coordinates, Θ, are cyclic/ignorable and can therefore be safely averaged over when reducing

the phase-space. In these coordinates, information preserving phase-space reductions can

then be succinctly expressed as

W (J) =

(∏
i

1

τi

)∫ τ1

0

. . .

∫ τi

0

S(J,Θ) dΘ , (4.7)

where τi are the periods of the angle coordinates and W (J) is the action-space weight func-

tions which is interpreted to be the average signal produced by a fast ion with action coor-
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dinates J, similar to the interpretation of velocity-space weight functions.

The total diagnostic signal can be calculated using these action-space weight functions.

Consider the subset of fast ions in a plasma with action coordinates, Jk. The signal produced

by these fast ions is given by

Sk =

Nk∑
i

S(Jk,Θi) = Nk

Nk∑
i

S(Jk,Θi)/Nk , (4.8)

where Nk is the number of fast ions with action coordinates Jk. The sum on the right-

hand side is the average signal produced by the subset of fast ions. This is identical to the

interpretation of the action-space weight function. The total diagnostic signal can then be

expressed as a linear combination of weight functions,

Stot =
∑
k

NkW (Jk). (4.9)

In the context of guiding center motion, Jk acts as a label for an individual fast-ion orbit.

Therefore, Equation 4.9 can be interpreted as a sum of the signal produced by each fast-ion

orbit. As in velocity-space tomography, when there are multiple measurements Equation 4.9

can be put into matrix form, creating a system of linear equations that can be solved. This

is discussed in Chapter 6.

An action-angle parametrization of the guiding center motion of a fast ion in a tokamak has

three action coordinates and three angle coordinates. There are many possible choices for

action-angle coordinates; the classical choice being the canonical constants of motion: energy,

magnetic moment, and toroidal canonical angular momentum, J = (E, µ, pφ). However, due

to an ambiguity in the sign of v‖ in the definition of pφ, the classical choice of coordinates

does not always uniquely label distinct orbits, i.e. a single action coordinate Jk in this space

could correspond to two different orbit trajectories (orbit degeneracy). This can be plainly

seen by expressing the magnetic moment as a function of the energy and toroidal angular
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momentum.

µ(R,Z) =
E

B(R,Z)
− B(R,Z)

2m

(
pφ − qΨ(R,Z)

RBφ(R,Z)

)2

(4.10)

Isolines of this function are the orbit trajectories for a fixed µ, E and pφ. Figure 4.5 shows
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Figure 4.5: Orbit trajectories generated by a scan of normalized magnetic moments, fixing
energy (80 keV) and normalized canonical angular momentum (-0.315). Orbits are labeled
by their normalized magnetic moments. Orbits with normalized magnetic moments of 0.7
and 0.8 are degenerate.

a scan over µ for a fixed E and pφ. The scans show distinct orbits that have the same

Hamiltonian coordinates. The large distance between the orbits indicate that their fast-ion

populations are independent and should be treated separately. Orbit degeneracy also makes
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it impossible to use Equation 4.7 to reduce the phase-space since the angle variables of the

two orbits would have different periods.

To avoid this problem, we use a modified version of the coordinates promoted by Rome[58]

and others[59]. Here we define the action coordinates, hereby called orbit-space coordinates,

to be

J = (E, pm, Rm) , (4.11)

where E is the energy, Rm is the maximal radius along the orbit, and pm is the pitch with

respect to the plasma current at Rm. The angle variables, which describe the position of the

fast ion along the orbit, are

Θ = (t, γ, φ0) , (4.12)

where t is the time, γ is the gyro-angle, and φ0 is the initial toroidal angle. Applying

Equation 4.7 yields the definition of an orbit weight function,

W (E, pm, Rm) =
1

4π2τp

∫ 2π

0

∫ 2π

0

∫ τp

0

S(E, pm, Rm, t, γ, φ0) dt dγdφ0 , (4.13)

where τp is the poloidal transit time.

This choice of orbit-space coordinates has several nice properties. The space has natural

boundaries in all three coordinates (E = [0, Emax], Rm = [Raxis, Rwall], and pm = [−1, 1]),

which makes it easy to enumerate all possible orbit trajectories for a given magnetic equilib-

rium. Additionally, as can be seen in the topological map of the orbit-space in Figure 4.6,

counter-passing orbits are easily identified by the sign of pm.
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Figure 4.6: Left: Topological map of different orbit types [7] with fixed energy for the DIII-D
plasma described in Sec. 4.3.2.
Right: Orbits corresponding to the dashed line in the topological map. The plus indicates
the magnetic axis and the dashed line is the last-closed flux surface. Counter-passing orbits
have negative pitch along their orbit, while co-passing orbits have constant positive pitches.
Stagnation orbits are co-passing orbits that do not enclose the magnetic axis. The pitches of
fast ions on a trapped orbit change signs and potato orbits are trapped orbits that enclose
the magnetic axis.

4.3.1 Numerical Calculation of Orbit Weight Functions

As the name suggests, fast-ion orbits are needed to calculate orbit weight functions. The

orbit trajectories are found by solving the guiding-center drift orbit ordinary differential

equation given by

vGC =
v‖B

|B|
+ vE×B + vgrad + vcurv , (4.14)

where v‖ is the velocity parallel to the magnetic field B and the remaining terms are the

E × B, gradient, and curvature drifts respectively. Notice that unlike other guiding center

orbit codes, the inclusion of the E ×B drift is necessary. As shown in Figure 4.7, including

the effects of the radial electric field can substantially change the trajectory of an orbit
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Figure 4.7: Two orbits, one including the effects of the radial electric field (red line), one
without (blue dashed line). Including the radial electric field changes the orbit topology.

and, consequentially, the orbit’s weight function. For this reason, the E × B drift must be

included.

The orbit coordinates, describe in the previous section, provide three out of the four initial

conditions needed to solve Equation 4.14: the kinetic energy, pitch, and R. The fourth initial

condition is the initial Z position of the fast-ion. The initial Z position is found by finding

the point of minimum poloidal flux at a fixed value of major radius, Rm. Since fast-ions are

mostly tied to a flux surface at the outermost legs of their orbits, the point of minimum flux

is also a point on the orbit.
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Once all the initial conditions are found, Equation 4.14 is solved for one poloidal transit time

of the orbit, with particle locations and velocities dumped at equal time steps throughout

the interval [0, τp). The particles are given equal weights and loaded into the diagnostic’s

forward model, e.g. FIDASIM—this is equivalent to evaluating the integral in Equation

4.13. Orbits that are degenerate or intersect the vessel wall have null orbit weights and are

excluded.

The calculation of the orbit weights can be computationally intensive. To reduce the com-

putational time, an orbit with small time steps can be down-sampled to an orbit with larger

time steps. This reduces the number of particles used in the calculation. Using a down-

sampling method, instead of using a larger time step when the orbit is first calculated,

perseveres the accuracy of the orbit trajectory. Typically, the down-sampling time step is

chosen such that the mean poloidal distance between particles is ∼ 1 cm. An example of a

down-sampled orbit is shown in Figure 4.8.

4.3.2 Orbit Weight Functions for Various Fast-ion Diagnostics

In this section, after briefly describing the plasma conditions and diagnostics, orbit weight

functions are calculated for three DIII-D fast-ion diagnostics: the neutron scintillator, the

solid state neutral particle analyzer (ssNPA), and the fast-ion D-α (FIDA) spectrometer.

The orbit weight functions are calculated on a 100× 100× 100 element (E, pm, Rm) grid.

Apparatus

The selected plasma is DIII-D shot #159243 at 790 ms. This discharge, which is discussed

in detail in Ref. [60], is a reversed-shear plasma with toroidal field of 2.0 T and plasma

current of +0.8 MA (counter clockwise). The fast-ion population is created by deuterium

80



1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
R [m]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Z
[m
]

E=60keV
pm=0.6
Rm=2.2m

Original
Down-sampled

Figure 4.8: Example of a down-sampled orbit. The blue line is the original orbit and the red
x’s are the points used to calculate the orbit’s weight function. For illustrative purposes, the
mean poloidal length between points is set to 4 cm. Typically, a mean poloidal length of 1
cm is used.

neutral beams of energy 70-81 keV that are injected in both the co-current and counter-

current directions. Although the discharge has extensive Alfvén eigenmode activity, only

the “classical” distribution function calculated by NUBEAM [6] in the absence of wave-

induced transport is considered here. Projections of the orbit-space fast-ion distribution

function for the shot are shown in Figure 4.9.
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Figure 4.9: Projections of the orbit-space fast-ion distribution for shot #159243 at 790
ms. Each projection is the full 3D distribution integrated over one of the variables, e.g.
Fz(x, y) =

∫
F (x, y, z) dz. Each projection is normalized to unity. The color-map increases

linearly from dark(black) to light(yellow).

Neutron Scintillator Orbit Weight Function

The neutron scintillator measures the volume-averaged neutron rate; Figure 4.10 shows its

orbit weight function. In isolation, the neutron orbit weight function gives insight into the

underlying physics of the diagnostic. For example, the strong energy dependence of the orbit
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Figure 4.10: Normalized projections of the 3D neutron orbit weight function.

weight function indicates that the effect of the neutron cross section is considerable. This

type of analysis can also be done using velocity-space weight functions; however, with orbit

weights the sensitivity of the diagnostic to individual orbit types can also be analyzed.

Table 4.1 shows the signal produced by each orbit type, indicating that co-passing orbits

produce the most signal. Somewhat surprisingly, the neutron diagnostic is quite sensitive

to potato orbits despite the small volume of phase space that they occupy. This is caused

by the tendency of potato orbits to spend a large fraction of their orbit in the high density

core region. The total beam-plasma neutrons produced, as calculated by Equation 4.9, is in
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Orbit Type Average Weight [s−1] Phase-space Fraction Signal Produced [s−1]
Potato 3.83× 10−5 7.75× 10−3 1.19× 1012

Stagnation 3.69× 10−5 9.61× 10−2 2.86× 1011

Trapped 2.09× 10−5 2.41× 10−1 5.65× 1012

Ctr-Passing 2.82× 10−5 2.93× 10−1 3.67× 1011

Co-Passing 2.67× 10−5 3.62× 10−1 1.57× 1013

Total 2.32× 1013

Table 4.1: Dependence of neutron signal on orbit topology for DIII-D discharge #159243 at
790 ms. Column 1: Type [7] of orbit. Column 2: Average neutron signal produced by a fast
ion of the given type. Column 3: Fraction of the fast-ion phase space occupied by the orbit
type. Column 4: Total neutron signal produced by each orbit type. The table indicates
that the neutron diagnostic is most sensitive to potato orbits. Additionally, it shows that
counter-passing orbits produce more signal on average than co-passing orbits due to counter-
passing orbits traveling against the bulk plasma rotation, causing a higher relative energy.
See the caption of Figure 4.6 for explaination of the different orbit types.
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Figure 4.11: Beam-plasma neutron rate and injected beam power over time for shot #159243
calculated by the NUBEAM and FIDASIM codes and the rate at 790 ms calculated using
the neutron orbit weight function and Equation 4.9.

agreement with the predictions of TRANSP/NUBEAM and FIDASIM (Fig. 4.11).

NPA Orbit Weight Function

The solid state NPA (ssNPA) diagnostic measures fast neutrals, born of charge exchange,

that escape the plasma. DIII-D utilizes three separate channels, each viewing the 210RT
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Figure 4.12: Poloidal (a) and plan (b) view of the 210RT neutral beam density (contours)
and fast-ion diagnostics (colored lines). The Oblique FIDA system[5], shown in blue, consists
of of a maximum of 11 viewing chords looking down at the 210RT beam at an oblique angle
of ∼ 45◦ with respect to the midplane. The solid state NPA system (ssNPA)[8], shown
in green, consists of three channels viewing the core region of the plasma from below the
midplane.

neutral beam at a different radial location (Fig. 4.12). In its present configuration, the

detectors are operated in current mode [8]. Figure 4.13 shows the orbit weight function for

the central channel. Upon inspection, it shows that the ssNPA diagnostic is localized in space

(Rm) and in pitch (pm), but, because the detector is operated in current mode, it is also

sensitive to a large swath of energies. The localization in space and pitch is caused by the

narrow collimation of the diagnostic. In a three dimensional view, the orbit weight function

is characterized as a line through the orbit-space. As an aside, the previously discussed

Imaging NPA[9], which is similarly localized in pitch but has an extended radial view, has

an orbit weight function that takes the form of a 2d surface within the 3D orbit-space.

Providing further evidence that the orbit weight functions faithfully encode the ssNPA’s full

forward model, Figure 4.14 shows that the energy resolved NPA flux calculated using the
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Figure 4.13: Normalized projections of the ssNPA(Fig. 4.12) orbit weight function at R=1.64
m for shot #159243 @ 790 ms

NPA orbit weights agrees with FIDASIM.
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Figure 4.14: Comparison of the energy resolved ssNPA flux for shot #159243 @ 790 ms
calculated by FIDASIM and by the NPA orbit weight functions and Equation 4.9.

Fast-ion D-α Spectroscopy (FIDA) Orbit Weight Function

The main FIDA system used at DIII-D is the Oblique FIDA system (Fig. 4.12), which

consists of an array of radial views of the 210RT neutral beam. The FIDA orbit weight

functions depend on wavelength. For instance, if we consider the orbit weight function for

a red shifted wavelength (Fig. 4.15) we can see that the chord (oblique@1.9m) sees signal

from counter-passing particles localized at Rm=1.91 m and also trapped particles from as

far out as Rm=2.18 m.
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Figure 4.15: Projections of the red shifted (λ = 660 ± 0.2 nm) FIDA orbit weight function
for an oblique viewing chord with midplane intersection at R=1.9 m.

We can also view the orbit weight function for a blue shifted wavelength for the same radial

position (Fig. 4.16). Unlike the red shifted orbit weight function, the blue shifted weight
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Figure 4.16: Projections of the blue shifted (λ = 652± 0.2 nm) FIDA orbit weight function
for an oblique viewing chord with midplane intersection at R=1.9 m.

function is not sensitive to counter-passing particles; only showing sensitivity to orbits that

are co-passing in the viewing region.

Like the other diagnostics, the spectra calculated using orbit weight functions closely matches

the spectra produced by FIDASIM (Fig. 4.17). Also compared in the figure is the spectra

calculated using velocity-space weight functions, which performs poorly in this case.
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Figure 4.17: FIDA Spectra for shot #159243 @ 790 ms calculated by FIDASIM and by the
FIDA orbit weight functions and Equation 4.9 for an oblique (Fig. 4.12) viewing chord at
R = 2.1 m.
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Chapter 5

Velocity-space Tomography

The previous chapter discussed the theoretical underpinnings of diagnostic weight functions.

In this and the next chapter, we discuss their main application: the inference of the fast-

ion distribution function from experimental measurements. As an appetizer for the main

course of this thesis, Orbit Tomography, we will first discuss its precursor Velocity-space

Tomography.

5.1 Mathematical Formulation

Velocity-space tomography, as the name suggests, uses velocity-space weight functions to

infer a local approximation of the fast-ion distribution function—the distribution is local

and approximate because, as we showed in the previous chapter, the weight functions are

local and approximate. Equation 4.1 can be discretized to form

s = wT · f , (5.1)
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where s is a scalar representing the measured signal, and the vectorized form of the velocity-

space weight function and the local fast-ion distribution is given by w and f respectively.

Equation 5.1 alone is insufficient to infer a meaningful distribution function. Since one

pixel distributions are of limited use, multiple measurements and their corresponding weight

functions are combined to create a system of linear equations:

s = W · f , (5.2)

where s is a column vector of the measurements and W is a weight matrix where each ith

row contains the weight function, wT
i , for the ith measurement, si. The number of elements

of f , which are colloquially called “pixels”, are chosen to to be less than the number of

measurements available in order to create an over-determined system of equations. Ideally,

the value of f is found by solving the over-determined system of equations; however, this is not

the case in practice. Measurement noise and model inaccuracies prevent a direct application

of linear algebra, requiring different methods to invert Equation 5.2. It is fortunate then

that the tomographic techniques that have been used in plasma physics research in the past,

provide a rich library of inversion methods to try.[61, 62, 63, 64, 65, 66, 67, 68]

Forms of tomographic reconstructions has been used in plasma physics research for a number

of decades; however, despite the long history, a single best method has not emerged. This

is because every tomography application is different. An inversion method well suited for

one application may not be suitable for a different application. This is particularly true for

Velocity-space Tomography since, unlike other types of tomography that use many measure-

ments that are averaged over a line-of-sight, we use relatively few measurements that are

averaged over a 2D area or, in the case of Orbit Tomography, a 3D volume. This precludes

certain types of inversion methods, such as Radon transforms. It also makes tomography

much more difficult since the many line-of-sight measurements of traditional tomography

provide excellent discriminating information, which shrinks the possible set solutions signif-
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icantly; the same cannot be said of the 2D/3D “lines-of-sight” of fast-ion tomography.

In order to determine their suitability for Velocity-space Tomography, in the following sec-

tions we will explore five different inversion methods that have been used in other applications

and benchmark them against known theoretical distribution functions. We will then use the

different methods to study the redistribution of fast-ions by a sawtooth crash.

5.2 Inversion methods

Measurement noise, error incurred by discretizing velocity-space, and the inherent flaws of

velocity-space weight functions discussed in the previous chapter prevent an exact solution to

Equation 5.2. We can instead use a probabilistic approach. Let’s assume that the measured

data, s, is distributed according to a multivariate normal distribution,

prob(s|f ,Σ) ∝ exp

(
−1

2
(W · f − s)T ·Σ−1 · (W · f − s)

)
, (5.3)

where Σ is a diagonal matrix containing the variance/noise of the measured data. This prob-

ability is also known as the likelihood. We would like to find the value of f that maximizes

the probability of observing the data. This can be reformulated as a minimization of the

log-probability, which is equivalent to the classic least-squares minimization:

minimize

{
1

2

∣∣∣∣W · f − s
∣∣∣∣2} (5.4)

where the barred variables are normalized quantities: W =
√

Σ−1 ·W and s =
√

Σ−1 · s.

The minimum, f̂ , of the above equation can be found analytically and is given by

f̂ =
(
W

T ·W
)−1
·WT · s . (5.5)
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This is known as the least-squares solution or the maximum likelihood solution.

The least-squares method is usually the first inversion technique tried and the first one

discarded. While the overall idea behind the method is sound, least-squares solutions tend

to fit the noise rather than the true underlying signal. This produces noisy and nonphysical

solutions, limiting the least-squares method to situations where the experimental noise is

very low and the model is very accurate; neither of which is the case for Velocity-space

Tomography. However, all is not lost as there are numerous methods that can improve the

least-squares solution.

5.2.1 Truncated Singular Value Decomposition

Truncated singular value decomposition (TSVD) is one method that can reduce the effects

of noise. Rewinding some, the least-squares solution (Eq. 5.5) can be written down as

f̂ = W
+ · s , (5.6)

where

W
+

=
(
W

T ·W
)−1
·WT

. (5.7)

This expression is known as the Moore-Penrose pseudoinverse. The pseudoinverse can also

be constructed via the following expression,

W
+

= V ·Σ+ ·UT , (5.8)

91



where the V, Σ, and U matrices are calculated from the normalized weight matrix via its

singular value decomposition (SVD),

W = U ·Σ ·VT , (5.9)

where U and V are unitary matrices, and Σ is a diagonal rectangular matrix containing,

in decreasing order, the square roots of the non-zero eigenvalues of WW T and W TW [69].

Σ+ is the pseudoinverse of Σ, which is formed by replacing every non-zero diagonal element

with its reciprocal. Equations 5.8 and 5.9 can also be written as sums

W =
r∑
j=1

σj uj · vTj ,

W
+

=
r∑
j=1

vj · uTj
σj

,

(5.10)

where r is the number of non-zero singular values, uj and vj are the jth columns of U and

V, respectively, and σj is the jth singular value.

While this is a bit of interesting mathematics, it is not immediately clear how this can improve

the least-squares solution. Consider the following. Let the measured signal be composed of

the true signal plus some noise: s = strue + ε. We can then express the least-square solution

as the sum

f̂ =
r∑
j=1

(
uTj · (strue + ε)

)
σj

vj =

ftrue︷ ︸︸ ︷
r∑
j=1

(
uTj · strue

)
σj

vj +

fnoise︷ ︸︸ ︷
r∑
j=1

(
uTj · ε

)
σj

vj , (5.11)

where the first sum is the true solution, ftrue, and the last sum describes the effect of the

noise, fnoise. For very small singular values, the least-squares solution can be completely

dominated by the noise term. We can reduce the effect of the noise by truncating the sum

after k terms, eliminating the effects of the smallest singular values. However, since the
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measured signal cannot be separated from the noise, the truncation would also affect the

first sum; making it impossible to reconstruct ftrue perfectly. In some situations, this is an

acceptable trade-off.

5.2.2 Regularized Least-Squares

Regularization is the process of adding additional information in order to solve an ill-posed

inverse problem. Regularized least-squares is a family of methods that “regularize” the least-

squares solution by adding a function to Equation 5.4 that constrains the possible set of

solutions to have certain properties defined by the regularizer. The regularized least-squares

solution is then found by minimizing the modified least-squares problem

minimize
{
χ2(x) + αR(x)

}
, (5.12)

where χ2(x) is the original least-squares functional given in Equation 5.4, R(x) is the regu-

larizing functional, and α is a hyper-parameter that controls the strength of the regularizer.

From a probabilistic standpoint, a regularizer is equivalent to a prior probability.

In the following sections, we will explore 4 different regularizers: 0th and 1st order Tikhonov

regularization, minimum Fisher information regularization, and maximum entropy regular-

ization.

0th and 1st Order Tikhonov Regularization

Tikhonov regularization is the most commonly used form of regularization. The regularizer

takes the form

R(x) = ||L · x||2 , (5.13)
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where L is called the Tikhonov matrix. This is a popular method because the minimum of

the functional (Eq. 5.12) has an analytic solution given by

f̂T =
(
W

T ·W + αLT · L
)−1
·WT · s . (5.14)

The Tikhonov matrix determines the nature of the regularization. For instance, the simplest

choice is to set L to be equal to the identity matrix, i.e. 0th order Tikhonov regularization.

When the functional(Eq. 5.12) is minimized with this regularizer, large absolute values in f

are penalized, which encourages a solution with a smaller variance.

Another popular choice is to use a finite-difference operator as a Tikhonov matrix, i.e. 1st

order Tikhonov regularization. This regularizer penalizes large gradients, which promotes

smooth solutions. To use this regularizer the LTL term in Equation 5.14 becomes

LT · L = 2mE∇T
E ·∇E +

m

2E

(
1− p2

)
∇T

p ·∇p , (5.15)

where ∇E and ∇p are matrix representations of finite difference operators in energy and

pitch space, respectively[40].

Minimum Fisher Information Regularization

Minimum Fisher information regularization uses a regularizer of the form[65]

R(g(x)) =

∫
g′(x)2

g(x)
dx . (5.16)

The minimum Fisher information regularizer penalizes large gradients normalized by the

function values. The normalization ensures the smoothing effect is strongest where the

function is smallest. This should, in principle, allow for solutions that have both sharp
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peaks and smooth features.

Typically, using a regularizer of this form would require the use of a non-linear optimization

algorithm to minimize the functional. However, in a previous application of this method[65],

an iterative algorithm that formulates the minimum Fisher regularizer as a Tikhonov matrix

was developed. The algorithm is as follows.

The first solution, f (1), is found using 1st order Tikhonov regularization. For each subsequent

iteration, the LT · L term in Equation 5.14 is set to

LTL = 2mE∇T
E ·M(n) ·∇E +

m

2E

(
1− p2

)
∇T

p ·M(n) ·∇p , (5.17)

where the elements of the matrix, M are given by

M
(n)
i,j =

1

f
(n−1)
i

δi,j if f
(n−1)
i > 0

M
(n)
i,j = M (n)

max δi,j if f
(n−1)
i ≤ 0 ,

(5.18)

where M
(n)
max is the largest M (n) for f

(n−1)
i > 0. The solution converges after a few iterations

(n ∼ 3).

Maximum Entropy Regularization

The last inversion method is maximum entropy regularization, which seeks to find the solu-

tion that maximizes entropy. This is done by using a regularizer of the form

R(x) = −
N∑
i=1

(xi −mi − xi ln(xi/mi)) , (5.19)

which is the negative of the Shannon information entropy. The regularizer is minimized

when xi = mi. Thus, mi is called the default model as it is the value xi will take in the

95



absence of data. The maximum entropy regularizer promotes solutions that are “close” to

the default model, only deviating from it in order to better fit the data. In this work, the

default model is set to be constant in order to prevent biasing of the solution; however, the

default model could be chosen to be given by a theoretical model, which is advantageous in

certain situations. The minimum of the functional, called the maximum entropy solution, is

found using a general non-linear optimization library[70, 71, 72].

5.2.3 Hyper-parameter Optimization

All of the discussed inversion methods rely on hyper-parameters that need to be chosen a

priori : the number of singular values, k, for truncated SVD and the regularizer strength

parameter, α, for regularized least-squares. Usually (and improperly), the hyper-parameters

are chosen to give the best looking results. We instead use the L-curve method[73] to choose

hyper-parameters systematically. In the L-curve method, reconstructions are calculated for a

range of hyper-parameter values, storing both the regularizer, R(x), and the goodness-of-fit,

χ2(x), values. When plotted on a loglog plot, the regularizer and the goodness-of-fit form a

L shaped curve (Fig. 5.1). The optimal hyper-parameter value is defined to be at the corner

of the L-curve because it represents a balance between fitting the data and regularizing the

solution. The corner is found by finding the point of maximum curvature of the L-curve

(Fig. 5.1).

5.3 Benchmarks using Synthetic Data

In this section, we compare the different inversion methods using synthetic data calculated

using Equation 5.2 and known distribution functions. This enables us to compare the per-

formance of the inversion methods using quantitative metrics since the true solutions are
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Figure 5.1: Example of how to chose the hyper-parameter based on the L-curve method for
the truncated SVD inversion method. The norm of the solution is used as a proxy for the
regularizer. Left: loglog plot of the L-curve. Right: Curvature of the L-curve. The point of
highest curvature/corner is indicated by the red point.

known.

5.3.1 Benchmarking Apparatus

Diagnostic Setup

The benchmarking exclusively uses synthetic FIDA measurements. We base the diagnostic

geometry on the FIDA systems installed at ASDEX Upgrade, which consists of five radial

arrays each intersecting the Q3 neutral beam. From each system, a line of sight that views the

center of the plasma is chosen (Fig. 5.2). The lines-of-sight originate from different positions

in the plasma wall and intersect the neutral beam at approximately the same position—a

requirement for Velocity-space Tomography. Each view has a different angle between its

line of sight and the magnetic field, probing different regions of the velocity space[41]. In

the plasma center, the respective angles are 14◦, 73◦, 103◦, 133◦ and 153◦. Descriptions of

ASDEX Upgrade’s FIDA systems are found in Reference [74].
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Figure 5.2: Sketch of the geometry of the FIDA diagnostic set-up. a) Top view of the
ASDEX Upgrade tokamak showing the NBI beam in grey and the FIDA lines-of-sight in
colours. Only the lines-of-sight used here are shown. b) Poloidal cross-section showing that
the FIDA measurement volume used here is slightly on the low-field side of the ASDEX
Upgrade tokamak.

Test Distributions

Three different velocity distributions are investigated: a Gaussian distribution, a bi-Maxwellian

distribution, and a NBI-distribution simulated by TRANSP/NUBEAM[75]. The three distri-

butions are shown in Figure 5.3. These three distribution functions pose different challenges

to the inversion methods. The Gaussian distribution represents a localized source of fast

ions, a proxy for the peaks at the injection energies found in the distributions of neutral

beam heated discharges. The bi-Maxwellian is a wide function covering the entire pitch

range. Here the challenge is to recreate the large-scale structure. Lastly, we study a neutral

beam injection distribution function. This is an important test case as it should be very

similar to the distribution functions in experiments with NBI heating. The challenge here is
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the structural complexity on both small and large scales.
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(b) Bi-Maxwellian.
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Figure 5.3: Test velocity distributions functions as a function of energy and pitch. The
functions are given in units of [ions/keV/cm3]

Simulating Measurement Noise

A realistic model of spectra noise is used in the benchmarking. The photon noise of FIDA

light scales approximately with the square root of the signal. However, in the absence of

FIDA light the photon noise is dominated by the amount of bremsstrahlung, B; setting a

lower limit on the noise level. These two effects are modeled as

Snoisy = Strue + k
〈√

Strue

〉
η η ∼ N (0,max

(√
B,
√
Strue

)
), (5.20)

where Snoisy is the noisy spectrum, Strue is the true noise-free spectrum, 〈〉 denotes a mean,

and k is a scaling constant that allows us to vary the noise level. By varying the noise level,

we can investigate how robust the methods are against noise. Figure 5.4 shows examples of

the standard deviation of the synthetic spectra calculated using the NBI test distribution

for k = 0.1, k = 0.5 and k = 0.9. The noise level of actual FIDA measurements depends on

the plasma parameters; a k value in the range 0.3-0.5 represents the typical noise level in a

discharge.
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Figure 5.4: Examples of the average noise levels in the synthetic spectra calculated using
the NBI test distribution and equation (5.20) for k={0.1, 0.5 and 0.9}. The width of the
spectra corresponds to the standard deviation of the noise for the given k-value.

5.3.2 Quantitative Comparison Metrics

The noise in the synthetic spectra propagates through the inversion process. If a single

synthetic spectra is used, one of the inversion methods could get lucky and perform better

then the rest. In order to quantify the average performance of the inversion methods, the

results of the inversion methods are averaged over an ensemble of 25 noisy spectra. The

variance of the reconstructions is used to quantify the effects of noise.

The inversion method itself also introduces a type of error. For instance, an inversion method

may systematically bias solutions to be overly smooth. We can quantify this bias by finding

the difference between the mean distribution for a given k and the true distribution:

bias = f̂µ − ftrue , (5.21)

where f̂µ is the mean distribution and ftrue is the true distribution. Combining the bias with
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the variance, we define a measure of the total uncertainty of a pixel by the mean squared

error, MSE, given by

MSE = variance + bias2 . (5.22)

The MSE summed over the inversion along with the ratio of the inferred to the true fast-ion

density are used as quantitative performance metrics.

5.3.3 Inversion Results

Gaussian Distribution

Figure 5.5 shows reconstructions of the Gaussian distribution calculated with the differ-

ent inversion methods for various noise levels. All methods reconstruct the position of the

Gaussian distribution well. The characteristic widths of the Gaussians are approximately

right but tend to be slightly larger than in the original test distribution. Measurement

noise enhances this trend. We further observe the appearance of jitter in the reconstruc-

tions throughout velocity space. The minimum Fisher information and maximum entropy

regularization methods stand out from the other methods in that they resemble the original

function the most and exhibit the least jitter. This suggests superior resolution performance

of these methods. Table 5.1 contains the true center coordinates and width of the Gaussian

distribution in both energy and pitch. Furthermore, it contains the values obtained from the

k = 0.5 reconstructions calculated using the five different methods. All methods find the

center coordinates well. The minimum Fisher information and maximum entropy methods

produce significantly more peaked distributions, which is seen in their ability to better match

the true width of the Gaussian.
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Table 5.1: Parameters of the Gaussian test distribution. Parameters are found by fitting
the reconstructed distributions to the analytic form of the true distribution.

True SVD T0 T1 MFI ME

µE [keV] 50 49.37±0.22 49.55±0.19 48.57±0.21 48.45±0.06 50.78±0.07
σE [keV] 10 15.16±0.32 15.34±0.27 16.61±0.30 11.24±0.08 8.87±0.10

µp [-] 0 0.008±0.005 -0.001±0.004 -0.001±0.004 -0.011±0.001 0.035±0.002
σp [-] 0.25 0.325±0.007 0.329±0.006 0.317±0.006 0.228±0.02 0.242±0.003
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Figure 5.5: Reconstructions of the Gaussian distribution (Fig. 5.3(a)) from on synthetic
measurements using various inversion methods and noise levels. The noise level k is defined
in equation (5.20). Distributions have units of [ions/keV/cm3]

Bi-Maxwellian Distribution

Figure 5.6 shows the reconstructions of the bi-Maxwellian distribution function. The large-

scale shape of the distribution is reproduced by all five inversion methods. The pitch angle

symmetry and long tail at p = 0 is also reproduced. The first-order Tikhonov, minimum

Fisher information, and maximum entropy methods reproduce the distribution particularly

well. Table 5.2 contains the true parallel and perpendicular temperatures used in calculating

the bi-Maxwellian and the values obtained from fitting the k = 0.5 reconstructions to the

analytic form of the bi-Maxwellian. For the bi-Maxwellian distribution, the minimum Fisher

information method most closely recreates the true values.
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Table 5.2: Parameters of the bi-Maxwellian test distribution. Parameters are found by
fitting the reconstructed distributions to the analytic form of the true distribution.

True SVD T0 T1 MFI ME

E‖ [keV] 3 5.12±0.19 5.34±0.18 4.98±0.09 2.94±0.06 4.09±0.13
E⊥ [keV] 20 24.36±0.73 26.26±0.73 23.79±0.35 22.51±0.32 24.73±0.61
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Figure 5.6: Reconstructions of the bi-Maxwellian (Fig. 5.3(b)) distribution from synthetic
measurements using various inversion methods and noise levels. The noise level k is defined
in equation (5.20). Distributions have units of [ions/keV/cm3]

NBI Distribution

Figure 5.7 shows reconstructions of the NBI distribution function for various noise levels and

inversion methods. This fast-ion distribution function is typical for neutral beam injection

with two co-current beams with injection energies at 80 keV and 70 keV and one counter-

current beam with an injection energy of 70 keV. Therefore, this distribution function is a

more difficult test case. The overall shape of the NBI distribution function is reproduced

by all five inversion methods. The protrusion at pitches of about 0.7 originates from the

co-current beam injection, and the weaker protrusion at pitches of -0.7 originate from the

counter-current beam injection. All reconstructions show the full energy beam injection peak

for co-current injection (positive pitch) at larger energies than that for counter-current injec-
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tion (negative pitch). The first-order Tikhonov, minimum Fisher information and maximum

entropy regularization results in smooth reconstructions. This makes the overall shape of

the function with protrusions at positive and negative pitches stand out most clearly. The

local maxima due to the beam injection peaks at full, half and third energies are recreated

by the maximum entropy method in the case of low noise (k = 0.1). They are also visible

in the SVD and zeroth-order Tikhonov tomographies at low noise; however, the peaks are

accompanied by other artifacts. For larger noise levels, none of the methods are able to

resolve more than one peak.
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Figure 5.7: Tomographies of the beam distribution from figure 5.3(c) in units of
[ions/keV/cm3] based on synthetic measurements using various inversion methods and noise
levels. The noise level k is defined in equation (5.20).

The uncertainties of the reconstructions of the NBI distribution are shown in Figure 5.8 for

a noise level of k = 0.5. The top row shows the square root of the variance of the reconstruc-

tions. Compared with the values of the reconstructions in Figure 5.7, the uncertainties are

about one order of magnitude smaller; the smallest for first-order Tikhonov and minimum

Fisher information regularization. The middle row shows the bias. Negative values denote

regions where too few ions are placed, positive values denote regions where too many ions are
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placed. The beam peaks are seen in the bias, especially for first-order Tikhonov, minimum

Fisher information and maximum entropy regularization as these are only able to resolve the

peaks for low noise levels. The last row shows the square root of the mean squared error.

The main contribution to the uncertainty is the bias.
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Figure 5.8: Uncertainties for the reconstructions of the beam distribution in units of
[ions/keV/cm3]. All uncertainties are calculated for a noise level of k = 0.5.

Noise Scaling

Figure 5.9 shows the behaviour of the performance parameters as a function of noise level.

Figures 5.9(a), 5.9(c) and 5.9(e) show the total mean squared error. The mean squared

error increases for larger noise levels for all inversion methods and test distributions. The

minimum Fisher information regularization method has the lowest mean squared error for

all test distributions. Figures 5.9(b), 5.9(d) and 5.9(f) show the density ratios. The general

trend is that the methods produce a lower density ratio for large error levels. Thus, for very

large noise levels the absolute values of an inferred density obtained from a reconstruction

might be unreliable. For the Gaussian test distribution, the minimum Fisher information and

maximum entropy methods are very good at recreating the correct density. The other three
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methods overestimate the amount of ions present. This is also the case for the bi-Maxwellian

distribution but not to the same extent. For the NBI test distribution, the spread in densities

is smaller than for the other cases.

5.4 Redistribution of Fast-ions by a Sawtooth Crash

A sawtooth crash is a periodic plasma instability which can occur when the central safety

factor drops below one. It changes the magnetic field topology and has been observed to

redistribute particles and energy from the center of the plasma. Furthermore, it has been

observed on several machines that passing fast ions are redistributed more strongly compared

to trapped ions [76, 33, 77, 11]. Here we use the five different inversion methods to investigate

the effect of a sawtooth on the central fast-ion population in ASDEX Upgrade. Figure 5.10

shows time traces from AUG discharge #31557. The sawtooth crashes are evident in the

central electron density as well as the central electron and ion temperatures. Experimental

FIDA spectra from just before and after the sawtooth crash in ASDEX Upgrade discharge

#31557 at 2.25 s was used in this analysis. The same diagnostic setup used in the benchmarks

is used here. Figure 5.11 shows the reconstructed distributions from just before and after the

crash. Figure 5.12 shows the uncertainties of the reconstructions of the pre-crash distribution.

The significant drop in fast ion density during the sawtooth crash is seen by all the inversion

methods. By comparing the absolute values of the reconstructions with the uncertainties, we

can identify the velocity-space regions where we can be confident in the result. Figure 5.13

shows the reconstructions normalized by
√

MSE for the five inversion methods. To calculate

the bias after the sawtooth crash, the Kadomtsev model as implemented in TRANSP is used

to model the effect of the sawtooth crash on the fast ions. The parts of velocity space where

the values are large correspond to regions where we are confident in the results and regions
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Figure 5.9: Noise scaling of the reconstructions of the test distributions. The left column
shows the total mean squared error. The right column shows the density ratio.
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Figure 5.10: Time traces of AUG discharge #31557. a) Toroidal magnetic field, total injected
NBI power and the plasma current. b) Ion and electron temperatures and electron density
at ρp = 0.1.
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Figure 5.11: Reconstructed fast-ion distributions before and after a sawtooth crash calculated
using the different inversion methods.

with low values correspond to uncertain regions. It is seen that the part of velocity space at

the full energy peak at 60 keV is very uncertain for all inversion methods. This is because

the methods are not able to resolve the peak given the choice of hyper-parameter.

To further investigate the velocity-space dependence of the change in the fast-ion distribution

function, we calculate the relative change:

∆f̂rel =
f̂after − f̂before

f̂before
. (5.23)

The relative change is calculated for every regularization method and plotted in Figure 5.14.

The top row shows the relative change as a function of energy and pitch. The bottom
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Figure 5.12: Measures of uncertainties using the different regularization methods. The bias
is calculated using the “true” distribution that is calculated using TRANSP’s Kadomstev
model.
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Figure 5.13: Reconstructions of the ion velocity distribution normalized with
√

MSE before
(top row) and after (bottom row) the sawtooth crash.

row shows the uncertainties of the relative change. The variance of the relative change is

calculated from an ensemble of relative changes, which was generated by sampling within

the error bars of the experimental spectra. The velocity-space dependence of the relative

change is especially clear in the first-order Tikhonov and the minimum Fisher information

figures as the amount of jitter in these reconstructions is significantly smaller compared to

the other methods. Both first-order Tikhonov and minimum Fisher information suggest that

ions with large pitch values are redistributed more compared to ions with pitch close to zero.

This trend is also confirmed by the singular value decomposition, zeroth-order Tikhonov
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Figure 5.14: Relative change of the fast-ion velocity distribution function.

and maximum entropy in the regions where the reconstructions are reliable. The unreliable

regions are shown as those with large standard deviation compared with amplitudes of the

reconstructions. Similar trends were observed previously using singular value decomposition

[77] and a variant of a first-order Tikhonov [74]. Figure 5.15 shows the ratio of the post-

crash distribution to the pre-crash distribution integrated over energy as a function of pitch

for all five inversion methods. Thus, it is a measure of the pitch dependence of the change

in the fast ion distribution function. For pitch values close to zero, all inversion methods

except maximum entropy predict a redistribution level of between 10% and 20%. For pitch

values above 0.4, the redistribution level increases to between 30% and 40% as seen by all

five inversion methods. For negative pitch values, where very few ions are present, it isn’t

possible to determine the amount of redistribution.

5.5 Discussion

In order to calculate the true bias of a given reconstruction, it is necessary to know the true

distribution. This makes it impossible to calculate the true bias of a reconstruction from

experimental measurements. Here, we have used a TRANSP distribution and the Kadomtsev

model to generate an estimate of the true distribution. However, in other cases it might not

be possible to calculate a good quantitative estimate. In these cases, the best one can do
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Figure 5.15: Ratio of the fast-ion velocity-space distribution functions before and after the
crash integrated over energy shown as a function of pitch.

is estimate a qualitative bias based on the general behavior of a inversion method. On the

other hand, uncertainties based solely on the propagation of measurement error through a

given inversion method only represents the spread of obtainable solutions, and thus can be

misleading since they can be made almost arbitrarily small, simply by over-regularizing.

When the noise level is not too large, the first-order Tikhonov, minimum Fisher informa-

tion and maximum entropy regularization methods can reconstruct the overall shape of the

true distribution function very well. However, the first-order Tikhonov and minimum Fisher

information methods lack capability to resolve very fine and detailed features. For large

noise levels, the maximum entropy has a tendency to produce solutions with large variances.

Truncated SVD and zeroth-order Tikhonov can resolve fine details, especially for measure-

ments with low noise levels; however, they often produce features in wrong parts of velocity

space.

It is seen that the absolute values of a derived quantity such as the fast-ion density depend

on the noise level in the data. However, we find that the ratio of such quantities is less
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sensitive to the specific noise level and bias. Hence, we can make statements about changes

in such quantities with greater confidence than about the absolute values themselves since

biases introduced by the inversion methods will tend to cancel. For example, the bias in the

reconstructions tends to be similar before and after a sawtooth crash, and hence it partly

cancels in the relative change.
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Chapter 6

Orbit Tomography

In this chapter we develop Orbit Tomography, a method that uses orbit weight functions to

infer the full fast-ion distribution function from experimental measurements.

Recall from Chapter 4 that the forward model of a diagnostic can be linearized into the

following form,

s =
∑
k

nkw(Jk) , (6.1)

where s is the diagnostic signal, nk is the number of fast ions on the kth orbit, and w(Jk)

is the orbit’s weight function. In the infinite limit, Equation 6.1 is an exact representation

of the diagnostic’s forward model. Truncating the number of orbits reduces the accuracy of

the representation but allows for the forward model to be discretized,

s = wT · n , (6.2)

where each element of w and n is the orbit weight function and number of fast-ions on the

orbit, respectively. When multiple measurements are available, they can be combined to
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form a system of linear equations,

s = W · n , (6.3)

where each row of W contains the weight vector, wT , for each measurement. Similar to

Velocity-space Tomography, the system of linear equations can be solved for the number of

fast ions on each orbit, n. Since orbit weight functions are used, instead of velocity-space

weight functions, we call the process of solving the system Orbit Tomography. In addition to

the increased fidelity of the linearized forward model, Orbit Tomography has several other

advantages over Velocity-space Tomography.

In Orbit tomography, the fundamental quantity is the fast-ion orbit. This is more natu-

ral than the “pixels” used in Velocity-space Tomography. Unlike “pixels”, fast-ion orbits

naturally correlate different spatial locations. Figure 6.1 shows the wavelength dependent

FIDA weight functions for a co-passing, counter-passing, and trapped orbit. Consider the

innermost viewing chord in Figure 6.1a. The counter-passing and trapped orbits are moving

away from the camera, producing strong red-shifted spectra (Fig. 6.1b). Interestingly, the

co-passing orbit, despite being spatially separated from the collection region of the innermost

viewing chord, produces a weak blue-shifted spectrum. The opposite is seen in the outer-

most viewing chord, Figure 6.1c, where the co-passing and trapped orbits produce a strong

blue-shifted spectra and the counter-passing orbit produces a weaker red-shifted spectrum.

The fast-ion orbits are correlating the different viewing chords together. Figure 6.1d proves

this assertion by showing the integrated FIDA signal produced by each orbit over a radial

array of viewing chords. Since the viewing chords are sensitive, to varying degrees, to all the

orbits, any diagnostic, regardless of geometry, can be used in Orbit Tomography. This is a

large improvement over Velocity-space Tomography, which is limited to spatially overlapping

diagnostics.
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Figure 6.1: FIDA orbit weights/spectra produced by three different orbits: trapped, co-
passing, and counter passing. Arrows indicate direction of the fast-ion poloidal velocity. (a):
Polodial projection of the orbits and oblique FIDA chords. (b): FIDA spectra produced by
the orbits at R=1.8 m. (c): FIDA spectra produced by the orbits at R=2.1 m. (d): Radial
profile of FIDA spectra integrated from 647-667 nm.

However, the largest advantage Orbit Tomography has over Velocity-space Tomography is the

ability to infer the entire fast-ion distribution, not just a local approximation. In Velocity-

space Tomography, there is no way to know how different spatial locations are related.

In Orbit Tomography, orbits connect different locations together—measuring one part of

the orbit automatically gives information along the entire orbit. This allows us to gain

information about spatial locations that are not directly measured. Multiple radial FIDA

arrays are then sufficient to infer the entire fast-ion distribution function.
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In the following sections, we discuss how Orbit Tomography is done in practice. We examine

how the irregularly shaped orbit-space necessitates an irregular grid and the development of

a new inference method. We then characterize the inference method in the same manner as

the velocity-space inference methods discussed in the previous chapter. We then demonstrate

the technique using experimental FIDA data from a classically described DIII-D discharge.

Finally, Orbit Tomography is used to study the redistribution of fast ions by a sawtooth

crash in an ASDEX Upgrade discharge.

6.1 Orbit Tomography Formulation

Orbit Tomography has a few technical details that must be handled with care. In the

following subsections, we will examine these details in order to provide a guide to performing

Orbit Tomography.

6.1.1 The Orbit-space Grid

The number of orbits used in the linearized forward model (Eq. 6.3) dictates its accuracy—

the more orbits, the more accurate the model. However, adding an orbit to the forward

model also adds a free parameter to the inverse problem, making it more difficult to solve

and more likely to produce solutions with large variances. Care must be taken when selecting

the number of orbits as to balance theses two goals. This is complicated by the irregular

shape of the orbit-space (Fig. 4.6). The irregular shape makes it difficult to choose orbits

that are representative of the orbit space.

A naive approach would be using a regularly spaced Cartesian grid. While conceptually

simple, the number of orbits needed to faithfully represent the space would exceed our

ability to accurately solve the inverse problem. An irregular grid, however, would be able
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to faithfully represent the space with fewer orbits. We can construct an irregular grid by

first computing a fine Cartesian grid and then use a clustering algorithm to split the orbits

into an arbitrary number of clusters. The centers of the clusters become the coordinates of

the orbits used in the analysis. Figure 6.2a shows the orbits that reside in a cluster and the

central orbit. The number of clusters/orbits used depends on the quality and quantity of the

available data. When first clustering the orbits, take care not to cluster orbits of different

topologies since they have orbit weights that are discongruent with each other.

Another consideration is the problem of balancing the resolution of the orbit-space and

configuration-space—the space where the diagnostics collects data. As mentioned in the

discussion about including the effects of the radial electric field in Chapter 4, the orbit weight

functions are sensitive to the locations of the fast-ions relative to the diagnostic’s collection

region. The orbits need to faithfully represent both orbit-space and configuration-space.

Fortunately, the clustering method naturally allows for increased coverage of configuration-

space while also limiting the number of orbits used. By averaging the orbit weights of the

individual orbits within a cluster, instead of only using the weight function of the central

orbit, the spatial affects can be partially accounted for—essentially acting like a compromise

between a fine and coarse grid. Figure 6.2b shows the difference between the central orbit’s

weight function and the averaged weight function. The averaging greatly increases the time

needed to calculate the orbit weights but also increases the accuracy of the linearized forward

model (Fig 6.2c), which reduces a source of systematic bias. It should be mentioned that this

process of averaging the orbit weights within each cluster is not strictly necessary and is only

recommended if the weight functions of central orbits produce spectra that are significantly

different from the full forward model.
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Figure 6.2: (a) Poloidal projection of an orbit cluster (blue) and the cluster’s central orbit
(red). (b) The wavelength dependent orbit weight functions for an oblique line of sight
(dashed line). The weight function calculated using only the central orbit is shown in red.
The average of the weight functions of the orbits within the cluster is shown in blue. (c)
Spectra produced using the different weight functions: single orbit weight function (red),
averaged weight function (blue). Spectra calculated by full forward model, FIDASIM, is
shown in orange. The averaged weight functions produce spectra closer to the full forward
model.

6.1.2 Bayesian Inference Method

Since we can control the number of orbits used in the inference, we typically design sys-

tems to be under-determined—making the inverse problem easier to solve. Despite this,

naive solutions (Eq. 5.5) have non-physical characteristics, such as many sharp gradients

and negative values. The solutions are also very sensitive to noise. As seen in the chapter
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on Velocity-space Tomography, this is a very common problem and strategies have been

developed to regularize these types of systems to be well behaved. Unfortunately, many of

the techniques are incompatible with an irregular grid. Additionally, the regularization tech-

niques are inflexible and unable to incorporate new types of constraints or hyper-parameters.

For these reasons, we use a Bayesian technique to infer the distribution.

Bayesian Background

Unlike some of the previous studied inversion methods, Bayesian techniques do not seek

to find a solution that minimizes a cost function but seeks to determine the distribution

of solutions that are consistent with both measured data and prior knowledge about the

solution.

Bayesian techniques are probabilistic in nature and, as such, deal with manipulating proba-

bility distributions. The main tools for doing this is Bayes rule,

prob(X|Y) =
prob(Y|X)× prob(X)

prob(Y)
, (6.4)

and marginalization,

prob(X) =

∫ ∞
−∞

prob(X,Y) dY. (6.5)

Bayes rule provides a rigorous framework for incorporating prior information and marginal-

ization provides a method of dealing with nuisance parameters—parameters that are needed

in the forward model but are not of interest.

Bayes rule consists of 4 distinct terms. The prob(X) term is called the prior probability

and it encodes prior knowledge about the model parameter, X. The next term, prob(Y|X),

is called the likelihood probability and is the probability of the data, Y , given the model
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parameter, X—the symbol (|) denotes a conditional relationship and should be read as

“given”. The likelihood probability is where measurement error can be accounted for, usually

in the form of a Gaussian distribution. Multiplying the likelihood probability with the prior

probability can be thought of as updating our prior knowledge about the model parameters

to be consistent with measurements. The term, prob(Y) (sometimes denoted as Z), is called

the evidence or marginal likelihood and it is the probability of our data occurring under

the assumed model. As will be seen later, the evidence is useful for model selection and

choosing hyper-parameter values. For parameter estimation problems, the evidence acts as

little more than a normalization constant and can be ignored. The final term, prob(X|Y),

is called the posterior and it is the probability of the model parameters, X, given the data,

Y . It represents the updated knowledge about the model parameters after incorporating

the knowledge learned from the measurements. Once the posterior is known, the best set

of parameters is found by either computing the mean value of the parameters or, when

calculating the mean is intractable, by finding the parameters that maximize the posterior,

the maximum a posteriori (MAP) estimate.

Prior & Likelihood Probabilities

There are several pieces of prior information that can be exploited. First off, though it

may not be immediately obvious, there is strong prior information in the well-diagnosed

magnetic equilibrium. Whatever form the fast-ion distribution function takes, the magnetic

equilibrium must be able to support it—just as an architect can only redesign a house to

be consistent with its existing framing. Fortunately, this structural constraint is already

incorporated in the form of the trajectories of the fast-ion orbits, ensuring that our estimate

of the distribution function will, at least, be consistent with the magnetic equilibrium. The

rest of our prior information is rather obvious: the distribution should be smooth, non-

negative, and “close” to theoretical predictions. The smoothness and “closeness” can be
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represented by using a Gaussian Process prior:

prob(n|µn,θ, {J}) = N (µn,Σn(θ, {J})) , (6.6)

where Σn(θ, {J}) is a covariance matrix—or kernel in Gaussian process parlance—that

correlates the different orbits, {J}, according to the hyper-parameters, θ. µn is a guess

distribution—usually the theoretical prediction, but, if the data are good enough, an all zero

null distribution would suffice. The best choice of the form of the covariance matrix is still

an open question, but here a standard squared exponential kernel in orbit-space is used,

Σnij = θ21 exp

(
− 1

2θ22

(
(Ji − Jj)

T · (Ji − Jj)
))

. (6.7)

The experimental data, d, is normally distributed around the linearized forward model’s

prediction, yielding the following for the likelihood probability,

prob(d|n,θ, {J}) = N (W · n,Σd) , (6.8)

where Σd is a diagonal matrix whose diagonal elements contain the variances/errors of the

measurements.

Posterior and Hyper-parameter Selection

With the prior and the likelihood specified, we can then define the posterior to be

prob(n|d,θ, {J}) = Z−1N (µ,Σ) , (6.9)
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where

Σ = (WT ·Σd
−1 ·W + Σn

−1)−1 (6.10)

and

µ = Σ ·WT ·Σd
−1 · d + Σ ·Σn

−1 · µn (6.11)

are the posterior covariance and mean, respectively. The last piece of prior information we

have is that the distribution should be positive; however, since the posterior takes the form of

a multivariate normal distribution, positivity of the mean, µ, is not guaranteed. To enforce

non-negativity, an optimization algorithm is used to maximize the posterior subject to a

positivity constraint.

The hyper-parameters in the prior (Eq. 6.6), θ, are chosen via log-evidence maximization.

The process of maximizing the log-evidence is equivalent to calculating Bayes factors used in

model comparison problems. Ignoring terms that do not depend on the hyper-parameters,

the log-evidence is given by

logZ =
1

2
(− log(|Σn

−1|)− log(|Σ−1|)−

(d−W · µ)T ·Σd
−1 · (d−W · µ)−

(µ− µn)T ·Σn
−1 · (µ− µn)) .

(6.12)

The log-evidence is maximized using standard optimization algorithms.
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6.2 Benchmark using Synthetic Data

The above inference method is benchmarked using synthetic data generated from the lin-

earized forward model (Eq. 6.3) using a known distribution function. The benchmark case

is modeled after DIII-D shot #171469; a MHD-quiescent plasma with a fast-ion distribu-

tion function that is well described by theoretical models(Fig. 6.3a). The orbit-space is
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Figure 6.3: (a): Theoretical fast-ion distribution function in orbit-space for the MHD-
quiescent H-mode of DIII-D discharge #171469. (b): The theoretical distribution function
down-sampled onto the clustered 1000-orbit grid. The mapping is done as follows: the fast-
ions in the theoretical distribution are assigned to the nearest cluster center. The number
of fast ions in each cluster is then spread out among the cluster’s orbits.

clustered into 1000 representative orbits. The theoretical fast-ion distribution function is

down-sampled onto this orbit grid (Fig. 6.3b). Since the synthetic data is being generated

from Equation 6.3, the accuracy relative to the full forward model is not relevant and, as

such, the central orbits’s weight functions are used as they are faster to calculate.

In addition to the standard FIDA systems used during most shots, the diagnostics used

in shot #171469 were in the so called “All out FIDA” configuration, which had most of

the available spectroscopic diagnostics tuned to view the FIDA wavelength region. This

diagnostics configuration was used to maximize the number of measurements that are used
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to reconstruct the fast-ion distribution function. Figure 6.4 shows all the FIDA lines-of-

sight used in the benchmark. In experiment, the measured spectra is corrupted by other
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Figure 6.4: “All out FIDA” diagnostic setup. 37 FIDA lines-of-sight that view the 210RT,
330LT, and 30LT neutral beams were used.

light sources, limiting the number of available measurements. For authenticity, the synthetic

spectra is similarly limited. The noise model (Eq. 5.20) from Chapter 5 is used to add noise

to the synthetic spectra. Figure 6.5 shows a sample of the synthetic spectra used in the

benchmark for three different noise levels. Since the forward model is exact, the theoretical

distribution is not used in the prior as it would have too much of an influence and defeat

the purpose of the benchmark—if the prior is perfect why bother with the posterior? A null

distribution comprised of all zeros was used.

Figures 6.6-6.7 shows the results of the benchmark. Figure 6.6 show the mean distribution,

nµ for three different error levels. All three reconstructions capture the bulk features of the

true distribution (Fig. 6.3b); however, the reconstructions have difficultly capturing fine
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Figure 6.5: Synthetic data generated using Equation 6.3 using the fast-ion distribution in
Figure 6.3b. (a): low noise (k=0.1). (b): medium noise (k=0.5). (c): high noise (k=0.9).
(d): The synthetic data vectors for k=0.1 (orange), k=0.5 (red), and k=0.9 (blue). A total
of 4579 measurements are used in the benchmark.

detail, enhancing the smoothing already present due to the down-sampling. As the error

level increases, so does the smoothing.

Figure 6.7 characterizes the variance, bias, and mean squared error (MSE) of the reconstruc-

tion for the medium noise case (k=0.5). The top row shows the square root of the variance

of the reconstruction, which shows that variance is larger for lower energy (< 25 keV) fast

ions. This makes sense as low energy fast-ions are more likely to produce spectra with small

Doppler shift, which would have been corrupted by the thermal halo emission and excluded

from the analysis. Since there is little data constraining the reconstruction in those areas,

the values of the distribution can vary wildly depending on the data, hence, the larger vari-

ance. The middle row shows the bias, nµ − ntrue, of the reconstruction. With the exception

of the peak at 20 keV, the bias has similar levels to the
√

variance, which occurs when the

bias-variance tradeoff is optimized. This indicates that the optimal solution was found. The

bottom row shows the square root of the MSE. The MSE is dominated by the peaks in the

bias. Otherwise, the MSE is well balanced between the bias and the variance.
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Figure 6.6: Reconstructions of synthetic data at 3 different noise levels. Top: low noise
(k=0.1). Middle: medium noise (k=0.5). Bottom: high noise (k=0.9). Each distribution is
on the same color scale.

Figure 6.8a shows the total MSE as a function of error level. As the error level increases,

so does the MSE. Between the variance and the bias, the bias is the most affected by the

increase in noise, remaining steady until an error level of 0.4 and then increasing. Figure 6.8b

shows the ratio of the number of fast-ions between the true and reconstructed distribution.

Throughout the error scan, the ratio is close to one. However, in the beginning of the scan

the ratio slightly increases towards the ideal ratio of one until an error level of 0.4 at which

the ratio begins to decrease. Figures 6.8c-d show the values of the hyper-parameters. The

first hyper-parameter, θ1, controls how far away the distribution can be from the provided

mean. Like the ratio of the number of fast ions, the first hyper-parameter increases until

an error level of 0.4 at which it decreases. Since the provided mean was a null distribution,

the decreasing value indicates a trend towards the null distribution. This is supported by
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Figure 6.7: Variance, Bias, and MSE for the medium noise case (k=0.5). Top row: square
root of the variance. Middle row: Bias of the reconstruction. Bottom row: square root of
the MSE.

the decrease in the ratio of the number fast ions after an error level 0.4. The second hyper-

parameter, θ2, controls the amount of correlation between the orbits, i.e. smoothing. As

the error increases, so does the amount of smoothing until a error level of 0.4 at which the

hyper-parameter no longer changes.

In summary, the inference method has a tendency to produce overly smooth distributions.

This tendency increases with error. Additionally, compared to velocity-space tomography,

the method is relatively insensitive to increases in noise. This is seen by comparing the rate

of increase in MSE in Figure 5.9 and Figure 6.8.
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Figure 6.8: Error scan of several quantitative metrics. (a): Error scan of the total MSE.
(b): Error scan of the ratio of the number of fast ions. A value of one (dashed line) is ideal.
(c-d): Error scans of the hyper-parameters.

6.3 Experimental Reconstructions

6.3.1 Data Considerations

The benchmark with synthetic data showed that inference of the full fast-ion distribution

function is technically feasible; however, real experimental data can introduce a number of

problems. One issue is that the reconstructions closely resemble the weight functions. This

occurs when the diagnostics have poor coverage of the fast-ion phase-space. In other words,

the weight functions do not overlap, which is an important requirement for all tomography

problems. The whole point of tomographic techniques is to combine the partial information

of a parameter contained within multiple measurements to infer the entire parameter. If

the weight functions do not overlap, the measurements are essentially independent and the

information contained within cannot be combined. This leads to learned parameters that
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are scalar multiples of the weight functions. However, when the weight functions overlap

the values the parameters can take are constrained as the value has to agree with multiple

measurements, not just one. The more measurements viewing the same region, the more

accurate the learned parameter. Unfortunately, the only way to resolve this issue is to add

weight functions that overlap with the existing weight functions, which is not always possible.

As shown in the benchmark case, a low signal to noise ratio can cause issues. If the data are

too noisy, many different proposal distributions would be consistent with the data, causing

high uncertainty and, possibly, a mean that is far away from the true distribution. Fortu-

nately, poor signal to noise can be mitigated. If it is assumed that the distribution function

does not change over a time period, the experimental data can be averaged over many time

slices, increasing the signal to noise. The resulting distribution would also be an average;

however, depending on the validity of the steady-state assumption, this may be close to

the instantaneous distribution. Lastly, systematic errors can cause significant problems.

Systematic error usually come in two forms: calibration errors and incomplete models.

In order to do Orbit Tomography the diagnostics must be absolutely calibrated, especially

if multiple diagnostics are used. Consider two diagnostics viewing the same region of phase-

space, call them A and B. The distribution function that produced the data for diagnostic A

is the same distribution that produced the data for diagnostic B. During the reconstruction,

they would both agree on the distribution that produced their respective data. However, if

diagnostic B was unknowingly miscalibrated, the diagnostics would be in disagreement. In

order to ensure consensus among the diagnostics, special care must be taken to guarantee

the calibration factors are correct. In some cases, the absolute calibration of a diagnostic

can drift during the course of an experimental campaign. In these cases, the calibrations can

be corrected for by using a reference discharge. In a reference discharge the experimental

conditions are well described by theoretical models and the experimental data should agree

with the forward models of the diagnostics. Any drift in the absolute calibration can then be
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corrected for by scaling the data to match the output of the forward models. The calculated

scale factors are then used to correct the data of subsequent discharges.

Systematic error introduced by incomplete models is harder to deal with. If a measurement

is a mixture of signal produced by the fast-ion distribution function and signal produced

by another unknown source, the forward model, unaware of the second source, will wrongly

assume that all of the signal comes from the fast-ion distribution function. In the best

case scenario, the second source is constant across measurements. In this case, the inferred

distribution would have a constant bias. However, if the corrupting source is different for

each measurement, it would wreak havoc on the reconstruction, as none of the measurements

would be consistent with each other. It would be like every measurement was miscalibrated

by a different scale factor. The only way to fix this is by including the second source into

the forward model.

It cannot be stated more strongly: all efforts should be undertaken to eliminate sources of

systematic error. However, if this is not possible, the effects of systematic error, as well

as random noise, can be reduced by limiting the number of free parameters used in the

reconstruction. By reducing the number of free parameters, the model becomes less flexible,

making it harder for the distribution function to contort itself trying to fit all the error ridden

data. In other words, it makes it easier for the diagnostics to compromise on a solution that

captures the broad strokes of the distribution, if not the fine details.

6.3.2 Reconstruction of a Classical Fast-ion Distribution

Keeping in mind the possible issues that can arise when attempting Orbit Tomography with

real data, here we reconstruct the fast-ion distribution from the discharge that our benchmark

case is based on, the MHD-quiescent, DIII-D discharge #171469. While previous benchmark

demonstrated that Orbit Tomography is technically feasible in an idealized scenario, here
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we demonstrate that Orbit Tomography is possible in experimental conditions.
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Figure 6.9: Time evolution of (a) plasma current, (b) beam power of the four utilized sources,
(c) line-average electron density, (d) Dα light from the lower divertor, (e) central electron
temperature as measured by ECE, and (f) volume-average neutron rate. The vertical line
indicates the selected analysis time.

The discharge conditions for the measurements appear in Figure 6.9. At the selected analysis

time, the plasma current is Ip = 0.91 MA (Fig. 6.9a). Four different neutral-beam sources

inject an average neutral-beam power of 2.7 MW (Fig.6.9b). All of the sources inject near-
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tangentially in the midplane (tangency radius Rtan = 115 cm). To facilitate time-slice

subtraction, three of the sources act as active FIDA beams and are only on one-third of the

time. In this discharge, the new capability to vary the injection energy during the discharge

[78] was employed on three of the four sources; the selected analysis time is near a minimum

of beam voltage and power (Fig. 6.9b). At this time, one 81.5 keV co-current source injects

an average power of 0.8 MW, two 64.7 keV co-current sources inject an average power of

1.5 MW, and one 65.6 keV counter-current source injects an average power of 0.4 MW.

The toroidal field of 1.9 T is in the clockwise direction, which implies downward ∇B and

curvature drifts. The plasma configuration is an elongated (κ ' 1.8), lower single null

configuration with upper and lower triangularity of δ = 0.35 and 0.6, respectively. In this

configuration, the power threshold for the L-to-H transition is relatively low, so an H-mode is

triggered at 1272 ms and causes rising electron density (Fig. 6.9c) and a sudden drop in cold

Dα light from recycling deuterium atoms (Fig. 6.9d). To avoid ELM contamination of the

FIDA signals, the selected analysis time is from 1350-1380 ms, shortly before the first ELM

at 1385 ms. The central electron temperature is 2.5 keV at this time (Fig. 6.91e) and the

neutron rate is 2.9×1014 sec−1 (Fig. 6.9f). No significant MHD occurs at the chosen time of

interest. By 1400 ms, a ∼ 70 kHz mode is observed on the magnetics and on the cross-power

of two CO2 interferometer chords, but this mode is undetectable between 1350-1380 ms.

The same reconstruction setup as the benchmark case is used with two exceptions: the

weight functions are averaged over the orbits within each cluster and the theoretical pre-

diction is used in the prior. Figure 6.10 shows the experimental data used in the recon-

struction compared against the theoretical prediction. Unlike the benchmark case, the noise

level varies across the different lines-of-sight. The mean error level is about k=0.3. Ad-

ditionally, the three different neutral beams that the lines-of-sight view can interfere with

each other. To prevent this affecting the data, the three beams were cycled on and off:

210RT→30LT→330LT. This sequence was chosen so that only one beam is on at a time and

subsequent beam in the cycle does not corrupt the preceding beam, providing a window to
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collect background signal for time-slice subtraction. As a result, the data are collected over

a range of 30 ms, 10 ms for each beam. It is assumed that the fast-ion distribution does

not change appreciably in this time window. Apart from a few lines-of-sight that are un-

derestimated by the theoretical prediction, the experimental data agree with the theoretical

prediction.

Figure 6.10: Theoretical (blue line) and Experimental (black lines) FIDA signal for DIII-
D shot #171469. With an exception of the few lines-of-sight that have more signal than
expected, the theoretical signal agrees with experiment.

0 20 40 60 80
Energy [keV]

−1.0

−0.5

0.0

0.5

1.0

(a
)

P
it
ch

at
R

m

1.8 1.9 2.0 2.1
Rm [m]

−1.0

−0.5

0.0

0.5

1.0

P
it
ch

at
R

m

0 20 40 60 80
Energy [keV]

1.8

1.9

2.0

2.1

R
m
[m

]

0 20 40 60 80
Energy [keV]

−1.0

−0.5

0.0

0.5

1.0

(b
)

P
it
ch

at
R

m

1.8 1.9 2.0 2.1
Rm [m]

−1.0

−0.5

0.0

0.5

1.0

P
it
ch

at
R

m

0 20 40 60 80
Energy [keV]

1.8

1.9

2.0

2.1

R
m
[m

]

0.0
0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
5.4

1e17

0.0
0.8
1.6
2.4
3.2
4.0
4.8
5.6
6.4
7.2

1e19

0.00
0.15
0.30
0.45
0.60
0.75
0.90
1.05
1.20

1e18

0
1
2
3
4
5
6
7
8

1e17

0.000
0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.000

1e20

0.00

0.24

0.48

0.72

0.96

1.20

1.44

1.68

1e18

Figure 6.11: Theoretical (a) and reconstructed (b) fast-ion distribution.for DIII-D shot
#171469. Both distributions are on the same color scale. The reconstructed distribution
over-estimates the total number of fast-ions by 37%.

Figure 6.11 shows both the theoretical and reconstructed fast-ion distribution functions.
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Comparing the two distributions shows that the reconstruction over-estimates the number

of fast ions, especially in the lower energy regions. Given that a few of the lines-of-sight

had more signal than predicted, this is not surprising. The ratio of the number of fast ions

is 1.37, which is larger than what was suggested by the synthetic data benchmark. This

indicates that our reconstruction, despite our best efforts, suffers from a systematic error,

either from an unknown light source or a calibration error. Given that many of the lines-of-

sight were co-opted from other systems that do not typically view D-α emission, the likely

source of the systematic error is miscalibration. It could also be that our “well-understood”

distribution is not so well understood. However, despite the aforementioned problems, the

reconstruction is similar to the theoretical prediction verifying that Orbit Tomography is

possible in experimental conditions.

6.3.3 Redistribution of Fast Ions by a Sawtooth Crash

As seen in the previous section, the effects of systematic errors and biases can hamper Orbit

Tomography. However, this does not diminish its usefulness in the study of relative changes

in the fast-ion distribution function. As mentioned in the previous chapter, while a recon-

struction may suffer from systematic error or biases, the errors are stationary. The classic

example is a miscalibration, which does not change over many discharges. The reconstructed

distributions may be a bit off, but they are consistently off, making the study of relative

changes in the distribution possible. We, therefore, take a page from the previous chapter

and study the relative changes in the fast-ion distribution induced by a sawtooth crash.

As stated in the previous chapter, a sawtooth instability occurs when the central safety

factor, q0, drops below one. When this occurs a n = m = 1 internal kink can form and

grow unstable, causing a magnetic reconnection event, i.e. crash. During the crash, the

magnetic fields within the q = 1 surface changes, perturbing the fast-ion population. From
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previous publications and the previous chapter, it is known that there is a reduction in the

number of fast ions within the q = 1 surface[40, 53, 11]. Other publications also indicate that

there is a corresponding increase in the number of fast ions outside the q = 1 surface.[11, 9]

This can be seen in Figure 6.12[9] which shows the percent change in the Imaging NPA

image, clearly showing both the decrease and increase in the fast-ion density inside and

outside of the q = 1 surface. Additionally, it is known from the previous chapter and other

publications[33, 40, 11] that the sawtooth crash primarily affects the passing fast ions in the

core since they are more closely tied to flux surfaces. This is seen in a pronounced reduction

in fast-ion density where the pitch is greater than 0.5.

Figure 6.12: Relative change in the INPA image caused by a sawtooth crash. Within the
q = 1 surface at 1.885 m the signal decreases, while outside the q = 1 surface the signal
increases. Figure courtesy of Xiaodi Du[9]

For our analysis we use ASDEX Upgrade shot #32323, which was previously studied with

Velocity-space Tomography.[46, 10] Figure 6.13 shows the of time evolution the stored energy

and auxiliary heating power as well as the electron and ion temperatures in the plasma center

and the line averaged electron density. At the time of interest (2236 ms), the plasma current

is ∼1 MA, directed counter-clockwise; a toroidal field of 2.72 T was directed clockwise. A

single co-current NBI source provided 2.5 MW of heating with an injection energy of 59 keV.
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Figure 6.13: Time evolution of the ASDEX Upgrade shot #32323. Top: auxiliary heating
provided by neutral beam injection and ECRH and plasma stored energy WMHD. Bottom:
line-averaged electron density and the ion and electron temperatures in the plasma center.
The time of interest is highlighted in orange: 2.236 s. Figure courtesy of Mirko Salewski.[10]

The plasma shape is elongated (κ ' 1.65) with an lower and upper triangularity of δ = 0.29

and 0.04, respectively. ECE measurements were used to identify the inversion radius of the

crash, which occurs around 1.85 m, close to the q = 1 surface. Figure 6.14(a) shows the

q profile before and after the crash. Figure 6.14(b) shows the drop in the soft x-ray signal

caused by the crash, which lasts about 75 µs.

We use experimental FIDA data to reconstruct the fast-ion distribution before and after the

sawtooth crash. The FIDA system at ASDEX upgrade is ideal for Orbit Tomography as it

has multiple radial arrays viewing the same beam from different angles, providing excellent

coverage of the fast-ion phase-space. Additionally, each line of sight views both the red and

blue shifted spectrum and, since ASDEX Upgrade does not use a graphite wall, the red

shifted wavelengths are not corrupted by Carbon impurities, which are present in DIII-D

discharges. Figure 6.15 shows the ASDEX Upgrade’s FIDA systems. Figure 6.16 shows the

experimental data, which is collected 5 ms before and after the sawtooth crash.

Despite the excellent FIDA system, some issues arose. The slowing down time of the distri-

bution was too short. This prevented the use of time slice subtraction to remove background
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Figure 6.14: (a) TRANSP calculated q profiles before (2230 ms) and after (2240 ms) the
sawtooth crash. q=1 line Position of the experimental value of the inversion radius (1.85 m)
is indicated in green. (b) Averaged soft x-ray signal from two poloidally similar but toroidally
separated lines-of-sight. The crash occurs at 2236 ms and has a duration of approximately
75 µs indicated by the dashed vertical lines. Figure courtesy of Asger Schou Jacobsen.

Figure 6.15: ASDEX Upgrade FIDA lines-of-sight. 26 lines-of-sight comprising of ∼ 2300
measurements are used to reconstruct the fast-ion distribution before and after the sawtooth
crash. Figure courtesy of Markus Weiland[11]

signal. As a consequence, a large passive FIDA signal was present in the outer lines-of-sight,

a source of systematic error. To resolve the issue, the passive FIDA was included in the

analysis. This was easier said than done. The calculation of the passive FIDA requires the
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Figure 6.16: ASDEX Upgrade FIDA data taken 5 ms before (red) and after (blue) the
sawtooth crash.

cold edge neutral density, which is not well diagnosed. For our analysis we used the 1D neu-

tral diffusion model implemented in TRANSP along with a scale factor that was chosen via

log-evidence maximization. A similar scheme was used in analyzing passive FIDA emission

in NSTX-U[79]. Additionally, sawtooth crashes are known to impact the edge neutral den-

sity. Since the edge neutral scale factor has an inverse relationship with the fast-ion density,

the inversion method could interpret this as an change in the fast-ion density at the edge.

To prevent this, it is assumed that the sawtooth crash has no affect on the total number

of fast ions. This is a reasonable assumption for a 59 keV beam ions at Ip = 1 MA for

sawteeth with a normalized inversion radius of ρp = 0.47. This was enforced by introducing

a “measurement” of the total number of fast ions.

In the previous study of this discharge[46], Velocity-space Tomography was used to infer the

local fast-ion distribution function within the q = 1 surface, in which they observed a ∼30%

reduction in the fast-ion population most of which were passing fast-ions. Figure 6.17 shows

the reconstructed fast-ion distributions 5 ms before and after the sawtooth crash. It can be

seen in the center column that there is a depletion of fast-ions for Rm < 1.8 m. Figures

6.18(a)-6.18(b) show the absolute and percent differences of the reconstructions projected

onto the poloidal plane. These figures show a ∼ 30% decrease within the q = 1 surface

and a corresponding increase outside the q = 1 surface. This is consistent with the previous
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Figure 6.17: Top: Reconstruction of the fast-ion distribution 5 ms before the sawtooth crash.
Bottom: Reconstruction of the fast-ion distribution 5 ms after the sawtooth crash. Both
distributions are on the same color scale.

analysis of this discharge as well as other experimental studies.[11, 9, 46]. From these figures,

it also easy to identify the inversion radius, which lies just inside the q = 1 surface. This

agrees with our previous estimate that used ECE measurements. It is also consistent with

Figure 6.12, which showed the same trend for a DIII-D discharge. Since the entire fast-ion

distribution function is at our disposal, we can zoom in on a specific spatial location to

study local transport. Figures 6.19 show the experimental absolute and percent differences

in energy-pitch space both inside and outside the q = 1 surface. These figures again confirm

previous experimental studies since they also show that the co-passing fast-ions are the most

affected by the sawtooth crash inside the q = 1 surface (Fig. 6.19(a)).

6.4 Discussion

With the validation of the results from previous sawtooth experiments, Orbit Tomography

has proven itself to be a powerful new analysis technique. Before Orbit Tomography, there

was no way to know what fast-ion distribution generated the diagnostic measurements. The
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Figure 6.18: Experimental absolute and percent differences in fast-ion density 5 ms before
and after the sawtooth crash

only thing that could be definitively stated was that a given theoretical distribution produces

synthetic data that is consistent with all the experimental measurements. This can lead to

binary conclusions—If the synthetic data matched the experimental data then we could state

that the fast-ions behaved as expected; if synthetic data didn’t match the experimental data

then we could state that the fast-ions didn’t behave as expected. With Orbit Tomography,

however, the need for a theoretical distribution is negated and the fast-ion distribution can

be inferred directly from the data.

For theoretical physicists, Orbit Tomography provides a way to validate their models down

to the finest details. For experimental physicists, it facilitates analysis that could only have

been previously done using theoretical models. Orbit Tomography also allows experimen-

talists to know, in great detail, what the knobs on the tokamak actually do to the fast-ion

distribution function. This leads to more agile development of optimized regimes—we try

an experiment, we use Orbit Tomography to determine what happened to the distribution,
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Figure 6.19: Experimental absolute and percent differences in Energy-pitch space 5 ms before
and after the sawtooth crash inside the q=1 surface at R=179 cm (top row) and outside the
q=1 surface at R=191 cm (bottom row). Hatched areas are where the percent differences
diverged due to a small denominator.

with that information we improve the experiment. This type of iterated development could

lead to the faster creation of high performance scenarios.

In its current form, Orbit Tomography could fundamentally change fast-ion physics; however,

it would not do to rest on one’s laurels. In the next chapter, we look towards the future

of Orbit Tomography where we discuss ways to improve the method and an exciting new

application of the technique.
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Chapter 7

Outlook

Orbit Tomography is a powerful new technique; its proliferation as a common diagnostic

tool, however, is uncertain. What is certain is that without continual improvements to the

method and new applications, this promising technique will die on the vine. In the following

few sections, we discuss how the technique can be improved and a new application to runaway

electrons.

7.1 Combining Multiple Fast-ion Diagnostics

While the demonstrated application of Orbit Tomography limited itself to FIDA data, there

is no reason why data from other fast-ion diagnostics could not also be incorporated into

the reconstructions. In fact, most devices have more than one set of fast-ion diagnostics.

For example, MAST-U has several fast-ion diagnostics: FIDA spectrometers, neutron colli-

mators, 3 MeV proton detectors, and NPAs. In order to incorporate a new diagnostic, the

orbit weight functions need to be calculated, which requires a complete forward model of the

diagnostic.
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Orbit weight functions have already been calculated for the beam-plasma neutron rate and

for DIII-D’s solid state NPA. The reason they were not included in the reconstruction of

DIII-D shot #171469 is that they lack an absolute calibration, which is necessary for Orbit

Tomography. In the future this limitation could be bypassed by “calibrating” the diagnostic

to a reference discharge. This is the planned approach for incorporating the Imaging NPA

(INPA) diagnostic into the reconstructions.

In principle, adding new diagnostic data is as simple as adding a row to the weight matrix,

but in practice there may be complications. One complication that was observed when com-

bining diagnostics in Velocity-space Tomography[32, 43, 80, 81] was that data from a single

diagnostic can dominate the reconstruction. This is undesirable since the reconstruction

can, to its detriment, ignore the data from other diagnostics. This can lead to over-fitting.

It is expected that this will occur when the INPA is incorporated since it provides many,

low-noise measurements. If any biases or systematic errors are present in the INPA data,

then the other diagnostics will not be able to compensate.

7.2 Locally Smooth Covariance Matrix

Presently, Orbit Tomography uses a Gaussian Process prior (Eq. 6.6) with a squared expo-

nential kernel (Eq. 6.7) to correlate different points in orbit-space. This has a smoothing

effect. However, the benchmark performed in the previous chapter showed that this choice

of prior produced distributions that were too smooth, causing peaked features to be washed

out. The reason for this is the flawed assumption that orbits that are near each other in

orbit-space should be more correlated than points that are far away from each other, i.e. we

assume that the distribution is smooth in orbit-space. This is flawed because the physical

process that causes distribution functions to be smooth, scattering, occurs between particles,

not orbits. Apart from sharp gradients that occur near loss boundaries, the know distribution
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is smooth in {E,p,r,z}-space, since that is the space where scattering occurs.

To properly correlate the orbits, we define a covariance matrix in {E,p,r,z}-space, Σ{E,p,r,z},

and then transform it into a covariance matrix in orbit-space, Σn. The linear transformation

of a covariance matrix is given by

Σn = R ·Σ{E,p,r,z} ·RT , (7.1)

where R is a matrix that converts a discretized distribution in {E,p,r,z}-space, f , into an

orbit-space distribution, n = R · f .

Unlike in orbit-space, a squared exponential kernel is appropriate in {E,p,r,z}-space. How-

ever, computer memory becomes an issue if the {E,p,r,z}-space grid is large, as Σ{E,p,r,z} is

a (nE ·np ·nr ·nz)× (nE ·np ·nr ·nz) matrix, where nX denotes the number of elements in the

X dimension. It also becomes computationally inefficient since matrix multiplication scales

as O(N3) where N is the size of the matrix. Fortunately, we can use the fact that orbits

naturally correlate different spatial locations together to create a covariance matrix that is

both memory and computationally efficient.

Let us define an (nE · np)× (nE · np) {E,p}-space covariance matrix for every point in {r,z}-

space, the elements of which are given by

Σ{E,p}ij = θ21 exp

(
−1

2

(
([E, p]i − [E, p]j)

T · diag(θ22, θ
2
3)
−1 · ([E, p]i − [E, p]j)

))
, (7.2)

where θ1−3 are hyper-parameters controlling the amount of correlation/smoothness. Since

we are letting the transformation into orbit-space correlate different points in {r,z}-space,

we can define the {E,p,r,z}-space covariance matrix to be,

Σ{E,p,r,z}ij = (δrij · δzij)Σ{E,p} , (7.3)
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where δrij and δzij are Kronecker deltas whose product only take the value of one when the

ith and jth points have the same r and z values. This forms a block diagonal matrix where

each block is identical. We can represent this compactly as a Kronecker product,

Σ{E,p,r,z} = I⊗Σ{E,p} , (7.4)

where I is a (nr ·nz)×(nr ·nz) identity matrix and ⊗ denotes a Kronecker product. Since this

matrix is sparse, it can be multiplied efficiently and stored compactly. Another advantage

of this choice of covariance matrix is that the inverse of the matrix can also be represented

as a Kronecker product,

Σ−1{E,p,r,z} = I⊗Σ−1{E,p} . (7.5)

This property makes the prospect of inferring the distribution function in {E,p,r,z}-space

more feasible.

7.3 Application to Runaway-electron Diagnostics

Although this thesis focuses primarily on fast ions, there is a second energetic particle species

that is becoming an increasingly important area of research, the runaway electrons. During a

disruption event an electric field is generated, causing thermal electrons to reach relativistic

energies. If the energy of the electrons exceed a critical energy, the acceleration due to the

electric field exceeds the deceleration due to collisional drag and a runaway effect occurs.

If containment is lost, these runaway electrons can severely damage the vessel walls and

cooling systems. Wall damage can adversely impact subsequent experiments and should

be repaired as soon as possible. For most devices, however, vessel access is limited and

repairs are often delayed. This is especially true for ITER where repairs are expected to
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take months due to the complex machinery and the expected strong irradiation of plasma

facing components.[82, 83, 84, 85] It is no wonder then that development of runaway electron

control mechanisms are becoming a focus of the fusion community.

A key challenge of developing effective control mechanisms is simply being able to mea-

sure the runaway-electron distribution function in its entirety—imagine trying to control

something you cannot fully see. Since runaway electrons, like fast ions, follow orbits, the

principles and techniques of fast-ion diagnostics can be directly applied to runaway-electron

diagnostics. Provided there is a complete forward model of the runaway electron diagnostics,

we can use Orbit Tomography to infer the runaway electron distribution function.

There are many different runaway-electron diagnostics: scintillators, synchrotron cameras

and spectrometers; however, the recently developed Gamma Ray Imager[86] (GRI) shows

the most promise for Orbit Tomography. The Gamma Ray Imager measures bremsstrahlung,

hard-x-ray emission produced when the runaway electrons are scattered off the background

plasma. The diagnostic provides spatial, temporal, energy, and—to a lesser extent—pitch

angle resolved measurements; a diagnostic built for Orbit Tomography. Plans have been

made to calculate the Gamma Ray Imager’s orbit weight functions and work will begin in

the coming months.
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Appendix A

Time Dependent Collisional Radiative

Model

The collisions that the fast-neutral experiences as it travels through a plasma changes the

distribution of its energy level population. The collisional radiative model assumes that the

populations of excited states with the same principal quantum number n are distributed

according to a Boltzmann distribution. This allows us to only consider transitions between

different energy levels. However, this assumption has been shown[87] to break down when

the electron density is less than 1014 cm−3. In this regime the following collisional radiative

model can overestimate the D-α emission by about 20-25%. This remains a source of error

in our model.

The types of collisions that the model considers are as follows

• Spontaneous transitions: Am→n/An→m

• Electron/Ion/Impurity-impact excitation/de-excitation: q
e|i|Z
m→n/q

e|i|Z
n→m

• Electron/Ion/Impurity-impact ionization: I
e|i|Z
n

155



• Charge exchange with ions/impurities: X
i|Z
n

With the exception of the spontaneous transitions which has units of s−1, the above rate

coefficients have units of cm3/s and are calculated by averaging the respective collisional

cross sections with a Maxwellian of the relevant species.

The quasi-static equilibrium population flux of the nth energy level of a neutral atom, fn,

can be described by the following time dependent differential equation

dfn
dt

=−

(∑
k=i,Z

fndkX
k
n +

∑
k=e,i,Z

fndkI
k
n

)

+
∑
m>n

(
fmAm→n +

∑
k=e,i,Z

(fmdkq
k
m→n − fndkqkn→m)

)

+
∑
n>m

(
−fnAn→m +

∑
k=e,i,Z

(fmdkq
k
m→n − fndkqkn→m)

)

where the dk are the respective target densities.

Rearranging terms and letting qkn→m represent excitation/de-excitation depending on the

order of the indices yields the following equation,

dfn
dt

= Cnnfn +
∑
m 6=n

Cnmfm, (A.1)

where

Cnn = −

[∑
k=i,Z

dkX
k
n +

∑
k=e,i,Z

dkI
k
n +

∑
m6=n

(
An→m +

∑
k=e,i,Z

dkq
k
n→m

)]
(A.2)

and

Cnm = Am→n +
∑

k=e,i,Z

dkq
k
m→n. (A.3)
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The system of differential equations can be compactly represented as a matrix multiplication.

df

dt
= C · f (A.4)
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Appendix B

Atomic Cross Sections
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B.1 Hydrogen-Hydrogen Interactions

B.1.1 Charge Exchange: H+ +H(n)→ H(m) +H+

References

• ADAS[52]

• Equation 44 and Table 9 in Janev[16]
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Figure B.1: Hydrogen-Hydrogen charge exchange cross sections: (a) charge exchange from
the n = 1 level; (b) charge exchange from the n = 2 level; (c) charge exchange from the
n = 3 level; and, (d) charge exchange from the n = 4 level.
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B.1.2 Excitation: H+ +H(n)→ H+ +H(m),m > n

References

• Equation 29.b and Table 4 in Janev[16] for n = 1 and m = 2

• Equation 30 and Table 5 in Janev[16] for n = 1 and m = 3− 6

• Equation 31 and Table 5 in Janev[16] for n = 1 and m > 6

• Equation 32 and Table 6 in Janev[16] for n = 2 and m ≤ 5

• Equation 33 and Table 6 in Janev[16] for n = 2 and m = 6− 10

• Equation 34 and Table 6 in Janev[16] for n = 2 and m > 10

• Equation 35 and Table 7 in Janev[16] for n = 3 and m ≤ 6

• Equation 36 and Table 7 in Janev[16] for n = 3 and m7− 106

• Equation 37 and Table 7 in Janev[16] for n = 3 and m > 10

• Equation 38-39 in Janev[16] for n > 3 and m > 4
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Hydrogen Excitation Cross Sections
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Figure B.2: Hydrogen-Hydrogen excitation cross sections: (a) excitation from the n = 1
level; (b) excitation from the n = 2 level; (c) excitation from the n = 3 level; and, (d)
excitation from the n = 4 level.
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B.1.3 Ionization: H+ +H(n)→ H+ +H+ + e

References

• Equation 40 and Table 8 in Janev[16] for n = 1

• Equation 5 and Table 1 in O’Mullane[88] for n ≥ 2
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Figure B.3: Hydrogen-Hydrogen ionization cross sections from different n levels.
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B.2 Hydrogen-Electron Interactions

B.2.1 Excitation: e+H(n)→ e+H(m),m > n

References

• Equation 5 and Table 2 in Janev[16]

• Equation 6-7 in Janev[16]

• Section 2.1.1 B in Janev[16]
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Figure B.4: Hydrogen-Electron excitation cross sections: (a) excitation from the n = 1 level;
(b) excitation from the n = 2 level; (c) excitation from the n = 3 level; and, (d) excitation
from the n = 4 level.
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B.2.2 Ionization: e+H(n)→ e+H+ + e

References

• Equation 14 and Table 3 in Janev[16]

• Equation 15-16 in Janev[16]
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Figure B.5: Hydrogen-Electron ionization cross sections from different n levels.
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B.3 Hydrogen-Impurity Interactions

B.3.1 Charge Exchange: Aq +H(n)→ A(q−1)+ +H+

References

• ADAS[52]

• B5+: Page 166 in Janev1993[89] for n = 1

• C6+: Page 168 in Janev1993[89] for n = 1

• Aq+: Page 174 in Janev1993[89] for n > 1, q > 3

Carbon Charge Exchange Cross Sections
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Figure B.6: Hydrogen-Carbon charge exchange cross sections from different n levels.
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B.3.2 Excitation: C6+ +H(n)→ C6+ +H(m),m > n

References

• Aq+: Page 132 in Janev1993[89] for n = 1,m = 2, q > 4

• Aq+: Page 134 in Janev1993[89] for n = 1,m = 3− 4, q > 3

• Aq+: Page 136 in Janev1993[89] for n = 1,m > 4, q > 4

• Aq+: Page 138 in Janev1993[89] for n = 2,m = 3− 5, q > 3

• Aq+: Page 140 in Janev1993[89] for n = 2,m > 5, q > 3

• Aq+: Page 142 in Janev1993[89] for n = 3,m = 4− 6, q > 3

• Aq+: Page 144 in Janev1993[89] for n = 3,m > 6, q > 3

• Aq+: Page 146 in Janev1993[89] for n > 3,m > n, q > 3
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Carbon Excitation Cross Sections
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Figure B.7: Hydrogen-Carbon excitation cross sections: (a) excitation from the n = 1 level;
(b) excitation from the n = 2 level; (c) excitation from the n = 3 level; and, (d) excitation
from the n = 4 level.
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B.3.3 Ionization: Aq+ +H(n)→ Aq+ +H+ + e

References

• ADAS[52]

• B5+: Page 152 in Janev1993[89] for n = 1

• C6+: Page 154 in Janev1993[89] for n = 1

• Aq+: Page 160 in Janev1993[89] for n > 1, q > 3

Carbon Ionization Cross Sections
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Figure B.8: Hydrogen-Carbon ionization cross sections from different n levels.
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Appendix C

Derivation of Reaction Rate Equation

〈σv〉 =

∫∫
σ(Erel)||v − v′||δ(v′ − vB)

[ mT

2πkT

] 3
2
e−

mT
2kT

(v·v)dv′ dv (C.1)

Let vB be in the ẑ direction and calculate the first integral

∫
σ(Erel)

√
v2x + v2y + (vz − vB)2

[ mT

2πkT

] 3
2
e−

mT
2kT

(v·v)dv (C.2)

Let vr = vxcos(θ) + vysin(θ) the integral takes the form

[ mT

2πkT

] 3
2

∫∫ ∫ 2π

0

σ(Erel)
√
v2r + (vz − vB)2e−

mT
2kT

(v2r+v
2
z)vrdθ dvr dvz (C.3)

Integrating over θ yields

2√
π

[ mT

2kT

] 3
2

∫∫
σ(Erel)

√
v2r + (vz − vB)2e−

mT
2kT

(v2r+v
2
z)vr dvr dvz (C.4)

169



Let vz =
√

2kT
mT

uz and vr =
√

2kT
mT

ur

2√
π

[ mT

2kT

] 3
2

∫∫
σ(Erel)

√√√√2kT

mT

u2r +

(√
2kT

mT

uz − vB

)2

e−(u
2
r+u

2
z)

[
2kT

mT

] 3
2

ur dur duz (C.5)

Simplifying

〈σv〉 =
2√
π

√
2kT

mT

∫∫
σ(Erel)

√
u2r +

(
uz −

√
mT

2kT
vB

)2

e−(u
2
r+u

2
z)ur dur duz (C.6)

The velocity of the beam ion is given by

vB =

√
2EB
mB

(C.7)

Plugging the beam velocity into equation C.6 gives

〈σv〉 =
2√
π

√
2kT

mT

∫∫
σ(Erel)

√√√√u2r +

(
uz −

√
EBmT

mBkT

)2

e−(u
2
r+u

2
z)ur dur duz (C.8)

The relative energy, Erel is given by

Erel =
1

2
µ
(
v2r + (vz − vB)2

)
(C.9)

where µ is the reduced mass. In terms of the transformed velocity u the relative energy is

Erel = µ
kT

mT

u2r +

(
uz −

√
EBmT

mBkT

)2
 (C.10)
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Appendix D

Velocity-space and Energy-pitch space

There are two choices of coordinates for representing the velocity components of the fast-

ion phase-space: the velocities parallel and perpendicular to the plasma current, “velocity-

space”, and the energy and pitch of the fast ion, “energy-pitch” space. The two coordinates

are related in the following way,

E =
m

2

(
v2‖ + v2⊥

)
p =

v‖√
v2‖ + v2⊥

where m is the mass of the fast ion, E and p are the energy and pitch of the fast-ion and

v‖ and v⊥ are the parallel and perpendicular components of the velocity with respect to the

plasma current. The inverse relations are given by

v‖ =

√
2E

m
p v⊥ =

√
2E

m
(1− p2)

The Jacobian of the transformation from energy-pitch to velocity-space and vis versa is given

by,

JEp→V S =
mv⊥√
v2‖ + v2⊥

JV S→Ep =
1

m
√

1− p2
.
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