Absolute surface spectrophotometry of Zodiacal Light:

measurement of optical diffuse backgrounds

Outline

1. Zodiacal light: basics

- Scattering geometry
- Brightness (ballpark)
- Variation (spatial, temporal)
- Spectrum
- 2. Separation of Diffuse Galactic Light (DGL) from Zodiacal Light (ZL)
 - Source & scattering geometry
 - Spectrum

3. Calibration of diffuse background measurements

- Instrumental backgrounds
- Absolute,
- ... surface,
- ... spectrophotometry,
- with multiple instruments

4. Complications near Earth

- Airglow
- Tropospheric & ground scattering
- Earth-orbiting telescopes

5. Summary: recipes for happiness (happier-ness)

Based on: coordinated HST-/Ground-based program to measure the EBL (Bernstein, Freedman, & Madore 2002a,b,c, 2005; Bernstein 2007)

Zodiacal light — basics

• Geometry:

Equatorial Coordinates

Zodiacal light — basics

• Geometry:

IR

Galactic Coordinates

Zodiacal light — basics ($\lambda \sim 0.5 \mu m$)

• Relative flux of backgrounds:

Zodiacal light — basics

• Relative flux of backgrounds:

Zodiacal light — basics ($\lambda \sim 0.5 \mu m$)

- Flux:
 - Stable w/ solar cycle (at $\varepsilon \ge 30^\circ$)
 - Seasonal variation: view w/r/t mid-plane of dust (e.g. Helios probe)
 - Structure: dust bands, cometary trails, earth trailing structures, etc, etc

Must be measured contemporaneously for accurate removal.

Zodiacal light — basics ($\lambda \sim 0.5 \mu m$)

- Flux:
 - Stable w/ solar cycle (at $\varepsilon \ge 30^\circ$)
 - Seasonal variation: view w/r/t mid-plane of dust (e.g. Helios probe)
 - Structure: dust bands, cometary trails, earth trailing structure

Must be measured contemporaneously for accurate removal.

Zodiacal light — basics $(\lambda \sim 0.5 \ \mu m)$

- Spectrum:
 - solar
 - slightly reddened, depending on ε angle

Zodiacal light — basics ($\lambda \sim 0.5 \mu m$)

- Spectrum:
 - solar
 - slightly reddened, depending on ε angle
 - spectral features are well preserved
 - » flux can be measured from Fraunhoffer line strength (correlation, EW measurement, etc)
 - » better resolution is better (limited only by sensitivity)

• Source: Integrated Star Light (ISL), known stellar types

Integrated starlight at given Galactic Latitude:

- Source: Integrated Star Light (ISL), known stellar types
- Scattering: dust is spatially variable (on very small scales, 10's of arcsec)
 - Mean DGL flux can be estimated from simple scattering models using dust (or H) column density, ISL intensity along L.o.S, and observed extinction properties of galactic dust

- Source: Integrated Star Light (ISL), known stellar types
- Scattering: dust is spatially variable (on very small scales)
 - » Mean DGL flux can be estimated from simple scattering models
- If poor spatial resolution, ISL is a direct contribution.
 - » Any solar-type spectrum will be removed as ZL if spectral features are used

Integrated starlight at given Galactic Latitude:

- Source: Integrated Star Light (ISL), known stellar types
- Scattering: dust is spatially variable (on very small scales)
 - » Mean DGL flux can be estimated from simple scattering models
- If poor spatial resolution, ISL is a direct contribution.
 - » Any solar-type spectrum will be removed as ZL if spectral features are used
 - » Other stellar mix can be identified by line ratios and correlated/removed simultaneously.

Compared to solar.

• Case study: EBL measured with HST

* [(Observed flux) - ZL - DGL - Inst]

• Case study: EBL measured with HST+ LCO in an HST field of view

• Case study: EBL measured with HST+ LCO in an HST field of view

• Case study: EBL measured with HST+ LCO in an HST field of view

* [(Observed flux) - ZL - DGL - Inst] ers/s/cm²/sr/A = EBL ers/s/cm²/sr/A

- Case study:
 - Instrumental backgrounds: unpredictable!
 - Absolute …
 - Absolute surface
 - Absolute surface spectrophotometry

TABLE 1 Error Budget for Zodiacal Light Flux

Step	Statistical Uncertainty (%)	Systematic Uncertainty (%)
Bias level removal (§ 3.2)	< 0.01	
Dark current removal (§ 3.3)	< 0.01	
Pixel-to-pixel flat-fielding (§ 3.4)	< 0.01	
Slit illumination (§ 3.4)		< 0.1
Point-source flux calibration (§ 3.6.1)		0.6
Aperture correction (§ 3.6.2)		0.2

Unknown unknowns:** Dark "glow" from the MgF₂ (A/R coating) of window over CCDs

- * e- traps at low light levels
- charge diffusion
- flux calibration drift
- uncertain psf corrections
- uncertain scattering properties in instrument
- radioctive glasses (BK7)
- etc etc etc

- Case study: ٠
 - Instrumental backgrounds _
 - Absolute [flux of a star vs uniform source] -
 - Absolute surface _
 - Absolute surface spectrophotometry _

TABLE 1 ERROR BUDGET FOR ZODIACAL LIGHT FLUX

Step	Statistical Uncertainty (%)	Systematic Uncertainty (%)
Bias level removal (§ 3.2)	< 0.01	
Dark current removal (§ 3.3)	< 0.01	
Pixel-to-pixel flat-fielding (§ 3.4)	< 0.01	
Slit illumination (§ 3.4). [slit jaw uniformity]		< 0.1
Point-source flux calibration (§ 3.6.1)		0.6
Aperture correction (§ 3.6.2)		0.2

- Case study:
 - Instrumental backgrounds
 - Absolute …
 - Absolute surface

How wide WAS that slit?

Absolute surface spectrophotometry

Step	Statistical Uncertainty (%)	Systematic Uncertainty (%)
Bias level removal (§ 3.2)	< 0.01	
Dark current removal (§ 3.3)	< 0.01	
Pixel-to-pixel flat-fielding (§ 3.4)	< 0.01	
Slit illumination (§ 3.4). [slit jaw uniformity]		< 0.1
Point-source flux calibration (§ 3.6.1)		0.6
Aperture correction (§ 3.6.2)		0.2
Solid angle (§ 3.6.3)		0.6

Related questions:

- What is the telescope plate scale?
- What is the spectrograph plate scale?
- Is the grating tilted (x-y plate distortion)
- Is there optical distortion?
- Are the slit jaws parallel? uniform?
- etc etc etc

TABLE 1 Case study: ERROR BUDGET FOR ZODIACAL LIGHT FLUX Instrumental backgrounds _ Systematic Uncertainty Statistical Uncertainty Step (%) (%) Absolute ... _ Bias level removal (§ 3.2) < 0.01 Absolute surface Dark current removal (§ 3.3) < 0.01 ____ Pixel-to-pixel flat-fielding (§ 3.4).... < 0.01Absolute surface spectrophotometry Slit illumination (§ 3.4). < 0.1-Point-source flux calibration (§ 3.6.1)..... 0.6 Aperture correction (§ 3.6.2) 0.2 . . . Solid angle (§ 3.6.3) 0.6 Sensitivity function **Extinction function** ... atmospheric stability ... instrumental stability ... charge transfer, conservation, diffusion ... 0.4 [(1-(mag / airmass) c ° 37.5 (ergs [DN/ 35 ₹ ^{0.2} log 0.0 Extinction, .36.5 4000 4500 5000 5000 4000 4500 Wavelength (Å) wavelength (\AA)

٠

- Case study:
 - Instrumental backgrounds
 - Absolute ...
 - Absolute surface
 - Absolute surface spectrophotometry
 - With multiple instruments measurements must be calibrated on an absolute scale.

- Case study:
 - Instrumental backgrounds
 - Absolute …
 - Absolute surface
 - Absolute surface spectrophotometry
 - With one instrument measurement becomes relative, not absolute.

If backgrounds (100x EBL) are subtracted <u>before</u> calibration, a ~5% calibration error becomes a $\sim 5\%$ uncertainty in the EBL.*

*(Unknown instrumental backgrounds are still a problem)

- Airglow in the optical
 - Particularly variable within ~2 hrs sunset/sunrise
 - Variability also due to scattering (see next slides)

- Airglow in the near IR
 - Particularly variable
 - Bright

- Airglow in the near IR
 - Particularly variable
 - Bright

- Airglow in the near IR
 - Particularly variable
 - Bright

- Shuttle "glow" emission from atmosphere in direction of line of sight
- "Earth shine"
- These sources further complicated by
 - Radioactive windows (MgF₂, BK7, etc), which respond to radiation
 - Scattering in the telescope
 - Extended PSF of off-axis sources due to mirrors (micro-ripple, dust, etc)
 - etc etc etc

- Tropospheric scattering:
 - sources include [ZL, DGL, EBL] + [Moonlight, Integrated star light]
 - Can be modeled, but not at the 1% level.

- Tropospheric scattering:
 - sources include [ZL, DGL, EBL] + [Moonlight, Integrated star light]
 - Can be modeled, but not at the 1% level.

- Tropospheric scattering:
 - sources include [ZL, DGL, EBL] + [Moonlight, Integrated star light]
 - Can be modeled, but not at the 1% level.

- Tropospheric scattering:
 - sources include [ZL, DGL, EBL] + [Moonlight, Integrated star light]
 - Can be modeled, but not at the 1% level.
- Ground scattering:
 - Albedo of soil, vegetation, etc within 100 km can contribute ~5%
 - Sources: [ZL, DGL, EBL] + [Moonlight, Integrated star light]
 - Can be modeled, but not at the 1% level.

Rebecca Bernstein

Irvine, CA — View from 5 AU

Recipe for happier-ness includes*

- Minimize backgrounds (line of sight, location of telescope)
- Above the Earth's atmosphere (or 5 AU, or *possibly* in the IR where atmospheric scattering is low)
- Use 1 instrument (for all diffuse and resolved backgrounds)
- Minimize in-instrument scatter (minimal # of optics)
- High spatial resolution (remove point source stars at ~22 AB mag V?)
- High spectral resolution (≤ 1 Å)
- Avoid polarization-dependent instrumental effects (multiple mirrors)
- Include surface brightness tests prior to launch (charge transfer, trapping, instrument glow, etc)

Reality and measurement of diffuse backgrounds

- Case study:
 - Instrumental backgrounds
 - Absolute [flux calibration]
 - Absolute surface
 - Absolute surface spectrophotometry

TABLE 1			
Error Budget for Zodiacal Light Flux			

Step	Statistical Uncertainty (%)	Systematic Uncertainty (%)
Bias level removal (§ 3.2)	< 0.01	
Dark current removal (§ 3.3)	< 0.01	
Pixel-to-pixel flat-fielding (§ 3.4)	< 0.01	
Slit illumination (§ 3.4). [slit jaw uniformity]		< 0.1
Point-source flux calibration (§ 3.6.1)		0.6
Aperture correction (§ 3.6.2)		0.2

How much light...

- 1. Got into the slit?
- 2. Got to the CCD once in?

from the (point source) standard star vs your uniform background source

